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Error Estimates of Finite Element Solutions

Céa Lemma and Abstract Error Estimates

Céa Lemma

Céa Lemma — an Abstract Error Estimate Theorem

1 Consider the variational problem of the form{
Find u ∈ V such that

a(u, v) = f (v), ∀v ∈ V.
2 Consider the conforming finite element method of the form{

Find uh ∈ Vh ⊂ V such that

a(uh, vh) = f (vh), ∀vh ∈ Vh.

3 The problem: how to estimate the error ‖u − uh‖?
4 The method used for FDM is not an ideal framework for FEM.

5 The standard approach for the error estimations of a finite
element solution is to use an abstract error estimate to reduce
the problem to a function approximation problem.
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Error Estimates of Finite Element Solutions

Céa Lemma and Abstract Error Estimates

Céa Lemma

Céa Lemma — an Abstract Error Estimate Theorem

Theorem

Let V be a Hilbert space, Vh be a linear subspace of V. Let the
bilinear form a(·, ·) and the linear form f (·) satisfy the conditions
of the Lax-Milgram lemma (see Theorem 5.1). Let u ∈ V be the
solution to the variational problem, and uh ∈ Vh satisfy the
equation

a(uh, vh) = f (vh), ∀vh ∈ Vh.

Then, there exist a constant C independent of Vh, such that

‖u − uh‖ ≤ C inf
vh∈Vh

‖u − vh‖,

where ‖ · ‖ is the norm of V.
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Error Estimates of Finite Element Solutions

Céa Lemma and Abstract Error Estimates

Céa Lemma

Proof of the Céa Lemma

1 Since u and uh satisfy the equations, and Vh ⊂ V, we have

a(u−uh, wh) = a(u, wh)−a(uh, wh) = f (wh)−f (wh) = 0, ∀wh ∈ Vh.

2 In particular, taking wh = uh − vh leads to

a(u − uh, uh − vh) = 0.

3 The V-ellipticity ⇒ α‖u − uh‖2 ≤ a(u − uh, u − uh).

4 The boundedness ⇒ a(u − uh, u − vh) ≤ M‖u − uh‖‖u − vh‖.
5 Hence, α‖u− uh‖2 ≤ a(u− uh, u− vh) ≤ M‖u− uh‖‖u− vh‖.
6 Take C = M/α, we have

‖u − uh‖ ≤ C‖u − vh‖, ∀vh ∈ Vh.

7 The conclusion of the theorem follows. �
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Error Estimates of Finite Element Solutions

Céa Lemma and Abstract Error Estimates

Céa Lemma

Remarks on the Céa Lemma

1 The Céa lemma reduces the error estimation problem of
‖u − uh‖ to the optimal approximation problem of
infvh∈Vh

‖u − vh‖.
2 Error of the finite element solution ‖u − uh‖ is of the same

order as the optimal approximation error infvh∈Vh
‖u − vh‖.

3 Suppose the Vh-interpolation function Πhu of u is well
defined in the finite element function space Vh, then,

‖u − uh‖ ≤ C inf
vh∈Vh

‖u − vh‖ ≤ C ‖u − Πhu‖.

4 Therefore, the error estimation problem of ‖u − uh‖ can be
further reduced to the error estimation problem for the
Vh-interpolation error ‖u − Πhu‖.
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Error Estimates of Finite Element Solutions

Céa Lemma and Abstract Error Estimates

Geometric Explanation of the Céa Lemma

For Symmetric a(·, ·), uh Is a Orthogonal Projection of u on Vh

1 If the V-elliptic bounded bilinear form a(·, ·) is symmetric,
then, a(·, ·) defines an inner product on V, with the induced
norm equivalent to the V-norm.

2 Denote Ph : V→ Vh as the orthogonal projection operator
induced by the inner product a(·, ·). Then,

a(u − Phu, vh) = 0, ∀vh ∈ Vh.

3 Therefore, the finite element solution uh = Phu, i.e. it is the
orthogonal projection of u on Vh with respect to the inner
product a(·, ·).
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Error Estimates of Finite Element Solutions

Céa Lemma and Abstract Error Estimates

Geometric Explanation of the Céa Lemma

Céa Lemma for Symmetric a(·, ·)

Corollary

Under the conditions of the Céa Lemma, if the bilinear form a(·, ·)
is in addition symmetric, then, the solution uh is the orthogonal
projection, which is induced by the inner product a(·, ·), of the
solution u on the subspace Vh, meaning uh = Phu.

Furthermore, we have

a(u − uh, u − uh) = inf
vh∈Vh

a(u − vh, u − vh).

The proof follows the same lines as the proof of the Céa lemma.
The only difference here is that α = M = 1.
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Error Estimates of Finite Element Solutions

Céa Lemma and Abstract Error Estimates

Geometric Explanation of the Céa Lemma

Céa Lemma in the Form of Orthogonal Projection Error Estimate

Denote P̃h : V→ Vh as the orthogonal projection operator induced
by the inner product (·, ·)V of V, then,

‖u − P̃hu‖ = ‖(I − P̃h)u‖ = inf
vh∈Vh

‖u − vh‖.
Therefore, as a corollary of the Céa lemma, we have

Corollary

Let V be a Hilbert space, and Vh be a linear subspace of V. Let
a(·, ·) be a symmetric bilinear form on V satisfying the conditions
of the Lax-Milgram lemma. Let Ph and P̃h be the orthogonal
projection operators from V to Vh induced by the inner products
a(·, ·) and (·, ·)V respectively. Then, we have

‖I − P̃h‖ ≤ ‖I − Ph‖ ≤
M

α
‖I − P̃h‖.
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Error Estimates of Finite Element Solutions

The Interpolation Theory of Sobolev Spaces

An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for H2 Functions

1 Ω̂ = (0, 1), Ω = (b, b + h), h > 0.

2 F : x̂ ∈ [0, 1]→ [b, b + h], F (x̂) = hx̂ + b: an invertible

affine mapping from Ω̂ to Ω.

3 Π̂ : C([0, 1])→ P1([0, 1]): the interpolation operator with
Π̂v̂(0) = v̂(0), Π̂v̂(1) = v̂(1).

4 Π : C([b, b + h])→ P1([b, b + h]): the interpolation operator
with Πv(b) = v(b), Πv(b + h) = v(b + h).
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Error Estimates of Finite Element Solutions

The Interpolation Theory of Sobolev Spaces

An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for H2 Functions

5 Let u ∈ H2(Ω), denote û(x̂) = u ◦ F (x̂) = u(hx̂ + b), then, it
can be shown û ∈ H2(Ω̂), thus, û ∈ C([0, 1]).

6 Π̂ is P1([0, 1]) invariant: Π̂ŵ = ŵ , ∀ŵ ∈ P1([0, 1]), thus,

‖(I − Π̂)û‖0,Ω̂ = ‖(I − Π̂)(û + ŵ)‖0,Ω̂ ≤ ‖I − Π̂‖ ‖û + ŵ‖2,Ω̂,

where ‖I − Π̂‖ is the norm of I − Π̂ : H2(Ω̂)→ L2(Ω̂).

F This shows that I − Π̂ ∈ L(H2(0, 1)/P1([0, 1]);L2(0, 1)), and

(1) ‖û − Π̂û‖0,Ω̂ ≤ ‖I − Π̂‖ inf
ŵ∈P1(Ω̂)

‖û + ŵ‖2,Ω̂,

where infŵ∈P1(Ω̂) ‖û + ŵ‖2,Ω̂ is the norm of û in the quotient space

H2(0, 1)/P1([0, 1]).
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Error Estimates of Finite Element Solutions

The Interpolation Theory of Sobolev Spaces

An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for H2 Functions

F It can be shown that, ∃ const. C (Ω̂) > 0 s.t.

(2) |û|2,Ω̂ ≤ inf
ŵ∈P1(Ω̂)

‖û + ŵ‖2,Ω̂ ≤ C (Ω̂)|û|2,Ω̂.

F It follows from the chain rule that û′′(x̂) = h2u′′(x).

F By a change of the integral variable, and dx = hdx̂ , we obtain

(3) û ∈ H2(Ω̂), and |û|2
2,Ω̂

= h3|u|22,Ω;

(4) ‖u − Πu‖2
0,Ω = h‖û − Π̂û‖2

0,Ω̂
.
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Error Estimates of Finite Element Solutions

The Interpolation Theory of Sobolev Spaces

An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for H2 Functions

The conclusion (1) says that the L2 norm of the error of a P1

invariant interpolation can be bounded by the quotient norm
of the function in H2(0, 1)/P1([0, 1]).

The conclusion (2) says that the semi norm | · |2,(0,1) is an
equivalent norm of the quotient space H2(0, 1)/P1([0, 1]).

The conclusions (3) and (4) present the relations between the
semi-norms of Sobolev spaces defined on affine-equivalent
open sets.
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Error Estimates of Finite Element Solutions

The Interpolation Theory of Sobolev Spaces

An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for H2 Functions

F The combination of (4) and (1) yields

‖u − Πu‖0,Ω ≤ h
1
2 ‖I − Π̂‖ inf

ŵ∈P1(Ω̂)
‖û + ŵ‖2,Ω̂

F This together with (2) and (3) lead to the expected
interpolation error estimate:

‖u − Πu‖0,Ω ≤ ‖I − Π̂‖C (Ω̂)|u|2,Ωh2, ∀u ∈ H2(Ω).
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Error Estimates of Finite Element Solutions

The Interpolation Theory of Sobolev Spaces

An Example on Interpolation Error Estimates

A Framework for Interpolation Error Estimation of Affine Equivalent FEs

1 The polynomial quotient spaces of a Sobolev space and their
equivalent quotient norms ((2) in the example);

2 The relations between the semi-norms of Sobolev spaces
defined on affine-equivalent open sets ((3), (4) in the
exmample);

3 The abstract error estimates for the polynomial invariant
operators ((1) in the example);

4 To estimate the constants appeared in the relations of the
Sobolev semi-norms by means of the geometric parameters of
the corresponding affine-equivalent open sets.

14 / 31



Error Estimates of Finite Element Solutions

The Interpolation Theory of Sobolev Spaces

An Example on Interpolation Error Estimates

A Framework for Interpolation Error Estimation of Affine Equivalent FEs

the change of integral variable will introduce the Jacobi

determinant det
(
∂F (x̂)
∂x̂

)
;

in high dimensions, the Jacobi determinant represents the
ratio of the volumes |Ω|/|Ω̂|;

the chain rule for the mth derivative will produce hm.

h actually represents the ratio of the lengths in the directions
of corresponding directional derivatives of the regions
Ω = F (Ω̂) and Ω̂.

The related technique is often referred to as the scaling technique.
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Error Estimates of Finite Element Solutions

The Interpolation Theory of Sobolev Spaces

Polynomial Quotient Spaces and Equivalent Quotient Norms

Polynomial Quotient Spaces

1 The quotient space Wk+1,p(Ω)/Pk(Ω), in which a function v̇
is the equivalent class of v ∈Wk+1,p(Ω) in the sense that

v̇ = {w ∈Wk+1,p(Ω) : (w − v) ∈ Pk(Ω)}.

2 The quotient norm of a function v̇ is defined by

v̇ ∈Wk+1,p(Ω)/Pk(Ω)→ ‖v̇‖k+1,p,Ω := inf
w∈Pk (Ω)

‖v+w‖k+1,p,Ω.
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Error Estimates of Finite Element Solutions

The Interpolation Theory of Sobolev Spaces

Polynomial Quotient Spaces and Equivalent Quotient Norms

Polynomial Quotient Spaces

3 The quotient space Wk+1,p(Ω)/Pk(Ω) is a Banach space.

4 v̇ ∈Wk+1,p(Ω)/Pk(Ω)→ |v̇ |k+1,p,Ω = |v |k+1,p,Ω is a
semi-norm of the quotient space Wk+1,p(Ω)/Pk(Ω), and
obviously |v̇ |k+1,p,Ω ≤ ‖v̇‖k+1,p,Ω.

5 In fact, |v̇ |k+1,p,Ω = |v |k+1,p,Ω is an equivalent norm of the
quotient space Wk+1,p(Ω)/Pk(Ω).
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Error Estimates of Finite Element Solutions

The Interpolation Theory of Sobolev Spaces

Polynomial Quotient Spaces and Equivalent Quotient Norms

The Semi-norm |v |k+1,p,Ω Is an equivalent Norm of Wk+1,p(Ω)/Pk(Ω)

Theorem

There exists a constant C (Ω) such that

‖v̇‖k+1,p,Ω ≤ C (Ω)|v̇ |k+1,p,Ω, ∀v̇ ∈Wk+1,p(Ω)/Pk(Ω).

Proof:

1 Let {pi}Ni=1 be a basis of Pk(Ω), and let fi , i = 1, . . . ,N, be
the corresponding dual basis, meaning fi (pj) = δij .

2 For any w ∈ Pk(Ω), fi (w) = 0, i = 1, . . . ,N ⇔ w = 0.

3 Extend fi , i = 1, . . . ,N, to a set of bounded linear functionals
defined on Wk+1,p(Ω).
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The Semi-norm |v |k+1,p,Ω Is an equivalent Norm of Wk+1,p(Ω)/Pk(Ω)

4 We claim that there exists a constant C (Ω) such that
‖v‖k+1,p,Ω ≤ C (Ω)(|v |k+1,p,Ω +

∑N
i=1 |fi (v)|), ∀v ∈Wk+1,p(Ω).

5 For v ∈Wk+1,p(Ω), define w̃ = −
∑N

j=1 fj(v)pj , then,
fi (v + w̃) = 0, i = 1, . . . ,N, consequently,
infw∈Pk (Ω) ‖v +w‖k+1,p,Ω ≤ ‖v +w̃‖k+1,p,Ω ≤ C (Ω)|v |k+1,p,Ω.

What remains to show is 4©. Suppose 4© doesn’t hold.

6 Then, there exists a sequence {vj}∞j=1 in Wk+1,p(Ω) such that

‖vj‖k+1,p,Ω = 1, ∀j ≥ 1 and limj→∞(|vj |k+1,p,Ω +
N∑
i=1

|fi (vj)|) = 0.

7 Wk+1,p(Ω)
c
↪→Wk,p(Ω), 1 ≤ p <∞; Wk+1,∞(Ω)

c
↪→ Ck(Ω̄).



Error Estimates of Finite Element Solutions

The Interpolation Theory of Sobolev Spaces

Polynomial Quotient Spaces and Equivalent Quotient Norms

The Semi-norm |v |k+1,p,Ω Is an equivalent Norm of Wk+1,p(Ω)/Pk(Ω)

8 So, there exist a subsequence of {vj}∞j=1, denoted again as

{vj}∞j=1, and a function v ∈Wk,p(Ω), such that

lim
j→∞
‖vj − v‖k,p,Ω = 0.

9 6© and 8© imply {vj}∞j=1 is a Cauchy sequence in Wk+1,p(Ω).

10 Therefore, v in 8© is actually a function in Wk+1,p(Ω).

11 Thus, it follows from 6© that

|∂αv |0,p,Ω = lim
j→∞
|∂αvj |0,p,Ω = 0, ∀α, |α| = k + 1,
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Error Estimates of Finite Element Solutions

The Interpolation Theory of Sobolev Spaces

Polynomial Quotient Spaces and Equivalent Quotient Norms

The Semi-norm |v |k+1,p,Ω Is an equivalent Norm of Wk+1,p(Ω)/Pk(Ω)

12 By Theorem 5.2, 11© implies v ∈ Pk(Ω).

13 On the other hand, it follows from 6© that

fi (v) = lim
j→∞

fi (vj) = 0, i = 1, . . . ,N,

14 Therefore, by 2©, we have v = 0.

15 On the other hand, since vj converges to v in Wk+1,p(Ω), by
6©, we have ‖v‖k+1,p,Ω = limj→∞ ‖vj‖k+1,p,Ω = 1.

16 The contradiction of 14© and 15© completes the proof. �
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Error Estimates of Finite Element Solutions

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Relations of Semi-norms on Open Sets Related by F (x̂) = hx̂ + b ∈ Rn

1 Let F : x̂ ∈ Rn → F (x̂) = hx̂ + b ∈ Rn, and Ω = F (Ω̂),

⇒ diam(Ω)/diam(Ω̂) = h and ‖∂F (x̂)
∂x̂ ‖ = h.

2 Then, ∂αv(x) = h−|α|∂αv̂(x̂), and dx = | det(B)| dx̂ = hn dx̂ ,

(where B = ∂F (x̂)
∂x̂ = h In×n).

3 Therefore, by a change of integral variable, we have

|v |m,p,Ω = ‖B−1‖m| det(B)|1/p|v̂ |m,p,Ω̂ = h−m+n/p|v̂ |m,p,Ω̂.

4 |v |m,p,Ω/|v̂ |m,p,Ω̂ ∝ ‖B
−1‖m| det(B)|1/p = h−m+n/p.
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Error Estimates of Finite Element Solutions

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Affine Equivalent Open Sets Related by F (x̂) = Bx̂ + b ∈ Rn

Let Ω = F (Ω̂) be an affine equivalent open set in Rn with

F : x̂ ∈ Rn → F (x̂) = Bx̂ + b ∈ Rn,

For v ∈Wm,p(Ω) and v̂(x̂) = v(F (x̂)), the Sobolev semi-norms
|v |m,p,Ω and |v̂ |m,p,Ω̂ have a similar relation for general B, i.e.

|v |m,p,Ω/|v̂ |m,p,Ω̂ ∝ ‖B
−1‖m| det(B)|1/p ∝ h−m+n/p,

provided F (x̂) satisfies certain regularity conditions.
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Error Estimates of Finite Element Solutions

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Relations of Semi-norms on Open Sets Related by F (x̂) = Bx̂ + b

Theorem

Let Ω and Ω̂ be two affine equivalent open sets in Rn. Let
v ∈Wm,p(Ω) for some p ∈ [1, ∞] and nonnegative integer m.
Then, v̂ = v ◦ F ∈Wm,p(Ω̂), and there exists a constant
C = C (m, n) such that

|v̂ |m,p,Ω̂ ≤ C‖B‖m | det(B)|−1/p |v |m,p,Ω,

where B is the matrix in the affine mapping F , ‖ · ‖ represents the
operator norms induced from the Euclidian norm of Rn. Similarly,
we also have

|v |m,p,Ω ≤ C‖B−1‖m | det(B)|1/p |v̂ |m,p,Ω̂.
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Error Estimates of Finite Element Solutions

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Proof of |v̂ |m,p,Ω̂ ≤ C (n,m)‖B‖m | det(B)|−1/p |v |m,p,Ω

1 Let ξi = (ξi1, . . . , ξin)T ∈ Rn, i = 1, · · · ,m, be unit vectors,
D = (∂1, . . . , ∂n), Dmv̂(x̂)(ξ1, . . . , ξm) = (

∏m
i=1 D · ξi ) v̂(x̂).

2 Assume v ∈ Cm(Ω̄), therefore, v̂ ∈ Cm(Ω̂) also. We have

|∂αv̂(x̂)| ≤ ‖Dmv̂(x̂)‖ := sup
‖ξi‖=1
1≤i≤m

|Dmv̂(x̂)(ξ1, . . . , ξm)|, ∀|α| = m.

3 Let C1(m, n) be the cardinal number of α, then

|v̂ |m,p,Ω̂ =
(∫

Ω̂

∑
|α|=m

|∂αv̂(x̂)|pdx̂
)1/p

≤ C1(m, n)

(∫
Ω̂

‖Dmv̂(x̂)‖pdx̂

)1/p

.
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Proof of |v̂ |m,p,Ω̂ ≤ C (n,m)‖B‖m | det(B)|−1/p |v |m,p,Ω

4 On the other hand, by the chain rule of differentiations for
composition of functions,

(D · ξ)v̂(x̂) = D(v ◦ F (x̂)) ξ = Dv(x)
∂F (x̂)

∂x̂
ξ = (D · Bξ)v(x).

5 Therefore, (
∏m

i=1 D · ξi ) v̂(x̂) = (
∏m

i=1 D · Bξi ) v(x), i.e.

Dmv̂(x̂)(ξ1, . . . , ξm) = Dmv(x)(Bξ1, . . . ,Bξm).

6 Consequently, ‖Dmv̂(x̂)‖ ≤ ‖B‖m ‖Dmv(x)‖.

7 Thus, by a change of integral variable, we obtain∫
Ω̂
‖Dmv̂(x̂)‖pdx̂ ≤ ‖B‖mp

∣∣det
(
B−1

)∣∣ ∫
Ω
‖Dmv(x)‖pdx .



Error Estimates of Finite Element Solutions

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Proof of |v̂ |m,p,Ω̂ ≤ C (n,m)‖B‖m | det(B)|−1/p |v |m,p,Ω

8 For any given ηi ∈ Rn with ‖ηi‖ = 1, 1 ≤ i ≤ m, we have

Dmv(x)(η1, . . . , ηm) =

 m∏
i=1

n∑
j=1

ηij∂j

v(x) =
n∑

j1,··· ,jm=1

[
m∏
i=1

ηiji∂ji

]
v(x).

9 Since, |ηij | ≤ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n, we are lead to

‖Dmv(x)‖ ≤ nm max
|α|=m

|∂αv(x)| ≤ nm
( ∑
|α|=m

|∂αv(x)|p
)1/p

.
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Error Estimates of Finite Element Solutions

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Proof of |v̂ |m,p,Ω̂ ≤ C (n,m)‖B‖m | det(B)|−1/p |v |m,p,Ω

10 By 3©, 7© and 9©, the inequality hold for v ∈ Cm(Ω̄).

11 For 1 ≤ p <∞, Cm(Ω̄) is dense in Wm,p(Ω), so the inequality
also holds for all v ∈Wm,p(Ω).

12 If p =∞, since the inequality holds uniformly for 1 ≤ q <∞,
and for the bounded domain Ω

‖w‖0,∞,Ω = lim
q→∞

‖w‖0,q,Ω, ∀w ∈ L∞(Ω),

therefore, the inequality holds also for v ∈Wm,∞(Ω). �
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Error Estimates of Finite Element Solutions

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Estimate ‖B‖ and det(B) by Geometric Parameters

Bound ‖B‖ and ‖B−1‖ by the Interior and Exterior Diameters

1 Denote the exterior and interior diameters of a region Ω as{
hΩ := diam (Ω),

ρΩ := sup {diam (S) : S ⊂ Ω is a n-dimensional ball}.

Theorem

Let Ω and Ω̂ be two affine-equivalent open sets in Rn, let
F (x̂) = Bx̂ + b be the invertible affine mapping, and Ω = F (Ω̂).
Then,

‖B‖ ≤ h

ρ̂
, and ‖B−1‖ ≤ ĥ

ρ
,

where h = hΩ, ĥ = hΩ̂, ρ = ρΩ, ρ̂ = ρΩ̂.
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Error Estimates of Finite Element Solutions

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Estimate ‖B‖ and det(B) by Geometric Parameters

Proof of ‖B‖ ≤ h
ρ̂

and the Geometric Meaning of det(B)

1 By the definition of ‖B‖, we have

‖B‖ =
1

ρ̂
sup
‖ξ‖=ρ̂

‖Bξ‖.

2 Let the vectors x̂ , ŷ ∈ Ω̂ be such that ‖ŷ − x̂‖ = ρ̂, then, we
have x = F (x̂) ∈ Ω̄, y = F (ŷ) ∈ Ω̄.

3 Therefore, ‖B(ŷ − x̂)‖ = ‖F (ŷ)− F (x̂)‖ ≤ h ⇒ ‖B‖ ≤ h
ρ̂ . �

The determinant det(B) also has an obvious geometric meaning:

| det(B)| =
meas(Ω)

meas(Ω̂)
and | det(B−1)| =

meas(Ω̂)

meas(Ω)
.
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