Numerical Solutions to Partial Differential Equations

Zhiping Li

LMAM and School of Mathematical Sciences Peking University

Error Control and Adaptivity of Finite Element Solutions

- A Posteriori Error Estimate
 - Letter The Residual and Error of Finite Element Solutions

Mixed BVP of Poisson Equation on Polygonal Region in \mathbb{R}^2

• Consider the boundary value problem of the Poisson equation

$$\begin{cases} -\triangle u = f, & x \in \Omega, \\ u = 0, & x \in \partial \Omega_0, & \frac{\partial u}{\partial \nu} = g, \quad x \in \partial \Omega_1, \end{cases}$$

where Ω is a polygonal region in \mathbb{R}^2 , $\partial \Omega_0$ is a relative closed subset in $\partial \Omega$ with positive 1-dimensional measure,

$$\partial \Omega = \partial \Omega_0 \cup \partial \Omega_1, \ \partial \Omega_0 \cap \partial \Omega_1 = \emptyset,$$

 $f \in \mathbb{L}^2(\Omega), \ g \in \mathbb{L}^2(\partial \Omega_1).$

Error Control and Adaptivity of Finite Element Solutions

- A Posteriori Error Estimate
 - The Residual and Error of Finite Element Solutions

Mixed BVP of Poisson Equation on Polygonal Region in \mathbb{R}^2

• consider the standard weak form of the problem:

 $\begin{cases} \mathsf{Find} \ u \in \mathbb{V} \text{ such that} \\ \int_{\Omega} \nabla u \cdot \nabla v \ dx = \int_{\Omega} f \ v \ dx + \int_{\partial \Omega_1} g \ v \ ds, \quad \forall v \in \mathbb{V}, \end{cases}$

where $\mathbb{V} = \left\{ v \in \mathbb{H}^1(\Omega) : v|_{\partial \Omega_0} = 0
ight\};$

• consider the conforming finite element method based on a family of regular class C^0 type (1) Lagrange triangular elements.

A Theorem on the Relation of Residual and Error of a FE Solution

Define the residual operator
$$R : \mathbb{V} \to \mathbb{V}^*$$
 of the problem by
 $R(v)(w) = \int_{\Omega} f w \, dx + \int_{\partial \Omega_1} g w \, ds - \int_{\Omega} \nabla v \cdot \nabla w \, dx, \quad \forall w \in \mathbb{V}.$

2 The dual norm of the residual of a finite element solution u_h :

$$\|R(u_h)\|_{\mathbb{V}^*} = \sup_{\substack{w \in \mathbb{V} \\ \|w\|_{1,2,\Omega}=1}} \left\{ \int_{\Omega} fw \, dx + \int_{\partial \Omega_1} gw \, ds - \int_{\Omega} \nabla u_h \cdot \nabla w \, dx \right\}$$

Theorem

Let $u \in \mathbb{V}$, $u_h \in \mathbb{V}_h$ be the weak solution and the finite element solution of the problem respectively. Then, there exists a constant $C(\Omega)$, which depends only on Ω , such that

 $\|R(u_h)\|_{\mathbb{V}^*} \le \|u-u_h\|_{1,2,\Omega} \le C(\Omega) \|R(u_h)\|_{\mathbb{V}^*}.$

Remarks on Residual Dual Norm Estimation

- We hope to develop a formula, which is easily computed and involves only available data such as f, g, u_h and geometric parameters of the triangulation and thus is usually called an a posteriori error estimator, to evaluate the dual norm of the residual.
- Recall that in the a priori error estimates, the polynomial invariant interpolation operator plays an important role. For example, write w as (w Π_hw) + Π_hw can have some advantage.
- However, the Lagrange nodal type interpolation operators require the function to be at least in C⁰.
- ④ Here, we need to introduce a polynomial invariant interpolation operator for functions in ℍ¹.

Error Control and Adaptivity of Finite Element Solutions

- A Posteriori Error Estimate
 - Letter The Residual and Error of Finite Element Solutions

Notations on a Family of Regular Triangular Triangulations $\{\mathfrak{T}_h(\Omega)\}_{h>0}$

() $\mathcal{E}(K)$, $\mathcal{N}(K)$: the sets of all edges and vertices of $K \in \mathfrak{T}_h(\Omega)$.

2 Denote
$$\mathcal{E}_h := \bigcup_{K \in \mathfrak{T}_h(\Omega)} \mathcal{E}(K)$$
, $\mathcal{N}_h := \bigcup_{K \in \mathfrak{T}_h(\Omega)} \mathcal{N}(K)$.

③ $\mathcal{N}(E)$: the sets of all vertices of an edge $E \in \mathcal{E}_h$.

Error Control and Adaptivity of Finite Element Solutions

- A Posteriori Error Estimate
 - └─ The Residual and Error of Finite Element Solutions

Notations on a Family of Regular Triangular Triangulations $\{\mathfrak{T}_h(\Omega)\}_{h>0}$

$$\mathfrak{\tilde{\omega}}_{\mathcal{K}} := \bigcup_{\mathcal{N}(\mathcal{K}) \cap \mathcal{N}(\mathcal{K}') \neq \emptyset} \mathcal{K}', \qquad \tilde{\omega}_{\mathcal{E}} := \bigcup_{\mathcal{N}(\mathcal{E}) \cap \mathcal{N}(\mathcal{K}') \neq \emptyset} \mathcal{K}'.$$

(3) The corresponding finite element function space:

 $\mathbb{V}_{h} = \{ v \in \mathbb{C}(\bar{\Omega}) : v|_{K} \in \mathbb{P}_{1}(K), \forall K \in \mathfrak{T}_{h}(\Omega), v(x) = 0, \forall x \in \mathcal{N}_{h,0} \}.$

Error Control and Adaptivity of Finite Element Solutions

- A Posteriori Error Estimate
 - The Residual and Error of Finite Element Solutions

The Clément Interpolation Operator $I_h : \mathbb{V} \to \mathbb{V}_h$

Definition

For any $v \in \mathbb{V}$ and $x \in \mathcal{N}_h$, denote $\pi_x v$ as the $\mathbb{L}^2(\omega_x)$ projection of v on $\mathbb{P}_1(\omega_x)$, meaning $\pi_x v \in \mathbb{P}_1(\omega_x)$ satisfies

$$\int_{\omega_x} v \, p \, dx = \int_{\omega_x} (\pi_x v) \, p \, dx, \quad orall p \in \mathbb{P}_1(\omega_x).$$

The Clément interpolation operator $I_h: \mathbb{V} \to \mathbb{V}_h$ is defined by

 $I_h v(x) = (\pi_x v)(x), \ \forall x \in \mathcal{N}_{h,\Omega} \cup \mathcal{N}_{h,1}; \qquad I_h v(x) = 0, \ \forall x \in \mathcal{N}_{h,0}.$

Error Control and Adaptivity of Finite Element Solutions

- A Posteriori Error Estimate
 - Letter The Residual and Error of Finite Element Solutions

The Clément Interpolation Operator $I_h : \mathbb{V} \to \mathbb{V}_h$

- **1** The Clément interpolation operator is well defined on $\mathbb{L}^1(\Omega)$.
- 2 If $v \in \mathbb{P}_1(\omega_x)$, then $(\pi_x)v(x) = v(x)$, $\forall x \in \omega_x$.

3 If
$$v \in \mathbb{P}_1(\tilde{\omega}_K)$$
, then $I_h v(x) = v(x)$, $\forall x \in K$.

 It is in the above sense that the Clément interpolation operator is polynomial (more precisely ℙ₁) invariant.

Error Control and Adaptivity of Finite Element Solutions

Letter The Residual and Error of Finite Element Solutions

Error Estimates of the Clément Interpolation Operator Ih

Lemma

There exist constants $C_1(\theta_{\min})$ and $C_2(\theta_{\min})$, which depend only on the smallest angle θ_{\min} of the triangular elements in the triangulation $\mathfrak{T}_h(\Omega)$, such that, for any given $K \in \mathfrak{T}_h(\Omega)$, $E \in \mathcal{E}_h$ and $v \in \mathbb{V}$,

$$\begin{aligned} \|v - I_h v\|_{0,2,K} &\leq C_1(\theta_{\min}) h_K |v|_{1,2,\tilde{\omega}_K}, \\ \|v - I_h v\|_{0,E} &:= \|v - I_h v\|_{0,2,E} &\leq C_2(\theta_{\min}) h_K^{1/2} |v|_{1,2,\tilde{\omega}_E}. \end{aligned}$$

Error Control and Adaptivity of Finite Element Solutions

- A Posteriori Error Estimate
 - The Residual and Error of Finite Element Solutions

Error Estimates of the Clément Interpolation Operator I_h

- More general properties and proofs on the Clément interpolation operator may be found in [8, 31].
- The basic ingredients of the proof are the scaling techniques (which include the polynomial quotient space and equivalent quotient norms, the relations of semi-norms on affine equivalent open sets), and the inverse inequality.

Error Control and Adaptivity of Finite Element Solutions

- A Posteriori Error Estimate
 - The Residual and Error of Finite Element Solutions

An Upper Bound for the Dual Norm of the Residual $R(u_h)$

Lemm<u>a</u>

There exists a constant $C(\theta_{\min})$, where θ_{\min} is the smallest angle of the triangular elements in the triangulation $\mathfrak{T}_h(\Omega)$, such that

$$\begin{split} \int_{\Omega} f w \, dx + \int_{\partial \Omega_1} g w \, ds - \int_{\Omega} \nabla u_h \cdot \nabla w \, dx \\ \leq C(\theta_{\min}) \|w\|_{1,2,\Omega} \Big\{ \sum_{K \in \mathfrak{T}_h(\Omega)} h_K^2 \|f\|_{0,2,K}^2 + \sum_{E \in \mathcal{E}_{h,1}} h_E \|g - \nu_E \cdot \nabla u_h\|_{0,E}^2 \\ &+ \sum_{E \in \mathcal{E}_{h,\Omega}} h_E \|[\nu_E \cdot \nabla u_h]_E\|_{0,E}^2 \Big\}^{1/2}, \quad \forall w \in \mathbb{V}, \end{split}$$

Error Control and Adaptivity of Finite Element Solutions

The Residual and Error of Finite Element Solutions

Proof of the Lemma — An Upper Bound for the Residual $R(u_h)$

where in the theorem, ν_E is an arbitrarily given unit normal of E if $E \in \mathcal{E}_{h,\Omega}$, and is the unit exterior normal of Ω if $E \in \mathcal{E}_{h,1}$, $[\varphi]_E$ is the jump of φ across E in the direction of ν_E , *i.e.*

$$[\varphi]_E(x) = \lim_{t \to 0+} \varphi(x + t\nu_E) - \lim_{t \to 0+} \varphi(x - t\nu_E), \quad \forall x \in E.$$

Proof:

() Since u_h is the finite element solution, we have

 $R(u_h)(v_h) := \int_{\Omega} fv_h \, dx + \int_{\partial \Omega_1} gv_h \, ds - \int_{\Omega} \nabla u_h \cdot \nabla v_h \, dx = 0, \quad \forall v_h \in \mathbb{V}_h.$ In particular, $R(u_h)(w) = R(u_h)(w - I_h w)$, for all $w \in \mathbb{V}$.

Error Control and Adaptivity of Finite Element Solutions

Letter The Residual and Error of Finite Element Solutions

Proof of the Lemma — An Upper Bound for the Residual $R(u_h)$

2 Applying the Green's formula on every element K, denoting ν_K as the unit exterior normal of ∂K , and noticing $u_h|_K \in \mathbb{P}_1(K)$ and thus $\Delta u_h = 0$ on each element, we obtain

$$\int_{\Omega} \nabla u_h \cdot \nabla v \, dx = \sum_{K \in \mathfrak{T}_h(\Omega)} \int_{K} \nabla u_h \cdot \nabla v \, dx$$
$$= \sum_{K \in \mathfrak{T}_h(\Omega)} \left\{ -\int_{K} \Delta u_h \, v \, dx + \int_{\partial K} \nu_K \cdot \nabla u_h \, v \, dx \right\}$$
$$= \sum_{E \in \mathcal{E}_{h,1}} \int_{E} \nu_E \cdot \nabla u_h \, v \, ds + \sum_{E \in \mathcal{E}_{h,\Omega}} \int_{E} [\nu_E \cdot \nabla u_h]_E \, v \, ds, \quad \forall v \in \mathbb{V}.$$

Error Control and Adaptivity of Finite Element Solutions

Let The Residual and Error of Finite Element Solutions

Proof of the Lemma — An Upper Bound for the Residual $R(u_h)$

3 Thus, recall
$$R(u_h)(w) = R(u_h)(w - I_h w)$$
, we are lead to

$$\int_{\Omega} f w \, dx + \int_{\partial \Omega_1} g w \, ds - \int_{\Omega} \nabla u_h \cdot \nabla w \, dx = \sum_{K \in \mathfrak{T}_h(\Omega)} \int_K f (w - I_h w) \, dx$$
$$+ \sum_{E \in \mathcal{E}_{h,1}} \int_E (g - \nu_E \cdot \nabla u_h) (w - I_h w) \, ds - \sum_{E \in \mathcal{E}_{h,\Omega}} \int_E [\nu_E \cdot \nabla u_h]_E (w - I_h w) \, ds,$$

Error Control and Adaptivity of Finite Element Solutions

Let The Residual and Error of Finite Element Solutions

Proof of the Lemma — An Upper Bound for the Residual $R(u_h)$

• By the Cauchy-Schwarz inequality and Lemma 8.1, we have

$$\int_{\mathcal{K}} f(w-I_h w) dx \leq \|f\|_{0,2,\mathcal{K}} \|w-I_h w\|_{0,2,\mathcal{K}} \leq C_1 h_{\mathcal{K}} \|f\|_{0,2,\mathcal{K}} \|w\|_{1,2,\tilde{\omega}_{\mathcal{K}}},$$

$$\int_{E} (g-\nu_E \cdot \nabla u_h)(w-I_h w) ds \leq \|g-\nu_E \cdot \nabla u_h\|_{0,E} \|w-I_h w\|_{0,E}$$

$$\leq C_2 h_E^{1/2} \|g-\nu_E \cdot \nabla u_h\|_{0,E} \|w\|_{1,2,\tilde{\omega}_E},$$

$$\int_{E} [\nu_{E} \cdot \nabla u_{h}]_{E} (w - I_{h}w) ds \leq \| [\nu_{E} \cdot \nabla u_{h}]_{E} \|_{0,E} \| w - I_{h}w \|_{0,E}$$
$$\leq C_{2} h_{E}^{1/2} \| [\nu_{E} \cdot \nabla u_{h}]_{E} \|_{0,E} \| w \|_{1,2,\tilde{\omega}_{E}}.$$

Error Control and Adaptivity of Finite Element Solutions

- A Posteriori Error Estimate
 - The Residual and Error of Finite Element Solutions

Proof of the Lemma — An Upper Bound for the Residual $R(u_h)$

- **(b)** The number of element in ω_x , $\sharp \omega_x \leq C_3 = 2\pi/\theta_{\min}$, $\forall x \in \mathcal{N}_h$.
- Each element K has three vertices, each edge E has two vertices.

$$\Big[\sum_{K\in\mathfrak{T}_h(\Omega)}\|w\|_{1,2,\tilde{\omega}_K}^2+\sum_{E\in\mathcal{E}_{h,\Omega}\cup\mathcal{E}_{h,1}}\|w\|_{1,2,\tilde{\omega}_E}^2\Big]^{1/2}\leq\sqrt{5\,C_3}\,\|w\|_{1,2,\Omega}.$$

O The conclusion of the lemma follows as a consequence of ③,
 ④ and ⑧ with C(θ_{min}) = √5C₃ max{C₁(θ_{min}), C₂(θ_{min})}. ■

A Theorem on the a Posteriori Error Estimate

Theorem

И

As a corollary of Theorem 8.1 and Lemma 8.2, we have the following a posteriori error estimate of the finite element solution:

$$\begin{aligned} \|u - u_h\|_{1,2,\Omega} &\leq C \left\{ \sum_{K \in \mathfrak{T}_h(\Omega)} h_K^2 \|f\|_{0,2,K}^2 + \\ \sum_{E \in \mathcal{E}_{h,1}} h_E \|g - \nu_E \cdot \nabla u_h\|_{0,E}^2 + \sum_{E \in \mathcal{E}_{h,\Omega}} h_E \|[\nu_E \cdot \nabla u_h]_E\|_{0,E}^2 \right\}^{1/2}, \\ \text{where } C &= C(\theta_{\min}) C(\Omega) \text{ is a constant depending only on } \Omega \text{ and} \\ \text{he smallest angle } \theta_{\min} \text{ of the triangulation } \mathfrak{T}_h(\Omega). \end{aligned}$$

 The righthand side term above essentially gives an upper bound estimate for the V*-norm of the residual R(u_h), which can be directly used as a posteriori error estimator for the upper bound of the error of the finite element solution.

Error Control and Adaptivity of Finite Element Solutions

└─A Residual Type A Posteriori Error Estimator

A Practical a Posteriori Error Estimator

• For convenience of analysis and practical computations, f and g are usually replaced by some approximation functions, say by $f_K = \frac{1}{|K|} \int_K f \, dx$ and $g_E = h_E^{-1} \int_E g \, ds$.

2 A practical a posteriori error estimator of residual type:

$$\eta_{R,K} = \left\{ h_{K}^{2} \| f_{K} \|_{0,2,K}^{2} + \sum_{E \in \mathcal{E}(K) \cap \mathcal{E}_{h,1}} h_{E} \| g_{E} - \nu_{E} \cdot \nabla u_{h} \|_{0,E}^{2} \right. \\ \left. + \frac{1}{2} \sum_{E \in \mathcal{E}(K) \cap \mathcal{E}_{h,\Omega}} h_{E} \| [\nu_{E} \cdot \nabla u_{h}]_{E} \|_{0,E}^{2} \right\}^{1/2}.$$

③ In applications, f_K and g_E can be further replaced by the numerical quadratures of the corresponding integrals.

Error Estimate Based on the Practical a Posteriori Error Estimator

Theorem

For the constant $C = C(\theta_{\min}) C(\Omega)$ in Theorem 8.2, the following a posteriori error estimate holds:

$$\begin{split} \|u - u_h\|_{1,2,\Omega} &\leq C \left\{ \sum_{K \in \mathfrak{T}_h(\Omega)} \eta_{R,K}^2 + \right. \\ & \left. \sum_{K \in \mathfrak{T}_h(\Omega)} h_K^2 \, \|f - f_K\|_{0,2,K}^2 + \sum_{E \in \mathcal{E}_{h,1}} h_E \, \|g - g_E\|_{0,E}^2 \right\}^{1/2} . \end{split}$$

Remark: Generally speaking, for *h* sufficiently small, the first term on the righthand side represents the leading part of the error. Therefore, in practical computations, $\eta_{R,K}$ alone is often used to estimate the local error, particularly in a mesh adaptive process.

Error Control and Adaptivity of Finite Element Solutions

A Posteriori Error Estimate

A Residual Type A Posteriori Error Estimator

Reliability of an a Posteriori Error Estimator

- The a posteriori error estimators given in Theorem 8.2 and 8.3 provide upper bounds for the error of the finite element solution u_h in the V-norm.
- Such a property is called the reliability of the a posteriori error estimator.
- In general, the reliability of an a posteriori error estimator can be understood in the sense of a constant times

Error Control and Adaptivity of Finite Element Solutions

A Posteriori Error Estimate

└─A Residual Type A Posteriori Error Estimator

Reliability of an a Posteriori Error Estimator

Definition

Let u and u_h be the solution and the finite element solution of the variational problem. Let η_h be an a posteriori error estimator. If there exists a constant \hat{C} independent of h such that

$$\|u-u_h\|_{1,2,\Omega}\leq \widehat{C}\,\eta_h.$$

Then, the a posteriori error estimator η_h is said to be reliable, or has reliability.

- Reliability guarantees the accuracy.
- ② To avoid mesh being unnecessarily refined and have the computational cost under control, efficiency is required.

└─A Residual Type A Posteriori Error Estimator

Efficiency of an a Posteriori Error Estimator

Definition

Let u and u_h be the solution and the finite element solution of the variational problem. Let η_h be an a posteriori error estimator. If, for any given $h_0 > 0$, there exists a constant $\tilde{C}(h_0)$ such that

$$\widetilde{C}(h_0)^{-1} \|u-u_h\|_{1,2,\Omega} \leq \eta_h \leq \widetilde{C}(h_0) \|u-u_h\|_{1,2,\Omega}, \quad \forall h \in (0, h_0),$$

Then, the a posteriori error estimator η_h is said to be efficient, or has efficiency. In addition, if the constant $\widetilde{C}(h_0)$ is such that

$$\lim_{h_0\to 0+}\widetilde{C}(h_0)=1,$$

Then, the a posteriori error estimator η_h is said to be asymptotically exact.

Error Control and Adaptivity of Finite Element Solutions

A Posteriori Error Estimate

A Residual Type A Posteriori Error Estimator

a Posteriori Local Error Estimator and the Local Error

- In applications, to efficiently control the error, we hope to refine the mesh only on the regions where the local error is relatively large.
- Pherefore, in addition to a good estimate of the global error of a finite element solution, what we expect more on an a posteriori error estimator is that it can efficiently evaluate the local error.

Error Control and Adaptivity of Finite Element Solutions

└─A Residual Type A Posteriori Error Estimator

a Posteriori Local Error Estimator and the Local Error

• Recall $\int_{\Omega} \nabla(u - u_h) \cdot \nabla w \, dx = R(u_h)(w)$, and the a posteriori local error estimator of residual type is given as

$$\eta_{R,K} = \left\{ h_{K}^{2} \| f_{K} \|_{0,2,K}^{2} + \sum_{E \in \mathcal{E}(K) \cap \mathcal{E}_{h,1}} h_{E} \| g_{E} - \nu_{E} \cdot \nabla u_{h} \|_{0,E}^{2} \right. \\ \left. + \frac{1}{2} \sum_{E \in \mathcal{E}(K) \cap \mathcal{E}_{h,\Omega}} h_{E} \| [\nu_{E} \cdot \nabla u_{h}]_{E} \|_{0,E}^{2} \right\}^{1/2}.$$

We hope, by choosing proper test functions w, to establish relationship between the local error of u – u_h and the three terms in η_{R,K}.

Error Control and Adaptivity of Finite Element Solutions

A Residual Type A Posteriori Error Estimator

Relate Terms in $\eta_{R,K}$ to the Local Errors of $u - u_h$

1 Notice that f_K is piecewise constant, $\forall w \in \mathbb{V}$, we have

$$\int_{K} f_{K}(f_{K}w) dx = |f_{K}|^{2} \int_{K} w dx = |K|^{-1} \left(\int_{K} w dx \right) \|f_{K}\|_{0,2,K}^{2},$$

② If we take a positive w ∈ H¹₀(K), called a bubble function on K, then, the above equation will establish a relation between $||f_K||^2_{0,2,K}$ and the local error of $(u - u_h)|_K$ through $\int_K \nabla (u - u_h) \cdot \nabla (f_K w) \, dx = R(u_h)(f_K w) = \int_K f(f_K w) \, dx$ $= \int_K f_K(f_K w) \, dx + \int_K (f - f_K)(f_K w) \, dx.$

Error Control and Adaptivity of Finite Element Solutions

A Posteriori Error Estimate

└─A Residual Type A Posteriori Error Estimator

Relate Terms in $\eta_{R,K}$ to the Local Errors of $u - u_h$

Similarly, by taking proper bubble functions, we can also establish the relationship between the local error of $u - u_h$ and the terms

$$\|g_E - \nu_E \cdot \nabla u_h\|_{0,E}^2, \qquad \|[\nu_E \cdot \nabla u_h]_E\|_{0,E}^2,$$

which are also piecewise constant functions.

Error Control and Adaptivity of Finite Element Solutions

A Residual Type A Posteriori Error Estimator

Triangular Element Bubble Functions and Edge Bubble Functions

Let λ_{K,i}, i = 1, 2, 3 be the area coordinates of K ∈ ℑ_h(Ω), define the triangular bubble function b_K as

$$\mathfrak{b}_{\mathcal{K}}(x) = egin{cases} 27\,\lambda_{\mathcal{K},1}(x)\,\lambda_{\mathcal{K},2}(x)\,\lambda_{\mathcal{K},3}(x), & orall x\in\mathcal{K}; \ 0, & orall x\in\Omega\setminus\mathcal{K}. \end{cases}$$

Error Control and Adaptivity of Finite Element Solutions

A Residual Type A Posteriori Error Estimator

Triangular Element Bubble Functions and Edge Bubble Functions

 Por a given edge E ∈ E_{h,Ω}, let ω_E = K₁ ∪ K₂, let λ<sub>K_i,j, j = 1, 2, 3 be the area coordinates of K_i, denote the vertex of K_i which is not on E as the third vertex of K_i, define the edge bubble function b_E as
</sub>

$$\mathfrak{b}_{E}(x) = \begin{cases} 4 \lambda_{K_{i},1}(x) \lambda_{K_{i},2}(x), & \forall x \in K_{i}, i = 1, 2 \\ 0, & \forall x \in \Omega \setminus \omega_{E}. \end{cases}$$

Error Control and Adaptivity of Finite Element Solutions

A Residual Type A Posteriori Error Estimator

Triangular Element Bubble Functions and Edge Bubble Functions

For a given edge E ∈ E_{h,∂Ω}, let ω_E = K', denote the vertex of K' which is not on E as the third vertex of K', define the edge bubble function b_E as

$$\mathfrak{b}_{\mathcal{E}}(x) = \begin{cases} 4 \,\lambda_{\mathcal{K}',1}(x) \,\lambda_{\mathcal{K}',2}(x), & \forall x \in \mathcal{K}'; \\ 0, & \forall x \in \Omega \setminus \mathcal{K}'. \end{cases}$$

Error Control and Adaptivity of Finite Element Solutions

A Posteriori Error Estimate

A Residual Type A Posteriori Error Estimator

Properties of the Bubble Functions

Lemma

For any given $K \in \mathfrak{T}_h(\Omega)$ and $E \in \mathcal{E}_h$, the bubble functions \mathfrak{b}_K and \mathfrak{b}_E have the following properties:

 $\mathrm{supp}\;\mathfrak{b}_{\mathcal{K}}\subset\mathcal{K},\quad 0\leq\mathfrak{b}_{\mathcal{K}}\leq1,\quad \max_{x\in\mathcal{K}}\mathfrak{b}_{\mathcal{K}}(x)=1;$

$$\operatorname{supp} \mathfrak{b}_{\mathcal{E}} \subset \omega_{\mathcal{E}}, \ \ 0 \leq \mathfrak{b}_{\mathcal{E}} \leq 1, \ \ \max_{x \in \mathcal{E}} \mathfrak{b}_{\mathcal{E}}(x) = 1;$$

$$\int_E \mathfrak{b}_E \, ds = \frac{2}{3} h_E$$

Error Control and Adaptivity of Finite Element Solutions

A Posteriori Error Estimate

A Residual Type A Posteriori Error Estimator

Properties of the Bubble Functions

Lemma

there exists a constant \hat{c}_i , i = 1, ..., 6, which depends only on the smallest angle of the triangular triangulation $\mathfrak{T}_h(\Omega)$, such that

$$\begin{aligned} \hat{c}_{1} \ h_{K}^{2} &\leq \int_{K} \mathfrak{b}_{K} \ dx = \frac{9}{20} \ |K| \leq \hat{c}_{2} \ h_{K}^{2}; \\ \hat{c}_{3} \ h_{E}^{2} &\leq \int_{K'} \mathfrak{b}_{E} \ dx = \frac{1}{3} \ |K'| \leq \hat{c}_{4} \ h_{E}^{2}, \ \forall K' \subset \omega_{E}; \\ \|\nabla \mathfrak{b}_{K}\|_{0,2,K} \leq \hat{c}_{5} \ h_{K}^{-1} \|\mathfrak{b}_{K}\|_{0,2,K}; \\ \|\nabla \mathfrak{b}_{E}\|_{0,2,K'} \leq \hat{c}_{6} \ h_{E}^{-1} \|\mathfrak{b}_{E}\|_{0,2,K'}, \ \forall K' \subset \omega_{E}. \end{aligned}$$

Error Control and Adaptivity of Finite Element Solutions

└─A Residual Type A Posteriori Error Estimator

Proof of the Efficiency of $\eta_{R,K}$ — Estimate of $||f_K||_{0,2,K}$

• For any given $K \in \mathfrak{T}_h(\Omega)$, set $w_K := f_K \mathfrak{b}_K$. Then, by the properties of \mathfrak{b}_K (see Lemma 8.3), we have

$$\int_{\mathcal{K}} f_{\mathcal{K}} w_{\mathcal{K}} dx = \frac{9}{20} |\mathcal{K}| |f_{\mathcal{K}}|^2 = \frac{9}{20} ||f_{\mathcal{K}}||^2_{0,2,\mathcal{K}}.$$

2 Since supp $w_K \subset K$, it follows

$$\int_{\partial\Omega_1} g w_K \, ds - \int_{\Omega} \nabla u_h \cdot \nabla w_K \, dx = -\nabla u_h|_K \, \int_K \nabla w_K \, dx = 0.$$

Error Control and Adaptivity of Finite Element Solutions

└─A Residual Type A Posteriori Error Estimator

Proof of the Efficiency of $\eta_{R,K}$ — Estimate of $||f_K||_{0,2,K}$

3 Thus, by $\int_{\Omega} \nabla(u - u_h) \cdot \nabla w_K \, dx = R(u_h)(w_K)$, we obtain

$$\int_{K} f_{K} w_{K} dx = \int_{K} f w_{K} dx + \int_{K} (f - f_{K}) w_{K} dx = \int_{K} \nabla (u - u_{h}) \cdot \nabla w_{K} dx + \int_{K} (f - f_{K}) w_{K} dx \leq \|u - u_{h}\|_{1,2,K} \|\nabla w_{K}\|_{0,2,K} + \|f - f_{K}\|_{0,2,K} \|w_{K}\|_{0,2,K}.$$

Error Control and Adaptivity of Finite Element Solutions

A Posteriori Error Estimate

└─A Residual Type A Posteriori Error Estimator

Proof of the Efficiency of $\eta_{R,K}$ — Estimate of $||f_K||_{0,2,K}$

On the other hand, since f_K is a constant, by the properties of b_K (see Lemma 8.3), we have

$$\|w_{\mathcal{K}}\|_{0,2,\mathcal{K}} = |f_{\mathcal{K}}| \|\mathfrak{b}_{\mathcal{K}}\|_{0,2,\mathcal{K}} \le |f_{\mathcal{K}}| \left(\int_{\mathcal{K}} \mathfrak{b}_{\mathcal{K}} dx\right)^{1/2} = \sqrt{\frac{9}{20}} \|f_{\mathcal{K}}\|_{0,2,\mathcal{K}};$$

 $\|
abla w_{\mathcal{K}}\|_{0,2,\mathcal{K}} \leq \hat{c}_5 h_{\mathcal{K}}^{-1} \|w_{\mathcal{K}}\|_{0,2,\mathcal{K}}.$

Error Control and Adaptivity of Finite Element Solutions

└─A Residual Type A Posteriori Error Estimator

Proof of the Efficiency of $\eta_{R,K}$ — Estimate of $||f_K||_{0,2,K}$

• Combining the three inequalities obtained in (3) and (4) with $\int_{\mathcal{K}} f_{\mathcal{K}} w_{\mathcal{K}} dx = \frac{9}{20} ||f_{\mathcal{K}}||^2_{0,2,\mathcal{K}}$ (see (8.2.3)) leads to

$$\|f_{\mathcal{K}}\|_{0,2,\mathcal{K}} \leq \sqrt{\frac{20}{9}} \ \hat{c}_5 \ h_{\mathcal{K}}^{-1} \|u - u_h\|_{1,2,\mathcal{K}} + \sqrt{\frac{20}{9}} \ \|f - f_{\mathcal{K}}\|_{0,2,\mathcal{K}}.$$

Similar techniques can be applied to estimate the other terms in $\eta_{R,K}$.

习题 8: 4. Thank You!

