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Lecture 1.
Basic existence and uniqueness results for deterministic and stochastic 2–d

and 3–d Navier–Stokes equations.

We first discuss some background knowledge as well as recent progresses in 2–d and
3–d Navier–Stokes equations. We then show basic existence and uniqueness results for
deterministic and stochastic 2–d Navier–Stokes equations.
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[8] Jia, H., Šverák, V., Local–in–space estimates near initial time for weak solutions of
the Navier–Stokes equations and forward self–similar solutions. Inventions Math-
ematica, Online. arXiv:1204.0529
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Lecture 2.
Existence and uniqueness of invariant measures for 2–d hydrodynamical

systems subject to degenerate random forcing.

We present a model problem in finite dimensions showing the existence and unique-
ness of invariant measure for general white–noise driven stochastic systems with hy-
drodynamical background. We will also mention the result as well as difficulties for
infinite dimensional systems corresponding to general semilinear evolutionary SPDEs.
Application of the theoretical method includes hydrodynamical systems such as the 2–d
Navier–Stokes system, the 2–d Boussinesq system, and a 2–d Euler system subject to
fractional dissipation.
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Lecture 3.
Inviscid limit and related problems in turbulence.

Asymptotic problems of sending the viscosity ν → 0 will be discussed in this lecture.
In particular, we discuss the application of de Giorgi–Nash–Moser iteration method to
stochastic Navier–Stokes equations. We show the corresponding invariant mesure is
concentrated in L∞ in vorticity space. The relationship between inviscid limit and
turbulence will be explained.
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Lecture 4.
The 2–d deterministic and stochastic Euler equations and related problems.

The L∞–well posedness (in vorticity formulation) of 2–d deterministic Euler equa-
tions will be discussed. Recent results in singularity formation in the sense of double
exponential growth of the gradient of the vorticity at the boundary will be mentioned.
The area–preserving scheme of adding the stochastic noise to the equation will be con-
sidered. Well–posedness results in the case of stochastic equation will also be discussed.
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Lecture 5.
Motion of incompressible ideal fluids from group theoretic and Hamiltonian

dynamical point of view.
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Classical mechanics from group theoretic point of view will be discussed, including
the motion of incompressible ideal fluids. The Hamiltonian formulation of Euler equa-
tions will be presented. If time permits, we will also discuss finite dimensional model
problems and some open questions related to 2–d turbulence.
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