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Variational Problems of the Dirichlet BVP of the Poisson Equation

1 For the homogeneous Dirichlet BVP of the Poisson equation{
−4u = f , x ∈ Ω,

u = 0, x ∈ ∂Ω,

2 The weak form w.r.t. the virtual work principle:{
Find u ∈ H1

0(Ω), such that

a(u, v) = (f , v), ∀v ∈ H1
0(Ω),

where a(u, v) =
∫

Ω∇u · ∇v dx , (f , v) =
∫

Ω fv dx .

3 The weak form w.r.t. the minimum potential energy principle:{
Find u ∈ H1

0(Ω), such that

J(u) = minv∈H1
0(Ω) J(v),

where J(v) = 1
2 a(v , v)− (f , v).



Use Finite Dimensional Trial, Test and Admissible Function Spaces

1 Replace the trial and test function spaces by appropriate finite
dimensional subspaces, say Vh(0) ⊂ H1

0(Ω), we are led to the
discrete problem: {

Find uh ∈ Vh(0) such that

a(uh, vh) = (f , vh), ∀vh ∈ Vh(0),

Such an approach is called the Galerkin method.

2 Replace the admissible function space by an appropriate finite
dimensional subspace, say Vh(0) ⊂ H1

0(Ω), we are led to the
discrete problem: {

Find uh ∈ Vh(0) such that

J(uh) = minvh∈Vh(0) J(vh).

Such an approach is called the Ritz method.

3 The two methods lead to an equivalent system of linear
algebraic equations.



Finite Element Methods for Elliptic Problems

Galerkin Method and Ritz Method

Algebraic Equations of the Galerkin and Ritz Methods

Derivation of Algebraic Equations of the Galerkin Method

Let {ϕi}Nh
i=1 be a set of basis functions of Vh(0), let

uh =

Nh∑
j=1

ujϕj , vh =

Nh∑
i=1

viϕi ,

then, the Galerkin method leads to{
Find uh = (u1, . . . , uNh

)T ∈ RNh such that∑Nh
i ,j=1 a(ϕj , ϕi )ujvi =

∑Nh
i=1(f , ϕi )vi , ∀vh = (v1, . . . , vNh

)T∈ RNh ,

which is equivalent to
∑Nh

j=1 a(ϕj , ϕi )uj = (f , ϕi ), i = 1, 2, · · · ,Nh.

The stiffness matrix: K = (kij) = (a(ϕj , ϕi )); the external
load vector: fh = (fi ) = ((f , ϕi )); the displacement vector:
uh; the linear algebraic equation: K uh = fh.
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Finite Element Methods for Elliptic Problems

Galerkin Method and Ritz Method

Algebraic Equations of the Galerkin and Ritz Methods

Derivation of Algebraic Equations of the Ritz Method

1 The Ritz method leads to a finite dimensional minimization
problem, whose stationary points satisfy the equation given by
the Galerkin method, and vice versa.

2 So, the Ritz method also leads to K uh = fh.

3 It follows from the symmetry of a(·, ·) and the Poincaré-
Friedrichs inequality (see Theorem 5.4) that stiffness matrix K
is a symmetric positive definite matrix, and thus the linear
system has a unique solution, which is the minima of the
discrete minimization problem.
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The Key Is to Construct Finite Dimensional Subspaces

There are many ways to construct finite dimensional subspaces for
the Galerkin method and Ritz method. For example

1 For Ω = (0, 1)× (0, 1), the functions

ϕmn(x , y) = sin(mπx) sin(nπy), m, n ≥ 1,

which are the complete family of the eigenfunctions {ϕi}∞i=1

of the corresponding eigenvalue problem{
−4u = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω,

and form a set of basis of H1
0(Ω).

2 Define VN = span{ϕmn : m ≤ N, n ≤ N}, the corresponding
numerical method is called the spectral method.

3 Finite element method is a systematic way to construct
subspaces for more general domains.



Finite Element Methods for Elliptic Problems

Finite Element Methods

A Typical Example of the Finite Element Method

Construction of a Finite Element Function Space for H1
0([0, 1]2)

1 The Dirichlet boundary value problem of the Poisson equation

−4u = f , ∀x ∈ Ω = (0, 1)2, u = 0, ∀x ∈ ∂Ω.

2 We need to construct a finite element subspace of H1
0((0, 1)2).

3 Firstly, introduce a triangulation Th(Ω) on the domain Ω:

Closed triangular elements
{Ti}Mi=1 with Ω = ∪Mi=1Ti ;
◦

T i ∩
◦

T j = ∅, 1 ≤ i 6= j ≤ M;
If Ti ∩ Tj 6= ∅: it must be
a common edge or vertex;
h = maxi diam(Ti );
Nodes {Ai}Ni=1, which is
globally numbered.
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Finite Element Methods for Elliptic Problems

Finite Element Methods

A Typical Example of the Finite Element Method

Construction of a Finite Element Function Space for H1
0((0, 1)2)

4 Secondly, define a finite element function space, which is a
subspace of H1((0, 1)2), on the triangulation Th(Ω):

Vh = {u ∈ C(Ω) : u|Ti
∈ P1(Ti ), ∀Ti ∈ Th(Ω)}.

5 Then, define finite element trial and test function spaces,
which are subspaces of H1

0((0, 1)2):

Vh(0) = {u ∈ Vh : u(Ai ) = 0, ∀Ai ∈ ∂Ω}.
6 A function u ∈ Vh is uniquely determined by {u(Ai )}Ni=1.

7 Basis {ϕi}Ni=1 of Vh: ϕi (Aj) = δij , i = 1, 2, . . . ,N.

8 kij = a(ϕj , ϕi ) 6= 0, iff Ai ∪ Aj ⊂ Te for some 1 ≤ e ≤ M.

9 supp(ϕi ) is small ⇒ the stiffness matrix K is sparse.
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Finite Element Methods for Elliptic Problems

Finite Element Methods

A Typical Example of the Finite Element Method

Assemble the Global Stiffness Matrix K from the Element One K e

1 Denote ae(u, v) =
∫
Te
∇u · ∇v dx , by the definition, then,

kij = a(ϕj , ϕi ) =
∑M

e=1 ae(ϕj , ϕi ) =
∑M

e=1 ke
ij .

2 ke
ij = ae(ϕj , ϕi ) 6= 0, iff Ai ∪ Aj ⊂ Te . For most e, ke

ij = 0.

3 It is inefficient to calculate kij by scanning i , j node by node.

4 Element Te with nodes {Ae
α}3

α=1 ⇔ the global nodes Aen(α,e).

5 Area coordinates λe(A) = (λe1(A), λe2(A), λe3(A))T for A ∈ Te ,
λeα(A) = |4AAe

βAe
γ |/|4Ae

αAe
βAe

γ | ∈ P1(Te), λeα(Ae
β) = δαβ.

6 ϕen(α,e)|Te (A) = λeα(A), ∀A ∈ Te .
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Finite Element Methods for Elliptic Problems

Finite Element Methods

A Typical Example of the Finite Element Method

The Algorithm for Assembling Global K and fh

7 Define the element stiffness matrix

K e = (ke
αβ), ke

αβ , ae(λeα, λ
e
β) =

∫
Te

∇λeα · ∇λeβ dx ,

8 Then, kij =
∑

en(α, e)=i∈Te

en(β, e)=j∈Te

ke
αβ can be assembled element wise.

9 The external load vector fh = (fi ) can also be assembled by
scanning through elements

fi =
∑

en(α, e)=i∈Te

∫
Te

f λeα dx =
∑

en(α, e)=i∈Te

f e
α .
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Finite Element Methods for Elliptic Problems

Finite Element Methods

A Typical Example of the Finite Element Method

The Algorithm for Assembling Global K and fh

Algorithm 6.1: K = (k(i , j)) := 0; f = (f (i)) := 0;

for e = 1 : M

K e = (ke(α, β)); % calculate the element stiffness matrix

fe = (f e(α)); % calculate the element external load vector

k(en(α, e), en(β, e)) := k(en(α, e), en(β, e)) + ke(α, β);

f (en(α, e)) := f (en(α, e)) + f e(α);

end
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Finite Element Methods for Elliptic Problems

Finite Element Methods

A Typical Example of the Finite Element Method

Calculations of K e and fe Are Carried Out on a Reference Element

1 The standard reference triangle
Ts = {x̂ = (x̂1, x̂2) ∈ R2 : x̂1 ≥ 0, x̂2 ≥ 0 and x̂1 + x̂2 ≤ 1},
with As

1 = (0, 0)T , As
2 = (1, 0)T and As

3 = (0, 1)T .

2 For Te with Ae
1 = (x1

1 , x
1
2 )T , Ae

2 = (x2
1 , x

2
2 )T , Ae

3 = (x3
1 , x

3
2 )T ,

define Ae = (Ae
2 − Ae

1, Ae
3 − Ae

1), ae = Ae
1.

3 x = Le(x̂) := Ae x̂ + ae : Ts → Te is an affine map.

4 The area coordinates of Te : λeα(x) = λsα(L−1
e (x)), since it is

an affine function of x , and λsα(L−1
e (Ae

β)) = λsα(As
β) = δαβ.

5 ∇λe(x) = ∇λs(x̂)∇L−1
e (x) = ∇λs(x̂)A−1

e .
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Finite Element Methods for Elliptic Problems

Finite Element Methods

A Typical Example of the Finite Element Method

Calculations of K e and fe Are Carried Out on a Reference Element

6 Change of integral variable x̂ = L−1
e (x) := A−1

e x − A−1
e Ae

1,

K e =

∫
Te

∇λe(x) (∇λe(x))Tdx =

∫
Ts

∇λs(x̂)A−1
e (∇λs(x̂)A−1

e )Tdet Aedx̂ ,

fe =

∫
Te

f (x)λe(x) dx = det Ae

∫
Ts

f (Le(x̂))λs(x̂) dx̂ .

7 λs1(x̂1, x̂2) = 1− x̂1 − x̂2, λs2(x̂1, x̂2) = x̂1, λs3(x̂1, x̂2) = x̂2, so

∇λs(x̂) =

−1 −1
1 0
0 1

 , A−1
e =

1

detAe

(
x3

2 − x1
2 x1

1 − x3
1

x1
2 − x2

2 x2
1 − x1

1

)
.
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Finite Element Methods for Elliptic Problems

Finite Element Methods

A Typical Example of the Finite Element Method

Calculations of K e and fe in Terms of λs and Ae

8 The area of Ts is 1/2, hence, the element stiffness matrix is

K e =
1

2 det Ae

x2
2 − x3

2 x3
1 − x2

1

x3
2 − x1

2 x1
1 − x3

1

x1
2 − x2

2 x2
1 − x1

1

(x2
2 − x3

2 x3
2 − x1

2 x1
2 − x2

2

x3
1 − x2

1 x1
1 − x3

1 x2
1 − x1

1

)
.

9 In general, it is necessary to apply a numerical quadrature to
the calculation of the element external load vector fe .

10 If f is a constant on Te , then

fe =
1

6
f (Te) det Ae (1, 1, 1)T =

1

3
f (Te) |Te | (1, 1, 1)T .
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Finite Element Methods for Elliptic Problems

Finite Element Methods

Extension to More General Boundary Conditions

Extension of the Example to More General Boundary Conditions

For a Dirichlet boundary condition u(x) = u0(x) 6= 0, on ∂Ω,
FE trial function space Vh(0) should be replaced by

Vh(u0) = {u ∈ Vh : u(Ai ) = u0(Ai ), ∀Ai ∈ ∂Ω}.

For a more general mixed type boundary conditionu(x) = u0(x), ∀x ∈ ∂Ω0,
∂u

∂ν
+ bu = g , ∀x ∈ ∂Ω1,

We need to

1 add contributions of
∫
∂Ω1

buv dx and
∫
∂Ω1

gv dx to K and f
by scanning through edges on ∂Ω1;
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Finite Element Methods for Elliptic Problems

Finite Element Methods

Extension to More General Boundary Conditions

Extension of the Example to More General Boundary Conditions

2 Set finite element trial function space:

Vh(u0; ∂Ω0) = {u ∈ Vh : u(Ai ) = u0(Ai ), ∀Ai ∈ ∂Ω0},

if ∂Ω0 6= ∅ (mixed boundary condition);

Vh, if ∂Ω0 = ∅ but b > 0 (the 3rd type boundary condition);

Vh(0; Ai ) = {u ∈ Vh : u(Ai ) = 0, on a specified node Ai ∈ Ω},

if ∂Ω0 = ∅ and b = 0 (pure Neumann boundary condition).

Note: In the case of pure Neumann boundary condition, the solution is unique

up to an additive constant. Vh(0;Ai ) removes such uncertainty, so the solution

in Vh(0;Ai ) is unique. Likewise, let l be a non-zero linear functional on Vh,

then we may as well take Vh(0; l) = {u ∈ Vh : l(u) = 0}.
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Finite Element Methods for Elliptic Problems

Finite Element Methods

Extension to More General Boundary Conditions

Summary of the Typical Example on FEM

1 introduce a finite element partition (triangulation) Th to the
region Ω, such as the triangular partition shown above.

2 Establish finite element trial and test function spaces on
Th(Ω), such as continuous piecewise affine function spaces
satisfy appropriate boundary conditions shown above.

3 Select a set of basis functions, known as the shape functions,
for example, the area coordinates on the triangular element.

4 Calculate the element stiffness matrixes K e and element
external load vector feh , and form the global stiffness matrix K
and external load vector fh.
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Finite Element Methods for Elliptic Problems

Finite Element Methods

Extension to More General Boundary Conditions

Some General Remarks on the Implementation of FEM

Arrays used in the algorithm:

1 en(α, e): assigns a global node number to a node with the
local node number α on the eth element.

2 edg0(α, edg): assigns a global node number to a node with
the local node number α on the edgth edge on ∂Ω0.
edg1(α, edg), edg2(α, edg) are similar arrays with respect to
Neumann and Robin type boundaries.

3 cd(i , nd): assigns the ith component of the spatial
coordinates to a node with the global node number nd .
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Finite Element Methods for Elliptic Problems

Finite Element Methods

Extension to More General Boundary Conditions

Some General Remarks on the Implementation of FEM

Arrays used in the algorithm:

4 In iterative methods for solving Kuh = fh, it is not necessary
to form the global stiffness matrix K , since it always appears
in the form Kvh =

∑
e∈Th K eveh. In such cases, we may need:

5 et(i , τ): assigns the global element number to the τ th local
element of the ith global node. And edgrt(i , τ), etc.
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Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

The General Definition of Finite Element

Three Basic Ingredients in a Finite Element Function Space

(FEM 1) Introduce a finite element triangulation Th on the
region Ω, which divides the region Ω into finite
numbers of subsets K , generally called finite element,
such that

(Th1) Ω = ∪K∈ThK ;
(Th2) each finite element K ∈ Th is a closed

set with a nonempty interior set
◦

K ;

(Th3)
◦

K 1 ∩
◦

K 2 = ∅, for any two different
finite elements K1, K2 ∈ Th;

(Th4) every finite element K ∈ Th has a
Lipschitz continuous boundary.
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Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

The General Definition of Finite Element

Three Basic Ingredients in a Finite Element Function Space

(FEM 2) Introduce on each finite element K ∈ Th a function
space PK which consists of some polynomials or
other functions having certain approximation
properties and at the same time easily manipulated
analytically and numerically;

(FEM 3) The finite element function space Vh has a set of
”normalized” basis functions which are easily
computed, and each basis function has a ”small”
support.

Generally speaking, a finite element is not just a subset K , it
includes also the finite dimensional function space PK defined on
K and the corresponding ”normalized” basis functions.
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Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

The General Definition of Finite Element

General Abstract Definition of a Finite Element

Definition

A triple (K , PK , ΣK ) is called a finite element, if

1 K ⊂ Rn, called an element, is a closed set with non-empty
interior and a Lipschitz continuous boundary;

2 PK : K → R is a finite dimensional function space consisting
of sufficiently smooth functions defined on the element K ;

3 ΣK is a set of linearly independent linear functionals {ϕi}Ni=1

defined on C∞(K ), which are called the degrees of freedom of
the finite element and form a dual basis corresponding to a
”normalized” basis of PK , meaning that there exists a unique
basis {pi}Ni=1 of PK such that ϕi (pj) = δij .
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Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

The General Definition of Finite Element

An Additional Requirement on the Partition

In applications, an element K is usually taken to be

1 a triangle in R2; a tetrahedron in R3; a n simplex in Rn;

2 a rectangle or parallelogram in R2; a cuboid or a parallelepiped
or more generally a convex hexahedron in R3; a parallelepiped
or more generally a convex 2n polyhedron in Rn;

3 a triangle with curved edges or a tetrahedron with curved
faces, etc..
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Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

The General Definition of Finite Element

An Additional Requirement on the Partition

When a region Ω is partitioned into a finite element triangulation
Th with such elements, to ensure that (FEM 3) holds, the adjacent
elements are required to satisfy the following compatibility
condition:

(Th5) For any pair of K1, K2 ∈ Th, if K1
⋂

K2 6= ∅, then,
there must exists an 0 ≤ i ≤ n − 1, such that
K1
⋂

K2 is exactly a common i dimensional face of
K1 and K2.
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Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

The General Definition of Finite Element

The Function Space PK Usually Consists of Polynomials

1 The finite element of the n-simplex of type (k): K is a
n-simplex, PK = Pk(K ), which is the space of all polynomials
of degree no greater than k defined on K .

For example, the piecewise affine triangular element (2-simplex
of type (1), or type (1) 2-simplex, or type(1) triangle).

2 The finite element of n-rectangle of type (k) (abbreviated as
the n-k element): K is a n-rectangle, PK = Q k(K ), which is
the space of all polynomials of degree no greater than k with
respect to each one of the n variables.

For example, the bilinear element (the 2-rectangle of type (1),
or type (1) 2-rectangle, or 2-1 rectangle); etc..
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Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

The General Definition of Finite Element

The Nodal Degrees of Freedom ΣK

The degrees of freedom in the nodal form:


ϕ0
i : p → p (a0

i ), Lagrange FE, if contains point values only

ϕ1
ij : p → ∂ν1

ij
p (a1

i ), Hermite FE, if contains at least

ϕ2
ijk : p → ∂2

ν2
ijν

2
ik

p (a2
i ), one of the derivatives

where the points asi ∈ K , s = 0, 1, 2 are called nodes, νsij ∈ Rn,
s = 1, 2 are specified nonzero vectors.
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Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

The General Definition of Finite Element

The Nodal and Integral Degrees of Freedom ΣK

The degrees of freedom in the integral form:

ψs
i : p → 1

meass(K s
i )

∫
K s
i

p(x) dx ,

where K s
i , s = 0, 1, . . . , n are s-dimensional faces of the element

K , and meass(K s
i ) is the s-dimensional Lebesgue measure of K s

i .

For example, if s = n, then the corresponding degree of freedom is
the average of the element integral.
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Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

Finite Element Interpolation

PK Interpolation for a Given Finite Element (K , PK , ΣK )

Definition

Let (K , PK , ΣK ) be a finite element, and let {ϕi}Ni=1 be its
degrees of freedom with {pi}Ni=1 ∈ PK being the corresponding
dual basis, meaning ϕi (pj) = δij . Define the PK interpolation
operator ΠK : C∞(K )→ PK by

ΠK (v) =
N∑
i=1

ϕi (v) pi , ∀v ∈ C∞(K ),

and define ΠK (v) as the PK interpolation function of v .

In applications, it is often necessary to extend the domain of the
definition of the PK interpolation operator, for example, to extend
the domain of the definition of a Lagrange finite element to C(K ).
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Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

Finite Element Interpolation

The PK Interpolation Operator Is Independent of the Choice of Basis

Definition

Let two finite elements (K , PK , ΣK ) and (L, PL, ΣL) satisfy

K = L, PK = PL, and ΠK = ΠL,

where ΠK and ΠL are respectively PK and PL interpolation
operators, then the two finite elements are said to be equivalent.
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Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

Finite Element Interpolation

Compatibility Conditions for PK and ΣK on Adjacent Elements

1 Th: a finite element triangulation of Ω; {(K ,PK ,ΣK )}K∈Th : a
given set of corresponding finite elements.

2 Vh = {v :
⋃

K∈Th K → R : v |K ∈ PK}: FE function space.

3 Compatibility conditions are required to assure Vh satisfies
(FEM 3), as well as a subspace of V.

For example, for polyhedron elements and nodal degrees of
freedom, if K1

⋂
K2 6= ∅, then, we require that a point

asi ∈ K1
⋂

K2 is a node of K1, if and only if it is also the same type
of node of K2.
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Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

Finite Element Interpolation

Vh Interpolation Operator and Vh Interpolation

Denote Σh =
⋃

K∈Th ΣK as the degrees of freedom of the finite
element function space Vh.

Definition

Define the Vh interpolation operator Πh : C∞(Ω)→ Vh by

Πh(v)|K = ΠK (v |K ), ∀v ∈ C∞(Ω),

and define Πh(v) as the Vh interpolant of v .

In applications, similar as for the PK interpolation operator, the
domain of definition of the Vh interpolation operator is often
extended to meet certain requirements.
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Reference Finite Element (K̂ , P̂, Σ̂) and Its Isoparametric Equivalent Family

Definition

Let K̂ , K ∈ Rn, (K̂ , P̂, Σ̂) and (K , PK , ΣK ) be two finite
elements. Suppose that there exists a sufficiently smooth invertible
map FK : K̂ → K , such that

FK (K̂ ) = K ;

pi = p̂i ◦ F−1
K , i = 1, . . . ,N;

ϕi (p) = ϕ̂i (p ◦ FK ), ∀p ∈ PK , i = 1, . . . ,N,

where {ϕ̂i}Ni=1 and {ϕi}Ni=1 are the basis of the degrees of freedom

spaces Σ̂ and ΣK respectively, {p̂i}Ni=1 and {pi}Ni=1 are the

corresponding dual basis of P̂ and PK respectively. Then, the two
finite elements are said to be isoparametrically equivalent. In
particular, if FK is an affine mapping, the two finite elements are
said to be affine-equivalent.



Finite Element Methods for Elliptic Problems

Finite Element and Finite Element Function Spaces

Isoparametric and Affine Equivalent Family of Finite Elements

An Isoparametric (Affine) Family of Finite Elements

If all finite elements in a family are isoparametrically (affine-)
equivalent to a given reference finite element, then we call the
family an isoparametric (affine) family.

For example, the finite elements with triangular elements and
piecewise linear function space used in the previous subsection, i.e.
finite elements of 2-simplex of type (1), are an affine family.

33 / 34



SK 6µ5, 6, 7

Thank You!
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