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Error Control and Adaptivity of Finite Element Solutions

A Posteriori Error Estimates and Adaptive FEM

Efficiency of the Residual a Posteriori Local Error Estimator

a Posteriori Local Error Estimator

1 Recall
∫

Ω∇(u − uh) · ∇w dx = R(uh)(w), and the a posteriori
local error estimator of residual type is given as

ηR,K =
{

h2
K ‖fK‖2

0,2,K +
∑

E∈E(K)∩Eh,1

hE ‖gE − νE · ∇uh‖2
0,E

+
1

2

∑
E∈E(K)∩Eh,Ω

hE ‖[νE · ∇uh]E‖2
0,E

}1/2
.

2 We hope, by choosing proper bubble functions w , to establish
relationship between the local error of u − uh and the three
terms in ηR,K .
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Triangular Element Bubble Functions and Edge Bubble Functions

1 For K ∈ Th(Ω), the element bubble function bK is

bK (x) =

{
27λK ,1(x)λK ,2(x)λK ,3(x), ∀x ∈ K ;

0, ∀x ∈ Ω \ K .

2 For a given edge E ∈ Eh,Ω, the edge bubble function bE is

bE (x) =

{
4λKi ,1(x)λKi ,2(x), ∀x ∈ Ki , i = 1, 2;

0, ∀x ∈ Ω \ ωE .

3 For a given edge E ∈ Eh,∂Ω, the edge bubble function bE is

bE (x) =

{
4λK ′,1(x)λK ′,2(x), ∀x ∈ K ′;

0, ∀x ∈ Ω \ K ′.



Properties of the Bubble Functions

Lemma

For any given K ∈ Th(Ω) and E ∈ Eh, the bubble functions bK and
bE have the following properties:

supp bK ⊂ K , 0 ≤ bK ≤ 1, max
x∈K

bK (x) = 1;

supp bE ⊂ ωE , 0 ≤ bE ≤ 1, max
x∈E

bE (x) = 1;

∫
E
bE ds =

2

3
hE ;

there exists a constant ĉi , i = 1, . . . , 6, which depends only on the
smallest angle of the triangular triangulation Th(Ω), such that

ĉ1 h2
K ≤

∫
K
bK dx =

9

20
|K | ≤ ĉ2 h2

K ;

ĉ3 h2
E ≤

∫
K ′

bE dx =
1

3
|K ′| ≤ ĉ4 h2

E , ∀K ′ ⊂ ωE ;

‖∇bK‖0,2,K ≤ ĉ5 h−1
K ‖bK‖0,2,K ;

‖∇bE‖0,2,K ′ ≤ ĉ6 h−1
E ‖bE‖0,2,K ′ , ∀K ′ ⊂ ωE .
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The Efficiency of the Residual a Posteriori Local Error Estimator

Theorem

Let u and uh be the solution and the finite element solution of the
variational problem. Let ηh be an residual type local a posteriori
error estimator given above (see (8.1.8)). Then, there exists a
constant C̃ , which depends only on the smallest angle of the
triangular triangulation Th(Ω), such that

ηR,K ≤ C̃
{
‖u − uh‖2

1,2,ωK
+
∑

K ′∈ωK

h2
K ′‖f − fK ′‖2

0,2,K ′

+
∑

E∈E(K)∩Eh,1

hE‖g − gE‖2
0,E

}1/2
, ∀K ∈ Th(Ω).

5 / 39



Error Control and Adaptivity of Finite Element Solutions

A Posteriori Error Estimates and Adaptive FEM
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Proof of the Efficiency of ηR,K — Estimate of ‖fK‖0,2,K

1 For any given K ∈ Th(Ω), set wK := fKbK . Then, by the
properties of bK (see Lemma 8.3), we have∫

K
fK wK dx =

9

20
|K | |fK |2 =

9

20
‖fK‖2

0,2,K .

2 Since suppwK ⊂ K , it follows∫
∂Ω1

g wK ds −
∫

Ω
∇uh · ∇wK dx = −∇uh|K

∫
K
∇wK dx = 0.
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Proof of the Efficiency of ηR,K — Estimate of ‖fK‖0,2,K

3 Thus, by
∫

Ω∇(u − uh) · ∇wK dx = R(uh)(wK ), we obtain∫
K

fK wK dx =

∫
K

f wK dx +

∫
K

(f − fK ) wK dx

=

∫
K
∇(u − uh) · ∇wK dx +

∫
K

(f − fK ) wK dx

≤ ‖u − uh‖1,2,K‖∇wK‖0,2,K + ‖f − fK‖0,2,K‖wK‖0,2,K .
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Proof of the Efficiency of ηR,K — Estimate of ‖fK‖0,2,K

4 On the other hand, since fK is a constant, by the properties of
bK (see Lemma 8.3), we have

‖wK‖0,2,K = |fK | ‖bK‖0,2,K ≤ |fK |
(∫

K
bK dx

)1/2

=

√
9

20
‖fK‖0,2,K ;

‖∇wK‖0,2,K ≤ ĉ5 h−1
K ‖wK‖0,2,K .
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Proof of the Efficiency of ηR,K — Estimate of ‖[νE · ∇uh]E‖0,E

5 Combining the three inequalities obtained in 3© and 4© with∫
K fK wK dx = 9

20 ‖fK‖
2
0,2,K (see (8.2.3)) leads to

‖fK‖0,2,K ≤
√

20

9
ĉ5 h−1

K ‖u − uh‖1,2,K +

√
20

9
‖f − fK‖0,2,K .

6 For any given E ∈ Eh,Ω, set wE := [νE · ∇uh]E bE , by the
properties of bE (see Lemma 8.3), we have∫
E

[νE ·∇uh]E wE ds =
2

3
hE |[νE ·∇uh]E |2 =

2

3
‖[νE ·∇uh]E‖2

0,E .
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Proof of the Efficiency of ηR,K — Estimate of ‖[νE · ∇uh]E‖0,E

7 Since suppwE ⊂ ωE , it follows from u is the solution and∫
Ω∇(u − uh) · ∇wE dx = R(uh)(wE ) (see (8.1.4)) that∫

E
[νE · ∇uh]E wE ds =

∫
Ω
∇uh · ∇wE dx

=
∑
K⊂ωE

∫
K

f wE dx −
∫
ωE

∇(u − uh) · ∇wE dx

≤ ‖f ‖0,2,ωE
‖wE‖0,2,ωE

+ ‖u − uh‖1,2,ωE
‖∇wE‖0,2,ωE

.
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Proof of the Efficiency of ηR,K — Estimate of ‖[νE · ∇uh]E‖0,E

8 Since [νE · ∇uh]E is a constant, and wE := [νE · ∇uh]E bE , by
the properties of bE (see Lemma 8.3), we have

‖∇wE‖0,2,ωE
≤ ĉ6 h−1

E ‖wE‖0,2,ωE
,

‖wE‖0,2,ωE
= |[νE · ∇uh]E | ‖bE‖0,2,ωE

≤ |[νE · ∇uh]E |
(∫

ωE

bE dx

)1/2

≤
√

2 ĉ4 hE |[νE · ∇uh]E | ≤
√

2 ĉ4 h
1/2
E ‖[νE · ∇uh]E‖0,E .
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Proof of the Efficiency of ηR,K — Estimate of ‖[νE · ∇uh]E‖0,E

9 Combining the three inequalities obtained in 7© and 8© with∫
E

[νE · ∇uh]E wE ds =
2

3
‖[νE · ∇uh]E‖2

0,E

(see (8.2.5)), and ‖f ‖0,2,ωE
≤
∑
K⊂ωE

‖f − fK‖0,2,K +
∑
K⊂ωE

‖fK‖0,2,K

and 5© (see (8.2.4)), we are leads to

‖[νE ·∇uh]E‖0,E ≤
3

2
c h
−1/2
E

{
hE

∑
K⊂ωE

‖f−fK‖0,2,K+‖u−uh‖1,2,ωE

}
,

where c =
√

2 ĉ4 max

{
1 +

√
20
9 , ĉ6 +

√
20
9 ĉ5 maxK⊂ωE

hE/hK

}
.
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Proof of the Efficiency of ηR,K — Estimate of ‖gE − νE · ∇uh‖0,E

10 For any given E ∈ Eh,∂Ω1 , set wE := (gE − νE · ∇uh) bE , by
the properties of bE (see Lemma 8.3), we have

∫
E

(gE−νE ·∇uh)wE ds =
2

3
hE |gE−νE ·∇uh|2 =

2

3
‖gE−νE ·∇uh‖2

0,E .
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Proof of the Efficiency of ηR,K — Estimate of ‖gE − νE · ∇uh‖0,E

10 Since E is on the boundary and suppwE ⊂ ωE , it follows
from (8.1.4) that∫

E
(gE − νE · ∇uh)wEds =

∫
E
(g − νE · ∇uh)wEds +

∫
E
(gE − g)wEds

=

∫
Ω
fwE dx +

∫
∂Ω1

gwEds −
∫

Ω
∇uh · ∇wEdx −

∫
ωE

fwEdx +

∫
E
(gE − g)wEds

=

∫
ωE

∇(u − uh) · ∇wE dx −
∫
ωE

f wE dx +

∫
E

(gE − g) wE ds

≤‖u − uh‖1,2,ωE
‖∇wE‖0,2,ωE

+ ‖f ‖0,2,ωE
‖wE‖0,2,ωE

+ ‖g − gE‖0,E
‖wE‖0,E

.
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Proof of the Efficiency of ηR,K — Estimate of ‖gE − νE · ∇uh‖0,E

12 Since (gE − νE · ∇uh) is a constant, ωE = K ′ and
‖f ‖0,2,K ′ ≤ ‖f − fK ′‖0,2,K ′ + ‖fK ′‖0,2,K ′ , by Lemma 8.3 and
(8.2.4), this combined with∫
E (gE − νE · ∇uh)wE ds = 2

3‖gE − νE · ∇uh‖2
0,E (see (8.2.7))

yields
‖gE − νE · ∇uh‖0,E ≤

3

2
c ′ h
−1/2
E {‖u − uh‖1,2,K ′

+ hE ‖f − fK ′‖0,2,K ′ + h
1/2
E ‖g − gE‖0,E},

where

c ′ = max
{√2

3
,
√

ĉ4

(
1+

√
20

9

)
,
√

ĉ4

(
ĉ6+

√
20

9
ĉ5 hE/hK ′

)}
.

13 The theorem follows from the three parts with C̃ =

max

{
3
√

2, 3
√

2ĉ5, 3
√

3ĉ4

(
1 +

√
20
9

)
, 3
√

3ĉ4

(
ĉ6 +

√
20
9 ĉ5

)}
. �
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The a Posteriori Local Error Estimator ηR,K is Reliable and Efficient

1 By Theorem 8.3, we have

‖u − uh‖1,2,Ω ≤ C
{ ∑

K∈Th(Ω)

η2
R,K+

∑
K∈Th(Ω)

h2
K ‖f − fK‖2

0,2,K +
∑

E∈Eh,1

hE ‖g − gE‖2
0,E

}1/2
.

2 By Theorem 8.4, we have

ηR,K ≤ C̃
{
‖u − uh‖2

1,2,ωK
+
∑

K ′∈ωK

h2
K ′‖f − fK ′‖2

0,2,K ′

+
∑

E∈E(K)∩Eh,1

hE‖g − gE‖2
0,E

}1/2
, ∀K ∈ Th(Ω).
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The a Posteriori Local Error Estimator ηR,K is Reliable and Efficient

3 In applications, if the mesh is reasonably fine,{ ∑
K∈Th(Ω)

h2
K ‖f − fK‖2

0,2,K

}1/2
= o(h),

{ ∑
E∈Eh,∂Ω1

hE ‖g − gE‖2
0,2,E

}1/2
= o(h),

and in nontrivial cases,
‖u − uh‖1,2,Ω ≥ C h.

In such cases, by Theorem 8.3 and Theorem 8.4, the a
posteriori local error estimator ηR,K is efficient as well as
reliable.
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What is an Adaptive Method

1 A practical computation start with an initial mesh, according
to theory or experience, often quite coarse to reduce the cost,
and reasonably fine so that the key features of the solution
can be roughly captured.

2 Generally speaking, one can not guarantee that the initially
obtained finite element solution has the required accuracy.
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Adaptive Finite Element Methods

What is an Adaptive Method

3 By the properties of the current finite element solution, for
example, the scale of the local a posteriori error estimator,
and by certain strategy, the mesh is refined or coarsened
(non-uniformly) so that a finite element solution with
sufficiently high approximation accuracy can be obtained with
reasonably low cost.

4 An adaptive method usually consists of many such mesh
refining and coarsening processes according to the complexity
of the problem, the cost and accuracy requirements, etc..
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Adaptive Finite Element Methods

Adaptive methods of h-version, p-version and h-p-version

By Theorem 7.10, for second order elliptic problems, under certain
general conditions, we have the a priori error estimate

‖u − uh‖1,Ω ≤ C hk |u|k+1,Ω.

Obviously, the error of the finite element solution can be reduced
by decreasing h or increasing k .

This observation leads to the following 3-versions of adaptive
methods:

1 h-version: reduce h by refining the mesh.

2 p-version: increase k by including higher order polynomials.

3 h-p-version: the combination of h-version and p-version.

20 / 39



Error Control and Adaptivity of Finite Element Solutions

A Posteriori Error Estimates and Adaptive FEM

Adaptive Finite Element Methods

Adaptive methods of h-version, p-version and h-p-version

Remark 1: The general idea is to increase the local approximation
accuracy by increasing the local degrees of freedom of the finite
element function.

Remark 2: The p-version works only when u is sufficiently smooth.

Remark 3: May increase h and/or decrease k locally where the
local error is much smaller than the average.
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Adaptive Criterion Using a Posteriori Local Error Estimators

1 ηK : an efficient local a posteriori error estimator, K ∈ Th(Ω).

2 Denote η := maxK∈Th(Ω) ηK . Choose a threshold γ ∈ (0, 1).

3 Mark all elements K , which satisfy ηK ≥ γ η, as the
candidates of mesh refinement.

4 An alternative way is to mark the edges instead, since, for
most a posteriori error estimators, the leading term consists of
the jumps across the edges.
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Adaptive Criterion Using a Posteriori Local Error Estimators

Note: Another more complicated way is:

1 Let there be an asymptotic error estimate of the form c hλK .

2 Th(Ω) be a uniform refinement of TH(Ω).

3 The constants c and λ can be roughly estimated by the a
posteriori error estimators ηH,KH

and ηh,Kh
.

4 Mark the elements and estimate the final local mesh size
accordingly.
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Basic requirements of the mesh refinement process

No hanging nodes — the vertices of refined elements located
on the middle of an edge of the neighboring element.

The shape of the elements in the final mesh should maintain
certain regularity, for example, the smallest angle should have
a positive lower bound.
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3 Mesh Refinement Methods for Triangular Element in R2

1 Longest edge bisection: divide a marked element into two
elements by connecting the middle point of the longest edge
of the element to its opposite vertex;

2 Marked edge bisection: divide an element into two by
connecting the middle point of the marked edge of the
element to its opposite vertex;

3 Regular refinement: divide a marked element into four by
connecting the the middle points of the three edges.
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Additional Rules to Remove Hanging Nodes

The two additional rules to the longest edge bisection refinement
(green refinement, see Figure 8.1(b)):

(1a) If there are two hanging nodes not on the longest
edge, then, divide the triangle into four by the regular
refinement (red refinement, see Figure 8.1(a));

(1b) If there is only one hanging node not on the longest
edge, then, divide the triangle into three by
connecting the hanging node to the middle point of
the longest edge (whether it is a hanging node or
not) and the opposite vertex respectively (named as
the blue refinement, see Figure 8.1(c)).

Regularity: the mesh produced by repeatedly applying the longest
bisection refinement with the two additional rules (1a) and (1b)
has the property that θfinal

min ≥ 1
2θ

initial
min (cf. [26]).



The Red, Green and Blue Refinements

1 The longest edge bisection is also called the green refinement;
2 The regular refinement is also called the red refinement;
3 The blue refinement: if there is only one hanging node which

is not on the longest edge of a triangle, then, divide the
triangle into three triangles by connecting the middle point of
the longest edge (whether it is a hanging node or not) to the
hanging node and the opposite vertex respectively.

(a): red refinement; (b): green refinement; (c): blue refinement.

(a) (b) (c)



The Marked Edge (Newest Vertices) Refinement

The marked edge bisection refinement, also known as the newest
vertex bisection, since the new marked edges are usually the
opposite edges of the newest vertices.

The marked edge bisection refinement should follow the rules:

(2a) Each triangle has exactly one marked edge;

(2b) When a triangle is bisected, its two unmarked edges
become the marked edges of its two sons (see
Figure 8.2, where ◦ represents an marked edge);

(2c) If and only if an edge is a common marked edge of
both of its adjacent triangles, the bisection will be
carried out (on both triangles at the same time).
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The Marked Edge (Newest Vertices) Refinement

The rules (2a) and (2c) ensure that the elements are only refined
by bisection, while the rule (2b) ensures that an initial triangle will
produce at most four different types of similar triangles [12,28].

(a): Father element; (b): Son elements and their marked edges.

(a) (b)
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The Strategies of Dealing with Hanging Nodes for Regular Refinement

The regular refinement always produces son triangles similar to
their father ones, but usually also introduces hanging nodes, which
can be treated in one of the following ways:

1 The hanging nodes are not regarded as degrees of freedom,
instead the function values on the hanging nodes are
calculated by the corresponding interpolation.

2 To apply the longest edge bisection (red, green and blue
refinements) to eliminate the hanging nodes.
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Finite Steps Termination and Regularity

Remark:

The process of eliminating the hanging nodes by the longest
edge bisection always stops in finite steps.

The final mesh obtained by repeatedly applying the
combination of the regular refinement and the longest edge
bisection has the property that

θfinal
min ≥

1

2
θinitial

min .
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General Remarks on Nested Mesh Refinements

1 The meshes produced by the above mesh refinement methods
are nested, i.e. an element of a coarser mesh is always a union
of several elements of a finer mesh.

The property makes it easier to coarsening the mesh whenever
necessary.

2 The finite element function spaces defined on the nested
meshes are also nested, i.e. VH ⊂ Vh.

The property makes it easier to apply fast solvers, such as the
multi-grid methods.
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Mesh Redistribution (r -Version) Adaptive Methods

1 Do not change the total number of the degrees of freedom.

2 Do not even change the topological structure of the mesh.

3 Redistribute the mesh according to the finite element solution
obtained on the current mesh and certain mesh redistribution
principles.
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Mesh Redistribution by Error Equi-Distribution Principle

A popular mesh redistribution principle is the so called error
equi-distribution principle, which assume among all meshes with
the same topological structure, the mesh with uniformly distributed
error must have the least global error.

The error equi-distribution principle is not easily implemented in
applications. So, it is often relaxed by introducing certain monitor
functions.
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Mesh Redistribution According to Equi-Arc-Length Principle

1 To solve a two point BVP of u
′′

+ f = 0 on (0, 1) with a
continuous piecewise affine finite element function space.

2 Let ξi = i/N, i = 0, 1, . . . ,N, be a uniform partition ΞN of
[0, 1], let xh : [0, 1]→ [0, 1] be an arbitrarily given
continuous piecewise affine and strictly monotonically
increasing finite element function.

3 Then, xi = xh(ξi ), i = 0, 1, . . . ,N, defines on [0, 1] a finite
element partition (i.e. a triangulation) Xh.

4 Let uh be the finite element solution obtained on the mesh Xh.

5 Take the solution arc-length density g(x) =
√

1 + |u′h(x)|2 as
a monitor function. Define Gi = g(x)|x∈(xi−1, xi ).

6 Equi-Arc-Length Principle:

Gi · (xi − xi−1) = Gj · (xj − xj−1), ∀ 0 ≤ i , j ≤ N.
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Moving Mesh According to Equi-Arc-Length Principle

1 Increase the cell length 4xi , if Gi is less than the average.

2 Decrease the cell length 4xi , if Gi is greater than the average.

3 The aim is Gi · (xi − xi−1) = Gj · (xj − xj−1); or

g(xh(ξ))x ′h(ξ)|(ξi−1,ξi ) = g(xh(ξ))x ′h(ξ)|(ξj−1,ξj ), 1 ≤ i , j ≤ N;

or g(xh(ξ))x ′h(ξ) = constant, 1 ≤ i ≤ N.
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Moving Mesh According to Equi-Arc-Length Principle

4 So, the mesh redistribution can be realized by the finite
element solution xh of the harmonic equation{

(g(x(ξ))x ′(ξ))′ = 0, ∀ ξ ∈ (0, 1);

x(0) = 0, x(1) = 1,

on the uniform mesh ΞN . This is a nonlinear problem.

5 Start from an initial mesh, apply some iterative method, for
example, the Picard iteration, to move the mesh, project the
current uh on the new mesh and solve for the new uh, · · · ,
until convergence.
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Moving Mesh According to Energy Minimization Principle

1 Consider the energy minimization problem:{
Find u ∈ V = H1

0(Ω) such that

F (u) = infv∈V F (v).

2 F (u) = 1
2 a(u, u)− f (u); a(·, ·) bounded symmetric uniformly

elliptic bilinear, f (·) bounded linear forms defined on V.

3 Then, we have

F (v)− F (u) =
1

2
a(v , v)− a(u, v)− 1

2
a(u, u) + a(u, u)

=
1

2
a(v − u, v − u), ∀v ∈ V.

4 Th(Ω) = {T̂h(Ω) : which is topologically same as Th(Ω)}.
5 Find a mesh T̂h(Ω) ∈ Th(Ω) and ûh ∈ V̂h, such that F (ûh)

minimize the energy.



Thank You!
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