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Finite Difference Methods for Elliptic Equations

Introduction

The definitions of the elliptic equations

The definitions of the elliptic equations — 2nd order

A general second order linear elliptic partial differential equation
with n independent variables has the following form:

±L(u) , ±

 n∑
i ,j=1

aij
∂2

∂xi∂xj
+

n∑
i=1

bi
∂

∂xi
+ c

 u = f , (1)

with (the key point in the definition)
n∑

i ,j=1

aij(x)ξiξj ≥ α(x)
n∑

i=1

ξ2
i , α(x)>0, ∀ ξ∈Rn\{0}, ∀x ∈Ω. (2)

Note that (2) says the matrix A = (aij(x)) is positive definite.
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Finite Difference Methods for Elliptic Equations

Introduction

The definitions of the elliptic equations

The definitions of the elliptic equations — 2nd order

L – the 2nd order linear elliptic partial differential operator;

aij , bi , c — coefficients, functions of x = (x1, . . . , xn);

f — right hand side term, or source term, a function of x ;

The operator L and the equation (1) are said to be uniformly
elliptic, if inf

x∈Ω
α(x) = α > 0. (3)

n∑
i ,j=1

aij(x)ξiξj ≥ α
n∑

i=1

ξ2
i , α > 0, ∀ ξ ∈ Rn \ {0}, ∀x ∈ Ω.
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Finite Difference Methods for Elliptic Equations

Introduction

The definitions of the elliptic equations

The definitions of the elliptic equations — 2nd order

For example, 4 =
∑n

i=1
∂2

∂x2
i

is a linear second order uniformly

elliptic partial differential operator, since we have here

aii = 1, ∀i , aij = 0, ∀i 6= j ,

and the Poisson equation

−4u(x) = f (x)

is a linear second order uniformly elliptic partial differential
equation.

6 / 39



Finite Difference Methods for Elliptic Equations

Introduction

The definitions of the elliptic equations

The definitions of the elliptic equations — 2m-th order

A general linear elliptic partial differential equations of order 2m
with n independent variables has the following form:

±L(u) , ±

 2m∑
k=1

n∑
i1,...,ik=1

ai1,...,ik
∂k

∂xi1 . . . ∂xik
+ a0

 u = f , (4)

with (the key point in the definition)

n∑
i1,...,i2m=1

ai1,...,i2m(x)ξi1 · · · ξi2m ≥ α(x)
n∑

i=1

ξ2m
i ,

α(x) > 0, ∀ ξ ∈ Rn \ {0}, ∀x ∈ Ω. (5)

Note that (5) says the 2m order tensor A = (ai1,...,i2m) is positive
definite.
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Finite Difference Methods for Elliptic Equations

Introduction

The definitions of the elliptic equations

The definitions of the elliptic equations — 2m-th order

L – the 2m-th order linear elliptic partial differential operator;

ai1,...,ik , a0 — coefficients, functions of x = (x1, . . . , xn);

f — right hand side term, or source term, a function of x ;

The operator L and the equation (4) are said to be uniformly
elliptic, if inf

x∈Ω
α(x) = α > 0. (6)

n∑
i1,...,i2m=1

ai1,...,i2m(x)ξi1 · · · ξi2m ≥ α
n∑

i=1

ξ2m
i ,

α > 0, ∀ ξ ∈ Rn \ {0}, ∀x ∈ Ω.
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Finite Difference Methods for Elliptic Equations

Introduction

The definitions of the elliptic equations

The definitions of the elliptic equations

As a typical example, the 2m-th order harmonic equation

(−4)mu = f

is a linear 2m-th order uniformly elliptic partial differential
equation, and 4m is a linear 2m-th order uniformly elliptic partial
differential operator, since we have here

ai1,...,i2m(x) = 1, if the indexes appear in pairs;

ai1,...,i2m(x) = 0, otherwise.

In particular, the biharmonic equation 42u = f is a linear 4th
order uniformly elliptic partial differential equation, and 42 is a
linear 4-th order uniformly elliptic partial differential operator.
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Finite Difference Methods for Elliptic Equations

Introduction

Steady state convection-diffusion problem — a model problem for elliptic partial differential equations

Steady state convection-diffusion equation

1 x ∈ Ω ⊂ Rn;

2 v(x): the velocity of the fluid at x ;

3 u(x): the density of certain substance in the fluid at x ;

4 a(x) > 0: the diffusive coefficient;

5 f (x): the density of the source or sink of the substance.

6 J: diffusion flux (measured by amount of substance per unit
area per unit time)

7 Fick’s law: J = −a(x)∇u(x).
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Finite Difference Methods for Elliptic Equations

Introduction

Steady state convection-diffusion problem — a model problem for elliptic partial differential equations

Steady state convection-diffusion equation

For an arbitrary open subset ω ⊂ Ω with piecewise smooth
boundary ∂ω, Fick’s law says the substance brought into ω by
diffusion per unit time is given by∫

∂ω
J · (−ν(x)) ds =

∫
∂ω

a(x)∇u(x) · ν(x) ds,

while the substance brought into ω by the flow per unit time is∫
∂ω

u(x)v(x) · (−ν(x)) ds

and the substance produced in ω by the source per unit time is∫
ω

f (x) dx .
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Finite Difference Methods for Elliptic Equations

Introduction

Steady state convection-diffusion problem — a model problem for elliptic partial differential equations

Steady state convection-diffusion equation

Therefore, the net change of the substance in ω per unit time is

d

dt

∫
ω

u(x) dx =

∫
∂ω

a(x)∇u(x) · ν(x) ds

−
∫
∂ω

u(x)v(x) · ν(x) ds +

∫
ω

f (x) dx .

By the steady state assumption, d
dt

∫
ω u(x) dx = 0, for arbitrary ω,

and by the divergence theorem (or Green’s formula or Stokes
formula), this leads to the steady state convection-diffusion
equation in the integral form∫

ω
{∇ · (a∇u − u v) + f } dx = 0, ∀ω
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Finite Difference Methods for Elliptic Equations

Introduction

Steady state convection-diffusion problem — a model problem for elliptic partial differential equations

Steady state convection-diffusion equation

The term −[a(x)∇u(x)− u(x)v(x)] is named as the substance
flux, since it represents the speed that the substance flows.

Assume that ∇ · (a∇u − u v) + f is smooth, then, we obtain the
steady state convection-diffusion equation in the differential form

−∇ · (a(x)∇u(x)− u v) = f (x), ∀x ∈ Ω.

In particular, if v = 0 and a = 1, we have the steady state diffusion
equation −4u = f .
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Finite Difference Methods for Elliptic Equations

Introduction

Boundary conditions

Boundary conditions for the elliptic equations

For a complete steady state convection-diffusion problem, or
problems of elliptic equations in general, we also need to impose
proper boundary conditions.

Three types of most commonly used boundary conditions:

First type u = uD , ∀x ∈ ∂Ω;

Second type
∂u

∂ν
= g , ∀x ∈ ∂Ω;

Third type
∂u

∂ν
+ αu = g , ∀x ∈ ∂Ω;

where α ≥ 0, and α > 0 at least on some part of the boundary
(physical meaning: higher density produces bigger outward diffusion flux).
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Finite Difference Methods for Elliptic Equations

Introduction

Boundary conditions

Boundary conditions for the steady state
convection-diffusion equation

1st type boundary condition — Dirichlet boundary condition;

2nd type boundary condition — Neumann boundary condition;

3rd type boundary condition — Robin boundary condition;

Mixed-type boundary conditions — different types of boundary
conditions imposed on different parts of the boundary.
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Finite Difference Methods for Elliptic Equations

Introduction

General framework of Finite Difference Methods

General framework of Finite Difference Methods

1 Discretize the domain Ω by introducing a grid;

2 Discretize the function space by introducing grid functions;

3 Discretize the differential operators by properly defined
difference operators;

4 Solve the discretized problem to get a finite difference
solution;

5 Analyze the approximate properties of the finite difference
solution.
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Finite Difference Methods for Elliptic Equations

A Finite Difference Method for a Model Problem

A Model Problem

Dirichlet boundary value problem of the Poisson equation

{
−4u(x) = f (x), ∀x ∈ Ω,

u(x) = uD(x), ∀x ∈ ∂Ω,

where Ω = (0, 1)× (0, 1) is a rectangular region.
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Finite Difference Methods for Elliptic Equations

A Finite Difference Method for a Model Problem

Finite Difference Discretization of the Model Problem

Discretize Ω by introducing a grid

1 Space (spatial) step sizes: 4x = 4y = h = 1/N;

2 Index set of the grid nodes: J = {(i , j) : (xi , yj) ∈ Ω};

3 Index set of grid nodes on the Dirichlet boundary:
JD = {(i , j) : (xi , yj) ∈ ∂Ω};

4 Index set of interior nodes: JΩ = J \ JD .

For simplicity, both (i , j) and (xi , yj) are called grid nodes.
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Finite Difference Methods for Elliptic Equations

A Finite Difference Method for a Model Problem

Finite Difference Discretization of the Model Problem

Discretize the function space by introducing grid functions

ui ,j = u(xi , yj), exact solution restricted on the grid;

fi ,j = f (xi , yj), source term restricted on the grid;

Ui ,j , numerical solution on the grid;

Vi ,j , a grid function.
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Finite Difference Methods for Elliptic Equations

A Finite Difference Method for a Model Problem

Finite Difference Discretization of the Model Problem

Discretize differential operators by difference operators

ui−1,j − 2ui ,j + ui+1,j

4x2
≈ ∂2

xu;

ui ,j−1 − 2ui ,j + ui ,j+1

4y 2
≈ ∂2

yu;

The poisson equation −4u(x) = f (x) is discretized to the 5 point
difference scheme

−LhUi ,j ,
4Ui ,j − Ui−1,j − Ui ,j−1 − Ui+1,j − Ui ,j+1

h2
= fi ,j , ∀(i , j) ∈ JΩ.

The Dirichlet boundary condition is discretized to

Ui ,j = uD(xi , yj), ∀(i , j) ∈ JD .
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Finite Difference Methods for Elliptic Equations

A Finite Difference Method for a Model Problem

Finite Difference Discretization of the Model Problem

Solution of the discretized problem

The discrete system

−LhUi ,j ,
4Ui ,j − Ui−1,j − Ui ,j−1 − Ui+1,j − Ui ,j+1

h2
= fi ,j , ∀(i , j) ∈ JΩ,

Ui ,j = uD(xi , yj), ∀(i , j) ∈ JD ,

is a system of linear algebraic equations, whose matrix is symmetric
positive definite. Consequently, there is a unique solution.
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Finite Difference Methods for Elliptic Equations

A Finite Difference Method for a Model Problem

Analysis of the Finite Difference Solutions of the Model Problem

Analyze the Approximate Property of the Discrete Solution

1 Approximation error: ei ,j = Ui ,j − ui ,j ;

2 The error equation:

−Lhei ,j ,
4ei ,j − ei−1,j − ei ,j−1 − ei+1,j − ei ,j+1

h2
= Ti ,j , ∀(i , j) ∈ JΩ;

3 The local truncation error

Ti ,j := [(Lh−L)u]i ,j = Lhui ,j−(Lu)i ,j = Lhui ,j+fi ,j , ∀(i , j) ∈ JΩ.

4 ‖eh‖ = ‖(−Lh)−1Th‖ ≤ ‖(−Lh)−1‖‖Th‖.
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Finite Difference Methods for Elliptic Equations

A Finite Difference Method for a Model Problem

Analysis of the Finite Difference Solutions of the Model Problem

Truncation Error of the 5 Point Difference Scheme

Suppose that the function u is sufficiently smooth, then, by Taylor
series expansion of u on the grid node (xi , yj), we have

ui±1,j =
[
u ± h∂xu +

h2

2
∂2
xu ± h3

6
∂3
xu +

h4

24
∂4
xu ± h5

120
∂5
xu + · · ·

]
i ,j

ui ,j±1 =
[
u ± h∂yu +

h2

2
∂2
yu ± h3

6
∂3
yu +

h4

24
∂4
yu ± h5

120
∂5
yu + · · ·

]
i ,j

Since Ti ,j = Lhui ,j + fi ,j and fi ,j = −4ui ,j , we obtain

Ti ,j :=
1

12
h2(∂4

xu+∂4
yu)i ,j+

1

360
h4(∂6

xu+∂6
yu)i ,j+O(h6), ∀(i , j) ∈ JΩ.
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Finite Difference Methods for Elliptic Equations

A Finite Difference Method for a Model Problem

Analysis of the Finite Difference Solutions of the Model Problem

Consistency and Order of Accuracy of Lh

1 Consistent condition of the scheme (or Lh to L) in l∞-normµ

lim
h→0

Th = lim
h→0

max
(i ,j)∈JΩ

|Ti ,j | = 0,

2 The order of the approximation accuracy of the scheme (or Lh

to L): 2nd order approximation accuracy, since Th = O(h2)
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Finite Difference Methods for Elliptic Equations

A Finite Difference Method for a Model Problem

Analysis of the Finite Difference Solutions of the Model Problem

Stability of the Scheme

Remember that

‖eh‖∞ = ‖(−Lh)−1Th‖∞ ≤ ‖(−Lh)−1‖∞‖Th‖∞

lim
h→0

Th = lim
h→0

max
(i ,j)∈JΩ

|Ti ,j | = 0,

therefore limh→0 ‖eh‖∞ = 0, if ‖(−Lh)−1‖∞ is uniformly bounded,
i.e. there exists a constant C independent of h such that

max
(i ,j)∈J

|Ui ,j | ≤ C

(
max

(i ,j)∈JΩ

|fi ,j |+ max
(i ,j)∈JD

|(uD)i ,j |
)
.

‖(−Lh)−1‖∞ ≤ C is the stability of the scheme in l∞-norm.
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Convergence and the Accuracy of the Scheme

Remember that

−LhUi ,j =
4Ui ,j − Ui−1,j − Ui ,j−1 − Ui+1,j − Ui ,j+1

h2
= fi ,j , ∀(i , j) ∈ JΩ.

−Lhei ,j ,
4ei ,j − ei−1,j − ei ,j−1 − ei+1,j − ei ,j+1

h2
= Ti ,j , ∀(i , j) ∈ JΩ.

therefore, since max(i ,j)∈JD |ei ,j | = 0,

max
(i ,j)∈J

|Ui ,j | ≤ C

(
max

(i ,j)∈JΩ

|fi ,j |+ max
(i ,j)∈JD

|(uD)i ,j |
)
.

implies also

max
(i ,j)∈J

|ei ,j | ≤ C max
(i ,j)∈JΩ

|Ti ,j | ≤ C Th ≤ C h2 max
(x ,y)∈Ω

(Mxxxx + Myyyy ) ,

where Mxxxx = max(x ,y)∈Ω |∂
4
xu|, Myyyy = max(x ,y)∈Ω |∂

4
yu|.



The Maximum Principle and Comparison Theorem

Maximum principle of Lh: for any grid function Ψ,
LhΨ ≥ 0, i.e 4Ψi ,j ≤ Ψi−1,j + Ψi+1,j + Ψi ,j−1 + Ψi ,j+1, implies
that Ψ can not assume nonnegative maximum in the set of
interior nodes JΩ, unless Ψ is a constant.

Comparison Theorem: Let F = max(i ,j)∈JΩ
|fi ,j | and

Φ(x , y) = (x − 1/2)2 + (y − 1/2)2, take a comparison
function

Ψ±i ,j = ±Ui ,j +
1

4
F Φi ,j , ∀ (i , j) ∈ J.

It is easily verified that LhΨ± ≥ 0. Thus, noticing that Φ ≥ 0
and by the maximum principle, we obtain

±Ui ,j ≤ ±Ui ,j +
1

4
F Φi ,j ≤ max

(i ,j)∈JD
|(u0)i ,j |+

1

8
F , ∀ (i , j) ∈ JΩ.

Consequently, ‖U‖∞ ≤ 1
8 max(i ,j)∈JΩ

|fi ,j |+ max(i ,j)∈JD |(u0)i ,j |,



Finite Difference Methods for Elliptic Equations

A Finite Difference Method for a Model Problem

Analysis of the Finite Difference Solutions of the Model Problem

The Maximum Principle and Comparison Theorem

Apply the maximum principle and comparison theorem to the error
equation

−Lhei ,j ,
4ei ,j − ei−1,j − ei ,j−1 − ei+1,j − ei ,j+1

h2
= Ti ,j , ∀(i , j) ∈ JΩ.

we obtain

‖e‖∞ ≤ max
(i ,j)∈JD

|ei ,j |+
1

8
Th,

where Th = max(i ,j)∈JΩ
|Ti ,j | is the l∞-norm of the truncation

error.
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Finite Difference Methods for Elliptic Equations

General Finite Difference Approximations

Grid and multi-index of grid

Grid and multi-index of grid

1 Discretize Ω ⊂ Rn: introduce a grid, say by taking the step
sizes hi = 4xi , i = 1, . . . , n, for the corresponding coordinate
components;

2 The set of multi-index:
J = {j = (j1, · · · , jn) : x = xj , (j1h1, · · · , jnhn) ∈ Ω̄};

3 The index set of Dirichlet boundary nodes:
JD = {j ∈ J : x = (j1h1, · · · , jnhn) ∈ ∂ΩD};

4 The index set of interior nodes: JΩ = J \ JD .

For simplicity, both (i , j) and (xi , yj) are called grid nodes.
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Finite Difference Methods for Elliptic Equations

General Finite Difference Approximations

Grid and multi-index of grid

Regular and irregular interior nodes with respect to Lh

1 Adjacent nodes: j, j′ ∈ J are adjacent, if
∑n

k=1 |jk − j ′k | = 1;

2 DLh(j): the set of nodes other than j used in calculating LhUj

3 Regular interior nodes (with respect to Lh): j ∈ JΩ such that
DLh(j) ⊂ Ω̄;

4 Regular interior set
◦
J Ω: the set of all regular interior nodes;

5 Irregular interior set: J̃Ω = JΩ \
◦
J Ω;

6 Irregular interior nodes (with respect to Lh): j ∈ J̃Ω.

30 / 39



Finite Difference Methods for Elliptic Equations

General Finite Difference Approximations

Control volume, Grid functions and Norms

The control volume, grid functions and norms

1 Control volume of the node j ∈ J:

ωj = {x ∈ Ω : (ji −
1

2
)hi ≤ xi < (ji +

1

2
)hi , 1 ≤ i ≤ n},

and denote Vj = meas(ωj);

2 Grid function U(x): extend Uj to a piecewise constant
function defined on Ω

U(x) = Uj, ∀ x ∈ ωj.

3 Lp(Ω) (1 ≤ p ≤ ∞) norms of U(x):

‖U‖p =
{∑

j∈J
Vj|Uj|p

}1/p
, ‖U‖∞ = max

j∈J
|Uj|.
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Finite Difference Methods for Elliptic Equations

General Finite Difference Approximations

Construction of Finite Difference Schemes

Basic Difference Operators

1 1st-order forward: 4+xv(x , x ′) := v(x +4x , x ′)− v(x , x ′);

2 1st-order backward: 4−xv(x , x ′) := v(x , x ′)− v(x −4x , x ′);

3 1st-order central: on one grid step

δxv(x , x ′) := v(x +
1

2
4x , x ′)− v(x − 1

2
4x , x ′),

and on two grid steps

40xv(x , x ′) :=
1

2
(4+x +4−x) v(x , x ′)

=
1

2

[
v(x +4x , x ′)− v(x −4x , x ′)

]
4 2nd order central: δ2

xv(x , x ′) = δx(δxv(x , x ′)) =
v(x +4x , x ′)− 2v(x , x ′) + v(x −4x , x ′).

32 / 39



A FD Scheme for the Steady State Convection-Diffusion Equation

−∇·(a(x , y)∇u(x , y))+∇·(u(x , y) v(x , y)) = f (x , y), ∀(x , y) ∈ Ω,

Substitute the differential operators by difference operators:

1 (aux)x |i ,j ∼ δx(ai ,jδxui ,j)/(4x)2: where

δx(ai ,jδxui ,j) = ai+ 1
2
,j(ui+1,j − ui ,j)− ai− 1

2
,j(ui ,j − ui−1,j);

2 (auy )y |i ,j ∼ δy (ai ,jδyui ,j)/(4y)2: where

δy (ai ,jδyui ,j) = ai ,j+ 1
2
(ui ,j+1 − ui ,j)− ai ,j− 1

2
(ui ,j − ui ,j−1);

3 (uv 1)x |i ,j24x ∼ 40x(uv 1)i ,j = (uv 1)i+1,j − (uv 1)i−1,j ;

4 (uv 2)y |i ,j24y ∼ 40y (uv 2)i ,j = (uv 2)i ,j+1 − (uv 2)i ,j−1;



Finite Difference Methods for Elliptic Equations

General Finite Difference Approximations

Construction of Finite Difference Schemes

A FD Scheme for the Steady State Convection-Diffusion Equation

we are lead to the following finite difference scheme for the steady
state convection-diffusion equation:

−
ai+ 1

2
,j(Ui+1,j − Ui ,j)− ai− 1

2
,j(Ui ,j − Ui−1,j)

(4x)2

−
ai ,j+ 1

2
(Ui ,j+1 − Ui ,j)− ai ,j− 1

2
(Ui ,j − Ui ,j−1)

(4y)2

+
(Uv 1)i+1,j − (Uv 1)i−1,j

24x
+

(Uv 2)i ,j+1 − (Uv 2)i ,j−1

24y
= fi ,j .
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A Finite Volume Scheme for the Steady State Convection-Diffusion

Equation in Conservation Form∫
∂ω

(a(x , y)∇u(x , y)−u(x , y)v(x , y))·ν(x , y) ds+

∫
ω

f (x , y) dxdy = 0.

Take a proper control volume ω and substitute the differential
operators by appropriate difference operators, and integrals by
appropriate numerical quadratures:

1 for the index (i , j) ∈ JΩ, taking the control volume ωi ,j ={
(x , y) ∈ Ω ∩ {[(i − 1

2
)hx , (i +

1

2
)hx)× [(j − 1

2
)hy , (j +

1

2
)hy )}

}
;

2 Applying the middle point quadrature on ωi ,j as well as on its
four edges;

3 ∂νu(xi+ 1
2
, yj) ∼ (ui+1,j − ui ,j)/hx , etc.;



A Finite Volume Scheme for the Steady State Convection-Diffusion

Equation in Conservation Form

we are lead to the following finite volume scheme for the steady
state convection-diffusion equation:

−
ai+ 1

2
,j(Ui+1,j − Ui ,j)− ai− 1

2
,j(Ui ,j − Ui−1,j)

(4x)2

−
ai ,j+ 1

2
(Ui ,j+1 − Ui ,j)− ai ,j− 1

2
(Ui ,j − Ui ,j−1)

(4y)2

+
(Ui+1,j + Ui ,j)v 1

i+ 1
2
,j
− (Ui ,j + Ui−1,j)v 1

i− 1
2
,j

24x

+
(Ui ,j+1 + Ui ,j)v 2

i ,j+ 1
2

− (Ui ,j + Ui ,j−1)v 2
i ,j− 1

2

24y
= fi ,j ,

which is also called a conservative finite difference scheme.



Finite Difference Methods for Elliptic Equations

General Finite Difference Approximations

Construction of Finite Difference Schemes

A Finite Volume Scheme for Partial Differential Equations

in Conservation Form

Finite volume methods:

1 control volume;

2 numerical flux;

3 conservative form.
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Finite Difference Methods for Elliptic Equations

General Finite Difference Approximations

Construction of Finite Difference Schemes

More General Finite Difference Schemes

In more general case, say for triangular grid, hexagon grid,
nonuniform grid, unstructured grid, and even grid less situations, in
principle, we could still establish a finite difference scheme by

1 Taking proper neighboring nodes J(P);

2 Approximating Lu(P) by LhUP :=
∑

i∈J(P) ci (P)U(Qi );

3 Determining the weights ci (P) according to certain
requirements, say the order of the local truncation error, local
conservative property, discrete maximum principle, etc..
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