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Variational Forms of Elliptic Boundary Value Problems

Sobolev Embedding Theorems

Embedding Operators and the Sobolev Embedding Theorem

Embedding Operator and Embedding Relation of Banach Spaces

1 X, Y: Banach spaces with norms ‖ · ‖X and ‖ · ‖Y.

2 If x ∈ X ⇒ x ∈ Y, & ∃ const. C > 0 independent of x s.t.
‖x‖Y ≤ C‖x‖X, ∀x ∈ X, then the identity map I : X→ Y,
I x = x is called an embedding operator, and the
corresponding embedding relation is denoted by X ↪→ Y.

3 The embedding operator I : X→ Y is a bounded linear map.

4 If, in addition, I is happened to be a compact map, then, the
corresponding embedding is called a compact embedding, and

is denoted by X c
↪→ Y.

2 / 36



Variational Forms of Elliptic Boundary Value Problems

Sobolev Embedding Theorems

Embedding Operators and the Sobolev Embedding Theorem

The Sobolev Embedding Theorem

Theorem

Let Ω be a bounded connected domain with a Lipschitz continuous
boundary ∂Ω, then

Wm+k,p(Ω) ↪→Wk,q(Ω), ∀ 1 ≤ q ≤ np

n −mp
, k ≥ 0, if m < n/p;

Wm+k,p(Ω)
c
↪→Wk,q(Ω), ∀ 1 ≤ q <

np

n −mp
, k ≥ 0, if m < n/p;

Wm+k,p(Ω)
c
↪→Wk,q(Ω), ∀ 1 ≤ q <∞, k ≥ 0, if m = n/p;

Wm+k,p(Ω)
c
↪→ Ck(Ω), ∀ k ≥ 0, if m > n/p.
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Variational Forms of Elliptic Boundary Value Problems

Sobolev Embedding Theorems

Trace Operators and the Trace Theorem

Trace of a Function and Trace Operators

1 Since the n dimensional Lebesgue measure of a Lipschitz
continuous boundary ∂Ω is zero, a function in Wm,p(Ω) is
generally not well defined on ∂Ω.

2 C∞(Ω) is dense in Wm,p(Ω) for 1 ≤ p <∞.

3 For u ∈Wm,p(Ω), let {uk} ⊂ C∞(Ω) be such that

‖uk − u‖m,p,Ω −→ 0, as k →∞,

4 If, for any such a sequence, uk |∂Ω → ν(u) in Lq(∂Ω), then,
we call u|∂Ω , ν(u) ∈ Lq(∂Ω) the trace of u on ∂Ω, and call
ν : Wm,p(Ω)→ Lq(∂Ω), ν(u) = u|∂Ω the trace operator.
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Variational Forms of Elliptic Boundary Value Problems

Sobolev Embedding Theorems

Trace Operators and the Trace Theorem

Trace of a Function and Trace Operators

5 If ν is continuous, we say Wm,p(Ω) embeds into Lq(∂Ω), and
denote the embedding relation as Wm,p(Ω) ↪→ Lq(∂Ω).

6 Trace operators, as well as corresponding embedding and
compact embedding, into other Banach spaces defined on the
whole or a part of ∂Ω can be defined similarly.

Obviously, under the conditions of the embedding theorem,

Wm+k,p(Ω)
c
↪→ Ck(∂Ω), if m > n/p. In general, we have the

following trace theorem.
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Variational Forms of Elliptic Boundary Value Problems

Sobolev Embedding Theorems

Trace Operators and the Trace Theorem

The Trace Theorem

Theorem

If the boundary ∂Ω of a bounded connected open domain Ω is an
order m ≥ 1 continuously differentiable surface, then, we have

Wm,p(Ω) ↪→ Lq(∂Ω), for 1 ≤ q ≤ (n − 1)p

n −mp
, if m < n/p;

Wm,p(Ω) ↪→ Lq(∂Ω), for 1 ≤ q <∞, if m = n/p.

In addition, if m = 1 and p = q = 2, and if the boundary ∂Ω is a
Lipschitz continuous surface, then, we have in particular

H1(Ω) ↪→ L2(∂Ω).
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Variational Forms of Elliptic Boundary Value Problems

Sobolev Embedding Theorems

Trace Operators and the Trace Theorem

Remarks on H1
0(Ω) and H2

0(Ω)

For a bounded connected open domain Ω with Lipschitz
continuous boundary ∂Ω,

1 by definition the Hilbert space Hm
0 (Ω) is the closure of C∞0 (Ω)

with respect to the norm ‖ · ‖m = ‖ · ‖m,2 := ‖ · ‖m,2,Ω;

2 in particular, H1
0(Ω) = {u ∈ H1(Ω) : u|∂Ω = 0};

3 H2
0(Ω) = {u ∈ H2(Ω) : u|∂Ω = 0, ∂νu|∂Ω = 0}, where ∂νu|∂Ω

is the outer normal derivative of u in the sense of trace.
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Dirichlet BVP of the Poisson Equation

Derivation of a Variational Form

1 The Dirichlet boundary value problem of the Poisson equation

−4u = f , ∀x ∈ Ω, u = ū0, ∀x ∈ ∂Ω.

2 Assume the problem admits a classical solution u ∈ C2(Ω).

3 For any test function v ∈ C∞0 (Ω), by the Green’s formula,∫
Ω
∇u · ∇v dx −

∫
∂Ω

v ∂νu dx =

∫
Ω

fv dx .
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Dirichlet BVP of the Poisson Equation

Derivation of a Variational Form

4 Let a(u, v) =
∫

Ω∇u · ∇vdx ; (·, ·) the inner product of L2(Ω).

5 By the denseness of C∞0 (Ω) in H1
0(Ω), we are lead to

a(u, v) = (f , v), ∀v ∈ H1
0(Ω).

6 u does not have to be in C2(Ω) to satisfy such a variational
equation, u ∈ H1(Ω) makes sense.
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Dirichlet BVP of the Poisson Equation

A Variational Form of Dirichlet BVP of the Poisson Equation

Definition

If u ∈ V(ū0; Ω) = {u ∈ H1(Ω) : u|∂Ω = ū0} satisfies the variational
equation

a(u, v) = (f , v), ∀v ∈ H1
0(Ω),

then, u is called a weak solution of the Dirichlet boundary value
problem of the Poisson equation; the corresponding variational
problem is called a variational form, or weak form, of the Dirichlet
boundary value problem of the Poisson equation; and the function
spaces V(ū0; Ω) and H1

0(Ω) are called respectively the trial and
test function spaces of the variational problem.

Obviously, the classical solution, if exists, is a weak solution.

Let ũ ∈ H1(Ω) and ũ|∂Ω = ū0, then V(ū0; Ω) = ũ + H1
0(Ω).
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Dirichlet BVP of the Poisson Equation

The Relationship Between Weak and Classical Solutions

Theorem

Let f ∈ C(Ω) and ū0 ∈ C(∂Ω). If u ∈ C2(Ω) is a classical solution
of the Dirichlet boundary value problem of the Poisson equation,
then, it must also be a weak solution of the problem. On the other
hand, if u is a weak solution of the Dirichlet boundary value
problem of the Poisson equation, and in addition u ∈ C2(Ω), then
it must also be a classical solution of the problem.

The classical solution, if exists, is a weak solution, follows
directly from the derivation of the variational form of the
problem.

We only need to show the second part of the theorem.
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Dirichlet BVP of the Poisson Equation

Proof of Weak Solution + u ∈ C2(Ω) ⇒ Classical Solution

1 Let u be a weak solution, and u ∈ C2(Ω).

2 Since u is a weak solution and u ∈ C2(Ω), by the Green’s
formula: ∫

Ω
(4u + f ) v dx = 0, ∀v ∈ C∞0 (Ω).

3 4u + f is continuous ⇒ −4u = f , ∀x ∈ Ω.

4 By the definition of trace, u|∂Ω = ū0 also holds in the classical
sense.

5 u is a classical solution of the Dirichlet BVP of the Poisson
equation. �
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Another Variational Form of Dirichlet BVP of the Poisson Equation

The quadratic functional J(v) = 1
2 a(v , v)− (f , v) on H1(Ω).

Its Fréchet differential J ′(u)v = a(u, v)− (f , v).

The weak form above is simply J ′(u)v = 0, ∀v ∈ H1
0(Ω).

Definition

If u ∈ V(ū0; Ω) is a minima of the functional J(·) in V(ū0, Ω),
meaning

J(u) = min
v∈V(ū0;Ω)

J(v),

then, u is called a weak solution of the Dirichlet BVP of the
Poisson equation. The corresponding functional minimization
problem is called a variational form (or weak form) of the Dirichlet
BVP of the Poisson Equation.



Equivalence of the Two Variational Forms

Theorem

The weak solutions of the two variational problems are equivalent.

Proof: Let u ∈ V(ū0; Ω) be a minima of J in V(ū0; Ω), then

J ′(u)v = 0, ∀v ∈ H1
0(Ω); ⇒ a(u, v) = (f , v), ∀v ∈ H1

0(Ω).

Let u ∈ V(ū0; Ω) satisfy the above equation. Then, by the
symmetry of the bilinear form a(u, v), we have

J(v)− J(u) = a(u, v − u)− (f , v − u) +
1

2
a(v − u, v − u).

Since v − u ∈ H1
0(Ω), we are lead to

J(v)− J(u) =
1

2
a(v − u, v − u) ≥ 0, ∀v ∈ V(ū0; Ω).

Therefore, u ∈ V(ū0; Ω) is a minima of J in V(ū0; Ω). �



Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Dirichlet BVP of the Poisson Equation

Existence and Uniqueness of Weak Solutions

Theorem

Let Ω be a bounded connected domain with Lipschitz continuous
∂Ω. Let f ∈ L2(Ω). Suppose {u0 ∈ H1(Ω) : u0|∂Ω = ū0} 6= ∅.
Then, the Dirichlet BVP of the Poisson equation has a unique
weak solution.
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Dirichlet BVP of the Poisson Equation

Proof of Existence and Uniqueness Theorem on Weak Solutions

1 Define F (v) = (f , v)− a(u0, v) on V = H1
0(Ω).

2 By the Poincaré-Friedrichs inequality (see Theorem 5.4) that

∃ const. α(Ω) > 0, s.t. a(v , v) ≥ α‖v‖2
1,2,Ω, ∀v ∈ V,

3 By the Lax-Milgram lemma (see Theorem 5.1), the variational
problem

{
Find u ∈ V such that

a(u, v) = F (v), ∀v ∈ V,

has a unique solution.

4 u solves the above problem ⇔ u + u0 is a weak solution. �
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Neumann BVP of the Poisson Equation

Derivation of a Variational Form for Neumann BVP of the Poisson Eqn

1 The Neumann BVP of the Poisson equation

−4u = f , ∀x ∈ Ω, ∂νu = g , ∀x ∈ ∂Ω.

2 Assume the problem admits a classical solution u ∈ C2(Ω).

3 For any test function v ∈ C∞(Ω), by the Green’s formula,∫
Ω
∇u · ∇v dx −

∫
∂Ω

v ∂νu dx =

∫
Ω

fv dx .
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Neumann BVP of the Poisson Equation

Derivation of a Variational Form for Neumann BVP of the Poisson Eqn

4 Let (g , v)∂Ω =
∫
∂Ω g v ds, a(u, v) and (f , v) as before.

5 By the denseness of C∞(Ω) in H1(Ω), we are lead to

a(u, v) = (f , v) + (g , v)∂Ω, ∀v ∈ H1(Ω).

6 u does not have to be in C2(Ω) to satisfy such a variational
equation, u ∈ H1(Ω) makes sense.
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A Variational Form of the Neumann BVP of the Poisson Equation

Definition

u ∈ H1(Ω) is said to be a weak solution of the Neumann BVP of
the Poisson equation, if it satisfies

a(u, v) = (f , v) + (g , v)∂Ω, ∀v ∈ H1(Ω),

which is called the variational form (or weak form) of the
Neumann BVP of the Poisson equation.

1 Obviously, the classical solution, if exists, is a weak solution.

2 Here, both the trial and test function spaces are H1(Ω).

3 If u is a solution, then, u + const. is also a solution.

4 Taking v ≡ 1 as a test function, we obtain a necessary
condition for the existence of a solution∫

Ω
f dx +

∫
∂Ω

g ds = 0.



Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Neumann BVP of the Poisson Equation

The Relationship Between Weak and Classical Solutions

Theorem

Let f ∈ C(Ω) and g ∈ C(∂Ω). If u ∈ C2(Ω) is a classical solution
of the Neumann boundary value problem of the Poisson equation,
then, it must also be a weak solution of the problem.

On the other hand, if u is a weak solution of the Neumann
boundary value problem of the Poisson equation, and in addition
u ∈ C2(Ω), then it must also be a classical solution of the problem.

The classical solution, if exists, is a weak solution, follows
directly from the derivation of the variational form of the
problem.

We only need to show the second part of the theorem.
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Neumann BVP of the Poisson Equation

Proof of Weak Solution + u ∈ C2(Ω) ⇒ Classical Solution

1 Let u be a weak solution, and u ∈ C2(Ω).

2 By the Green’s formula,∫
Ω

(4u + f ) v dx = 0, ∀v ∈ C∞0 (Ω).

3 4u + f is continuous ⇒ −4u = f , ∀x ∈ Ω.

4 By this and by the Green’s formula, we have∫
∂Ω

(∂νu − g) v ds = 0, ∀v ∈ C∞(Ω).

5 (∂νu − g) is continuous ⇒ ∂νu = g , ∀x ∈ ∂Ω.

6 u is a classical solution of the Neumann BVP of the Poisson
equation. �
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Existence of Weak Solutions for the Neumann BVP of Poisson Eqn.

Theorem

Let Ω be a bounded connected domain with Lipschitz continuous
boundary ∂Ω. Let f ∈ L2(Ω) and g ∈ L2(∂Ω) satisfy the relation∫

Ω f dx +
∫
∂Ω g ds = 0. Let V0 =

{
u ∈ H1(Ω) :

∫
Ω u dx = 0

}
, and

F : V0 → R be defined by F (v) = (f , v) + (g , v)∂Ω. Then, the
variational problem {

Find u ∈ V0 such that

a(u, v) = F (v), ∀v ∈ V0,

has a unique solution, which is a weak solution of the Neumann
BVP of the Poisson equation. On the other hand, if u is a weak
solution of the Neumann BVP of the Poisson equation, then
ũ , u − 1

measΩ

∫
Ω u dx ∈ V0 is a solution to the above variational

problem.

The second part of the theorem is left as an exercise.



Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Neumann BVP of the Poisson Equation

Proof of the Existence Theorem for the Neumann BVP of Poisson Eqn.

To prove the first part of the theorem, we need to show

a(·, ·) is a continuous, V0-elliptic bilinear form on V0.

F (v) is a continuous linear form on V0.

If u is a solution of the variational problem, then, it is also a
weak solution of the Neumann BVP of the Poisson equation.

�
The second and third claims above can be verified by definitions,
and are left as exercises.

The key to the first claim is to show the V0-ellipticity of a(·, ·) on
V0 :=

{
u ∈ H1(Ω) :

∫
Ω u dx = 0

}
, i.e. |u|1,2,Ω ≥ γ0 ‖u‖1,2,Ω, for

some constant γ0 > 0. In fact, we have the following stronger
result.
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Neumann BVP of the Poisson Equation

Poincaré-Friedrichs Inequality on H1(Ω)

Theorem

Let Ω be a bounded connected domain with Lipschitz continuous
boundary ∂Ω. Then, there exist constants γ1 ≥ γ0 > 0 such that

γ0 ‖u‖1,2,Ω ≤
∣∣∣∣∫

Ω
u dx

∣∣∣∣+ |u|1,2,Ω ≤ γ1‖u‖1,2,Ω, ∀u ∈ H1(Ω).

The inequality is also named as the Poincaré-Friedrichs inequality.
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

A Variational Form of Neumann BVP of the Poisson Equation

Poincaré-Friedrichs Inequality on H1(Ω)

Remarks:

1 The Poincaré-Friedrichs inequality given in Theorem 5.4 is on
Wm,p

0 (Ω).

2 Another form of the Poincaré-Friedrichs inequality, in which∣∣∫
Ω u dx

∣∣ is replaced by ‖u‖0,2,∂Ω0 , is given in Exercise 5.6.

3 The Poincaré-Friedrichs inequality in a more general form on
Wm,p(Ω) can also be given.
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Proof of the Poincaré-Friedrichs Inequality on H1(Ω)

1 The Schwarz inequality ⇒ the second inequality.

2 Assume the first doesn’t hold, i.e. ∃ {uk} ⊂ H1(Ω),
‖uk‖1,2,Ω ≡ 1, s.t.

∣∣∫
Ω uk dx

∣∣+ |uk |1,2,Ω → 0 as k → 0.

3 A bounded set in the Hilbert space H1(Ω) is sequentially
weakly precompact, and H1(Ω) compactly embeds into L2(Ω).

4 ∃ a subsequence {uk}, u ∈ H1(Ω) and v ∈ L2(Ω), such that

uk ⇀ u, in H1(Ω); uk → v , in L2(Ω).

5 |uk |1 → 0 and ‖uk − v‖0 → 0 ⇒ {uk} is a Cauchy sequence
in H1(Ω), therefore, ‖uk − u‖1 → 0 V ∇u = 0 ⇒ u ≡ C .

6 ‖uk‖1 ≡ 1, |uk |1 → 0, ‖uk − u‖0 → 0 ⇒ ‖u‖0 = 1 ⇒ C 6= 0.

7
∣∣∫

Ω uk dx
∣∣→ 0 and ‖uk − u‖0 → 0 ⇒

∫
Ω u dx = 0 ⇒

C meas(Ω) =
∫

Ω u dx = 0 ⇒ C = 0, a contradiction. �



Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

Examples on Other Variational Forms of the Poisson Equation

Remarks on the Derivation of Variational Forms of a PDE Problem

1 Coercive (or essential) boundary conditions: those appear in
the admissible function space of the variational problem.

2 Natural boundary conditions: those appear in the variational
equation (or functional) of the variational problem.

3 The underlying function space: determined by the highest
order derivatives of the trial function u in a(·, ·).

4 The trial function space: all functions in the underlying
function space satisfying the coercive boundary condition.

5 The test function space: u in the underlying function space,
with u = 0 on the coercive boundary.
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

Examples on Other Variational Forms of the Poisson Equation

Remarks on the Derivation of Variational Forms of a PDE Problem

6 The variational equation: obtained by using smooth test
functions on the PDE, applying the Green’s formula, and
coupling the natural boundary condition.

7 Recall the BVPs of the Poisson equation.

8 −4u = f ⇒
∫

Ω∇u · ∇v dx −
∫
∂Ω v ∂νu dx =

∫
Ω fv dx .

9 The underlying function space is H1(Ω).

10 H1(Ω) ↪→ L2(∂Ω0), u|∂Ω0 is well defined in L2(∂Ω0), however
u|∂Ω0 does not appear in the boundary integral, therefore, the
Dirichlet boundary condition on ∂Ω0 is coercive.
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

Examples on Other Variational Forms of the Poisson Equation

Remarks on the Derivation of Variational Forms of a PDE Problem

11 ∂νu|∂Ω1 , which appears in the boundary integral, is not well
defined in L2(∂Ω1) in general, therefore the 2nd and 3rd type
boundary conditions appear as natural boundaries.

12 The trial function space V(ū0; ∂Ω0); the test one V(0; ∂Ω0).

13 The variational equation (∂νu = g − βu on ∂Ω1):∫
Ω
∇u · ∇v dx +

∫
∂Ω1

βuv dx =

∫
Ω

fv dx +

∫
∂Ω1

gv dx .

14 The variational form of the problem:{
Find u ∈ V(ū0; ∂Ω0) such that

a(u, v) = F (v), ∀v ∈ V(0; ∂Ω0),
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

Examples on Other Variational Forms of the Poisson Equation

A Mixed Variational Form of the Dirichlet BVP of the Poisson Equation

1 The Poisson equation −4u = f can be transformed into an
equivalent system of 1st order PDEs:

pi = ∂iu, i = 1, . . . , n,

−
n∑

i=1

∂ipi = f ,
x ∈ Ω.

2 Take test functions q = (q1, . . . , qn), qi ∈ C∞(Ω),
i = 1, . . . , n, and v ∈ C∞(Ω).

3 By the Green’s formula (applying to the integral of ∇u ·q) and
the boundary condition, we see that the underlying function
spaces for p and u are (H1(Ω))n and L2(Ω) respectively.
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

Examples on Other Variational Forms of the Poisson Equation

A Mixed Variational Form of the Dirichlet BVP of the Poisson Equation

4 let ν be the unit exterior normal, and

a(p,q) =

∫
Ω
p · q dx =

∫
Ω

n∑
i=1

pi qi dx ,

b(q, u) =

∫
Ω

u div (q) dx =

∫
Ω

u
n∑

i=1

∂iqi dx ,

G (q) =

∫
∂Ω

ū0 q · ν ds =

∫
∂Ω

ū0

n∑
i=1

qi νi ds,

F (v) = −
∫

Ω
f v dx .
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

Examples on Other Variational Forms of the Poisson Equation

A Mixed Variational Form of the Dirichlet BVP of the Poisson Equation

5 Since u ∈ L2(Ω), u|∂Ω doesn’t make sense in general, the
term

∫
∂Ω ū0 q · ν ds should be kept in the variational equation,

.i.e. the Dirichlet boundary condition appears as a natural
boundary condition in this case.

6 Thus, we are led to the following variational problem:
Find p ∈ (H1(Ω))n, u ∈ L2(Ω) such that

a(p,q) + b(q, u) = G (q), ∀q ∈ (H1(Ω))n,

b(p, v) = F (v), ∀ v ∈ L2(Ω).

Remark: Neumann boundary condition will appear as a coercive
boundary condition. (Robin boundary condition does not apply here. Why?)
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

Examples on Other Variational Forms of the Poisson Equation

Another Mixed Variational Form

of the Dirichlet BVP of the Poisson Equation

1 If we apply the Green’s formula to transform −
∫

Ω divp v dx
into the form −

∫
∂Ω v p · ν ds +

∫
Ω p · ∇v dx instead, then, the

underlying function spaces for p and u are (L2(Ω))n and
H1(Ω) respectively.

2 Since u ∈ H1(Ω), u|Ω makes sense, while p ∈ (L2(Ω))n, the
term −

∫
∂Ω v p · ν ds doesn’t make sense. Therefore, the

Dirichlet boundary condition appears as a coercive boundary
condition, while the Neumann and Robin boundary conditions
appear as natural boundary conditions here in this case.
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

Examples on Other Variational Forms of the Poisson Equation

Another Mixed Variational Form

of the Dirichlet BVP of the Poisson Equation

3 We are lead to the variational problem
Find p ∈ (L2(Ω))n, u ∈ H1(Ω), u|∂Ω = ū0 such that

a(p,q) + b∗(q, u) = 0, ∀q ∈ (L2(Ω))n,

b∗(p, v) = F (v), ∀ v ∈ H1
0(Ω),

where

b∗(q, u) = −
∫

Ω
q · ∇u dx = −

∫
Ω

n∑
i=1

qi∂iu dx .
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Variational Forms of Elliptic Boundary Value Problems

Variational Forms and Weak Solutions of Elliptic Problems

Examples on Other Variational Forms of the Poisson Equation

Remarks on the Mixed Variational Forms of BVP of the Poisson Eqn.

1 The classical solution is also a solution to the mixed
variational problem (named again as the weak solution).

2 Weak solution + u ∈ C2(Ω̄), p ∈ (C1(Ω̄))n ⇒ u is a
classical solution.

3 The weak mixed forms have their corresponding functional
extremum problems.

4 Under the so called B-B conditions, the weak mixed variational
problems can be shown to have a unique stable solution.

35 / 36



SK 5µ7, 8, 12(3)

Thank You!


	Sobolev Embedding Theorems
	Embedding Operators and the Sobolev Embedding Theorem
	Trace Operators and the Trace Theorem

	Variational Forms and Weak Solutions of Elliptic Problems
	A Variational Form of Dirichlet BVP of the Poisson Equation
	A Variational Form of Neumann BVP of the Poisson Equation
	Examples on Other Variational Forms of the Poisson Equation


