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Finite Difference Methods for Elliptic Equations

Discretization of Boundary Conditions

Discretization of Boundary Conditions

On boundary nodes and irregular interior nodes, we usually need to
construct different finite difference approximation schemes to cope
with the boundary conditions.

Remember that the set of irregular interior nodes is given by
J̃Ω = {j ∈ J \ JD : DLh(j) 6⊂ J}, that is J̃Ω is the set of all such
interior node which has at least one neighboring node not located
in Ω̄.

For simplicity, we take the standard 5-point difference scheme for
the 2-D Poisson equation −4u = f as an example to see how the
boundary conditions are handled.
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Discretization of the Dirichlet Boundary Condition

Since N, E are not in J, P is a irregular interior node, on which we
need to construct a difference equation using the Dirichlet
boundary condition on the nearby points N∗, P∗ and/or E ∗.
The simplest way is to apply interpolations.
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Discretization of the Dirichlet Boundary Condition

Difference equations on P derived by interpolations:

Zero order: UP = UP∗ with truncation error O(h);

First order: UP = hxUE∗+h∗xUW

hx+h∗x
or UP =

hyUN∗+h∗yUS

hy+h∗y
, with

truncation error O(h2);
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Discretization of the Dirichlet Boundary Condition

Difference equations on P can be derived by extrapolations and the
standard 5-point difference scheme:

The grid function values on the ghost nodes N and E can be
given by second order extrapolations using the grid function
values on S , P, N∗ and W , P, E ∗ respectively (see
Exercise 1.3).
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Discretization of the Dirichlet Boundary Condition

Difference equations on P can also be derived by the Taylor series
expansions and the partial differential equation to be solved:

Express uW , uE∗ , uS , uN∗ by the Taylor expansions of u at P.
Express ux , uy , uxx , uyy on P in terms of uW , uE∗ , uS , uN∗

and uP . Substitute these approximation values into the
differential equation (see Exercise 1.4).
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Discretization of the Dirichlet Boundary Condition

Finite difference schemes with nonuniform grid spacing:
a difference equation on P using the values of U on the nodes
N∗, S , W , E ∗ and P with truncation error O(h):

−
{

2

hx +h∗
x

(
UE∗−UP

h∗
x

− UP−UW

hx

)
+

2

hy +h∗
y

(
UN∗−UP

h∗
y

− UP−US

hy

)}
= fP .

Shortcoming:
nonsymmetric.
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Discretization of the Dirichlet Boundary Condition

Symmetric finite difference schemes with nonuniform grid spacing:
a difference equation on P using the values of U on the nodes N∗,
S , W , E ∗ and P with truncation error O(1):

−
{

1

hx

(
UE∗−UP

h∗
x

− UP−UW

hx

)
+

1

hy

(
UN∗−UP

h∗
y

− UP−US

hy

)}
= fP .

It can be shown: the
global error is O(h2).
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Discretization of the Dirichlet Boundary Condition

Construct a finite difference equation on P based on the integral
form of the partial differential equation −

∫
∂VP

∂u
∂ν ds =

∫
VP

f dx :

−
(

UW − UP

hx
+

UE∗ − UP

h∗x

)
hy + φh∗y

2

−
(

US − UP

hy
+

UN∗ − UP

h∗y

)
hx + θh∗x

2
= fP

(hx + θh∗x)(hy + φh∗y )

4
,

where θh∗x/2, φh∗y/2 are the

lengthes of the line segments

Pe and Pn.

(O(h), nonsymmetric)
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Finite Difference Methods for Elliptic Equations

Discretization of Boundary Conditions

Discretization of the Dirichlet Boundary Condition

Extension of the Dirichlet Boundary Condition Nodes JD

Add all of the Dirichlet boundary points used in the equations on
the irregular interior nodes concerning the curved Dirichlet
boundary, such as E ∗, N∗ and P∗, into the set JD to form an
extended set of Dirichlet boundary nodes, still denoted by JD .
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Discretization of the Neumman Boundary Condition

Since N, E are not in J, P is a irregular interior node, on which we
need to construct a difference equation using the Nuemman
boundary condition on the nearby points N∗, P∗ and/or E ∗.
The simplest way is again to apply interpolations.
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Discretization of the Neumman Boundary Condition

Let P∗ be the closest point to P on ∂ΩN , and α be the angle
between the x-axis and the out normal to ∂ΩN at the point P∗.

∂νu(P∗) ∼ ∇u(P) · νP∗ , a zero order extrapolation to the out
normal, leads to a difference equation on P with local truncation

error O(h) :
UP − UW

hx
cosα +

UP − US

hy
sinα = g(P∗).
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Discretization of the Neumman Boundary Condition

We can combine the nonuniform grid spacing difference equations

−
{

2

hx+h∗
x

(
UE∗−UP

h∗
x

− UP−UW

hx

)
+

2

hy+h∗
y

(
UN∗−UP

h∗
y

− UP−US

hy

)}
= fP ,

or
−
{

1

hx

(
UE∗ − UP

h∗
x

− UP − UW

hx

)
+

1

hy

(
UN∗ − UP

h∗
y

− UP − US

hy

)}
= fP ,

on the irregular interior node P, and add in the difference
equations for the new unknowns UN∗ and UE∗ by making use of
the boundary conditions. Say

UN∗−Uξ

|ξN∗| = g(N∗), O(h),

and
UE∗−Uη

|ηE∗| = g(E ∗), O(h).
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Discretization of the Neumman Boundary Condition

The finite volume method based on the integral form of the
Poisson equation −

∫
∂VP

∂u
∂ν ds =

∫
VP

f dx with VP being the

domain enclosed by the broken line segments, where anw⊥PNW ,
leads to an asymmetric finite volume scheme on the irregular
interior node P

−UNW
− UP

|NW P|
|anw |−

UW − UP

hx
hy−

US − UP

hy
|swb|−g(P∗)|ãb| = f (P)|VP |.

The local truncation error is O(h),

since numerical quadrature is not

centered. PW E
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Finite Difference Methods for Elliptic Equations

Discretization of Boundary Conditions

Discretization of the Neumman Boundary Condition

More Emphasis on Global Properties

In dealing with the boundary conditions, compared with the local
truncation error, more attention should be put on the more
important global features:

Symmetry;

Maximum principle;

Conservation;

etc..
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Finite Difference Methods for Elliptic Equations

Discretization of Boundary Conditions

Discretization of the Neumman Boundary Condition

More Emphasis on Global Properties

so that the finite difference approximation solution can

have better stability and higher order of global convergence;

inherit as much as possible the important global properties
from the analytical solution;

be solved by applying fast solvers.
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Finite Difference Methods for Elliptic Equations

Truncation Error, Consistency, Stability and Convergence

Truncation Error, Consistency, Stability and Convergence

Consider the boundary value problem of a partial differential
equation {

−Lu(x) = f (x), ∀x ∈ Ω,

Gu(x) = g(x), ∀x ∈ ∂Ω

and the corresponding finite difference approximation equation
defined on a rectangular grid with spacing h

−LhUj = fj, ∀j ∈ J.

Notice, if j is not a regular interior node, then Lh and fj may
depend on G and g as well as on L and f .

Denote L̄u(x) = Lu(x), if x ∈ Ω, and L̄u(x) = Gu(x), if x ∈ ∂Ω.
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Finite Difference Methods for Elliptic Equations

Truncation Error, Consistency, Stability and Convergence

Truncation Error and consistency

Truncation Error

Definition

Suppose that the solution u to the problem is sufficiently smooth.
Let

Tj(u) = Lhuj − (L̄u)j, ∀j ∈ J.

Define Tj(u) as the local truncation error of the finite difference
operator Lh approximating to the differential operator L̄.

The grid function Th(u) = {Tj(u)}j∈J is called the truncation error
of the finite difference equation approximating to the problem.

Remark 1: Briefly speaking, the truncation error measures the
difference between the difference operator and the differential
operator on smooth functions.

Remark 2: Th(u) can also be viewed as a piece-wise constant
function defined on Ω via the control volumes.
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Finite Difference Methods for Elliptic Equations

Truncation Error, Consistency, Stability and Convergence

Truncation Error and consistency

Point-Wise Consistency of Lh

Definition

The difference operator Lh is said to be consistent with the
differential operator L on Ω, if for all sufficiently smooth solutions
u, we have

lim
h→0

Tj(u) = 0, ∀j ∈
◦
J Ω.

The difference operator Lh is said to be consistent with the
differential operator L on the boundary ∂Ω, if for all sufficiently
smooth u, we have

lim
h→0

Tj(u) = 0, ∀j ∈ J \
◦
J Ω. (1)

Remark: Briefly speaking, this is the point-wise consistency of Lh

to L̄. In fact, for u sufficiently smooth, in the above definition
limh→0 ‖Th(u)‖∞ = 0 in either l∞ or L∞ are equivalent.
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Finite Difference Methods for Elliptic Equations

Truncation Error, Consistency, Stability and Convergence

Truncation Error and consistency

Consistency and accuracy in the norm ‖ · ‖

Definition

The finite difference equation LhU = f̄h is said to be consistent in
the norm ‖ · ‖ with the boundary value problem of the differential
equation L̄u = f̄ , if, for all sufficiently smooth u, we have

lim
h→0
‖Th(u)‖ = 0.

The truncation error is said to be of order p, or order p accurate, if
the convergent rate above is of O(hp), i.e. ‖Th(u)‖ = O(hp).

Remark: Here Th(u) is viewed as a piece- wise constant function
defined on Ω via the control volumes. The norms in the above
definition is the corresponding function norm.
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Finite Difference Methods for Elliptic Equations

Truncation Error, Consistency, Stability and Convergence

Stability

Stability in the norm ‖ · ‖
Definition

The difference equation LhU = f is said to be stable or have
stability in the norm ‖ · ‖, if there exists a constant K independent
of the grid size h such that, for arbitrary grid functions f 1 and f 2,
the corresponding solutions U1 and U2 to the equation satisfy

‖U1 − U2‖ ≤ K‖f 1 − f 2‖, ∀h > 0.

The stability implies the uniform well-posedness of the difference
equation, more precisely, it has a unique solution which depends
uniformly (with respect to h) Lipschitz continuously on the right
hand side (source terms and boundary conditions).
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Finite Difference Methods for Elliptic Equations

Truncation Error, Consistency, Stability and Convergence

Convergence

Convergence in the norm ‖ · ‖

Definition

The difference equation LhU = f̄ is said to converge in the norm
‖ · ‖ to the boundary value problem L̄u = f̄ , or convergent, if, for
any given f̄ (f and g) so that the problem L̄u = f̄ is well posed,
the error eh = {ej}j∈J , {Uj − u(xj)}j∈J of the finite difference
approximation solution U satisfies

lim
h→0
‖eh‖ = 0.

Furthermore, if ‖eh‖ = O(hp), then the difference equation is said
to converge in order p, or order p convergent.
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Finite Difference Methods for Elliptic Equations

Truncation Error, Consistency, Stability and Convergence

Convergence

Stability + Consistency ⇒ Convergence

Since −Lhej = −(LhUj − Lhuj), the stability of the difference
operator Lh yields

‖U−u‖ = ‖eh‖ ≤ K‖LhU−Lhu‖ ≤ K (‖LhU− L̄u‖+‖L̄u−Lhu‖).

1 ‖LhU − L̄u‖ is the residual of the algebraic equation LhU = f̄ ,
which is 0 when U is the solution of the difference equation;

2 Lhu − L̄u = Th is the truncation error;

3 If U is the finite difference solution, then, the stability implies
‖U − u‖ = ‖eh‖ ≤ K‖Th‖.

4 Stability + Consistency ⇒ Convergence.
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Finite Difference Methods for Elliptic Equations

Truncation Error, Consistency, Stability and Convergence

Convergence

The Convergence Theorem

Theorem

Suppose that the finite difference approximation equation LhU = f̄
of the boundary value problem of partial differential equation
L̄u = f̄ is consistent and stable. Suppose the solution u of the
problem L̄u = f̄ is sufficiently smooth. Then the corresponding
finite difference equation must converge, and the convergent order
is at least the order of the truncation error, i.e. ‖Th‖ = O(hp)
implies ‖eh‖ = O(hp).

Note the additional condition that the solution u is sufficiently
smooth, which guarantees that the truncation error for this
specified function converges to zero in the expected rate.
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Finite Difference Methods for Elliptic Equations

Error Analysis Based on the Maximum Principle

The Maximum Principle

The Problem and Notations for the Maximum Principle

1 Ω ⊂ Rn: a connected region;

2 J = JΩ ∪ JD : grid nodes with grid spacing h;

3 Boundary value problem of linear difference equations:{
−LhUj = fj, ∀j ∈ JΩ,

Uj = gj, ∀j ∈ JD ,

4 Lh has the following form on JΩ:

LhUj =
∑

i∈J\{j}

cijUi − cjUj, ∀j ∈ JΩ.

5 DLh(j) = {i ∈ J \ {j} : cij 6= 0}: the set of neighboring nodes
of j with respect to Lh.
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Finite Difference Methods for Elliptic Equations

Error Analysis Based on the Maximum Principle

The Maximum Principle

Connection and JD connection of J with respect to Lh

Definition

A grid J is said to be connected with respect to the difference
operator Lh, if for any given nodes j ∈ JΩ and i ∈ J, there exists a
set of interior nodes {jk}mk=1 ⊂ JΩ such that

j0 = j, i ∈ DLh(jm), jk+1 ∈ DLh(jk), ∀k = 0, 1, . . . ,m − 1.

Suppose JD 6= ∅, a grid J is said to be JD connected with respect
to the difference operator Lh, if for any given interior node j ∈ JΩ

there exists a Dirichlet boundary node i ∈ JD and a set of interior
nodes {jk}mk=0 ⊂ JΩ such that the above inclusion relations hold.
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The Maximum Principle

Theorem

Suppose LhUj =
∑

i∈J\{j} cijUi − cjUj, ∀j ∈ JΩ; J and Lh satisfy

(1) JD 6= ∅, and J is JD connected with respect to Lh;

(2) cj > 0, cij > 0, ∀i ∈ DLh(j), and cj ≥
∑

i∈DLh
(j)

cij.

Suppose the grid function U satisfies LhUj ≥ 0, ∀j ∈ JΩ. Then,

MΩ , max
i∈JΩ

Ui ≤ max

{
max
i∈JD

Ui, 0

}
.

Furthermore, if J and Lh satisfy (3): J is connected with respect to
Lh; and there exists interior node j ∈ JΩ such that

Uj = max
i∈J

Ui ≥ 0.

Then, U must be a constant on J.



Finite Difference Methods for Elliptic Equations

Error Analysis Based on the Maximum Principle

The Maximum Principle

Proof of The Maximum Principle

Assume for some j ∈ JΩ, Uj = MΩ > MD , maxi∈JD Ui, MΩ > 0.

By the JD connection, there exist i ∈ JD and {jk}mk=0 ⊂ JΩ such
that the inclusion relation jk+1 ∈ DLh(jk) hold.

It follows from the conditions on Lh and the condition (2) that

Uj ≤
∑

i∈DLh
(j)

cij
cj

max
l̂∈DLh

(j)
Ûl ≤

∑
i∈DLh

(j)

cij
cj

MΩ.

Since Uj = MΩ ≥ 0 and
∑

i∈DLh
(j)

cij
cj
≤ 1, this implies that the

equalities must all hold, which can be true only if LhUj = 0 as well
as Ûl = Uj = MΩ for all l̂ ∈ DLh(j).
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Finite Difference Methods for Elliptic Equations

Error Analysis Based on the Maximum Principle

The Maximum Principle

Proof of The Maximum Principle

Similarly, we have Ujk = MΩ, k = 1, 2, . . . ,m and Ui = MΩ. But
this contradicts the assumption Ui ≤ MD < MΩ.

The same argument also leads to the conclusion that Ui = Uj for
all i ∈ J, i.e. U is a constant on J, provided that the condition (3)
and relation Uj = maxi∈J Ui ≥ 0 hold. �

Remark 1: For the 5 point scheme of −∆, the condition (2) of the
maximum principle holds. If −∆ is replaced by −(∆ + b1∂x + b2∂y + c)
with c < 0, the conclusion still holds if ∂x and ∂y are approximated by
central difference operators (2hx)−140x and (2hy )−140y respectively.

Remark 2: For uniformly elliptic operators with c < 0, one can always

construct consistent finite difference operators so that the condition (2)

of the maximum principle holds for sufficiently small h, noticing that the

second order difference operator has a factor of O(h−2), while the first

order difference operator has a factor of O(h−1).
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The Maximum Principle

Apply the maximum principle to −U, we have

Corollary

Suppose J and Lh satisfy the conditions (1) and (2) in
Theorem 1.2. Suppose that the grid function U satisfies

LhUj ≤ 0, ∀j ∈ JΩ.

Then U can not take nonpositive minima on a interior node, i.e.

mΩ , min
i∈JΩ

Ui ≥ min

{
min
i∈JD

Ui, 0

}
.

If Lh satisfies further (3): J is connected with respect to the
operator Lh, and there exists an interior node j ∈ JΩ such that

Uj = min
i∈J

Ui ≤ 0,

Then, U must be a constant grid function on J.



Finite Difference Methods for Elliptic Equations

Error Analysis Based on the Maximum Principle

The Maximum Principle

The Existence Theorem

Theorem

Suppose the grid J and the linear operator Lh satisfy the
conditions (1) and (2) of the maximum principle. Then, the
difference equation {

−LhUj = fj, ∀j ∈ JΩ,

Uj = gj, ∀j ∈ JD ,

has a unique solution.
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Finite Difference Methods for Elliptic Equations

Error Analysis Based on the Maximum Principle

The Maximum Principle

Proof of the Existence Theorem

We only need to show that

LhUj = 0, ∀j ∈ J ⇒ Uj = 0, ∀j ∈ J.

In fact, by the maximum principle LhU ≥ 0 implies U ≤ 0, and by
the corollary of the maximum principle, LhU ≤ 0 implies U ≥ 0,
thus U ≡ 0 on J . �
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Finite Difference Methods for Elliptic Equations

Error Analysis Based on the Maximum Principle

The Maximum Principle

(−Lh)−1 is a Positive Operator

Consider the discrete problem{
−LhUj = fj, ∀j ∈ JΩ,

Uj = gj, ∀j ∈ JD .

Corollary

Suppose the grid J and the linear operator Lh satisfy the
conditions (1) and (2) of the maximum principle. Then,

fj ≥ 0,∀j ∈ JΩ, gj ≥ 0,∀j ∈ JD , ⇒ Uj ≥ 0,∀j ∈ J;

and
fj ≤ 0,∀j ∈ JΩ, gj ≤ 0,∀j ∈ JD , ⇒ Uj ≤ 0,∀j ∈ J;
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Finite Difference Methods for Elliptic Equations

Error Analysis Based on the Maximum Principle

The Maximum Principle

(−Lh)−1 is a Positive Operator

The corollary says that (−Lh)−1 is a positive operator, i.e.
(−Lh)−1 ≥ 0. In other words, every element of the matrix (−Lh)−1

is nonnegative.

In fact, the matrix −Lh is a M matrix, i.e. the diagonal elements of
A are all positive, the off-diagonal elements are all nonpositive, and
elements of A−1 are all nonnegative.
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Finite Difference Methods for Elliptic Equations

Error Analysis Based on the Maximum Principle

The Comparison Theorem and the Stability

The Comparison Theorem and the Stability

Theorem

Suppose the grid J and the linear operator Lh satisfy the
conditions (1) and (2) of the maximum principle. Let the grid
function U be the solution to the linear difference equation{

−LhUj = fj, ∀j ∈ JΩ,

Uj = gj, ∀j ∈ JD .

Let Φ be a nonnegative grid function defined on J satisfying

LhΦj ≥ 1, ∀j ∈ JΩ.

Then, we have max
j∈JΩ

|Uj| ≤ max
j∈JD
|Uj|+ max

j∈JD
Φj max

j∈JΩ

|fj|.
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