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Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for Advection-Diffusion Equations

A Model Problem of the Advection-Diffusion Equation

A Model Problem of the Advection-Diffusion Equation

An initial value problem of a 1D constant-coefficient
advection-diffusion equation (a > 0, c > 0): ut + aux = cuxx ,
x ∈ R, t > 0; u(x , 0) = u0(x), x ∈ R.

By a change of variables y = x − at and v(y , t) , u(y + at, t),
vt = cvyy , y ∈ R, t > 0; v(x , 0) = u0(x), x ∈ R.

Characteristic global properties of the solution u:

1 There is a characteristic speed as in the advection equation,
which plays an important role to the solution, especially when
|a| � c (advection dominant).

2 Along the characteristic, the solution behaves like a parabolic
solution (dissipation and smoothing).
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Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for Advection-Diffusion Equations

Classical Explicit and Implicit Difference Schemes

Classical Difference Schemes and Their Stability Conditions

Classical explicit difference schemes:[
τ−14t+ + a(2h)−140x

]
Um
j = c̃h−2δ2

xU
m
j ,

(c̃ = c , central; c + a2τ
2 , modified central; c + 1

2ah, upwind).

1 Maximum principle ⇔ c̃τ
h2 ≤ 1

2 , h ≤ 2c̃
a .

2 L2 strongly stable ⇔ c̃τ
h2 ≤ 1

2 and τ ≤ 2c̃
a2 .

The Crank-Nicolson scheme

τ−1δtU
m+ 1

2 +a (4h)−140x

[
Um
j +Um+1

j

]
= c (2h2)−1δ2

x

[
Um
j +Um+1

j

]
,

1 Maximum principle ⇔ µ ≤ 1, h ≤ 2c
a .

2 Unconditionally L2 strongly stable.
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What Do We See Along a Characteristic Line?

For constant-coefficient advection-diffusion equation:

1 The characteristic equation for the advection part: dx
dt = a.

2 Unit vector in characteristic direction: ns = ( a√
1+a2

, 1√
1+a2

).

3 Let s be the length parameter for the characteristic lines.

4
∂u

∂s
= grad(u) ·ns =

(
∂u

∂x
,
∂u

∂t

)
·ns =

1√
1 + a2

(
∂u

∂t
+ a

∂u

∂x

)
.

5 This yields
∂u

∂s
= c̃

∂2u

∂x2
, (i.e. along the characteristics dx

dt
= a, the

solution u to the constant-coefficient advection-diffusion equation
∂u

∂t
+ a

∂u

∂x
= c

∂2u

∂x2
behaves like a solution to a diffusion equation with

diffusion coefficient c̃ = c√
1+a2

.)



Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for Advection-Diffusion Equations

Characteristic Difference Schemes

Operator Splitting and Characteristic Difference Schemes

For general variable coefficients advection-diffusion equations:

1 The idea of the characteristic difference schemes for the
advection-diffusion equation is to approximate the process by
applying the operator splitting method.

2 Every time step will be separated into two sub-steps.

3 In the first sub-step, approximate the advection process by the
characteristic method: ũm+1

j , u(x̄mj ) = u(xj − am+1
j τ), along

the characteristics.
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Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for Advection-Diffusion Equations

Characteristic Difference Schemes

Operator Splitting and Characteristic Difference Schemes

4 In the second sub-step, approximate the diffusion process with
ũm+1
j as the initial data at tm by, say, the implicit scheme:

um+1
j − u(x̄mj )

τ
= cm+1

j

um+1
j+1 − 2um+1

j + um+1
j−1

h2
+ T̄m

j ,

5 The local truncation error T̄m
j = O(τ + h2).

6 Replacing u(x̄mj ) by certain interpolations of the nodal values
leads to characteristic difference schemes.

6 / 42



Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for Advection-Diffusion Equations

Characteristic Difference Schemes

A Characteristic Difference Scheme by Linear Interpolation

Suppose x̄mj ∈ [xi−1, xi ) and |x̄mj − xi−1| < h. Approximate u(x̄mj )
by the linear interpolation of umi−1 and umi leads to:

Um+1
j − αm

j U
m
i − (1− αm

j )Um
i−1

τ
= cm+1

j

Um+1
j+1 − 2Um+1

j + Um+1
j−1

h2
,

where αm
j = h−1(x̄mj − xi−1) ∈ [0, 1), or equivalently

(1+2µm+1
j )Um+1

j = αm
j U

m
i +(1−αm

j )Um
i−1 +µm+1

j (Um+1
j+1 +Um+1

j−1 ),

where µm+1
j = cm+1

j τ h−2.
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Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for Advection-Diffusion Equations

Characteristic Difference Schemes

A Characteristic Difference Scheme by Linear Interpolation

1 Tm
j = O(τ + τ−1h2). (u(x̄mj ) = αm

j u
m
i + (1− αm

j )umi−1 + O(h2)).

2 Maximum principle holds. (Note αm
j ∈ [0, 1), µm+1

j > 0.)

3 Since e−ik(j−i+1)h = e−ik(αm
j h+am+1

j τ), we have

λk =
1−αm

j (1−cos kh)+iαm
j sin kh

1+4µm+1
j sin2 1

2
kh

e−ik(αm
j h+am+1

j τ), |λk | ≤ 1, ∀k ,

∵ |1− αm
j (1− cos kh) + iαm

j sin kh|2 = 1− 2αm
j (1− αm

j )(1− cos kh).

4 Unconditionally locally L2 stable.

5 Optimal convergence rate is O(h), when τ = O(h).
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A Characteristic Difference Scheme by Quadratic Interpolation

Suppose αm
j = h−1(x̄mj − xi−1) ∈ [−1

2 ,
1
2 ]. Approximate u(x̄mj ) by

the quadratic interpolation of umi−2, umi−1 and umi leads to:

Um+1
j − 1

2α
m
j (1 + αm

j )Um
i − (1− αm

j )(1 + αm
j )Um

i−1 + 1
2α

m
j (1− αm

j )Um
i−2

τ

= cm+1
j

Um+1
j+1 − 2Um+1

j + Um+1
j−1

h2
.

1 Tm
j = O(τ + τ−1h3 + h2). (quadratic interpolation error O(h3)).

2 Maximum principle does not hold. (Note αm
j ∈ [−1

2 ,
1
2 ].)

3 λk =
1−(αm

j )2(1−cos kh)+iαm
j sin kh

1+4µm+1
j sin2 1

2
kh

e−ik(αm
j h+am+1

j τ), |λk | ≤ 1, ∀k .

(∵ |1− (αm
j )2(1− cos kh) + iαm

j sin kh|2 = 1− (αm
j )2(1− (αm

j )2)(1− cos kh).)

4 Unconditionally locally L2 stable.

5 Optimal convergence rate is O(h3/2), when τ = O(h3/2).



Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for Advection-Diffusion Equations

Characteristic Difference Schemes

Dissipation, Dispersion and Group Speed of the Scheme

In the case of the constant-coefficient, u(x , t) = e−ck
2te ik(x−at)

are the Fourier mode solutions for the advection-diffusion equation.

1 Dissipation speed: e−ck
2
; dispersion relation: ω(k) = −ak;

group speed: C (k) = a; for all k .

2 For the Fourier mode Um
j = λmk e

ikjh,

λk =
1− (αm

j )2(1− cos kh) + iαm
j sin kh

1 + 4µm+1
j sin2 1

2kh
e−ik(αm

j h+am+1
j τ), ∀k.

3 The errors on the amplitude, phase shift and group speed can
be worked out (see Exercise 3.12).
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Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for the Wave Equation

Initial and Initial-Boundary Value Problems of the Wave Equation

1 1D wave equation utt = a2uxx , x ∈ I ⊂ R, t > 0.

2 Initial conditions

u(x , 0) = u0(x), x ∈ I ⊂ R,
ut(x , 0) = v0(x), x ∈ I ⊂ R.

3 Boundary conditions, when I is a finite interval, say I = (0, 1),

α0(t)u(0, t)− β0(t)ux(0, t) = g0(t), t > 0,

α1(t)u(1, t) + β1(t)ux(1, t) = g1(t), t > 0,

where αi ≥ 0, βi ≥ 0, αi + βi 6= 0, i = 0, 1.
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Equivalent First Order Hyperbolic System of the Wave Equation

1 Let v = ut and w = −aux (a > 0). The wave equation is
transformed to [

v
w

]
t

+

[
0 a
a 0

] [
v
w

]
x

= 0.

2 The eigenvalues of the system are ±a.

3 The two families of characteristic lines of the system{
x + at = c ,

x − at = c ,
∀c ∈ R.

4 The solution to the initial value problem of the wave equation:

u(x , t) =
1

2

[
u0(x + at) + u0(x − at)

]
+

1

2a

∫ x+at

x−at
v0(ξ) dξ.



The Explicit Difference Scheme for the Wave Equation

1
Um+1
j − 2Um

j + Um−1
j

τ2
− a2

Um
j+1 − 2Um

j + Um
j−1

h2
= 0.

2 The local truncation error:[(
τ−2δ2

t − h−2a2δ2
x

)
−
(
∂2
t − a2∂2

x

)]
umj = O(τ2 + h2).

3 By u(x , τ) = u(x , 0) + τ ut(x , 0) + 1
2τ

2utt(x , 0) + O(τ3),

u(x , τ)=u0(x)+τ v0(x)+
1

2
ν2(u0(x+h)−2u0(x)+u0(x−h))+O(τ3+τ2h2).

4 The discrete initial conditions (local truncation error
O(τ3 + τ2h2)), denote ν = aτ/h:

U0
j = u0

j ; U1
j =

1

2
ν2
(
U0
j+1 + U0

j−1

)
+ (1− ν2)U0

j + τv0
j .

Remark: If an additional term 1
6τν

2δ2
xv

0(x) is used in (3), then
the truncation error is O(τ4 + τ2h2).



Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for the Wave Equation

The Explicit Scheme for the Wave Equation

Boundary Conditions for the Explicit Scheme of the Wave Equation

1 For β = 0, use the Dirichlet boundary condition of the
problem directly;

2 For β 6= 0, say β0 = 1, α0 > 0, introduce a ghost node x−1,
and a discrete boundary condition with truncation error
O(h2):

αm
0 Um

0 −
Um

1 − Um
−1

2h
= gm

0 .

3 Eliminating Um
−1 leads to an equivalent difference scheme with

truncation error O(τ2 + h) (see Exercise 3.13) at x0:

Um+1
0 − 2Um

0 + Um−1
0

τ2
− 2a2 Um

1 − (1 + αm
0 h)Um

0 + gm
0 h

h2
= 0.
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Fourier Analysis for the Explicit Scheme of the Wave Equation

1 Initial value problem of constant-coefficient wave equation.

2 Characteristic equation of the discrete Fourier mode
Um
j = λmk e

ikjh: λ2
k − 2λk + 1 = λkν

2
(
e ikh − 2 + e−ikh

)
.

3 The corresponding amplification factors are given by

λ±k = 1− 2ν2 sin2 1

2
kh ± i2ν sin

1

2
kh

√
1− ν2 sin2 1

2
kh.

4 If the CFL condition, i.e. ν ≤ 1, is satisfied, |λ±k | = 1;

5 there is phase lag, and the relative phase error is O(k2h2),

arg λ±k = ±akτ
(

1− 1− ν2

24
k2h2 + · · ·

)
, ∀kh� 1, (ν ≤ 1).

6 Group speed C±(k) = ±a, C±h (k)τ = − d
dk arg λ±k .



The θ-Scheme of the Wave Equation

1 For θ ∈ (0, 1], θ-scheme of the wave equation (O(τ2 + h2)):

Um+1
j − 2Um

j + Um−1
j

τ 2
= a2

[
θ
Um+1
j+1 − 2Um+1

j + Um+1
j−1

h2

+(1− 2θ)
Um
j+1 − 2Um

j + Um
j−1

h2
+ θ

Um−1
j+1 − 2Um−1

j + Um−1
j−1

h2

]
.

2 Characteristic equation of the Fourier mode Um
j = λmk e

ikjh:

λ2
k−2λk+1 =

(
θν2λ2

k + (1− 2θ)ν2λk + θν2
) (

e ikh − 2 + e−ikh
)
.

3 The corresponding amplification factors are given by

λ±k = 1−
2ν2 sin2 1

2kh

1 + 4θν2 sin2 1
2kh
±

√
−4ν2 sin2 1

2kh (1 + ν2(4θ − 1) sin2 1
2kh)

1 + 4θν2 sin2 1
2kh

.



Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for the Wave Equation

Implicit Schemes for the Wave Equation

L2 Stability Conditions for the θ-Scheme of the Wave Equation

4 The L2 stability condition of the θ-scheme:{
(1− 4θ)ν2 ≤ 1, if θ < 1

4 ;

unconditionally stable, if θ ≥ 1
4 .

5 When the θ-scheme is L2 stable, λ+
k = λ̄−k , |λ±k | = 1, ∀k ;

6 the relative phase error is O(k2h2), if kh� 1 or π − kh� 1,
there is always a phase lag

arg λ±k = ±akτ
(

1− 1

24
(1 + (12θ − 1)ν2)k2h2 + · · ·

)
.

Remark 1: We may calculate the group speed to see how the scheme works on superpositions of Fourier modes.

Remark 2: For many physical problems, the energy stability analysis can be a better alternative approach.
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The Wave Equation and Its Mechanical Energy Conservation

For the initial-boundary value problem of the wave equation:

utt = (a2ux)x , x ∈ (0, 1), t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x , 0) = u0(x), ut(x , 0) = v0(x), x ∈ [0, 1],

if a > 0 is a constant, it follows from integral by parts, and∫ 1

0

(
utt − (a2ux)x

)
ut dx = 0, ut(0, t) = ut(1, t) = 0,

that the mechanical energy of the system is a constant, i.e.

E (t) ,
∫ 1

0

1

2

(
u2
t + a2u2

x

)
dx = const.

The above result also holds for a = a(x) > a0 > 0.



Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for the Wave Equation

Energy Method and Stability of Implicit Schemes

Variable-coefficient θ-Scheme and the Idea of the Energy Method

Let 0 < A0 ≤ a(x , t) ≤ A1, consider the θ-scheme

τ−2δ2
tU

m
j = h−24−x

[
a24+x

] (
θUm+1

j + (1− 2θ)Um
j + θUm−1

j

)
,

where

4−x
[
a24+x

]
Um
j = (amj )2

(
Um
j+1 − Um

j

)
− (amj−1)2

(
Um
j − Um

j−1

)
.
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Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for the Wave Equation

Energy Method and Stability of Implicit Schemes

Variable-coefficient θ-Scheme and the Idea of the Energy Method

The idea of the energy method is to find a discrete energy norm
‖Um‖E ≡ En(Um,Um−1), and a function S(Um,Um−1), so that

1 Sm+1 = Sm = · · · = S1 (Sk , S(Uk ,Uk−1)) by the scheme;

2 There exist constants 0 < C0 ≤ C1, such that

C0En(Um,Um−1) ≤ S(Um,Um−1), S(U1,U0) ≤ C1En(U1,U0);

3 Thus, the solution Um of the θ-scheme is proved to satisfy the
energy inequality: C0‖Um‖E ≤ C1‖U1‖E , for all m > 0.

20 / 42



Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for the Wave Equation

Energy Method and Stability of Implicit Schemes

Establish ‖4−tUm+1‖2
2 − ‖4−tUm‖2

2 by Manipulating the θ-Scheme

Remember in the continuous problem, the mechanical energy has a
term

∫ 1
0 u2

t dx , and notice that in the θ-scheme the term

δ2
tU

m
j = (Um+1

j − Um
j )− (Um

j − Um−1
j ) = 4−tUm+1

j −4−tUm
j .

Multiplying
h
(
Um+1
j − Um−1

j

)
= h4−tUm+1

j + h4−tUm
j ,

on the both sides of the θ-scheme

τ−2δ2
tU

m
j = h−24−x

[
a24+x

] (
θUm+1

j + (1− 2θ)Um
j + θUm−1

j

)
,

and summing up with respect to j = 1, 2, · · · ,N − 1,
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Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for the Wave Equation

Energy Method and Stability of Implicit Schemes

Establish ‖4−tUm+1‖2
2 − ‖4−tUm‖2

2 by Manipulating the θ-Scheme

we are lead to

τ−2‖4−tUm+1‖2
2 − τ−2‖4−tUm‖2

2

= θh−2
〈
4−x

[
a24+x

]
(Um+1 + Um−1),Um+1 − Um−1

〉
2

+ (1− 2θ)h−2
〈
4−x

[
a24+x

]
Um,Um+1 − Um−1

〉
2
,

where ‖U‖2
2 = 〈U,U〉2 is the L2 norm of the grid function U and

〈U,V 〉2 =
N−1∑
j=1

UjVjh =

∫ 1

0

UV dx .
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Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for the Wave Equation

Energy Method and Stability of Implicit Schemes

Summation by Parts and a Discrete Version of (‖ut‖2
2)t = −(‖ux‖2

2)t

Corresponding to the integral by parts, we have the formula of
summation by parts

〈4−xU,V 〉2 = h
N−1∑
j=1

UjVj − h
N−1∑
j=1

Uj−1Vj

= h
N−1∑
j=1

UjVj − h
N−1∑
j=1

UjVj+1 = −〈U,4+xV 〉2.
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Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for the Wave Equation

Energy Method and Stability of Implicit Schemes

Summation by Parts and a Discrete Version of (‖ut‖2
2)t = −(‖ux‖2

2)t

Thus, the two terms on the right can be rewritten respectively as

−θh−2
〈
a4+xU

m+1, a4+xU
m+1

〉
2
+θh−2

〈
a4+xU

m−1, a4+xU
m−1

〉
2

= −θh−2
(
‖a4+xU

m+1‖2
2 − ‖a4+xU

m−1‖2
2

)
,

−(1− 2θ)h−2
[〈
a4+xU

m, a4+xU
m+1

〉
2
−
〈
a4+xU

m, a4+xU
m−1

〉
2

]
=

1− 2θ

4
h−2

[
−‖a4+x(Um − Um−1)‖2

2 + ‖a4+x(Um+1 − Um)‖2
2

+‖a4+x(Um + Um−1)‖2
2 − ‖a4+x(Um+1 + Um)‖2

2

]
.
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Sm and the Discrete Energy Norm ‖Um‖e

The above analysis show that Sm+1 = Sm, if we define

Sm = τ−2‖4−tUm‖2
2 + θh−2

[
‖a4+xU

m‖2
2 + ‖a4+xU

m−1‖2
2

]
+

1− 2θ

4
h−2

[
‖a4+x(Um + Um−1)‖2

2 − ‖a4+x(Um − Um−1)‖2
2

]
.

Notice that

‖a4+xU
m‖2

2 + ‖a4+xU
m−1‖2

2 =

1

2

[
‖a4+x(Um + Um−1)‖2

2 + ‖a4+x(Um − Um−1)‖2
2

]
,

we can equivalently rewrite Sm as

Sm =

∥∥∥∥4−tτ Um

∥∥∥∥2

2

+
1

4

∥∥∥∥a4+x

h
(Um+Um−1)

∥∥∥∥2

2

+
4θ−1

4

∥∥∥∥a4+x

h
(Um−Um−1)

∥∥∥∥2

2

.



Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for the Wave Equation

Energy Method and Stability of Implicit Schemes

Establishment of the Energy Inequality for 0 ≤ θ < 1/4

If 0 ≤ θ < 1/4, denote ν̄ = τh−1, by 0 < A0 ≤ a(x , t) ≤ A1 and

‖a4+x(Um − Um−1)‖2
2 ≤ 4A2

1‖Um − Um−1‖2 = 4A2
1‖4−tUm‖2,

we have

Sm ≥
(
1− A2

1(1− 4θ)ν̄2
) ∥∥∥∥4−tτ Um

∥∥∥∥2

2

+
A2

0

4

∥∥∥∥4+x

h
(Um + Um−1)

∥∥∥∥2

2

.

Furthermore, if 0 ≤ θ < 1/4, we have

S1 ≤
∥∥∥∥4−tτ U1

∥∥∥∥2

2

+
A2

1

4

∥∥∥∥4+x

h
(U1 + U0)

∥∥∥∥2

2

.
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Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for the Wave Equation

Energy Method and Stability of Implicit Schemes

Establishment of the Energy Inequality for 0 ≤ θ < 1/4

Define

‖Um‖2
E =

∥∥∥∥4−tτ Um

∥∥∥∥2

2

+

∥∥∥∥4+x

h
(Um + Um−1)

∥∥∥∥2

2

,

then, we have

‖Um‖2
E ≤ K1‖U1‖2

E , ∀m > 0 if A1

√
(1− 4θ) ν̄ < 1,

where K1 = max{1,A2
1/4}/min{1− A2

1(1− 4θ)ν̄2,A2
0/4}.
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Finite Difference Schemes for the Wave Equation

Energy Method and Stability of Implicit Schemes

Establishment of the Energy Inequality for 1/4 ≤ θ ≤ 1

If 1/4 ≤ θ ≤ 1, by 0 < A0 ≤ a(x , t) ≤ A1, we have

Sm ≥
∥∥∥∥4−t

τ
Um

∥∥∥∥2

2

+
A2

0

4

[∥∥∥∥4+x

h
(Um + Um−1)

∥∥∥∥2

2

+(4θ − 1)

∥∥∥∥4+x

h
(Um−Um−1)

∥∥∥∥2

2

]
,

S1 ≤
∥∥∥∥4−t

τ
U1

∥∥∥∥2

2

+
A2

1

4

[∥∥∥∥4+x

h
(U1 + U0)

∥∥∥∥2

2

+ (4θ − 1)

∥∥∥∥4+x

h
(U1 − U0)

∥∥∥∥2

2

]
.
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Finite Difference Methods for Hyperbolic Equations

Finite Difference Schemes for the Wave Equation

Energy Method and Stability of Implicit Schemes

Establishment of the Energy Inequality for 1/4 ≤ θ ≤ 1

Thus, if we define the energy norm ‖ · ‖E(θ) as

‖Um‖E(θ) =

∥∥∥∥4−t

τ
Um

∥∥∥∥2

2

+

∥∥∥∥4+x

h
(Um+Um−1)

∥∥∥∥2

2

+[4θ−1]+

∥∥∥∥4+x

h
(Um−Um−1)

∥∥∥∥2

2

,

where [α]+ = max{0, α}, then the following energy inequality
holds:

‖Um‖2
E(θ) ≤ K2‖U1‖2

E(θ), ∀m > 1.

where K2 = max{1,A2
1/4}/min{1,A2

0/4}.
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Summary of the Stability of the θ-Scheme for the Wave Equation

The θ-scheme for the wave equation (0 ≤ θ ≤ 1):

τ−2δ2
tU

m
j = h−24−x

[
a24+x

] (
θUm+1

j + (1− 2θ)Um
j + θUm−1

j

)
,

The energy norm ‖ · ‖E(θ) :

‖Um‖E(θ) =

∥∥∥∥4−t

τ
Um

∥∥∥∥2

2

+

∥∥∥∥4+x

h
(Um + Um−1)

∥∥∥∥2

2

+[4θ−1]+

∥∥∥∥4+x

h
(Um − Um−1)

∥∥∥∥2

2

.

The energy norm stability: ‖Um‖2
E(θ) ≤ K (θ)‖U1‖2

E(θ), ∀m > 1,{
(1− 4θ)A2

1ν̄
2 ≤ 1, if θ < 1

4 ;

unconditionally stable, if θ ≥ 1
4 ,

where K (θ) = max{1,A2
1/4}/min{1− A2

1[1− 4θ]+ν̄2,A2
0/4}.



The First Order Hyperbolic System and Its Difference Approximation

1 Let u = (v ,w)T with v = ut and w = −aux (a > 0 constant).
The wave equation is transformed to ut + Aux = 0, or[

v
w

]
t

+

[
0 a
a 0

] [
v
w

]
x

= 0.

2 Expanding um+1
j at (xj , tm) in Taylor series

um+1
j =

[
u + τ ut +

1

2
τ2utt

]m
j

+ O(τ3),

3 Since ut = −Aux , utt = A2 uxx ,

um+1
j =

[
u− τ Aux +

1

2
τ2A2uxx

]m
j

+ O(τ3).

4 Various difference schemes can be obtained by replacing the
differential operators by appropriate difference operators.



Finite Difference Methods for Hyperbolic Equations

Equivalent 1st Order System of the Wave Equation

The Lax-Wendroff Scheme Based on the 1st Order System

The Lax-Wendroff Scheme and Its Stability Analysis

The Lax-Wendroff scheme (denote ν̄ = τ/h)

Um+1
j = Um

j −
1

2
ν̄ A
[
Um

j+1 −Um
j−1

]
+

1

2
ν̄2A2

[
Um

j+1 − 2Um
j + Um

j−1

]
.

1 Local truncation error O(τ2 + h2).

2 The Fourier mode: Um
j = λmk

[
V
W

]
e ikjh.

3 The characteristic equation:

λk

[
V
W

]
=

(
I − 2ν̄2 sin2 1

2
kh A2 − iν̄ sin kh A

)[
V
W

]
,

4 λk = 1− 2ν2 sin2 1
2kh ± iν sin kh. (where ν = aν̄ = aτ/h)

5 |λk |2 = 1− 4ν2(1− ν2) sin4 1
2kh ≤ 1⇔ |ν| ≤ 1 ⇔ L2 stable.

6 Dissipation, dispersion and group speed are the same as the
Lax-Wendroff scheme for the scalar advection equation.
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The Staggered Leap-frog Scheme

The staggered leap-frog scheme:

V
m+ 1

2

j − V
m− 1

2

j

τ
+ a

Wm
j+ 1

2

−Wm
j− 1

2

h
= 0, (⇔ δtV

m
j + ν δxW

m
j = 0)

Wm+1
j+ 1

2

−Wm
j+ 1

2

τ
+ a

V
m+ 1

2

j+1 − V
m+ 1

2

j

h
= 0, (⇔ δtW

m+ 1
2

j+ 1
2

+ ν δxV
m+ 1

2

j+ 1
2

= 0).

V
m+ 1

2

j = τ−1δtU
m+ 1

2

j , Wm
j+ 1

2

= −a h−1δxU
m
j+ 1

2

, ⇒
[
δ2
t − ν2δ2

x

]
Um
j = 0.

◦ for W

× for V
m+1

m

m−1

j j+1j−1

t

x

1

2

3

4

5

6



The Fourier Analysis of the Staggered Leap-frog Scheme

1 The Fourier mode for the staggered leap-frog scheme:Vm− 1
2

j

Wm
j− 1

2

 = λmk

[
V̂k

Ŵke
−i 1

2
kh

]
e ikjh, (where V̂k and Ŵk are real numbers.)

2 The characteristic equation:[
λk − 1 i2ν sin 1

2kh
i2λkν sin 1

2kh λk − 1

] [
V̂k

Ŵk

]
=

[
0
0

]
.

3 λ2
k − 2

(
1− 2ν2 sin2 1

2kh
)
λk + 1 = 0. (Exactly as (3.5.18))

4 L2 stable ⇔ |ν| ≤ 1. There is no dissipation. If |ν| < 1, there
is a phase lag, and phase error is O(k2h2).

5 Nothing special so far.



Finite Difference Methods for Hyperbolic Equations

Equivalent 1st Order System of the Wave Equation

Local Energy Conservation of the Staggered Leap-frog Scheme

Local Energy Conservation of the Wave Equation

1 The mechanical energy of the system on (xl , xr ):

E (xl , xr ; t) =

∫ xr

xl

E (x , t) dx ,
∫ xr

xl

[
1

2
v2(x , t) +

1

2
w2(x , t)

]
dx ,

2 The only external forces exerted on (xl , xr ) are
−a2ux(xl , t) = aw(xl , t) and a2ux(xr , t) = −aw(xr , t).

3 The local energy conservation law (recall v = ut):

dE (xl , xr ; t)

dt
= −av(xr , t)w(xr , t) + av(xl , t)w(xl , t).
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Finite Difference Methods for Hyperbolic Equations

Equivalent 1st Order System of the Wave Equation

Local Energy Conservation of the Staggered Leap-frog Scheme

Local Energy Conservation of the Wave Equation

Equivalently,[
1

2
v2(x , t) +

1

2
w2(x , t)

]
t

+ [av(x , t)w(x , t)]x = 0;

or
∫
∂ω

[f (v ,w) dt − E (x , t) dx ] =

∫
ω

[Et + f (v ,w)x ] (x , t) dx dt = 0,

where E (x , t) = 1
2 (v2(x , t) + w2(x , t)) is the mechanical energy of

the system, and f (v ,w) = avw is the energy flux.

We will see that the staggered leap-frog scheme somehow inherits
this property.

36 / 42



How Does the Discrete Mechanical Energy Change?

The average operators σt and σx :

σtV
m
j =

1

2

(
V

m+ 1
2

j + V
m− 1

2

j

)
, σxV

m+ 1
2

j+ 1
2

=
1

2

(
V

m+ 1
2

j+1 + V
m+ 1

2

j

)
.

Then, the solution of the staggered leap-frog scheme satisfies:

δt

[
1

2

(
Vm
j

)2
]

+ ν
[(
σtV

m
j

) (
δxW

m
j

)]
= 0,

δt

[
1

2

(
W

m+ 1
2

j+ 1
2

)2
]

+ ν
[(
σtW

m+ 1
2

j+ 1
2

)(
δxV

m+ 1
2

j+ 1
2

)]
= 0.

◦ for W

× for V

m+1

m

m−1

j j+1j−1

t

x

1

2

3

4

5

6



The Enclosed Path Integral of the Discrete Kinetic Energy
∫
∂ωm

j

1
2
V 2 dx

The control volume ωm
j is enclosed by the line segments

connecting the nodes j1, j2, j3, j4, j5, j6 = j0 (as shownin figure).
Calculate −

∫
∂ωm

j

1
2V

2 dx by applying the middle point

quadrature rule on three broken line segments ĵ0j1j2, ĵ2j3j4
and j4j5j6, yields

−
∫
∂ωm

j

1

2
V 2 dx =

1

2
h
(
V

m+ 1
2

j

)2

− 1

2
h
(
V

m− 1
2

j

)2

= hδt

[
1

2

(
Vm
j

)2
]
.

◦ for W

× for V

m+1

m

m−1

j j+1j−1

t

x

1

2

3

4

5

6



Finite Difference Methods for Hyperbolic Equations

Equivalent 1st Order System of the Wave Equation

Local Energy Conservation of the Staggered Leap-frog Scheme

The Enclosed Path Integral of the Discrete Elastic Energy
∫
∂ωm

j

1
2
W 2 dx

Calculate −
∫
∂ωm

j

1
2W

2 dx by applying the middle point

quadrature rule on three broken line segments j1j2j3, ĵ3j4j5
and ĵ5j6j1, yields

−
∫
∂ωm

j

1

2
W 2 dx =

1

2
h
(
Wm+1

j+ 1
2

)2

−1

2
h
(
Wm

j+ 1
2

)2

= hδt

[
1

2

(
W

m+ 1
2

j+ 1
2

)2
]
.

◦ for W

× for V

m+1

m

m−1

j j+1j−1

t

x

1

2

3

4

5

6
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The Enclosed Path Integral of the Discrete Energy Flux
∫
∂ωm

j
aVW dx

Calculate
∫
∂ωm

j
aVW dx by applying the numerical quadrature rule

on six broken line segments ji ji+1, i = 0, 1, 2, 3, 4, 5, using node
values of V and W on the broken line segments, yields∫

∂ωm
j

aVW dt =
1

2
aτ
[
V

m− 1
2

j Wm
j+ 1

2
+ V

m+ 1
2

j+1 Wm
j+ 1

2
+ V

m+ 1
2

j+1 Wm+1
j+ 1

2

]
−1

2
aτ
[
V

m+ 1
2

j Wm+1
j+ 1

2

+ V
m+ 1

2

j Wm
j− 1

2
+ V

m− 1
2

j Wm
j− 1

2

]
= aτ

[(
σtV

m
j

) (
δxW

m
j

)
+
(
σtW

m+ 1
2

j+ 1
2

)(
δxV

m+ 1
2

j+ 1
2

)]
.

◦ for W

× for V

m+1

m

m−1

j j+1j−1

t

x

1

2

3

4

5

6



Finite Difference Methods for Hyperbolic Equations

Equivalent 1st Order System of the Wave Equation

Local Energy Conservation of the Staggered Leap-frog Scheme

The Discrete Local Energy Conservation

Combine the above three equations, we obtain∫
∂ωm

j

[
aVW dt −

(
1

2
V 2 +

1

2
W 2

)
dx

]
= 0.

This is the discrete version of the local energy conservation law∫
∂ω

[f (v ,w) dt − E (x , t) dx ] =

∫
ω

[Et + f (v ,w)x ] (x , t) dx dt = 0.

◦ for W

× for V

m+1

m

m−1

j j+1j−1

t

x

1

2

3

4

5

6

41 / 42



SK 3µ12, 13; þÅ�� 2

Thank You!


	Finite Difference Schemes for Advection-Diffusion Equations
	A Model Problem of the Advection-Diffusion Equation
	Classical Explicit and Implicit Difference Schemes
	Characteristic Difference Schemes

	Finite Difference Schemes for the Wave Equation
	The Explicit Scheme for the Wave Equation
	Implicit Schemes for the Wave Equation
	Energy Method and Stability of Implicit Schemes

	Equivalent 1st Order System of the Wave Equation
	The Lax-Wendroff Scheme Based on the 1st Order System
	Staggered Leap-frog Scheme and Its Stability Analysis
	Local Energy Conservation of the Staggered Leap-frog Scheme


