Numerical Solutions to Partial Differential Equations

Zhiping Li

LMAM and School of Mathematical Sciences Peking University

Modified Equation Analysis

Modified Equation of a Difference Scheme

What is a Modified Equation of a Difference Scheme?

1 Let h, τ be the spatial and temporal step sizes.

- 2 Let $U^{m+1} = B_1^{-1} [B_0 U^m + F^m]$ be a difference scheme.
- S Let $\{U_i^m\}_{m \ge 0, j \in J}$, be a solution to the scheme.
- 4 Let $P = P_{h,\tau}$ be a parameterized differential operator.
- $\textbf{ o Let } \mathbb{X}_{h,\tau} = \{ \tilde{U} \text{ smooth} : \tilde{U}_j^m = U_j^m, \forall m \geq 0, j \in J \}.$
- **○** If $P\tilde{U} = 0$, for some $\tilde{U} \in X_{h,\tau}$, $\forall h, \tau$, then the differential equation Pu = 0 is called a modified equation of the difference scheme $U^{m+1} = B_1^{-1} [B_0 U^m + F^m]$.
- **7** The *q*th order modified equation: $P\tilde{U} = O(\tau^q + h^q)$, for some $\tilde{U} \in \mathbb{X}_{h,\tau}$, $\forall h, \tau$.

Modified Equation Analysis

Modified Equation of a Difference Scheme

How to Derive the Modified Equation — an Example

Such *P* is not unique. We want $P = D + H_x$, with Du = 0 the original equation, H_x a higher order partial differential operator with respect to *x*.

Modified Equation Analysis

Modified Equation of a Difference Scheme

How to Derive the Modified Equation — an Example

6 Hence,

$$0 = \frac{\tilde{U}_{j}^{m+1} - \tilde{U}_{j}^{m}}{\tau} + a \frac{\tilde{U}_{j}^{m} - \tilde{U}_{j-1}^{m}}{h}$$
$$= \left[\tilde{U}_{t} + a\tilde{U}_{x}\right]_{j}^{m} + \frac{1}{2}\left[\tau\tilde{U}_{tt} - ah\tilde{U}_{xx}\right]_{j}^{m} + \frac{1}{6}\left[\tau^{2}\tilde{U}_{ttt} + ah^{2}\tilde{U}_{xxx}\right]_{j}^{m} + O(\tau^{3} + h^{3}).$$

- Ũ_t + aŨ_x = 0, the first order modified equation. (original one)
 Ũ_t + aŨ_x = ½ [ahŨ_{xx} τŨ_{tt}]: the second order.
 Ũ_t + aŨ_x = ½ [ahŨ_{xx} τŨ_{tt}] ½ [ah²Ũ_{xxx} + τ²Ũ_{ttt}], the 3rd.
- O But the latter two are not in the preferred form.

Modified Equation Analysis

└─ Modified Equation of a Difference Scheme

How to Derive the Modified Equation — an Example (continue)

$$\begin{array}{l} \textcircled{0} \quad \mathsf{By} \\ \left[\tilde{U}_t + a \tilde{U}_x \right] + \frac{1}{2} \left[\tau \tilde{U}_{tt} - ah \tilde{U}_{xx} \right] + \frac{1}{6} \left[\tau^2 \tilde{U}_{ttt} + ah^2 \tilde{U}_{xxx} \right] = O(\tau^3 + h^3) \\ \Rightarrow \quad \tilde{U}_{xt} = -a \tilde{U}_{xx} + \frac{1}{2} \left[ah \tilde{U}_{xxx} - \tau \tilde{U}_{xtt} \right] + O(\tau^2 + h^2), \\ \Rightarrow \quad \tilde{U}_{tt} = -a \tilde{U}_{xt} + \frac{1}{2} \left[ah \tilde{U}_{xxt} - \tau \tilde{U}_{ttt} \right] + O(\tau^2 + h^2) \\ = a^2 \tilde{U}_{xx} - \frac{1}{2} \left[a^2 h \tilde{U}_{xxx} - ah \tilde{U}_{xxt} - a\tau \tilde{U}_{xtt} + \tau \tilde{U}_{ttt} \right] + O(\tau^2 + h^2). \\ \Rightarrow \quad \tilde{U}_t + a \tilde{U}_x = \frac{1}{2} ah(1 - \nu) \tilde{U}_{xx} + O(\tau^2 + h^2). \end{array}$$

Modified Equation Analysis

└─ Modified Equation of a Difference Scheme

How to Derive the Modified Equation — an Example (continue)

④ Hence, $\tilde{U}_t + a\tilde{U}_x = \frac{1}{2}ah(1-\nu)\tilde{U}_{xx}$ is the 2nd order modified equation.

Similarly, we have the 3rd order modified equation:

$$ilde{U}_t+a ilde{U}_x=rac{1}{2}ah(1-
u) ilde{U}_{xx}-rac{1}{6}ah^2(1-
u^2) ilde{U}_{xxx}.$$

Derive the Modified Equation by Difference Operator Calculus

- Express a difference operator by a series of differential operators (Taylor expansion). For example, △_{+t} = e^{τ∂t} − 1.
- Pormally inverting the expression, a differential operator can then be expressed by a power series of a difference operator.
- For example, $\partial_t = \tau^{-1} \ln (1 + \tau \mathcal{D}_{+t})$, where $\mathcal{D}_{+t} := \tau^{-1} \triangle_{+t}$. This yields $\partial_t = \mathcal{D}_{+t} - \frac{\tau}{2} \mathcal{D}_{+t}^2 + \frac{\tau^2}{3} \mathcal{D}_{+t}^3 - \frac{\tau^3}{4} \mathcal{D}_{+t}^4 + \cdots$.

● For a difference scheme $\mathcal{D}_{+t}U_j^m = \mathcal{A}_x U_j^m = (\sum_{k=0}^{\infty} \alpha_k \partial_x^k) U_j^m$, substitute \mathcal{D}_{+t} by $\sum_{k=0}^{\infty} \alpha_k \partial_x^k$ in the series expression of ∂_t , and collect the terms with the same powers of ∂_x , we are led to the modified equation $\begin{bmatrix} 0 & \sum_{k=0}^{\infty} \alpha_k \partial_x^k \end{bmatrix} \tilde{\mu}_{t=0}$

$$\left[\partial_t - \sum_{k=0}^{\infty} \beta_k \partial_x^k\right] \tilde{U} = 0$$

Modified Equation Analysis

└─ Modified Equation of a Difference Scheme

Derive Modified Equation by Difference Operator Calculus — an Example

- **1** Advection-diffusion equation: $u_t + au_x = cu_{xx}$, $x \in \mathbb{R}$, t > 0.
- 2 Explicit scheme: $\frac{U_j^{m+1} U_j^m}{\tau} + a \frac{U_{j+1}^m U_{j-1}^m}{2h} = c \frac{U_{j+1}^m 2U_j^m + U_{j-1}^m}{h^2}.$
- **3** By Taylor series expansions of $riangle_{0x} U_j^m$ and $\delta_x^2 U_j^m$, we have

$$\mathcal{D}_{+t}\tilde{U} = \left\{-a\left[\partial_x + \frac{1}{6}h^2\partial_x^3 + \cdots\right] + c\left[\partial_x^2 + \frac{1}{12}h^2\partial_x^4 + \cdots\right]\right\}\tilde{U}.$$

The modified equation obtained:

$$\begin{split} \tilde{U}_t + a\tilde{U}_x &= \frac{1}{2} \left[2c - a^2 \tau \right] \tilde{U}_{xx} - \frac{1}{6} \left[ah^2 - 6ac \,\tau + 2a^3 \tau^2 \right] \tilde{U}_{xxx} \\ &+ \frac{1}{12} \left[ch^2 - 2a^2 \tau h^2 - 6c^2 \tau + 12a^2 c \tau^2 - 3a^4 \tau^3 \right] \tilde{U}_{xxxx} + \cdots \end{split}$$

Modified Equation Analysis

Dissipation and Dispersion of Modified Equations

What is the use of a Modified Equation

- Difference solutions approximate higher order modified equation with higher order of accuracy.
- Well-posedness of the modified equations provides useful information on the stability of the scheme.
- Amplitude and phase errors of the modified equations on the Fourier mode solutions provide the corresponding information for the scheme.
- Onvergence rate of the solution of the modified equation to the solution of the original equation also provides the corresponding information for the scheme.
- In particular, the dissipation and dispersion of the solutions of the modified equations can be very useful.

Dissipation and Dispersion Terms of the Modified Equation

 Pourier mode e^{i(kx+ωt)} ⇒ modified eqn. Ũ_t = ∑_{m=0}[∞] a_m∂_x^mŨ.
 Notice ∂_x^me^{i(kx+ωt)} = (ik)^me^{i(kx+ωt)} ⇒ dispersion relation: ω(k) = ∑_{m=1}[∞] (-1)^{m-1}a_{2m-1}k^{2m-1} - i ∑_{m=0}[∞] (-1)^ma_{2m}k^{2m}.

3 Denote $\omega(k) = \omega_0(k) + i\omega_1(k)$, where $\omega_0(k) := \sum_{m=1}^{\infty} (-1)^{m-1} a_{2m-1} k^{2m-1}, \quad \omega_1(k) := -\sum_{m=0}^{\infty} (-1)^m a_{2m} k^{2m}.$

- **4** The Fourier mode solution $e^{i(kx+\omega(k)t)} = e^{-\omega_1(k)t}e^{i(kx+\omega_0(k)t)}$.
- **5** Even order spatial derivative terms change the amplitude.
- **O** Odd order spatial derivative terms change the phase speed.
- Even and odd order terms are called dissipation and dispersion terms of the modified equations respectively.

Modified Equation Analysis

Dissipation and Dispersion of Modified Equations

Dissipation and Dispersion of Modified Equation — an Example

Consider third order modified equation of the upwind scheme for the advection equation with a > 0 as an example:

$$ilde{U}_t+a ilde{U}_x=rac{1}{2}ah(1-
u) ilde{U}_{xx}-rac{1}{6}ah^2(1-
u^2) ilde{U}_{xxx}.$$

2 We have here
$$a_0 = 0$$
, $a_1 = -a$, $a_2 = \frac{1}{2}ah(1-\nu)$, $a_3 = -\frac{1}{6}ah^2(1-\nu^2)$, $a_m = 0$, $m \ge 4$.

O Thus, we have

$$\omega_0(k) = -ak + rac{1}{6}a(1-
u^2)k^3h^2, \quad -\omega_1(k) = -rac{1}{2}a(1-
u)k^2h.$$

G If CFL condition is not satisfied ⇒ -ω₁(k) > 0 ⇒ unstable.
S For kh ≪ 1 ⇒ relative phase error O(k²h²).

Dissipation and Dispersion of Modified Equation — another Example

Ocnsider the Lax-Wendroff scheme of the advection equation

$$\frac{U_j^{m+1} - U_j^m}{\tau} + a \frac{U_{j+1}^m - U_{j-1}^m}{2h} = \frac{1}{2}a^2\tau \frac{U_{j+1}^m - 2U_j^m + U_{j-1}^m}{h^2}.$$

2 The modified equation (compare with (4.5.16) and (4) on p.8 of this slides):

$$ilde U_t+a ilde U_x=-rac{1}{6}ah^2(1-
u^2) ilde U_{ imes imes x}-rac{1}{8}ah^3
u(1-
u^2) ilde U_{ imes imes x}+\cdots\,.$$

Solution For kh ≪ 1, dispersion and dissipation components of ω(k): ω₀(k) ≈ a₁k - a₃k³ = -ak (1 - (1 - ν²)k²h²), -ω₁(k) ≈ a₀ - a₂k² + a₄k⁴ = -(1 - (1 - ν²)k⁴h³).
ν² > 1 ⇒ -ω₁(k) > 0 ⇒ unstable.
For kh ≪ 1 ⇒ phase lag, relative phase error O(k²h²).

Modified Equation Analysis

Dissipation and Dispersion of Modified Equations

Necessary Stability Conditions Given by the Modified Equation

- 2 In the case of $a_0 = 0$, a finite difference scheme is generally unstable if $a_2 < 0$, or $a_2 = 0$ but $a_4 > 0$.
- The case when a₀ = 0, a₂ > 0, a₄ > 0 is more complicated. For kh ≪ 1, Fourier mode solutions are stable, for kh big, say kh = π, they can be unstable, in particular, high frequency modes are unstable when a_{2m} = 0, ∀m > 2.

Remark: In fact, for high frequency modes, $-\omega_1 = \sum_{m=0}^{\infty} (-1)^m a_{2m} k^{2m}$ does not necessarily make sense, since it may not converge in general.

Modified Equation Analysis

Dissipation and Dispersion of Modified Equations

Necessary Stability Conditions Given by the Modified Equation

- In general, the modified equation can only provide necessary conditions for the stability of a difference scheme.
- So For most schemes, the instability appears most easily in the lowest or highest end of Fourier mode solutions.
- It makes sense to derive the modified equation for the highest end (or oscillatory component) of Fourier mode solutions.

Modified Equation Analysis

The Modified Equation for Oscillatory Component

Derivation of Modified Equation for Oscillatory Component

() For the highest frequencies, $kh = \pi - k'h$, where $k'h \ll 1$.

- 2 The instability of the highest frequency Fourier mode also shows simultaneously in the form of the time step oscillation, *i.e.* arg(λ_k) ≈ π for kh ≈ π. Denote λ̂_{k'} = |λ_k|e^{i(arg(λ_k)-π)}, then λ_k = |λ_k|e^{i arg(λ_k)} = -λ̂_{k'}, and λ^m_k = (-1)^mλ^m_{k'}.
- It makes sense to write the oscillatory Fourier modes as $(-1)^{m+j} (U^o)_j^m = \lambda_k^m e^{ikjh} = (-1)^{m+j} \hat{\lambda}_{k'}^m e^{-ik'jh}.$

Modified Equation Analysis

The Modified Equation for Oscillatory Component

Derivation of Modified Equation for Oscillatory Component

- The finite difference solution can often be decomposed as $U_j^m = (U^s)_j^m + (-1)^{m+j} (U^o)_j^m, i.e. \text{ the smooth and}$ oscillatory components of the difference solution.
- **5** The modified equation studied previously is for the smooth component $\tilde{U} = \tilde{U}^s$.
- The modified equation for the oscillatory component $\tilde{U} = (-1)^{m+j} \tilde{U}^o$ can be derived in a similar way.

Modified Equation Analysis

The Modified Equation for Oscillatory Component

Derivation of Modified Equation for Oscillatory Component — an Example

- Let the oscillatory component $\tilde{U}_j^m = (-1)^{m+j} (\tilde{U}^o)_j^m$ be a smooth function satisfying $\tilde{U}_j^m = U_j^m$.
- 2 Substitute it into the explicit scheme of the heat equation $u_t = cu_{xx}$: $U_j^{m+1} = (1 2\mu)U_j^m + \mu \left(U_{j-1}^m + U_{j+1}^m\right)$.
- **3** Taylor expanding $(\tilde{U}^o)_{j=1}^m$ and $(\tilde{U}^o)_{j+1}^m$ at $(\tilde{U}^o)_j^m$ yields

$$egin{aligned} &(ilde{U}^o)_j^{m+1} = (2\mu-1)(ilde{U}^o)_j^m + \mu\left((ilde{U}^o)_{j-1}^m + (ilde{U}^o)_{j+1}^m
ight) \ &= \left\{(4\mu-1) + 2\mu\left[rac{1}{2}h^2\partial_x^2 + rac{1}{24}h^4\partial_x^4 + \cdots
ight]
ight\}(ilde{U}^o)_j^m. \end{aligned}$$

Modified Equation Analysis

The Modified Equation for Oscillatory Component

Derivation of Modified Equation for Oscillatory Component — an Example

4 Rewrite the scheme into the form of \$\mathcal{D}_{+t}(\tilde{U}^o)_j^m = \sum_{k=0}^{\infty} \alpha_k \delta_x^k (\tilde{U}^o)_j^m\$. Remember \$\mathcal{D}_{+t} = \tau^{-1} \Delta_+, \$\mu\$ = \$\epsilon\tau\), we have $\mathcal{D}_{+t} \tilde{U}^o = \left\{ 2\tau^{-1}(2\mu - 1) + c \left[\partial_x^2 + \frac{1}{12}h^2 \partial_x^4 + \cdots \right] \right\} \tilde{U}^o.$ **5** Since \$\delta_t = \mathcal{D}_{+t} - \frac{\pi}{2}\mathcal{D}_{+t}^2 + \frac{\pi^2}{3}\mathcal{D}_{+t}^3 - \frac{\pi^3}{4}\mathcal{D}_{+t}^4 + \cdots, **6** Denote \$\xi = 2\tau^{-1}(2\mu - 1)\$, and $a_0 = \xi - \frac{1}{2}\xi^2\tau + \frac{1}{2}\xi^3\tau^2 - \frac{1}{4}\xi^4\tau^3 + \cdots = \tau^{-1}\ln(1 + \xi\tau).$

Modified Equation Analysis

Letter The Modified Equation for Oscillatory Component

Derivation of Modified Equation for Oscillatory Component — an Example

O Therefore, the modified equation of the oscillatory component \tilde{U}^o has the form

$$\partial_t \tilde{U}^o = au^{-1} \ln(1 + 2(2\mu - 1)) \tilde{U}^o + \sum_{m=1}^{\infty} a_{2m} \partial_x^{2m} \tilde{U}^o.$$

③ Consequently, if $2\mu > 1$, the oscillatory component \tilde{U}^o will grow exponentially, which implies that the difference scheme is unstable for the highest frequency Fourier modes.

- └─ More on the Method of Energy Analysis
 - Coercivity of Difference Operators and Energy Inequality

Coercivity of the Differential Operator $L(\cdot)$ and the Energy Inequality

Consider $\partial_t u = L(u)$, where L a partial differential operator with respect to x, and L does not explicitly depends on t.

- Coerciveness condition of the differential operator $L(\cdot)$: $\int_{\Omega} L(u)u \, dx \leq C \|u\|_{2}^{2}, \qquad \forall u \in \mathbb{X},$
- 3 Since $u_t(x,t) = L(u(x,t))$, we are led to $\frac{d}{dt} ||u||_2^2 \le 2C ||u||_2^2$.
- (a) By the Gronwall inequality, we have $\|u(\cdot, t)\|_2^2 \le e^{2Ct} \|u^0(\cdot)\|_2^2, \qquad \forall t \in [0, t_{\max}].$
- In particular, the L²(Ω) norm of the solution decays exponentially, if C < 0; and it is non-increasing, if C = 0.

└─ More on the Method of Energy Analysis

Coercivity of Difference Operators and Energy Inequality

Coercivity of the Differential Operator $L(\cdot)$ and the Energy Inequality

- The inequalities in similar forms as above with various norms are generally called energy inequalities, and the corresponding norm is called the energy norm.
- In such cases, we hope that the difference solution satisfies corresponding discrete energy inequality.

More on the Method of Energy Analysis

A Theorem on Discrete Coercivity and Energy Inequality

Energy Inequality for Runge-Kutta Time-Stepping Numerical Schemes

Theorem

Suppose that a difference scheme has the form

$$U^{m+1} = \sum_{i=0}^k \frac{(\tau L_{\triangle})^i}{i!} U^m,$$

Suppose that the difference operator L_{\triangle} is coercive in the Hilbert space $(\mathbb{X}, \langle \cdot, \cdot \rangle)$, i.e. there exist a constant K and an increasing function $\eta(h) : \mathbb{R}_+ \to \mathbb{R}_+$, such that

$$\langle L_{\triangle} U, U \rangle \leq K \| U \|^2 - \eta \| L_{\triangle} U \|^2, \quad \forall U.$$

Then, for $k = 1, 2, 3, 4, \cdots$, there exists a constant $K' \ge 0$ s.t. $\|U^{m+1}\| \le (1 + K'\tau) \|U^m\|$, if $\tau \le 2\eta$.

In particular, if $K \leq 0$, we have K' = 0 and $||U^{m+1}|| \leq ||U^m||$.

Note: $K' > 0 \Rightarrow$ Lax-Richtmyer stable; $K' = 0 \Rightarrow$ strongly stable.

└─ More on the Method of Energy Analysis

A Theorem on Discrete Coercivity and Energy Inequality

Proof of the Theorem for k = 1

Without loss of generality, assume $K \ge 0$.

For k = 1. By the definition and the coercivity of L_{\triangle} , we have

$$\begin{split} \|U^{m+1}\|^2 &= \|(I + \tau L_{\triangle})U^m\|^2 \\ &= \|U^m\|^2 + 2\tau \langle L_{\triangle}U^m, U^m \rangle + \tau^2 \|L_{\triangle}U^m\|^2 \\ &\leq (1 + 2K\tau) \|U^m\|^2 + \tau (\tau - 2\eta) \|L_{\triangle}U^m\|^2. \end{split}$$

Therefore, the conclusion of the theorem holds for K' = K.

More on the Method of Energy Analysis

A Theorem on Discrete Coercivity and Energy Inequality

Proof of the Theorem for 2 ($k \ge 3$ is left as an Exercise)

For
$$k = 2$$
, $I + \tau L_{\triangle} + \frac{1}{2}(\tau L_{\triangle})^2 = \frac{1}{2}I + \frac{1}{2}(I + \tau L_{\triangle})^2$. Therefore,

$$\begin{aligned} \|U^{m+1}\| &= \|(\frac{1}{2}I + \frac{1}{2}(I + \tau L_{\triangle})^2)U^m\| \\ &\leq \frac{1}{2}\|U^m\| + \frac{1}{2}(1 + K\tau)^2\|U^m\| \\ &\leq (1 + K(1 + \eta K)\tau)\|U^m\|, \quad \text{if } \tau \leq 2\eta. \end{aligned}$$

So, the conclusion of the theorem holds for $K' = K(1 + \eta K)$.

Similarly, the conclusion of the theorem for $k \ge 3$ can be proved by induction. (see Exercise 4.7)

Remark: $\tau = \kappa \eta(h)$ with $\kappa \in (0, 2]$ provides a stable refinement path.

└─ More on the Method of Energy Analysis

An Example on Establishing Energy Inequality

\mathbb{L}^2 Stability of Upwind Scheme for Variable-Coefficient Advection Equation

1 The initial-boundary value problem of the advection equation

$$\left\{egin{aligned} &u_t(x,t)+a(x)u_x(x,t)=0, & 0< x\leq 1, \ t>0, \ &u(x,0)=u^0(x), & 0\leq x\leq 1, \ &u(0,t)=0, & t>0, \end{aligned}
ight.$$

2
$$U_j^{m+1} = U_j^m - \frac{a_j \tau}{h} \left(U_j^m - U_{j-1}^m \right), \quad j = 0, 1, \cdots, N.$$

 $L_{\triangle} = -a(x)h^{-1} \triangle_{-x}, \ k = 1.$

3 $0 \le a(x) \le A$, $|a(x) - a(x')| \le C|x - x'|$, A, C > 0 const..

More on the Method of Energy Analysis

An Example on Establishing Energy Inequality

\mathbb{L}^2 Stability of Upwind Scheme for Variable-Coefficient Advection Equation

4 We need to check, \exists constants $K \in \mathbb{R}$ and $\eta > 0$ s.t. $\langle L_{\wedge}U,U\rangle < K \|U\|^2 - \eta \|L_{\wedge}U\|^2, \quad \forall U.$ $\langle L_{\triangle} U, U \rangle = -\sum_{i=1}^{N} a_i (U_j - U_{j-1}) U_j = -\sum_{i=1}^{N} a_i (U_j)^2 + \sum_{i=1}^{N} a_i U_j U_{j-1},$ $h \|L_{\triangle} U\|_{2}^{2} = \sum_{i=1}^{N} a_{j}^{2} (U_{j} - U_{j-1})^{2} \leq A \sum_{i=1}^{N} \left[a_{j}(U_{j})^{2} - 2a_{j}U_{j}U_{j-1} + a_{j}(U_{j-1})^{2}\right].$ $2\langle L_{\bigtriangleup}U,U\rangle + A^{-1}h \|L_{\bigtriangleup}U\|_2^2 \le -\sum_{j=1}^{N} a_j [(U_j)^2 - (U_{j-1})^2]$ N-1 $= \sum (a_{j+1} - a_j)(U_j)^2 \le C \|U\|_2^2.$

More on the Method of Energy Analysis

An Example on Establishing Energy Inequality

 \mathbb{L}^2 Stability of Upwind Scheme for Variable-Coefficient Advection Equation

- **5** Coercivity condition is satisfied for K = C/2 and $\eta = A^{-1}h/2$.
- **(**) The conclusion of the theorem holds for K' = K = C/2.
- 𝗿 The stability condition $\tau ≤ 2\eta \Leftrightarrow A\tau ≤ h$.

└─ More on the Method of Energy Analysis

An Example on Establishing Energy Inequality

\mathbb{L}^2 Stability of Upwind Scheme for Variable-Coefficient Advection Equation

Remark:

- **()** The stability condition $A\tau \leq h$: a natural extension of $a\tau \leq h$.
- **2** Constant-coefficient case: \mathbb{L}^2 strongly stable.
- Oriable-coefficient case: L² stable in the sense of von Neumann or Lax-Richtmyer stability.
- Variable-coefficient can cause additional error growth, and the approximation error can grow exponentially.
- So The result is typical. (Variable-coefficient, nonlinearity)

习题 4: 5, 8 Thank You!

