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Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

First Strang Lemma — Abstract Error Estimate Including Consistency Error

Theorem

Let Vh ⊂ V, and let the bilinear form ah(·, ·) defined on Vh × Vh

be uniform Vh-elliptic, i.e. there exists a constant α̂ > 0
independent of h such that

ah(vh, vh) ≥ α̂‖vh‖2, ∀vh ∈ Vh.

Then, there exists a constant C independent h such that

‖u−uh‖ ≤ C
(

inf
vh∈Vh

{
‖u−vh‖+ sup

wh∈Vh

|a(vh, wh)− ah(vh, wh)|
‖wh‖

}
+ sup

wh∈Vh

|f (wh)− fh(wh)|
‖wh‖

)
.
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Second Strang Lemma — Abstract Error Estimate for Non-Conforming FE

Theorem

Let the bilinear form ah(·, ·) be uniformly bounded on
(V + Vh)× (V + Vh), and be uniformly Vh-elliptic, i.e. there exist
constants M̂ and α̂ > 0 independent of h such that

|ah(uh, vh)| ≤ M̂‖uh‖h ‖vh‖h, ∀uh, vh ∈ V + Vh,

ah(vh, vh) ≥ α̂‖vh‖2
h, ∀vh ∈ Vh.

Then, the error of the solution uh of the corresponding
approximation variational problem with respect to the solution u of
the original variational problem satisfies

‖u − uh‖h ∼=
(

inf
vh∈Vh

‖u − vh‖h + sup
wh∈Vh

|ah(u, wh)− fh(wh)|
‖wh‖h

)
.

Here Ah(u) ∼= Bh(u) means that there exist positive constants C1

and C2 independent of u and h s.t. C1Bh(u) ≤ Ah(u) ≤ C2Bh(u),
for all h > 0 sufficiently small.



Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

The Bramble-Hilbert lemma and the bilinear lemma

The Bramble-Hilbert Lemma —

— An Abstract Estimate on Polynomial Vanishing Linear Forms

Theorem

Let Ω be a bounded open set in Rn with Lipschitz continuous
boundary. For some p ∈ [1, ∞] and some integer k ≥ 0, let the
bounded linear form f defined on Wk+1,p(Ω) be such that

f (w) = 0, ∀w ∈ Pk(Ω).

Then, there exists a constant C (Ω) such that

|f (v)| ≤ C (Ω) ‖f ‖∗k+1,p,Ω|v |k+1,p,Ω,

where ‖ · ‖∗k+1,p,Ω is the norm on the dual space of Wk+1,p(Ω).
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The Bilinear Lemma —

— An Abstract Estimate on Polynomial Vanishing Bilinear Forms

Theorem

Let Ω be a bounded open set in Rn with Lipschitz continuous
boundary. For some p, q ∈ [1, ∞], some integers k , l ≥ 0 and a
subspace W which satisfies the inclusion relation
Pl(Ω) ⊂W ⊂Wl+1,q(Ω) and is endowed with the norm
‖ · ‖l+1,q,Ω, let the bounded bilinear form b defined on
Wk+1,p(Ω)×W be such that

b(r , w) = 0, ∀r ∈ Pk(Ω), ∀w ∈W,

b(v , r) = 0, ∀v ∈Wk+1,p(Ω), ∀r ∈ Pl(Ω).

Then, there exists a constant C (Ω) such that

|b(v ,w)| ≤C (Ω)‖b‖|v |k+1,p,Ω|w |l+1,q,Ω, ∀v ∈Wk+1,p(Ω), ∀w ∈W,

where ‖b‖ is the norm of the bilinear form b on Wk+1,p(Ω)×W.



Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Approximate a(u, v) by ah(u, v) Using Numerical Quadratures

1 Let Ω be a polygonal region, and Th(Ω) be a family of regular
affine equivalent finite element triangulations of Ω.

2 FK : x̂ ∈ K̂ → BK x̂ + bK ∈ K : the corresponding affine
equivalent mappings.

3 Let aij ∈W1,∞(Ω), i , j = 1, . . . , n, and

a(u, v) =

∫
Ω

n∑
i ,j=1

aij∂iu ∂jv dx =
∑

K∈Th(Ω)

n∑
i ,j=1

∫
K

aij∂iu ∂jv dx .

4 {b̂l}Ll=1, {bl ,K = FK (b̂l)}Ll=1: quadrature nodes on K̂ , K .

5 {ω̂l}Ll=1, {ωl ,K =det(BK )ω̂l}Ll=1, quadrature weights on K̂ , K .
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Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Approximate a(u, v) by ah(u, v) Using Numerical Quadratures

6 Approximate a(u, v) by numerical quadrature

ah(u, v) =
∑

K∈Th(Ω)

n∑
i ,j=1

L∑
l=1

ωl ,Kaij(bl ,K )∂iu(bl ,K ) ∂jv(bl ,K ).

7 Denote the errors of integrals and numerical integrals of ϕ
and ϕ̂ on K and K̂ by

EK (ϕ) =

∫
K
ϕ(x) dx −

L∑
l=1

ωl ,K ϕ(bl ,K ),

Ê (ϕ̂) =

∫
K̂
ϕ̂(x̂) dx̂ −

L∑
l=1

ω̂l ϕ̂(b̂l).
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Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Error on K of a Numerical Quadrature with Algebraic Accuracy 2k − 2

Lemma

Let aij ∈Wk,∞(Ω), i , j = 1, . . . , n, for some integer k ≥ 1. Let

the reference finite element (K̂ , P̂, Σ̂) and the numerical
quadrature satisfy

P̂ = Pk(K̂ ) and Ê (ϕ̂) = 0, ∀ϕ̂ ∈ P2k−2(K̂ ).

Then, there exists a constant C independent of K and h, such that

|EK (aij∂i ṽ ∂j w̃)| ≤ C hk
K ‖ṽ‖k,K |w̃ |1,K , ∀ṽ ∈ Pk(K ), ∀w̃ ∈ Pk(K ).
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Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Proof of the Lemma — Key: Bounds the Error in Semi-Norms

1 a ∈Wk,∞(K ) and v , w ∈ Pk−1(K ) ⇒ â ∈Wk,∞(K̂ ) and v̂ ,
ŵ ∈ Pk−1(K̂ ), and we have EK (a v w) = det(BK ) Ê (â v̂ ŵ).

2 For a given ŵ ∈ Pk−1(K̂ ) and an arbitrary ϕ̂ ∈Wk,∞(K̂ ),
|Ê (ϕ̂ ŵ)| ≤ Ĉ ‖ϕ̂ ŵ‖0,∞,K̂ ≤ Ĉ ‖ϕ̂‖0,∞,K̂ ‖ŵ‖0,∞,K̂ .

3 Since norms on the finite dimensional space Pk−1(K̂ ) are
equivalent, we have

|Ê (ϕ̂ ŵ)| ≤ Ĉ ‖ϕ̂‖0,∞,K̂ ‖ŵ‖0,K̂ ≤ Ĉ ‖ϕ̂‖k,∞,K̂ ‖ŵ‖0,K̂ .

4 Therefore, for a fixed ŵ ∈ Pk−1(K̂ ), Ê (· ŵ) is a bounded
linear form on Wk,∞(K̂ ) with its norm ≤ Ĉ ‖ŵ‖0,K̂ .
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Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Proof of the Lemma — Key: Bounds the Error by Semi-Norms

5 In addition, Ê (ϕ̂ ŵ) = 0, ∀ϕ̂ ∈ Pk−1(K̂ ). Consequently, by
the Bramble-Hilbert lemma (see Theorem 7.15), we have

|Ê (ϕ̂ ŵ)| ≤ Ĉ |ϕ̂|k,∞,K̂‖ŵ‖0,K̂ , ∀ϕ̂ ∈Wk,∞(K̂ ), ∀ŵ ∈ Pk−1(K̂ ).

6 On the other hand, for â ∈Wk,∞(K̂ ) and v̂ ∈ Pk−1(K̂ ), by
the chain rule of the derivatives of composition functions and
the equivalence of norms in the finite dimensional space
Pk−1(K̂ ), we have

|âv̂ |k,∞,K̂ ≤ Ĉ
k−1∑
j=0

|â|k−j ,∞,K̂ |v̂ |j ,∞,K̂ ≤ Ĉ
k−1∑
j=0

|â|k−j ,∞,K̂ |v̂ |j ,K̂ .
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Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Proof of the Lemma — Key: Bounds the Error in Semi-Norms

7 5© and 6© yield that, ∀â ∈Wk,∞(K̂ ),

|Ê (â v̂ ŵ)| ≤ Ĉ
( k−1∑

j=0

|â|k−j ,∞,K̂ |v̂ |j ,K̂
)
‖ŵ‖0,K̂ , ∀v̂ , ŵ ∈ Pk−1(K̂ ).

8 By the relations of the semi-norms on K and K̂ , this yields

|EK (avw)|≤Chk
K

( k−1∑
j=0

|a|k−j ,∞,K |v |j ,K
)
‖w‖0,K , ∀v ,w ∈ Pk−1(K ).

9 Thus, the lemma follows by taking a = aij , v = ∂i ṽ and
w = ∂j w̃ . �
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Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Consistency Error Estimate of Bilinear Forms

1 As a consequence of Lemma 7.2, for numerical quadrature
with algebraic accuracy 2k − 2, we see that

|a(Πhu, wh)−ah(Πhu, wh)| ≤ Chk
( ∑

K∈Th(Ω)

‖Πhu‖2
k,K

)1/2
|wh|1,Ω.

2 On the other hand, by the interpolation error estimates of the
finite element solutions and the Cauchy-Schwarz inequality,
we have( ∑

K∈Th(Ω)

‖Πhu‖2
k,K

)1/2
≤‖u‖k,Ω+

( ∑
K∈Th(Ω)

‖u−Πhu‖2
k,K

)1/2
≤C‖u‖k+1,Ω.
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Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Consistency Error Estimate of Bilinear Forms

3 Consequently, we obtain the following consistency error
estimate:

sup
wh∈Vh

|a(Πhu, wh)− ah(Πhu, wh)|
‖wh‖1,Ω

≤ C hk ‖u‖k+1,Ω.

which is the same order as the interpolation error estimate.
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Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Consistency Error Estimate of Linear Forms

Similarly, the consistency error estimation can be carried out for
the numerical integration of f (v) =

∫
Ω fv dx . However, to reach

accuracy of order hk , the algebraic accuracy of the numerical
quadrature needs to be 2k − 1.

1 Consider the linear form f (v) =
∫

Ω fv dx , and numerical

quadrature fh(v) =
∑

K∈Th(Ω)

∑L
l=1 ωl ,K f (bl ,K )v(bl ,K ).

2 Assume Hk(Ω) ↪→ C(Ω̄), and the finite element (K̂ , P̂, Σ̂)
and the numerical quadrature satisfy

P̂ = Pk(K̂ ), and Ê (ϕ̂) = 0, ∀ϕ̂ ∈ P2k−1(K̂ ).
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Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Consistency Error Estimate of Linear Forms

3 Then, follows a similar argument as above, we can obtain the
error estimate (see Exercise 7.9)

sup
wh∈Vh

|f (wh)− fh(wh)|
‖wh‖1,Ω

≤ C hk |f |k,Ω.
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Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Consistency Error Estimate of Linear Forms

There is another approach, in which, to reach the accuracy of the
same order hk , the algebraic accuracy of the numerical quadrature
needed goes back to 2k − 2. In fact, we have the following result:

1 Let q ≥ 2 and assume kq > n (so Wk,q(Ω) ↪→ C(Ω̄)).

2 The reference finite element (K̂ , P̂, Σ̂) and the numerical
quadrature satisfy

P̂ = Pk(K̂ ), and Ê (ϕ̂) = 0, ∀ϕ̂ ∈ P2k−2(K̂ ).
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Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Consistency Error Estimate of Linear Forms

3 Introduce a P0(K̂ ) invariant orthogonal projection operator
Π̂ : L2(K̂ )→ P1(K̂ ) induced by the L2(K̂ ) inner product.

4 Rewrite the error as E (fwh) = E (f (wh − Πwh)) + E (f Πwh).

5 Then, we have

sup
wh∈Vh

|f (wh)− fh(wh)|
‖wh‖1,Ω

≤ C hk‖f ‖k,q,Ω.
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Summary of the a Priori Finite Element Error Estimates

The a priori finite element error estimates basically consist of the
following main parts

1 Abstract error estimate — transform the problem to the errors
of subspace approximation and consistency of discrete
operators.

2 Error estimates of subspace approximation — polynomial
invariant interpolation operators, polynomial invariant
projection operators, polynomial quotient spaces, relations of
semi-norms on affine equivalent open sets, etc..

3 Error estimates of consistency of discrete operators —
polynomial invariant interpolation or projection operators and
linear, bilinear forms, polynomial quotient spaces, relations of
semi-norms on affine equivalent open sets, etc..



Error Estimates of Finite Element Solutions

Nonconformity and the Consistency Error

Consistency Error Caused by Numerical Integration

Scaling Technique is the Key

Remark:

An important technique: scaling

polynomial invariant + polynomial quotient space — show the
required inequality in semi-norms in the function spaces on
the reference finite element;

the relations of semi-norms on affine equivalent open sets —
bring out the power of h (scaling).

hα appeared in the error estimates can usually be efficiently
derived by the scaling technique.
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Error Estimates of Finite Element Solutions

A Posteriori Error Estimate

A Priori and A Posteriori Error Estimates of Finite Element Solutions

1 A Priori Error Estimate: error bounds given by known
information on the solution of the variational problem and the
finite element function spaces. For example, for the second
order elliptic problems, the error estimate is given by
‖u − uh‖1,Ω ≤ C hk |u|k+1,Ω (see Theorem 7.10).

2 A Posteriori Error Estimate: error bounds given by
information on the numerical solutions obtained on the finite
element function spaces.
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Error Estimates of Finite Element Solutions

A Posteriori Error Estimate

A Priori and A Posteriori Error Estimates of Finite Element Solutions

Remarks:

In applications, |u|k+1,Ω is generally not known a priori.

A priori error estimate doesn’t give a clue on how the mesh
should be distributed to balance the cost and accuracy.

Compared with the extrapolation technique (see § 1.5), the a
posteriori local error estimator can be used to refine or
coarsen the mesh wherever necessary locally.
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Error Estimates of Finite Element Solutions

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

Mixed BVP of Poisson Equation on Polygonal Region in R2

Consider the boundary value problem of the Poisson equation −4u = f , x ∈ Ω,

u = 0, x ∈ ∂Ω0,
∂u

∂ν
= g , x ∈ ∂Ω1,

where Ω is a polygonal region in R2, ∂Ω0 is a relatively closed
subset in ∂Ω with positive 1-dimensional measure,

∂Ω = ∂Ω0 ∪ ∂Ω1, ∂Ω0 ∩ ∂Ω1 = ∅,

f ∈ L2(Ω), g ∈ L2(∂Ω1).
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Error Estimates of Finite Element Solutions

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

Mixed BVP of Poisson Equation on Polygonal Region in R2

consider the standard weak form of the problem:{
Find u ∈ V such that∫

Ω∇u · ∇v dx =
∫

Ω f v dx +
∫
∂Ω1

g v ds, ∀v ∈ V,

where V =
{

v ∈ H1(Ω) : v |∂Ω0 = 0
}

;

consider the conforming finite element method based on a
family of regular class C 0 type (1) Lagrange triangular
elements.
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A Theorem on the Relation of Residual and Error of a FE Solution

1 Define the residual operator R : V→ V∗ of the problem by

R(v)(w) =

∫
Ω

f w dx+

∫
∂Ω1

g w ds−
∫

Ω
∇v ·∇w dx , ∀w ∈ V.

2 The dual norm of the residual of a finite element solution uh:

‖R(uh)‖V∗ = sup
w∈V

‖w‖1,2,Ω=1

{∫
Ω

fw dx +

∫
∂Ω1

gw ds −
∫

Ω
∇uh · ∇w dx

}

Theorem

Let u ∈ V, uh ∈ Vh be the weak solution and the finite element
solution of the problem respectively. Then, there exists a constant
C (Ω), which depends only on Ω, such that

‖R(uh)‖V∗ ≤ ‖u − uh‖1,2,Ω ≤ C (Ω) ‖R(uh)‖V∗ .



Error Estimates of Finite Element Solutions

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

Proof of Residual Dual Norm ∼= Error of a FE Solution in H1-Norm

1 Since u is the weak solution of the problem, we have∫
Ω
∇(u−uh)·∇w dx =

∫
Ω
fw dx+

∫
∂Ω1

gw ds−
∫

Ω
∇uh·∇w dx , ∀w ∈ V.

2 Hence, by the Cauchy-Schwarz inequality, we have∫
Ω
∇(u−uh)·∇w dx ≤ |u−uh|1,2,Ω|w |1,2,Ω ≤ ‖u−uh‖1,2,Ω‖w‖1,2,Ω.

3 Thus, the first inequality follows directly from the definition.
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Error Estimates of Finite Element Solutions

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

Proof of Residual Dual Norm ∼= Error of a FE Solution in H1-Norm

4 On the other hand, by the Poincaré-Friedrichs inequality (see
Exercise 5.6), ∃ constant γ0(Ω) > 0, s.t.

γ0‖v‖1,2,Ω ≤ |v |1,2,Ω, ∀v ∈ V.

5 Thus, by taking w = u − uh in 1©, the second inequality
follows for C (Ω) = γ−2

0 . �
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Remarks on Residual Dual Norm Estimation

1 We hope to develop a formula, which is easily computed and
involves only available data such as f , g , uh and geometric
parameters of the triangulation and thus is usually called an a
posteriori error estimator, to evaluate the dual norm of the
residual.

2 Recall that in the a priori error estimates, the polynomial
invariant interpolation operator plays an important role. For
example, write w as (w − Πhw) + Πhw can have some
advantage.

3 However, the Lagrange nodal type interpolation operators
require the function to be at least in C0.

4 Here, we need to introduce a polynomial invariant
interpolation operator for functions in H1.



Error Estimates of Finite Element Solutions

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

Notations on a Family of Regular Triangular Triangulations {Th(Ω)}h>0

1 E(K ), N (K ): the sets of all edges and vertices of K ∈ Th(Ω).

2 Denote Eh :=
⋃

K∈Th(Ω) E(K ), Nh :=
⋃

K∈Th(Ω)N (K ).

3 N (E ): the sets of all vertices of an edge E ∈ Eh.

4 Eh,i :=

{
E ∈ Eh :

◦
E ⊂ ∂Ωi

}
, Nh,i := Nh ∩ ∂Ωi , i = 0, 1.

5 Eh,Ω = Eh \ (Eh,0 ∪ Eh,1), Nh,Ω = Nh \ (Nh,0 ∪Nh,1).
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Error Estimates of Finite Element Solutions

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

Notations on a Family of Regular Triangular Triangulations {Th(Ω)}h>0

6 ωK :=
⋃

E(K)∩E(K ′) 6=∅

K ′, ωE :=
⋃

E∈E(K ′)

K ′, ωx :=
⋃

x∈N (K ′)

K ′.

7 ω̃K :=
⋃
N (K)∩N (K ′)6=∅ K ′, ω̃E :=

⋃
N (E)∩N (K ′)6=∅ K ′.

8 The corresponding finite element function space:

Vh = {v ∈ C(Ω̄) : v |K ∈ P1(K ),∀K ∈ Th(Ω), v(x) = 0, ∀x ∈ Nh,0}.
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Error Estimates of Finite Element Solutions

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

The Clément Interpolation Operator Ih : V→ Vh

Definition

For any v ∈ V and x ∈ Nh, denote πxv as the L2(ωx) projection
of v on P1(ωx), meaning πxv ∈ P1(ωx) satisfies∫

ωx

v p dx =

∫
ωx

(πxv) p dx , ∀p ∈ P1(ωx).

The Clément interpolation operator Ih : V→ Vh is defined by

Ihv(x) = (πxv)(x), ∀x ∈ Nh,Ω∪Nh,1; Ihv(x) = 0, ∀x ∈ Nh,0.
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Error Estimates of Finite Element Solutions

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

The Clément Interpolation Operator Ih : V→ Vh

1 The Clément interpolation operator is well defined on L1(Ω).

2 If v ∈ P1(ωx), then (πx)v(x) = v(x), ∀x ∈ ωx .

3 If v ∈ P1(ω̃K ), then Ihv(x) = v(x), ∀x ∈ K .

4 It is in the above sense that the Clément interpolation
operator is polynomial (more precisely P1) invariant.
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Error Estimates of Finite Element Solutions

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

Error Estimates of the Clément Interpolation Operator Ih

Lemma

There exist constants C1(θmin) and C2(θmin), which depend only
on the smallest angle θmin of the triangular elements in the
triangulation Th(Ω), such that, for any given K ∈ Th(Ω), E ∈ Eh
and v ∈ V,

‖v − Ihv‖0,2,K ≤ C1(θmin) hK |v |1,2,ω̃K
,

‖v − Ihv‖0,E := ‖v − Ihv‖0,2,E ≤ C2(θmin) h
1/2
K |v |1,2,ω̃E

.
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Error Estimates of Finite Element Solutions

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

Error Estimates of the Clément Interpolation Operator Ih

More general properties and proofs on the Clément
interpolation operator may be found in [8, 31].

The basic ingredients of the proof are the scaling techniques
(which include the polynomial quotient space and equivalent
quotient norms, the relations of semi-norms on affine
equivalent open sets), and the inverse inequality.
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SK 8µ1, 2, 3.

Thank You!
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