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What is a Modified Equation of a Difference Scheme?

Let h, 7 be the spatial and temporal step sizes.

Let Ut = By [BoU™ 4 F™] be a difference scheme.
Let {(jj{n}mzo’je_j, be a solution to the scheme.

Let P = Pj, ; be a parameterized differential operator.
Let X4, = {U smooth: U™ = U",¥Ym >0,j € J}.

If PU =0, for some U € X, Vh, 7, then the differential
equation Pu = 0 is called a modified equation of the
difference scheme U™ = B 1 [BoU™ + F™).

The gth order modified equation: PU = O(79 + h9), for some
U e Xhﬂ-, Yh, T.
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How to Derive the Modified Equation — an Example

Such P is not unique. We want P = D + H,, with Du = 0 the
original equation, Hy a higher order partial differential operator
with respect to x.

@ 1D advection equation: vy +au, =0, a> 0.

m+1 ym m m

@ Upwind scheme: -——L + 3~ th‘l =0.
© Let U be smooth and Uj’” = UJf".
Q Taylor expand U at (x;j, tm)

lNJJf"+1 = [U‘f‘TUt"’ %T2Dtt+ éT3Uttt+"':|ma
15~ ]m
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How to Derive the Modified Equation — an Example

© Hence,
7ym+1 [1m [1m [m
g G =Y LU U
7 h
=[O+ a0] "+ [l — ahl] 42 [r2 U + 32D "+ O 447
= t x| T Ut a XX.+ TUttt+ah Uxxx+O(T+h)
i 2 i 6 J

@ U: +al, =0, the first order modified equation. (original one)

@ U, +al, = [ahUXX — TDtt}Z the second order.

N|=

Q U, +al, = z [ahUXX = TDtt} - % [ah2 U + Tzflttt], the 3rd.

© But the latter two are not in the preferred form.
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How to Derive the Modified Equation — an Example (continue)
@ By
O+ ali] + 3 [r0 — ahlia| + 3 [12Une + at20a| = O + 1)

1 .
= Uy=—-alu+= [ahUXXX TUXtt:| + O(T2 + h2),

= Dtt = aUxt + = [ahUxxt TDttt} -+ O(T2 -+ h2)

- 1 - -
= 32 UXX_E |:a hUXXX — ahUXXt — aTUXtt + TUttt:| +O(7'2+h2)

. 1 .
= Us + al, = Eah(l — V) Ui + O(7% + R?).
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How to Derive the Modified Equation — an Example (continue)

@ Hence, U; + al, = %ah(l — V)UXX is the 2nd order modified
equation.

Similarly, we have the 3rd order modified equation:

- | - 1 ~
Ur + aly = Zah(1 = v) U — 6ah2(1 — 1?) Uex.




Derive the Modified Equation by Difference Operator Calculus

@ Express a difference operator by a series of differential
operators (Taylor expansion). For example, A y; = e™ — 1.

@ Formally inverting the expression, a differential operator can
then be expressed by a power series of a difference operator.

© For example, 9; = 771 In(1+ 7D, ;), where D, == 77 1A ;.
This yields 8 = Di¢ — 3D, + 5D, — D%, +---

@ For a difference scheme D, U™ = AU = (32,2, ozkd’f)Uf",
substitute Dy by > 77 ozk@)’f in the series expression of 0,
and collect the terms with the same powers of 0y, we are led

to the modified equation oo .
0 — > Bkok| U=o.
k=0
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Derive Modified Equation by Difference Operator Calculus — an Example

@ Advection-diffusion equation: u; + auy = cuy, x € R, t > 0.
m-+1
. Ay um, —um um, —2Um4-um
@ Explicit scheme: ——— 4 a5 7= = cH— 1=

© By Taylor series expansions of AOXUJf” and 42 U™, we have

D, U= {—a [6X+éh283+--} te {a§+112h28;‘+---”0.

O The modified equation obtained:
~ - 1 . 1 &
Ui + aUy, = > [2c — 7] U — - [ah® — 6ac T + 22°7%] Usx
1 .
+ D [ch2 —23%°Th? — 6T + 123%¢cr? — 3347'3] Uoox + - .
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What is the use of a Modified Equation

o

Q

Difference solutions approximate higher order modified
equation with higher order of accuracy.

Well-posedness of the modified equations provides useful
information on the stability of the scheme.

Amplitude and phase errors of the modified equations on the
Fourier mode solutions provide the corresponding information
for the scheme.

Convergence rate of the solution of the modified equation to
the solution of the original equation also provides the
corresponding information for the scheme.

In particular, the dissipation and dispersion of the solutions of
the modified equations can be very useful.




Dissipation and Dispersion Terms of the Modified Equation

@ Fourier mode ell(k+wt) — modified eqn. U, = > o amOy U.

@ Notice 9ellkxtwt) — (jk)meilkctwt) — dispersion relation:

w(k) = (1) apm 1 K" =i (1) apmk®™.
m=1 m=0
© Denote w(k) = wo(k) + iwi(k), where
wo(k) = (1) a1 K277, wi(k) ==Y (—1)"apmk®™.
m=1 m=0

@ The Fourier mode solution el(kxtw(k)t) — g=wi(k)t gi(kx+wo(k)t)
@ Even order spatial derivative terms change the amplitude.
@ Odd order spatial derivative terms change the phase speed.

@ Even and odd order terms are called dissipation and dispersion
terms of the modified equations respectively.
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Dissipation and Dispersion of Modified Equation — an Example

@ Consider third order modified equation of the upwind scheme
for the advection equation with a > 0 as an example:

U + al, = %ah(l — 1)U — %ah2(1 — 1) U

@ We have here 30 =0, a; = —a, ap = h(l —v),

az = —%ah2(1 — y2), am=0, m> 4.
© Thus, we have
wo(k) = —ak + éa( P)CH,  —wi(k) = —%a(l —v)k?h.

@ If CFL condition is not satisfied = —w1(k) > 0 = unstable.
© For kh < 1 = relative phase error O(k?h?).

11/29



Dissipation and Dispersion of Modified Equation — another Example

@ Consider the Lax-Wendroff scheme of the advection equation:
m+1 m m m m m
oo U - UL 1, U - 207+ U,
T 2h 2 h2 ’

@ The mOdIerd €q Uation (compare with (4.5.16) and (4) on p.8 of this slides).

. - 1 ~ 1 ~
Us + al, = —éahz(l — 1/2)UXXX — gah31/(1 — 1/2)UXXXX + e
© For kh < 1, dispersion and dissipation components of w(k):
1
wo(k) = ark — ask® = —ak (1 — 6(1 — uz)k2h2> :
1
—wi (k) = ap — apk® + agk* = —gaz/(l — V) kR,

Q 2 >1= —wi(k) >0 = unstable.
© For kh < 1 = phase lag, relative phase error O(k?h?).
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Necessary Stability Conditions Given by the Modified Equation

O —wi =>" (—1)"aymk®™ > 0 = the scheme is unstable.

@ In the case of ag = 0, a finite difference scheme is generally
unstable if a < 0, or a = 0 but az > 0.

© The case when ag =0, ap > 0, a4 > 0 is more complicated.
For kh < 1, Fourier mode solutions are stable, for kh big, say
kh = 7, they can be unstable, in particular, high frequency
modes are unstable when a>,, =0, Vm > 2.

Remark: In fact, for high frequency modes, —w; = > oo (—1)maynk>™

does not necessarily make sense, since it may not converge in general.

13 /29
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Necessary Stability Conditions Given by the Modified Equation

@ In general, the modified equation can only provide necessary
conditions for the stability of a difference scheme.

© For most schemes, the instability appears most easily in the
lowest or highest end of Fourier mode solutions.

@ It makes sense to derive the modified equation for the highest
end (or oscillatory component) of Fourier mode solutions.

14 /29
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Derivation of Modified Equation for Oscillatory Component

© For the highest frequencies, kh = m — k’h, where k'h < 1.

@ The instability of the highest frequency Fourier mode also
shows simultaneously in the form of the time step oscillation,
i.e. arg(Ax) &~ 7 for kh ~ 7. Denote A\ = |Ay|ei(@8(A)=7),
then A\ = |Ax|e! @8 = K,/ and AT = (—1)" A7,

© It makes sense to write the oscillatory Fourier modes as
(_1)m+J(Uo)J(n — )\Zrelkjh _ (_1)m+1)\zvleﬂk’Jh_

15/29
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Derivation of Modified Equation for Oscillatory Component

@ The finite difference solution can often be decomposed as
Ur = (U%)7" + (=1)"H(U°)7, i.e. the smooth and
oscillatory components of the difference solution.

@ The modified equation studied previously is for the smooth
component U= 0-.

O The modified equation for the oscillatory component
U = (—1)™*U° can be derived in a similar way.

16 /29
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Derivation of Modified Equation for Oscillatory Component — an Example

@ Let the oscillatory component lNJj’" = (- 1)’”+f(U°) be a
smooth function satisfying lNJj’" = Uf".

@ Substitute it into the explicit scheme of the heat equation
Up = Clixy: Um+1 (1- 2u)Um + (U 1+ J+1>

© Taylor expanding (U°)™, and (U°)7; at (U°)7 yields

(@) = = O+ ()2 + (O

1 1
=< (4 —1)+2u | =P + —HK*5*
{(u )+ “[2 O+ g h" 0 +

17 /29
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Derivation of Modified Equation for Oscillatory Component — an Example

@ Rewrite the scheme into the form of D (U°)" = 352, a0k (U°)7.

Remember Dy, = T_1A+, W= c7'/h2, we have

- 1 )
D, 0° = {271(2u —1) 4 ¢ |2+ s h0f + } } e

© Since 9y =Dy — D2, + D3, DY, 4.,
@ Denote ¢ =2771(2u — 1), and

1 1 1
a=¢&— 5527' + §f37'2 - 1547'3 + ... =71In(1+£7).

18 /29
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Derivation of Modified Equation for Oscillatory Component — an Example

Q 'I:herefore, the modified equation of the oscillatory component
U° has the form

0:0° =77 In(1+ 22 — 1)) U° + > apmd2mU°.

m=1

@ Consequently, if 21 > 1, the oscillatory component J° will
grow exponentially, which implies that the difference scheme
is unstable for the highest frequency Fourier modes.

19/29
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Coercivity of the Differential Operator L(-) and the Energy Inequality

Consider 9:u = L(u), where L a partial differential operator with respect to x,
and L does not explicitly depends on t.

@ Coerciveness condition of the differential operator L(-):

/ Luudx < Cllul,  YueX,
Q

@ Since u(x,t) = L(u(x,t)), we are led to %||u||% < 2C||ulj3.

© By the Gronwall inequality, we have
lu(-, )15 < NP3, VYt €0, tma].

@ |In particular, the IL?(Q) norm of the solution decays
exponentially, if C < 0; and it is non-increasing, if C = 0.

20 /29
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Coercivity of the Differential Operator L(-) and the Energy Inequality

@ The inequalities in similar forms as above with various norms
are generally called energy inequalities, and the corresponding
norm is called the energy norm.

@ In such cases, we hope that the difference solution satisfies
corresponding discrete energy inequality.

21/29
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Energy Inequality for Runge-Kutta Time-Stepping Numerical Schemes

Suppose that a difference scheme has the form
k i
Um+1 _ Z (TLA) um

il

i—0

Suppose that the difference op’erator L is coercive in the Hilbert
space (X, (-,)), i.e. there exist a constant K and an increasing
function n(h) : Ry — Ry, such that

(LaU,U) < K|JU|? = nllLaU|?, VU.

Then, for k =1,2,3,4,---, there exists a constant K' > 0 s.t.
U™ < 1+ KD)lum, if T < 2n.

In particular, if K <0, we have K’ = 0 and |[U™| < |[U™].

Note: K’ > 0 = Lax-Richtmyer stable; K’ = 0 = strongly stable.g
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Proof of the Theorem for k =1

Without loss of generality, assume K > 0.

For k = 1. By the definition and the coercivity of LA, we have

U2 = N0+ TLa) U™

= U2+ 21{LAU™, U™) + 72||LAU™|?
< (142K UM% + 7(r — 2n)||LAU™| 2.

Therefore, the conclusion of the theorem holds for K = K.

23 /29
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Proof of the Theorem for 2 (k > 3 is left as an Exercise)

For k =2, |+ 7La + 3(7La)? = 21 + (1 + 7LA)?. Therefore,

U™ = G+ 50+ rLal)ur]

N

1 m 1 m
< SIUTI+ S+ KU
< 1+ K@Q+nK)r)||U", if 7 <2n.
So, the conclusion of the theorem holds for K" = K(1 + nK).

Similarly, the conclusion of the theorem for k > 3 can be proved by
induction. (see Exercise 4.7)

Remark: 7 = kn(h) with k € (0, 2] provides a stable refinement path.

24 /29
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IL? Stability of Upwind Scheme for Variable-Coefficient Advection Equation

@ The initial-boundary value problem of the advection equation

ur(x,t) + a(x)ux(x,t) =0, 0<x<1 t>0,
u(x,0) = u%(x), 0<x<1,
u(0,t) =0, t >0,

m-+1 iT o
1) Uj+ :UJm—a’T<UJf"—Uf’ll), j=0,1,---,N.

Lp =—a(x)h 1A, k=1

© 0<a(x) <A, |a(x) — a(x')| < C|x — x|, A, C > 0 const..

25 /29
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IL? Stability of Upwind Scheme for Variable-Coefficient Advection Equation

@ We need to check, 3 constants K € R and n > 0 s.t.
(LaU, U) < K||U|> = nliLaU|?,  VU.

N
(LaU,U) = = 3" a(U; — Up_1) Z +Za,UU, 1,

j=1 j=1

N
hLaUl3 =) a3 (Ui-Uj1)* < AZ [3(U))* = 23;U; U1 + 3;(U;j-1)?] -
- .71

2<LAU7U>+A71h||LAU||§S_Zaj [(U))? = (Uj-1)?]

—~
Il
—

=
-

(2141 — 2)(U))* < ClIUII5.
1

—.
Il
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More on Consistency, Stability and Convergence
L More on the Method of Energy Analysis
LAn Example on Establishing Energy Inequality

IL? Stability of Upwind Scheme for Variable-Coefficient Advection Equation

@ Coercivity condition is satisfied for K = C/2 and n = A=1h/2.
@ The conclusion of the theorem holds for K' = K = C/2.

@ The stability condition 7 < 2np < Ar < h.

27 /29
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IL? Stability of Upwind Scheme for Variable-Coefficient Advection Equation

Remark:

o
(2]
©

The stability condition A7 < h: a natural extension of ar < h.
Constant-coefficient case: L2 strongly stable.

Variable-coefficient case: 1.2 stable in the sense of von
Neumann or Lax-Richtmyer stability.

Variable-coefficient can cause additional error growth, and the
approximation error can grow exponentially.

The result is typical. (Variable-coefficient, nonlinearity)

28 /29
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Thank You!
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