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Finite Difference Methods for Hyperbolic Equations
L Finite Difference Schemes for Advection-Diffusion Equations
LA Model Problem of the Advection-Diffusion Equation

A Model Problem of the Advection-Diffusion Equation

@ An initial value problem of a 1D constant-coefficient
advection-diffusion equation (a > 0, ¢ > 0): u; + auy = Cuxx,
x€R, t>0; u(x,0)=1ux), x€R.

@ By a change of variables y = x — at and v(y, t) £ u(y + at, t),
vi=cvyy, Yy ER, t>0; v(x,0)= uo(x), x € R.

Characteristic global properties of the solution u:

@ There is a characteristic speed as in the advection equation,
which plays an important role to the solution, especially when
|a| > c (advection dominant).

@ Along the characteristic, the solution behaves like a parabolic
solution (dissipation and smoothing).
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LClassical Explicit and Implicit Difference Schemes

Classical Difference Schemes and Their Stability Conditions

Classical explicit difference schemes:
[T Ay + a(2h) T Aox] UM = Eh2RULT,
(¢ = ¢, central; ¢ +a277, modified central; ¢ + %ah, upwind).
@ Maximum principle & CT S , h < %
@ L2 strongly stable < CT S and 7 < 2—5

The Crank-Nicolson scheme
T*létUer%_{_a (4h)*1AOX [Ujm+ Uj{n—i—l} =c (2/72)71(5)2( [Ujm_’_UJm_i_l} ’

. . . 2
@ Maximum principle < u <1, h < <.

@ Unconditionally I.? strongly stable.




What Do We See Along a Characteristic Line?

For constant-coefficient advection-diffusion equation:

@ The characteristic equation for the advection part: % = a.

@ Unit vector in characteristic direction: ng = (\/1‘1?, \/ﬁ)

© Let s be the length parameter for the characteristic lines.

Q u _ rad(v)-ng = Ou Qu S @—1—3@
9s & sT\ox ot ) ™ T i \ot  Tax)
o ou 0% o de
@ This yields 25 = Cﬁ' (i.e. along the characteristics & = a, the

solution u to the constant-coefficient advection-diffusion equation

2
9u + a@ = c@ behaves like a solution to a diffusion equation with
Ox Ox?
diffusion coefficient ¢ = 1C =)
+a
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L Characteristic Difference Schemes

Operator Splitting and Characteristic Difference Schemes

For general variable coefficients advection-diffusion equations:

@ The idea of the characteristic difference schemes for the
advection-diffusion equation is to approximate the process by
applying the operator splitting method.

@ Every time step will be separated into two sub-steps.

© In the first sub-step, approximate the advection process by the
characteristic method: TJ}"H = u(x") = u(x; — aj’-”+17'), along

the characteristics.
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L Characteristic Difference Schemes

Operator Splitting and Characteristic Difference Schemes

@ In the second sub-step, approximate the diffusion process with

J’"+1 as the initial data at t,, by, say, the implicit scheme:
m+1 -m m+1 m+1 m+1
ul™ — u(xM) ull =20 4 u -
J J cmtl Jt1 J Jj—1 4+ Tm

T ] h2 J e
© The local truncation error T/" = O(r + h?).

@ Replacing u(x X; M) by certain interpolations of the nodal values
leads to characteristic difference schemes.
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L Characteristic Difference Schemes

A Characteristic Difference Scheme by Linear Interpolation

Suppose X[ € [xj—1, ;) and |>_<’” — xj—1| < h. Approximate u(X")

by the Imear interpolation of u™; and uj" leads to:

+1 +1 +1 +1
Um —aUr — (1 - aur, _ ot U —20m + U
7 - h? ’
where af" = h™ ( —xj_1) € [0,1), or equivalently
(1+2Mm+1)Um—|—1 _ am Um ( )Um +Mm+1(UJ’r{1+ Ujrz—il-l)’

where ,uj’-"H = ch”HT h—?
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L Characteristic Difference Schemes

A Characteristic Difference Scheme by Linear Interpolation

@ T =0(r + 77 ). (u(&") = aful + (1 — aM)u, + O(h?)).
@ Maximum principle holds. (Note o' € [0,1), uj'-"'H > 0.)

. o k(M b M
© Since e ikU—iH1)h — o=ik(a]'h+377) e have

1-af(1—coskh)+iaTsinkh _jk(qmp+amtir)
= J J J J <
Ak 1+4u7 T sin” Tkh € A =1, Wk,

|1 —af"(1 — cos kh) +1iaf sin kh|> = 1 — 2a]"(1 — af")(1 — cos kh).
@ Unconditionally locally IL? stable.

© Optimal convergence rate is O(h), when 7 = O(h).




A Characteristic Difference Scheme by Quadratic Interpolation

Suppose af" = h~ ( —Xxi—1) € [— 2,2] Approximate u(X") by

the quadratic mterpolatlon of u",, u", and u" leads to:
UJ.’"“ ta P14+ oMU — (1 —aol)(1+af yur, + 3 sa(1—aMmur,
T
m+1 m+1 m+1
_ e U 20 U
) h2

Q@ 7"=0(r+ 771h3 4 h?). (quadratic interpolation error O(h%)).
@ Maximum principle does not hold. (Note " € [-3.3])

1—(of )?(1— cos kh)+i " sin kh —1k(a’.”h+a’."+17—)
O M\ = 1+4“m+1 2 1kh J J , |/\k| <1, Vk.

(11 = (a2 — cos kh) +iafsin kh\z =1— (af")’(1 — (&]")?)(1 — coskh).)
@ Unconditionally locally IL? stable.
@ Optimal convergence rate is O(h%?), when 7 = O(h%/?).
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L Characteristic Difference Schemes

Dissipation, Dispersion and Group Speed of the Scheme

In the case of the constant-coefficient, u(x, t) = e~k teik(x—at)

are the Fourier mode solutions for the advection-diffusion equation.
@ Dissipation speed: e~k dispersion relation: w(k) = —ak;
group speed: C(k) = a; for all k.
@ For the Fourier mode UM = ATel%,
2 . .
M = 1 —(a")*(1 — cos kh) +ia]"sin kh e—ik(aj’-"h+a?+17')7 .
1+ 4uj’-"+1 sin? 1 kh

© The errors on the amplitude, phase shift and group speed can
be worked out (see Exercise 3.12).
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Initial and Initial-Boundary Value Problems of the Wave Equation

@ 1D wave equation uy; = a’uy, Xx €I/ CR, t>0.

@ Initial conditions
u(x,0) = uO(x), x el CR,

u(x,0) = VO(x), xelcCR.

© Boundary conditions, when [ is a finite interval, say / = (0,1),

ao(t)u(0,t) — Bo(t)ux(0,t) = go(t), t>0,
ar(t)u(l,t) + Bi(t)ux(l,t) = gi(t), t>0,

where a; >0, 5; >0, a; + 5; #0, i =0, 1.
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Equivalent First Order Hyperbolic System of the Wave Equation

@ Let v=u; and w = —auy (a > 0). The wave equation is

transformed to
o)
+ =0.
wi, a 0| (w .

@ The eigenvalues of the system are +a.

© The two families of characteristic lines of the system

X + at = c,
Ve e R.
X —at = ¢,

@ The solution to the initial value problem of the wave equation:

Lro 0 s
u(x,t):i[u (x+at)—|—u(x—at)]+2a/_t vo(€) d€.



The Explicit Difference Scheme for the Wave Equation

m+1 m—1
Ut —aur s upt L uE 207+ U
o h2
@ The local truncation error:

(77207 — h23%82) — (07 — 2°02)] u" = O(7° + h°).

@ By u(x,7) = u(x O)—i—Tut(x 0) + 172 (x,0) + O(73),
u(x, 1) = u0(x)+71 v (X)+§1/2(u (x4h)—2u°(x)+u® (x—h)+O(T3+72h?).
@ The discrete initial conditions (local truncation error
O(73 + 72h?)), denote v = at/h:

1
UW=u; U =202+ U ) +0-v)U)+7v).

Remark: If an additional term 270252v0(x) is used in (3), then
the truncation error is O(7% + 72h?).
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Boundary Conditions for the Explicit Scheme of the Wave Equation

@ For 6 =0, use the Dirichlet boundary condition of the
problem directly;

@ For 3 #0, say o =1, ap > 0, introduce a ghost node x_1,
and a discrete boundary condition with truncation error
O(h?): um _ ym

1 =1l

ag’U(')"—T:gén.

© Eliminating U™ leads to an equivalent difference scheme with
truncation error O(72 + h) (see Exercise 3.13) at xp:

U™ =205 + g 5 U = (L4 agh) U + g _

. e 0.
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Fourier Analysis for the Explicit Scheme of the Wave Equation

@ Initial value problem of constant-coefficient wave equation.

@ Characteristic equation of the discrete Fourier mode
Uj’" = )\Z’eikfh: )\i — 2\ + 1 = N1? (eikh -2+ e‘“‘h).

© The corresponding amplification factors are given by

1 1, 1
AF =1-27sin? Skh & i2vsin Skhy /1 — 12 sin? - kh.

@ |If the CFL condition, i.e. v < 1, is satisfied, |)\f| = 1l
© there is phase lag, and the relative phase error is O(k2h?),

1— 2

@ Group speed C*(k) = +a, G (k)T = —4 arg A



The -Scheme of the Wave Equation

@ For § € (0,1], -scheme of the wave equation (O(72 + h?)):

Ujm+1 _ 2Ujm & Ujm—l Um+1 _ 2Ujm+1 + anil

2 J+1
=a
2 h2

um, —2Um+um UEEE =R e gt
+(1—26) e hé J=l 4 g 2t ;72 J—1

@ Characteristic equation of the Fourier mode U = Akmeikjh:
A22X+1 = (60222 + (1 — 20)2\, + 012) (eikh 24 e*ik”) .
© The corresponding amplification factors are given by
202 sin? Lkh \/—41/2 sin? Lkh (1 + 12(40 — 1) sin? L kh)
1+ 4012 sin® S kh 1+ 4012 sin® S kh '

Se
AF =1
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IL? Stability Conditions for the §-Scheme of the Wave Equation

@ The L2 stability condition of the #-scheme:
(1-40)° <1, if 6 <
unconditionally stable, if >

Bl D=

@ When the f-scheme is L2 stable, A} = X, [\{| = 1, Vk;

O the relative phase error is O(k?h?), if kh < 1 or m — kh < 1,
there is always a phase lag

! (1 + (126 — 1)v?)k>h? + - - ) :

arg \f = +akr <1 ~ 21

Remark 1: We may calculate the group speed to see how the scheme works on superpositions of Fourier modes.

Remark 2: For many physical problems, the energy stability analysis can be a better alternative approach.
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The Wave Equation and Its Mechanical Energy Conservation

For the initial-boundary value problem of the wave equation:
uge = (3% Ux)x, x € (0,1), t >0,
u(0,t) =0, u(l,t) =0, t >0,
u(x,0) = u%(x), u(x,0)=v(x), xel0,1],

if a > 0 is a constant, it follows from integral by parts, and
1
/ (Utt - (a2ux)x) urdx =0, Ut(Oa t) = ut(17 t) =0,
0
that the mechanical energy of the system is a constant, i.e.

1
1
E(t) £ /0 5 (u? + a*u2) dx = const.

The above result also holds for a = a(x) > ap > 0.
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Variable-coefficient #-Scheme and the Idea of the Energy Method

Let 0 < Ap < a(x, t) < Aj, consider the §-scheme
TR0 = h A [P0 (U + (1-20) UP + 0 UmTY),
where

A_x [32A+X] U = ("”F)Z ( i = Ufn) —(ay)° (Ujm - Uj’il) c
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Variable-coefficient #-Scheme and the Idea of the Energy Method

The idea of the energy method is to find a discrete energy norm
lU™||le = En(U™, U™ 1), and a function S(U™, U™ 1), so that

@ Spi1=Sm="-=351 (S 2 S(U¥, U-"1)) by the scheme;
@ There exist constants 0 < Cy < (i, such that
GoEn(U™, U™ < S(U™, U™ 1), S(UY, U°) < CLEn(U*, U°);

© Thus, the solution U™ of the 6-scheme is proved to satisfy the
energy inequality: Gol|U™||e < Ci||UY|g, for all m > 0.
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Establish ||A_,U™ (|3 — ||A_U™||? by Manipulating the #-Scheme

Remember in the continuous problem, the mechanical energy has a
term fol u? dx, and notice that in the f-scheme the term

1 -1 1
6$Uj’" = (UJ.'"+ = Uj’") = (UJ!” = Uj_m = AftUj’"* — AU

Multiplyi
TP h(u"’+1 — U"’—l) — hA_ UM L A Um
J J Tty =G

on the both sides of the 6-scheme
728207 = k2N [P0 4] (9 Ut 4 (1—20) UM 40 UJ.’”_1> ,

and summing up with respect to j=1,2,--- /N —1,
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L Finite Difference Schemes for the Wave Equation
LEnergy Method and Stability of Implicit Schemes

Establish ||A_,U™ (|3 — ||A_U™||? by Manipulating the #-Scheme

we are lead to

T A UG — 72 A U3
_ 9h_2 <Afx [82A+X] (Um+1 + Um—l)’ Um+1 . Um—1>2
+(1=20)h2 (A [Lp] UT, U — U™,
where ||U||3 = (U, U)3 is the L2 norm of the grid function U and
N—1

1
(U, V)= Ujvjhz/ UV dx.
0

i—1

-
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Summation by Parts and a Discrete Version of (||u:|3): = —(||ux||3):

Corresponding to the integral by parts, we have the formula of
summation by parts

N—-1 N—-1
(BoU VY = b UY—hY Uy,

=i j=1

N—1 N—1

-
Il
=

-,
Il
N
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Summation by Parts and a Discrete Version of (||u:|3): = —(||ux||3):

Thus, the two terms on the right can be rewritten respectively as

—9/772 <8A+X Um+1’ 3A+XUm+1>2—|—0h72 <3A+XUm71, aA+XUm71>2
— 072 (a1 U™ — a4 U™ ),

—(1—20)h"% [{al 1 U™, al, U™
1-20,_ m e m m
= P [HaA (U™ = U5 + [lad (U™ = UM

HlaA (U™ + U™ )3 = [lad (U™ + U™)]3] -

, — (@l UM aA L, U™,
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Sm and the Discrete Energy Norm [|U™||.

The above analysis show that S, 11 = Sy, if we define

Sm — 772 A U3+ 0872 [[|a2 4 UT|3 + [|aD 1 U Y 3]

29

T (a2 4 (U™ + U Y3 — [lad k(U™ — U]

Notice that
a4 U™|[5 + [lad 1, U™ M3 =

1 m m— m m—
5 1122 (UT + UM D3 + [|ad (U™ = Um D3]

we can equivalently rewrite S, as

AN 1| Ayx
tym —l—HaJr

2
U . Umfl)
2

(Um+ Umfl)

2
401 Aoy
su| n
T
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Establishment of the Energy Inequality for 0 < 0 < 1/4

If 0 <6 < 1/4, denote # = 7h™1, by 0 < Ay < a(x, t) < A; and
|al 1 (U™ = U H)|3 < 4AT| UM — UM Y2 = 4AT[|A UM%,

we have
A_ 2 A2 || Ak 2
Sm > (1— A1 —460)7?) Lum|| 422 || =X (um + umL
, 4 h 2
Furthermore, if 0 < 0 < 1/4, we have
A_ 2 A2 | Ay 2
S < H SUM| 4 S (| SR U+ U0
T 5 4 h 5
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Establishment of the Energy Inequality for 0 < 0 < 1/4

Define

2 2

)

h 2

A
my2 __ tym
jum = |24

AN _
[ n vy

2

then, we have

UM% < K| UM%, Vm>0 if Ai\/(1—460)5 <1,

where K1 = max{1, A?/4}/ min{1 — A3(1 — 40)?, A3/4}.
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Establishment of the Energy Inequality for 1/4 <6 <1

If1/4<60<1,by0< Ay <a(x,t) <Az, we have

Ay 2 Ao, _1 2 A+x —1 ?
> Y m m _ m
sm_‘T +3 (U U )2(49 1) .y )2,
Ay P A2 () A 2 Ay 2]
slstU +=1 H U+ U0) +(49—1)H Xyt — U9
T , 4 h z h 2
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Establishment of the Energy Inequality for 1/4 <6 <1

Thus, if we define the energy norm || - ”E(e) as
AN 2 AN 2 Ay 2
U™l = H U+ ‘ (UL Un T+ | =T
2 2 5

where [a]" = max{0, a}, then the following energy inequality
holds:

U™y < KallUMIZ gy, Ym>1.

where Ky = max{1, A2/4}/ min{1, A2/4}.
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Summary of the Stability of the #-Scheme for the Wave Equation

The 6-scheme for the wave equation (0 < 6 < 1):
PRRUP = W20 [0 (0 U+ (1-20) U + o U

The energy norm || - [[g(g) :
yANS 2 AL, 2 A, 2
07 = | Som| +| Sgzwm + um )| epso-n | Sexm - o
7 2 h 2 h 5

The energy norm stability: HU’”||%:-(6) < K(0)||U1Hi-(0), Vm>1,
{(1 —40)A%2 < 1, if 0 < 1;

unconditionally stable, if 8 > %,

where K(0) = max{1, A3/4}/ min{1 — AZ[1 — 40]+72, A3 /4}.



The First Order Hyperbolic System and Its Difference Approximation

© Letu=(v,w)" with v =u; and w = —au, (a > 0 constant).
The wave equation is transformed to u; + Auy, = 0, or

MR

+ =0.
w], a 0f (w .

@ Expanding uj’-71+1 at (xj, tm) in Taylor series

1 m
qu_n—l—l = [u +7us+ 27'2utt} + 0(7%),

J
@ Since uy = —Auy, uy = A2uy,
1 m
ultt = [u — 7 Au, + 2T2A2UXX:| + 0(7'3).
J
@ Various difference schemes can be obtained by replacing the
differential operators by appropriate difference operators.
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The Lax-Wendroff Scheme and Its Stability Analysis

The Lax-Wendroff scheme (denote 7 = 7 /1)

1 1
U = Uf" = o7 AUJL = UL 4 S72A% (UL, — 2U77 + U]

@ Local truncation error O(72 + h?).
v1] ..
@ The Fourier mode:  Uj" =\ [W] elih.
© The characteristic equation:
M| V1 = (1= 207 sin? 2k 42 — imsinkh A ) | ¥

lw) T 2 w|’
Q@ M\e=1-—212sin® SkhLivsinkh.  (ehere v = a5 = ar/h)
O [M2=1-421-1?)sin*Lkh <1« |v] <1« L2 stable.

@ Dissipation, dispersion and group speed are the same as the &
Lax-Wendroff scheme for the scalar advection equation.
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The Staggered Leap-frog Scheme

@ The staggered leap-frog scheme:

VAR VA N P T
J J +a 2 2:07(<:>5tvjm+’/5xvvjm:0)

T h
m+1 1 1
Wik W YRV s gt
a = i v = .
T * h (& 0W )+ iy =0
VI = 15U W = —ahtt6,Um,, = [82 - 0262 UP =0
fi t 1—_a +1, [t_V x} =V
t | | | |
(@] t t t
for W ‘ ‘ ‘ ‘
L L [ R L [
m+1 i i —— i
x for V e B
" | S |
F-———————-= - (it Pl Sl il -
I I I I
m-1 T T T T
R I P I A [
I I I I
L L L L
-1 i j+1 X




The Fourier Analysis of the Staggered Leap-frog Scheme

@ The Fourier mode for the staggered leap-frog scheme:
1

m—3 v,
2
\/j = )\km — Vk 1 eik‘jh (where Vj and W are real numbers.)
wm, We™izkh ’ T |
A K€
J=2

@ The characteristic equation:
M—1  i2usinilkh
2\vsinskh A —1

Vi
Wi

@ A2 —2(1—2v2sin? Jkh) Ak + 1 = 0. (Exactly as (3.5.18))

@ L2 stable & |v| < 1. There is no dissipation. If |v| < 1, there
is a phase lag, and phase error is O(k?h?).

@ Nothing special so far.
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Local Energy Conservation of the Wave Equation

@ The mechanical energy of the system on (x, x,):

xr 11 1
E(X/,xr;t)_/ E(X,t)dxé/ [2v2(x,t)+2W2(X,t) dx,

1 X|

@ The only external forces exerted on (x;, x,) are

—a%uy(x;, t) = aw(x, t) and a?ux(x;, t) = —aw(x;, t).

© The local energy conservation law (recall v = u;):

dE it
(thxr') = —av(x, t)w(x, t) + av(x, t)w(x, t).
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Local Energy Conservation of the Wave Equation

Equivalently,

[; v2(x,t) + %w2(x, t)] + [av(x, t)w(x, t)], = 0;

r/ Tl e — (5o ) dx]:/[Et—f—f(v, k] e, Do = B
ow w

where E(x, t) = (v3(x, t) + w?(x, t)) is the mechanical energy of
the system, and f(v, w) = avw is the energy flux.

We will see that the staggered leap-frog scheme somehow inherits
this property.
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How Does the Discrete Mechanical Energy Change?

@ The average operators o and oy:
m 1 e 1 pde 1 ML ekl
oV, :5(\/1. iy 2), axvjézzi(v. F 1V 2).
@ Then, the solution of the staggered leap-frog scheme satisfies:

o 5 ()| v o) Gwpm) =0,

I [} T I

ofor W  mu : R E— 1
Y N P N A JEEY [

| 6! | 3 |

" | ks 12 |
x for V R N P A

m-1 T T T T

I I I I




The Enclosed Path Integral of the Discrete Kinetic Energy fé)wf” %Vz dx
J

@ The control volume wf” is enclosed by the line segments
connecting the nodes j1, jo, j3, j4, 5. J6 = Jo (as shownin figure).
e Calculate —fawm %V2 dx by applying the middle point
J

—

quadrature rule on three broken line segments jojij2, jojsja
and jajsje, yields

ofor W s ; ; ‘4 ;
x for V e AR e I .
T T
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LEquivalent 1st Order System of the Wave Equation
L Local Energy Conservation of the Staggered Leap-frog Scheme

L2 dx

m 2

The Enclosed Path Integral of the Discrete Elastic Energy f@w

J

o Calculate — [, n» 3 W? dx by applying the middle point
J

quadrature rule on three broken line segments ji1joj3, j3jajs
and jsjej1, yields

[, 2= gk (war) gh () = 3 (i) ]

t | | | |
. . . .
L A S [
I [} T I
ofor W s ; ; ‘4 ;
e SO AR S PSRN SRR
I 6‘ I 3 I
" l T 2 l
x for V RN O B R B
I I I I
m-1 T T T T
I ]
l l l l
-1 i i+ X
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The Enclosed Path Integral of the Discrete Energy Flux faw.m aVW dx
J

Calculate faw!" aVW dx by applying the numerical quadrature rule
J

on six broken line segments j;ji+1, i = 0,1,2,3, 4,5, using node
values of V and W on the broken line segments, yields

VW dt = Lar [V iwm, 4 ymtiyym oy ymE yme
ama t—iar i j+%+ 41 j+%+ 1 Wi
)

ML omi1 | mEd m m=% vm
__QT{VJ WY ZWJ—%—’—VJ ZWJ—%}
m m m+3 m+3
= ar [(o0v7) G + (eewT3) (V7))
o for W A N 1,,36,:‘* ,,,,,, Lo
- T R
I T T2 [
x for V ot ! 1 [ 1




Finite Difference Methods for Hyperbolic Equations
LEquivalent 1st Order System of the Wave Equation
LLocal Energy Conservation of the Staggered Leap-frog Scheme

The Discrete Local Energy Conservation

Combine the above three equations, we obtain

1 1
/ {aVWdt— (v2+ W2) dx] =0.
8wf 2 2

This is the discrete version of the local energy conservation law

[F(v, w) dt — E(x, t) dx] = / 12 i ] (o, ) e e =

ow
t | | | |
T T T
o for W
m+1 I I ‘e I
| | 5 | |
i i el et Mt Sert el Sty
| 6L L |
x for V " ‘ ? e ‘
T O A TP A R 1o
I I 1 I I
m-1 T
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I I I I
L L L L
1 j j*1 x
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Thank You!
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