Numerical Solutions to Partial Differential Equations

Zhiping Li

LMAM and School of Mathematical Sciences Peking University

Céa Lemma and Abstract Error Estimates

└─ Céa Lemma

Céa Lemma — an Abstract Error Estimate Theorem

Consider the variational problem of the form

 $\begin{cases} \mathsf{Find} \ u \in \mathbb{V} \text{ such that} \\ \mathsf{a}(u,v) = f(v), \quad \forall v \in \mathbb{V}. \end{cases}$

② Consider the conforming finite element method of the form

 $\begin{cases} \mathsf{Find} & u_h \in \mathbb{V}_h \subset \mathbb{V} \text{ such that} \\ a(u_h, v_h) = f(v_h), & \forall v_h \in \mathbb{V}_h. \end{cases}$

- **③** The problem: how to estimate the error $||u u_h||$?
- The method used for FDM is not an ideal framework for FEM.
- The standard approach for the error estimations of a finite element solution is to use an abstract error estimate to reduce the problem to a function approximation problem.

Céa Lemma and Abstract Erro<u>r Estimates</u>

└─ Céa Lemma

Céa Lemma — an Abstract Error Estimate Theorem

Theorem

Let \mathbb{V} be a Hilbert space, \mathbb{V}_h be a linear subspace of \mathbb{V} . Let the bilinear form $a(\cdot, \cdot)$ and the linear form $f(\cdot)$ satisfy the conditions of the Lax-Milgram lemma (see Theorem 5.1). Let $u \in \mathbb{V}$ be the solution to the variational problem, and $u_h \in \mathbb{V}_h$ satisfy the equation

$$a(u_h,v_h)=f(v_h), \quad \forall v_h\in \mathbb{V}_h.$$

Then, there exist a constant C independent of \mathbb{V}_h , such that

$$\|u-u_h\|\leq C\inf_{v_h\in\mathbb{V}_h}\|u-v_h\|,$$

where $\|\cdot\|$ is the norm of \mathbb{V} .

Error Estimates of Finite Element Solutions Céa Lemma and Abstract Error Estimates Céa Lemma

Proof of the Céa Lemma

(1) Since u and u_h satisfy the equations, and $\mathbb{V}_h \subset \mathbb{V}$, we have $a(u-u_h, w_h) = a(u, w_h) - a(u_h, w_h) = f(w_h) - f(w_h) = 0, \ \forall w_h \in \mathbb{V}_h.$ 2 In particular, taking $w_h = u_h - v_h$ leads to $a(u - u_h, u_h - v_h) = 0.$ **3** The \mathbb{V} -ellipticity $\Rightarrow \alpha \|u - u_h\|^2 \leq a(u - u_h, u - u_h)$. 4 The boundedness $\Rightarrow a(u - u_h, u - v_h) \leq M ||u - u_h|| ||u - v_h||.$ **5** Hence, $\alpha \|u - u_h\|^2 < a(u - u_h, u - v_h) < M \|u - u_h\| \|u - v_h\|$. **(**) Take $C = M/\alpha$, we have $\|u-u_h\| < C \|u-v_h\|, \quad \forall v_h \in \mathbb{V}_h.$ The conclusion of the theorem follows.

Céa Lemma and Abstract Error Estimates

└─ Céa Lemma

Remarks on the Céa Lemma

- The Céa lemma reduces the error estimation problem of ||u − u_h|| to the optimal approximation problem of inf<sub>v_h∈_{V_h} ||u − v_h||.
 </sub>
- 2 Error of the finite element solution $||u u_h||$ is of the same order as the optimal approximation error $\inf_{v_h \in \mathbb{V}_h} ||u v_h||$.
- Suppose the V_h-interpolation function Π_hu of u is well defined in the finite element function space V_h, then,

$$\|u-u_h\|\leq C\inf_{v_h\in\mathbb{V}_h}\|u-v_h\|\leq C\|u-\Pi_h u\|.$$

Therefore, the error estimation problem of ||u - u_h|| can be further reduced to the error estimation problem for the V_h-interpolation error ||u - Π_hu||.

Céa Lemma and Abstract Error Estimates

Geometric Explanation of the Céa Lemma

For Symmetric $a(\cdot, \cdot)$, u_h is a Orthogonal Projection of u on \mathbb{V}_h

- If the V-elliptic bounded bilinear form a(·, ·) is symmetric, then, a(·, ·) defines an inner product on V, with the induced norm equivalent to the V-norm.
- ② Denote P_h : V → V_h as the orthogonal projection operator induced by the inner product a(·, ·). Then,
 a(u P_hu, v_h) = 0, ∀v_h ∈ V_h.
- So Therefore, the finite element solution u_h = P_hu, *i.e.* it is the orthogonal projection of u on V_h with respect to the inner product a(·, ·).

Céa Lemma and Abstract Error Estimates

Geometric Explanation of the Céa Lemma

Céa Lemma for Symmetric $a(\cdot, \cdot)$

Corollary

Under the conditions of the Céa Lemma, if the bilinear form $a(\cdot, \cdot)$ is in addition symmetric, then, the solution u_h is the orthogonal projection, which is induced by the inner product $a(\cdot, \cdot)$, of the solution u on the subspace \mathbb{V}_h , meaning $u_h = \mathbf{P}_h u$.

Furthermore, we have

$$a(u-u_h, u-u_h) = \inf_{v_h \in \mathbb{V}_h} a(u-v_h, u-v_h).$$

The proof follows the same lines as the proof of the Céa lemma. The only difference here is that $\alpha = M = 1$.

Céa Lemma and Abstract Error Estimates

Geometric Explanation of the Céa Lemma

Céa Lemma in the Form of Orthogonal Projection Error Estimate

Denote $\tilde{P}_h : \mathbb{V} \to \mathbb{V}_h$ as the orthogonal projection operator induced by the inner product $(\cdot, \cdot)_{\mathbb{V}}$ of \mathbb{V} , then,

$$\|u-\widetilde{P}_hu\|=\|(I-\widetilde{P}_h)u\|=\inf_{v_h\in\mathbb{V}_h}\|u-v_h\|.$$

Therefore, as a corollary of the Céa lemma, we have

Corollary

Let \mathbb{V} be a Hilbert space, and \mathbb{V}_h be a linear subspace of \mathbb{V} . Let $a(\cdot, \cdot)$ be a symmetric bilinear form on \mathbb{V} satisfying the conditions of the Lax-Milgram lemma. Let P_h and \tilde{P}_h be the orthogonal projection operators from \mathbb{V} to \mathbb{V}_h induced by the inner products $a(\cdot, \cdot)$ and $(\cdot, \cdot)_{\mathbb{V}}$ respectively. Then, we have

$$\|I - \tilde{P}_h\| \le \|I - P_h\| \le \frac{M}{\alpha} \|I - \tilde{P}_h\|.$$

— The Interpolation Theory of Sob<u>olev Spaces</u>

An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for \mathbb{H}^2 Functions

1
$$\hat{\Omega} = (0, 1), \ \Omega = (b, \ b+h), \ h > 0.$$

- **2** $F: \hat{x} \in [0, 1] \rightarrow [b, b+h], F(\hat{x}) = h\hat{x} + b$: an invertible affine mapping from $\overline{\hat{\Omega}}$ to $\overline{\Omega}$.
- $\widehat{\Pi} : \mathbb{C}([0, 1]) \to \mathbb{P}_1([0, 1]): \text{ the interpolation operator with } \\ \widehat{\Pi} \hat{v}(0) = \hat{v}(0), \ \widehat{\Pi} \hat{v}(1) = \hat{v}(1).$
- **④** Π : $\mathbb{C}([b, b+h]) \rightarrow \mathbb{P}_1([b, b+h])$: the interpolation operator with $\Pi v(b) = v(b)$, $\Pi v(b+h) = v(b+h)$.

L The Interpolation Theory of Sobolev Spaces

An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for \mathbb{H}^2 Functions

5 Let $u \in \mathbb{H}^2(\Omega)$, denote $\hat{u}(\hat{x}) = u \circ F(\hat{x}) = u(h\hat{x} + b)$, then, it can be shown $\hat{u} \in \mathbb{H}^2(\hat{\Omega})$, thus, $\hat{u} \in \mathbb{C}([0, 1])$.

 $\begin{array}{l} \widehat{\boldsymbol{\Omega}} \ \, \widehat{\boldsymbol{\Pi}} \ \, \text{is } \mathbb{P}_1([0,1]) \ \, \text{invariant:} \ \, \widehat{\boldsymbol{\Pi}} \, \hat{\boldsymbol{w}} = \hat{\boldsymbol{w}}, \ \forall \hat{\boldsymbol{w}} \in \mathbb{P}_1([0,1]), \ \, \text{thus,} \\ \\ \| (I - \hat{\boldsymbol{\Pi}}) \hat{\boldsymbol{u}} \|_{0,\hat{\Omega}} = \| (I - \hat{\boldsymbol{\Pi}}) (\hat{\boldsymbol{u}} + \hat{\boldsymbol{w}}) \|_{0,\hat{\Omega}} \leq \| I - \hat{\boldsymbol{\Pi}} \| \, \| \hat{\boldsymbol{u}} + \hat{\boldsymbol{w}} \|_{2,\hat{\Omega}}, \end{array}$

where $\|I - \hat{\Pi}\|$ is the norm of $I - \hat{\Pi} : \mathbb{H}^2(\hat{\Omega}) \to \mathbb{L}^2(\hat{\Omega}).$

★ This shows that $I - \hat{\Pi} \in \mathfrak{L}(\mathbb{H}^2(0,1)/\mathbb{P}_1([0,1]); \mathbb{L}^2(0,1))$, and (1) $\|\hat{u} - \hat{\Pi}\hat{u}\|_{0,\hat{\Omega}} \leq \|I - \hat{\Pi}\| \inf_{\hat{w} \in \mathbb{P}_1(\hat{\Omega})} \|\hat{u} + \hat{w}\|_{2,\hat{\Omega}}$,

where $\inf_{\hat{w} \in \mathbb{P}_1(\hat{\Omega})} \|\hat{u} + \hat{w}\|_{2,\hat{\Omega}}$ is the norm of \hat{u} in the quotient space $\mathbb{H}^2(0,1)/\mathbb{P}_1([0,1]).$

- The Interpolation Theory of Sob<u>olev Spaces</u>

An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for \mathbb{H}^2 Functions

It can be shown that,
$$\exists$$
 const. $C(\hat{\Omega}) > 0$ s.t.
(2) $|\hat{u}|_{2,\hat{\Omega}} \leq \inf_{\hat{w} \in \mathbb{P}_1(\hat{\Omega})} ||\hat{u} + \hat{w}||_{2,\hat{\Omega}} \leq C(\hat{\Omega}) |\hat{u}|_{2,\hat{\Omega}}.$

★ It follows from the chain rule that $\hat{u}''(\hat{x}) = h^2 u''(x)$.

★ By a change of the integral variable, and $dx = hd\hat{x}$, we obtain (3) $\hat{u} \in \mathbb{H}^2(\hat{\Omega})$, and $|\hat{u}|^2_{2,\hat{\Omega}} = h^3 |u|^2_{2,\Omega}$; (4) $||u - \Pi u||^2_{0,\Omega} = h||\hat{u} - \hat{\Pi}\hat{u}||^2_{0,\hat{\Omega}}$.

Letter The Interpolation Theory of Sobolev Spaces

An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for \mathbb{H}^2 Functions

- The conclusion (1) says that the L² norm of the error of a P₁ invariant interpolation can be bounded by the quotient norm of the function in H²(0, 1)/P₁([0, 1]).
- The conclusion (2) says that the semi norm | · |_{2,(0,1)} is an equivalent norm of the quotient space ℍ²(0,1)/ℙ₁([0,1]).
- The conclusions (3) and (4) present the relations between the semi-norms of Sobolev spaces defined on affine-equivalent open sets.

Letter The Interpolation Theory of Sobolev Spaces

An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for \mathbb{H}^2 Functions

\bigstar The combination of (4) and (1) yields

$$\|u - \Pi u\|_{0,\Omega} \le h^{\frac{1}{2}} \|I - \hat{\Pi}\| \inf_{\hat{w} \in \mathbb{P}_{1}(\hat{\Omega})} \|\hat{u} + \hat{w}\|_{2,\hat{\Omega}}$$

 \star This together with (2) and (3) lead to the expected interpolation error estimate:

$$\|u - \Pi u\|_{0,\Omega} \leq \|I - \hat{\Pi}\|C(\hat{\Omega})|u|_{2,\Omega}h^2, \quad \forall u \in \mathbb{H}^2(\Omega).$$

L The Interpolation Theory of Sobolev Spaces

An Example on Interpolation Error Estimates

A Framework for Interpolation Error Estimation of Affine Equivalent FEs

- The polynomial quotient spaces of a Sobolev space and their equivalent quotient norms ((2) in the example);
- The relations between the semi-norms of Sobolev spaces defined on affine-equivalent open sets ((3), (4) in the exmample);
- The abstract error estimates for the polynomial invariant operators ((1) in the example);
- To estimate the constants appeared in the relations of the Sobolev semi-norms by means of the geometric parameters of the corresponding affine-equivalent open sets.

L The Interpolation Theory of Sobolev Spaces

An Example on Interpolation Error Estimates

A Framework for Interpolation Error Estimation of Affine Equivalent FEs

- the change of integral variable will introduce the Jacobi determinant $det\left(\frac{\partial F(\hat{x})}{\partial \hat{x}}\right)$;
- in high dimensions, the Jacobi determinant represents the ratio of the volumes $|\Omega|/|\hat{\Omega}|;$
- the chain rule for the *m*th derivative will produce h^m .
- *h* actually represents the ratio of the lengths in the directions of corresponding directional derivatives of the regions $\Omega = F(\hat{\Omega})$ and $\hat{\Omega}$.

The related technique is often referred to as the scaling technique.

L The Interpolation Theory of Sobolev Spaces

Polynomial Quotient Spaces and Equivalent Quotient Norms

Polynomial Quotient Spaces

• The quotient space $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$, in which a function \dot{v} is the equivalent class of $v \in \mathbb{W}^{k+1,p}(\Omega)$ in the sense that

$$\dot{v} = \{w \in \mathbb{W}^{k+1,p}(\Omega) : (w-v) \in \mathbb{P}_k(\Omega)\}.$$

2 The quotient norm of a function \dot{v} is defined by

$$\dot{v}\in \mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega) o \|\dot{v}\|_{k+1,p,\Omega}:= \inf_{w\in\mathbb{P}_k(\Omega)}\|v{+}w\|_{k+1,p,\Omega},$$

L The Interpolation Theory of Sobolev Spaces

Polynomial Quotient Spaces and Equivalent Quotient Norms

Polynomial Quotient Spaces

3 The quotient space $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$ is a Banach space.

- $\dot{v} \in \mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega) \to |\dot{v}|_{k+1,p,\Omega} = |v|_{k+1,p,\Omega}$ is a semi-norm of the quotient space $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$, and obviously $|\dot{v}|_{k+1,p,\Omega} \le ||\dot{v}||_{k+1,p,\Omega}$.
- In fact, |v|_{k+1,p,Ω} = |v|_{k+1,p,Ω} is an equivalent norm of the quotient space W^{k+1,p}(Ω)/P_k(Ω).

L The Interpolation Theory of Sobolev Spaces

Polynomial Quotient Spaces and Equivalent Quotient Norms

The Semi-norm $|v|_{k+1,p,\Omega}$ is an equivalent Norm of $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$

Theorem

There exists a constant $C(\Omega)$ such that

 $\|\dot{v}\|_{k+1,p,\Omega} \leq C(\Omega)|\dot{v}|_{k+1,p,\Omega}, \qquad orall \dot{v} \in \mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega).$

Proof:

- Let $\{p_i\}_{i=1}^N$ be a basis of $\mathbb{P}_k(\Omega)$, and let f_i , i = 1, ..., N, be the corresponding dual basis, meaning $f_i(p_i) = \delta_{ij}$.
- 2 For any $w \in \mathbb{P}_k(\Omega)$, $f_i(w) = 0$, $i = 1, ..., N \Leftrightarrow w = 0$.
- Sextend f_i, i = 1,..., N, to a set of bounded linear functionals defined on W^{k+1,p}(Ω).

The Semi-norm $|v|_{k+1,p,\Omega}$ is an equivalent Norm of $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$

() We claim that there exists a constant $C(\Omega)$ such that $||v||_{k+1,p,\Omega} \leq C(\Omega)(|v|_{k+1,p,\Omega} + \sum_{i=1}^{N} |f_i(v)|), \forall v \in \mathbb{W}^{k+1,p}(\Omega).$

5 For
$$v \in \mathbb{W}^{k+1,p}(\Omega)$$
, define $\tilde{w} = -\sum_{j=1}^{N} f_j(v)p_j$, then,
 $f_i(v + \tilde{w}) = 0$, $i = 1, ..., N$, consequently,
 $\inf_{w \in \mathbb{P}_k(\Omega)} \|v + w\|_{k+1,p,\Omega} \le \|v + \tilde{w}\|_{k+1,p,\Omega} \le C(\Omega) |v|_{k+1,p,\Omega}$.

What remains to show is (4). Suppose (4) doesn't hold.

• Then, there exists a sequence
$$\{v_j\}_{j=1}^{\infty}$$
 in $\mathbb{W}^{k+1,p}(\Omega)$ such that
 $\|v_j\|_{k+1,p,\Omega} = 1, \forall j \ge 1 \text{ and } \lim_{j\to\infty} (|v_j|_{k+1,p,\Omega} + \sum_{i=1}^{N} |f_i(v_j)|) = 0.$
• $\mathbb{W}^{k+1,p}(\Omega) \xrightarrow{c} \mathbb{W}^{k,p}(\Omega), 1 \le p < \infty; \mathbb{W}^{k+1,\infty}(\Omega) \xrightarrow{c} \mathbb{C}^k(\bar{\Omega}).$

L The Interpolation Theory of Sobolev Spaces

Polynomial Quotient Spaces and Equivalent Quotient Norms

The Semi-norm $|v|_{k+1,p,\Omega}$ is an equivalent Norm of $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$

3 So, there exist a subsequence of $\{v_j\}_{j=1}^{\infty}$, denoted again as $\{v_j\}_{j=1}^{\infty}$, and a function $v \in \mathbb{W}^{k,p}(\Omega)$, such that $\lim_{j \to \infty} \|v_j - v\|_{k,p,\Omega} = 0.$

(2) (6) and (8) imply $\{v_j\}_{j=1}^{\infty}$ is a Cauchy sequence in $\mathbb{W}^{k+1,p}(\Omega)$.

- **1** Therefore, v in **(8)** is actually a function in $\mathbb{W}^{k+1,p}(\Omega)$.
- $\begin{array}{l} \textcircled{1} \\ \textcircled{1} \\ |\partial^{\alpha}v|_{0,p,\Omega} = \lim_{j \to \infty} |\partial^{\alpha}v_{j}|_{0,p,\Omega} = 0, \quad \forall \alpha, \ |\alpha| = k + 1, \end{array}$

— The Interpolation Theory of Sobolev Spaces

Polynomial Quotient Spaces and Equivalent Quotient Norms

The Semi-norm $|v|_{k+1,p,\Omega}$ is an equivalent Norm of $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$

@ By Theorem 5.2, **①** implies $v \in \mathbb{P}_k(\Omega)$.

0 On the other hand, it follows from 0 that

$$f_i(\mathbf{v}) = \lim_{j \to \infty} f_i(\mathbf{v}_j) = 0, \quad i = 1, \dots, N,$$

If therefore, by (2), we have
$$v = 0$$
.

- () On the other hand, since v_j converges to v in $\mathbb{W}^{k+1,p}(\Omega)$, by (), we have $\|v\|_{k+1,p,\Omega} = \lim_{j\to\infty} \|v_j\|_{k+1,p,\Omega} = 1$.
- In the contradiction of (1) and (1) completes the proof.

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Relations of Semi-norms on Open Sets Related by $F(\hat{x}) = h\hat{x} + b \in \mathbb{R}^n$

• Let
$$F : \hat{x} \in \mathbb{R}^n \to F(\hat{x}) = h\hat{x} + b \in \mathbb{R}^n$$
, and $\Omega = F(\hat{\Omega})$
 $\Rightarrow \operatorname{diam}(\Omega)/\operatorname{diam}(\hat{\Omega}) = h$ and $\left\|\frac{\partial F(\hat{x})}{\partial \hat{x}}\right\| = h$.

2 Then,
$$\partial^{\alpha} v(x) = h^{-|\alpha|} \partial^{\alpha} \hat{v}(\hat{x})$$
, and $dx = |\det(B)| d\hat{x} = h^n d\hat{x}$,
(where $B = \frac{\partial F(\hat{x})}{\partial \hat{x}} = h I_{n \times n}$).

③ Therefore, by a change of integral variable, we have

$$|v|_{m,p,\Omega} = \|B^{-1}\|^m |\det(B)|^{1/p} |\hat{v}|_{m,p,\hat{\Omega}} = h^{-m+n/p} |\hat{v}|_{m,p,\hat{\Omega}}.$$

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Affine Equivalent Open Sets Related by $F(\hat{x}) = B\hat{x} + b \in \mathbb{R}^n$

Let $\Omega = F(\hat{\Omega})$ be an affine equivalent open set in \mathbb{R}^n with

$$F: \hat{x} \in \mathbb{R}^n \to F(\hat{x}) = B\hat{x} + b \in \mathbb{R}^n,$$

For $v \in W^{m,p}(\Omega)$ and $\hat{v}(\hat{x}) = v(F(\hat{x}))$, the Sobolev semi-norms $|v|_{m,p,\Omega}$ and $|\hat{v}|_{m,p,\hat{\Omega}}$ have a similar relation for general *B*, *i.e.*

$$|v|_{m,p,\Omega}/|\hat{v}|_{m,p,\hat{\Omega}}\propto \|B^{-1}\|^m|\det(B)|^{1/p}\propto h^{-m+n/p},$$

provided $F(\hat{x})$ satisfies certain regularity conditions.

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Relations of Semi-norms on Open Sets Related by $F(\hat{x}) = B\hat{x} + b$

Theorem

Let Ω and $\hat{\Omega}$ be two affine equivalent open sets in \mathbb{R}^n . Let $v \in \mathbb{W}^{m,p}(\Omega)$ for some $p \in [1, \infty]$ and nonnegative integer m. Then, $\hat{v} = v \circ F \in \mathbb{W}^{m,p}(\hat{\Omega})$, and there exists a constant C = C(m, n) such that

$$|\hat{v}|_{m,p,\hat{\Omega}} \leq C \|B\|^m |\det(B)|^{-1/p} |v|_{m,p,\Omega},$$

where B is the matrix in the affine mapping F, $\|\cdot\|$ represents the operator norms induced from the Euclidian norm of \mathbb{R}^n . Similarly, we also have

$$|v|_{m,p,\Omega} \leq C \|B^{-1}\|^m |\det(B)|^{1/p} |\hat{v}|_{m,p,\hat{\Omega}}.$$

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Proof of $|\hat{v}|_{m,p,\hat{\Omega}} \leq C(n,m) \|B\|^m |\det(B)|^{-1/p} |v|_{m,p,\Omega}$

• Let $\xi_i = (\xi_{i1}, \ldots, \xi_{in})^T \in \mathbb{R}^n$, $i = 1, \cdots, m$, be unit vectors, $D = (\partial_1, \ldots, \partial_n)$, $D^m \hat{v}(\hat{x})(\xi_1, \ldots, \xi_m) = (\prod_{i=1}^m D \cdot \xi_i) \hat{v}(\hat{x})$.

2 Assume $v \in \mathbb{C}^m(\overline{\Omega})$, therefore, $\hat{v} \in \mathbb{C}^m(\overline{\hat{\Omega}})$ also. We have $|\partial^{\alpha} \hat{v}(\hat{x})| \leq \|D^m \hat{v}(\hat{x})\| := \sup_{\substack{\|\xi_i\|=1\\1\leq i\leq m}} |D^m \hat{v}(\hat{x})(\xi_1,\ldots,\xi_m)|, \quad \forall |\alpha| = m.$

Solution Let $C_1(m, n)$ be the cardinal number of α , then

$$|\hat{v}|_{m,p,\hat{\Omega}} = \left(\int_{\hat{\Omega}} \sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}(\hat{x})|^{p} d\hat{x}\right)^{1/p} \leq C_{1}(m,n) \left(\int_{\hat{\Omega}} \|D^{m} \hat{v}(\hat{x})\|^{p} d\hat{x}\right)^{1/p}$$

Proof of $|\hat{v}|_{m,p,\hat{\Omega}} \leq C(n,m) \|B\|^m |\det(B)|^{-1/p} |v|_{m,p,\Omega}$

 On the other hand, by the chain rule of differentiations for composition of functions,

$$(D \cdot \xi)\hat{v}(\hat{x}) = D(v \circ F(\hat{x}))\xi = Dv(x)\frac{\partial F(\hat{x})}{\partial \hat{x}}\xi = (D \cdot B\xi)v(x).$$

5 Therefore, $(\prod_{i=1}^{m} D \cdot \xi_i) \hat{v}(\hat{x}) = (\prod_{i=1}^{m} D \cdot B\xi_i) v(x)$, *i.e.*

$$D^m \hat{v}(\hat{x})(\xi_1,\ldots,\xi_m) = D^m v(x)(B\xi_1,\ldots,B\xi_m).$$

- **6** Consequently, $||D^m \hat{v}(\hat{x})|| \le ||B||^m ||D^m v(x)||$.

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Proof of $|\hat{v}|_{m,p,\hat{\Omega}} \leq C(n,m) \|B\|^m |\det(B)|^{-1/p} |v|_{m,p,\Omega}$

3 For any given $\eta_i \in \mathbb{R}^n$ with $\|\eta_i\| = 1$, $1 \le i \le m$, we have

$$D^m v(x)(\eta_1,\ldots,\eta_m) = \left[\prod_{i=1}^m \sum_{j=1}^n \eta_{ij}\partial_j\right] v(x) = \sum_{j_1,\cdots,j_m=1}^n \left[\prod_{i=1}^m \eta_{ij_i}\partial_{j_i}\right] v(x).$$

() Since, $|\eta_{ij}| \le 1$, $1 \le i \le m$, $1 \le j \le n$, we are lead to

$$\|D^m v(x)\| \leq n^m \max_{|lpha|=m} |\partial^lpha v(x)| \leq n^m \Big(\sum_{|lpha|=m} |\partial^lpha v(x)|^p\Big)^{1/p}$$

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Proof of $|\hat{v}|_{m,p,\hat{\Omega}} \leq C(n,m) \|B\|^m |\det(B)|^{-1/p} |v|_{m,p,\Omega}$

() By (**3**), (**7**) and (**9**), the inequality hold for $v \in \mathbb{C}^m(\overline{\Omega})$.

- **④** For 1 ≤ *p* < ∞, $\mathbb{C}^{m}(\overline{\Omega})$ is dense in $\mathbb{W}^{m,p}(\Omega)$, so the inequality also holds for all *v* ∈ $\mathbb{W}^{m,p}(\Omega)$.

$$\|w\|_{0,\infty,\Omega} = \lim_{q \to \infty} \|w\|_{0,q,\Omega}, \qquad \forall w \in \mathbb{L}^{\infty}(\Omega),$$

therefore, the inequality holds also for $v \in \mathbb{W}^{m,\infty}(\Omega)$.

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Estimate ||B|| and det(B) by Geometric Parameters

Bound ||B|| and $||B^{-1}||$ by the Interior and Exterior Diameters

 $\textbf{0} \ \text{Denote the exterior and interior diameters of a region } \Omega \text{ as}$

$$\begin{cases} h_{\Omega} := \operatorname{diam} (\Omega), \\ \rho_{\Omega} := \sup \{ \operatorname{diam} (S) : S \subset \Omega \text{ is a } n \text{-dimensional ball} \}. \end{cases}$$

Theorem

Let Ω and $\hat{\Omega}$ be two affine-equivalent open sets in \mathbb{R}^n , let $F(\hat{x}) = B\hat{x} + b$ be the invertible affine mapping, and $\Omega = F(\hat{\Omega})$. Then, $\|B\| \le \frac{h}{\hat{\rho}}$, and $\|B^{-1}\| \le \frac{\hat{h}}{\rho}$, where $h = h_{\Omega}$, $\hat{h} = h_{\hat{\Omega}}$, $\rho = \rho_{\Omega}$, $\hat{\rho} = \rho_{\hat{\Omega}}$.

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Lestimate ||B|| and det(B) by Geometric Parameters

Proof of $||B|| \leq \frac{h}{\hat{a}}$ and the Geometric Meaning of det(B)

1 By the definition of ||B||, we have

$$\|B\| = rac{1}{\hat{
ho}} \sup_{\|\xi\| = \hat{
ho}} \|B\xi\|.$$

2 Let the vectors \hat{x} , $\hat{y} \in \overline{\hat{\Omega}}$ be such that $\|\hat{y} - \hat{x}\| = \hat{\rho}$, then, we have $x = F(\hat{x}) \in \overline{\Omega}$, $y = F(\hat{y}) \in \overline{\Omega}$.

3 Therefore, $||B(\hat{y} - \hat{x})|| = ||F(\hat{y}) - F(\hat{x})|| \le h \Rightarrow ||B|| \le \frac{h}{\hat{\rho}}$.

The determinant det(B) also has an obvious geometric meaning:

$$|\det(B)| = rac{ ext{meas}(\Omega)}{ ext{meas}(\hat{\Omega})} \quad ext{and} \quad |\det(B^{-1})| = rac{ ext{meas}(\hat{\Omega})}{ ext{meas}(\Omega)}.$$

习题 7: 1, 3, 4 Thank You!

