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Abstract. We consider a continuous-time, ergodic Markov process on a large continuous or
discrete state space. The process is assumed to exhibit a number of metastable sets. Markov state
models (MSMs) are designed to represent the effective dynamics of such a process by a Markov chain
that jumps between the metastable sets with the transition rates of the original process. MSMs
have been used for a number of applications, including molecular dynamics (cf. [F. Noé et al., Proc.
Natl. Acad. Sci. USA, 106 (2009), pp. 19011-19016]), for more than a decade. The rigorous and
fully general (no zero temperature limit or comparable restrictions) analysis of their approximation
quality, however, has only recently begun. Our first article on this topics [M. Sarich, F. Noé, and
Ch. Schitte, Multiscale Model. Simul., 8 (2010), pp. 1154-1177] introduces an error bound for the
difference in propagation of probability densities between the MSM and the original process on long
timescales. Herein we provide upper bounds for the error in the eigenvalues between the MSM and
the original process, which means that we analyze how well the longest timescales in the original
process are approximated by the MSM. Our findings are illustrated by numerical experiments.
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1. Introduction. Recent years have seen the advance of so-called Markov state
models (MSMs) as low-dimensional models for ergodic Markov processes on very
large, mostly continuous state spaces exhibiting metastable dynamics [1, 2, 3, 4, 5].
Recently, interest in MSMs has drastically increased since it could be demonstrated
that MSMs can be constructed even for very high-dimensional systems [3] and have
been especially useful for modeling the interesting slow dynamics of biomolecules
[6, 7, 8,9, 10, 11] and materials [12] (there under the name “kinetic Monte Carlo”).
Metastable dynamics means that one can subdivide state space into metastable sets
in which the system remains for long periods of time before it exits quickly to another
metastable set; here the words “long” and “quickly” mainly state that the typical
residence time has to be much longer than the typical transition time so that the
jump process between the metastable sets is approximately Markovian. An MSM then
just describes the Markov process that jumps between the sets with the aggregated
statistics of the original process.

In this contribution we will use the approach to MSMs via Galerkin discretization
of the transfer operator of the original Markov process as developed in [4, 3, 2, 1] and
recently addressed in detail in [13, 14]; here “transfer operator” just refers to a gener-
alization of the transition matrix on finite discrete state spaces to general, e.g., contin-
uous state spaces. In this approach the low-dimensional approximation results from
orthogonal projection of the transfer operator onto some low-dimensional subspace.
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For so-called full partition MSMs this subspace is spanned by indicator functions of
n sets that partition state space. Then the Galerkin approach has a direct stochastic
interpretation since the resulting n-dimensional approximation simply exhibits jumps
between the sets with aggregated statistics as mentioned above. However, in many
cases indicator ansatz spaces do not allow good approximation quality to be obtained
for reasonably small numbers of sets [11]. Therefore other ansatz spaces, e.g., fuzzy
ansatz spaces, have also been discussed [15, 13, 14].

MSMs are aiming at capturing the essential dynamics of the underlying Markov
process on its longest timescales. These longest timescales are endowed in the domi-
nant eigenvalues of the transfer operator T' of the underlying process. Therefore the
eigenvalues of the transfer operator associated with some MSMs have to be good ap-
proximations of the dominant eigenvalues of T'. Despite the growing interest in MSMs
there still are only a very few rather limited rigorous results on the eigenvalue error
associated with an MSM (one finds some asymptotic results in [5, 16, 17, 4], but these
are of very limited algorithmic use since they depend on a smallness parameter and
are valid in the limit of this parameter going to zero, i.e., in the asymptotic regime).
Herein we will give rigorous results on the eigenvalue error in the form of upper bounds
that hold beyond the asymptotic regime, do not assume the presence of a spectral gap,
and even have an interesting consequence for the algorithmic construction of MSMs.

The remainder of the paper is organized as follows. In section 2 we introduce
the setting, define transfer operators, introduce full-partition MSMs, and relate them
to Galerkin projections. Then in section 3 we introduce the milestoning process,
relate it to transition path theory, and analyze its transition statistics. Section 4 then
discusses Galerkin projection in general and gives rigorous approximation results for
eigenvalues and related timescales. Finally, the results are illustrated by numerical
experiments in section 5.

2. Setting the scene. We consider a reversible Markov process (X;)ier on a
discrete state space S and its associated family of transition matrices (P )ien with
entries

(2.1) pe(z,y) = P[X; = y| Xo = 2].

We restrict our considerations to discrete state spaces just for simplicity of presen-
tation; all statements made in the following can be generalized to continuous state
spaces as well (see Remark 2.1). In the following we always assume that (X;) has a
positive and unique invariant measure p given by

(2:2) > vl y)ule) = ply).

Now we introduce the family of transfer operators (T}) that describes the propa-
gation of densities in L,

(2.3) (TN Wuly) =Y f@)pi(a,y)u(z)

and set T := T for discrete time.
In analogy, we define on Li

(2.4) (LHWuly) =D Uz, y) f(@)p),
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where
— 6
(2.5) l(z,y) = lim 242 ) = Sy,
t—0 t
and for the discrete case
(2.6) Lq=T—-1d.

Since (X;) is a reversible process, it means that the detailed balance holds, i.e.,

(2.7) w@)l(z,y) = p(y)l(y, x),

and that T and L are self-adjoint operators in L?..
In the following we will only consider the scalar product in L
and the 1-norm,

(28)  (f.9) = f@g@ul@), NIP=(L0 =D 1f@)u(),

2

11> the induced 2-norm

and we will also call a function f > 0 a density in L2 if || f]l; = 1.
In the theory of building standard MSMs one chooses a partitioning of state
space, i.e., sets Aq,..., A,, such that

n
(2.9) AinA; =0, i#j  |(JAi=S
i=1
and a certain lag time 7 > 0. Then one can compute the transition probabilities
and use the corresponding Markov chain on the index space {1,...,n} to approximate

the switching behavior of the original dynamics. The conditional probability in (2.10)
is taken with respect to (w.r.t.) equilibrium paths; i.e., the conditioning by Xy € 4;
simply means that X is distributed according to the invariant measure restricted to
A;. The approximation quality of such MSMs is discussed in [11]. A key feature is that
the transition matrix with entries p(i,j) comes out to be the matrix representation
of the projection Q7@ of the transfer operator where @ is the orthogonal projection
onto

D =span{la,,...,14,}.

As outlined above, we will not restrict our attention to full partitioning of state
space. Instead, we will analyze general Galerkin projections Q7@ of the transfer
operator where projections @@ onto step-function spaces are a special case.

Remark 2.1. On continuous state space the transfer operator Ty : L7, — L7, is
defined via

/ T f (y)u(dy) = / P[X; € C|Xo = z]|f(z)u(dx) for all measurable C' C S
c g

for the general case where the transition function p(t,z,C) = P[X; € C|Xy = «] as
well as the invariant measure may contain singular in addition to absolutely continuous
parts. Then all of the above and subsequent sums have to be replaced by respective
integrals. Further details, in particular regarding the respective generators for, e.g.,
diffusion processes, can be found in [4].
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3. Milestoning and transition path theory. We will now follow the approach

first introduced in [14] and define sets C1,...,C, C S, which we will call core sets,
such that
(3.1) CinCj =0, i#j.

This means that, unlike in the standard MSM, we now relax the full partition con-
straint (2.9). We denote the region that is not assigned to any core set by

C=5\ Uck
k=1

For analyzing the switching dynamics of the original process between the core sets we
introduce the milestoning process (X3),

(3.2) Xi=ie X, € Ci, with o(t) = sup {XS Sy Ck} ;
s<t k=1

i.e., the milestoning process is in state i if the original process came last from core
set C; cf. [18].

Now let ¢;(x) denote the probability that the process (X;) will visit the core set
C; next, conditional on being in state x at time 0. ¢; is usually referred to as the
forward committor; for reversible processes the forward committor is identical to the
backward committor. As, for example, in [19], one can derive that g; is the solution of

(Lgi)(z) =0 Vxedl,
(3.3) gi(z) =1 Vaxe C;,
qi(x) =0 VzeCjj#i.

In the time-discrete case one has to replace £ by the discrete generator £4. Moreover
one can show that (3.3) has a unique solution under the assumption that the invariant
measure is unique and not vanishing on all core sets.

When observing a time-discrete process (X, ), we can define the transition matrix
P of the milestoning process (X,,), with entries p(i,5) = P, (Xn41 = j|X,, = ). Since
in general the milestoning process will not be a Markov process, we cannot assume
that it is essentially characterized by its transition matrix P; this also holds true for
the generator Lq whose definition therefore should be understood as a formal one at
this point. Later, we will see that it is also not the crucial point whether the dynamics
of the milestoning process is Markovian; for a discussion of whether the state-to-state
dynamics of the original process can be reproduced by the coarse grained process with
transition matrix ]5, see Remark 4.2.

Note that the special case where we choose core sets C; = A; that form a full
partition of state space due to (2.9) is just a special case. Then the definition of
the milestoning process as in (3.2) will reduce to the usual jump process between the
sets A;, that is,

(3.4) X, =i Xy € A,

and the committors from (3.3) will be given by the characteristic functions ¢; = 1 4,.
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We will now provide representations of the discrete or time-continuous generator
of the milestoning process, respectively, in terms of the original generator and the
committors. Subsequently the term generator of the milestoning process will be used
to refer to Ly = Id— P or L, respectively, being defined via the transition probabilities
p(i, j) or corresponding transition rates of the milestoning process; see [13] for details.
As mentioned above, the milestoning process itself in general does not have a true
generator.

The following theorems from [13] give us the entries of the discrete generator.

THEOREM 3.1. For a time-discrete process (X,), the entries of the discrete
generator Ly of the milestoning process (Xn) are given with

(3.5) la(i, j) =

’7£d i/
il 400 £adi)

THEOREM 3.2. For a time-continuous process (Xy), the entries of a generator L
defined by the transition rates of the milestoning process (X¢) are given with

(3.6) i, j) = ﬁ(ﬁqi,qﬁ.

First we note some properties of the milestoning generator L.
LEMMA 3.3. Let (X;) be a reversible Markov process with unique invariant mea-
sure . Then the milestoning generator L has the invariant measure

i)=Y ai(@)u()

and the according operator in L*(j1),

13, 5)v(i) (i),

(Lo)(7)in() = ]

is self-adjoint. Therefore it also defines a reversible jump process.

4. Galerkin approximation. We will now discuss Galerkin projections of
transfer operators. The goal is to derive a time-discrete Markovian approximation
on finite state space. If (X;) is a reversible, time-continuous Markov process with
generator £, we will fix a lag time 7 > 0 and consider the transfer operator

(4.1) T, = -7
The eigenvalues of the transfer operator T, will be given by
(4.2) Xijr = M7,

where A; < 0 is an eigenvalue of the generator £. In the following we will just write
T := T.. Now we want to approximate the dynamics of (X;) by its projection to
some low-dimensional subspace D in terms of density propagation. Therefore we will
denote the orthogonal projection onto D by @ and compare the operators T and
QT Q. Subsequently we will only consider subspaces D C L2 such that 1 € D, i.e.,
the invariant measure with density 1 in L2 is still contained i 1n D.
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4.1. Generalized eigenvalue problem. In this section we consider subspaces
D = span{qi,...,qn} with 1 € D. The basis functions ¢; are assumed to be lin-
early independent, nonnegative functions, do not need to be orthogonal w.r.t. (-,-),
and are not necessarily identical with the committor functions discussed above. The
orthogonal projection @) onto D can be written as

(4.3) m—}:s (v, 45)ai,
4,j=1
with Sij = <Qia qj‘>.
The following theorem tells us more about the structure of the operator QT'Q.
THEOREM 4.1. Let \ be an eigenvalue of the operator QTQ. Then \ solves the
generalized eigenvalue problem

(4.4) Tr = AMr,
with

v (@ Tgj)
4.5 Tij = ———,
“5) S10)
i(i) = |||, and the mass matriz

(9i 43)

4.6 M;j = ——
o) T

Proof. Since

- iaT j iy Id+ L j 7
(4.7) Ti; = <qA _qj> _ da( + i) _ (La)ij + Mij,

fi(2) f1(2)

equation (4.4) is equivalent to
(4.8) Lgr = (A —1)Mr.
Let ¢ be an eigenvector of QT'Q w.r.t. 5\, ie.,
QTQd = Ao,
& QL +1d)Q¢ = Ao,
© QLQS = (A—1)¢.
This is equivalent to

(QLiQG, ;) = A =1){(¢,q;) Vi=1,....n
& (LaQdyqi) = (A —1D){¢,q;) Yi=1,....n

A ZS ¢,Qk Edean>—(A—1)<¢,qi> Vi=1,...,n.

7,k=1

(4.9)

Introducing
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equation (4.9) can be written as

n

(4.10) Z (Lagjrai) = A=1)(,q:) = A=1) Y Si; 83 () = (A=1) Y Sijr;.
= j=1

J,k=1

Dividing both sides by i(i) completes the proof. O

Thus we can compute the eigenvalues of the projected transfer operator QTQ
by solving the generalized eigenvalue problem (4.4). Whenever we choose the basis
functions ¢; to be the committor functions, then the entries Tij and M;; have a
stochastic interpretation; cf. [13] for details. When the basis functions are chosen

such that
(4.11) gi(z) = 1¢,(x),

the sets C; have to form a full subdivision of state space and (2.10) gives the matrix

representation of QT'Q). Moreover, because of orthogonality of the stepfunctions, we
then have

s 1. =4

(412) ]\4-%7 — <QZ7qJ> — ) Z -].’

0, i+#j.

(i)

4.2. Approximation of dominant eigenvalues. Our question is, how well do
the eigenvalues of the projected transfer operator approximate the original eigenvalues
of T'? Because of self-adjointness of the transfer operator we can use the results from
[20, Theorem 2.2] to show the following.

THEOREM 4.2. Let 1 = X g > Ay > -+ > A1 be the m dominant eigenvalues
of T; i.e., for every other eigenvalue X\ it holds that A < \p—1. Let ug, U1, ..., Um—1
be the corresponding normalized eigenvectors, D C Li a linear subspace with

(4.13) 1eD, dim(D) =: n > m,

and Q the orthogonal projection onto D.
Moreover, let 1 = /\0 > )\1 > e > /\m 1 be the dominating eigenvalues of the
projected operator QT'Q. Then

(4.14) E(0) = _max 1|>\1-—;\i|§/\1(m—1)52,

where

5= max Qb

i=1,....m—1

is the mazximal projection error of the eigenvectors to the space D.
Proof. The eigenvector of T w.r.t. the trivial eigenvalue Ay = 1 is known: ug = 1.
Therefore

(415) uyg € D = QUO = Ug.

This implies that ug is also eigenvector of QT'Q w.r.t. its largest eigenvalue Mo = 1.
Now define

(4.16) o = (v, ug)uo,
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set again II;- = Id — Iy, and consider the operator TIlg = T — Iy. Since T is
self-adjoint, its eigenvectors ug, u1, ... are orthogonal, which implies that

THOL’U,J = TUj - Ho’u,j = TUj = )\juj Vi >0

and THgug = 0; that is, the operator Tl has the same eigenvalues with the same
corresponding eigenvectors as T, only with the eigenvalue A\g = 1 changed to a zero
eigenvalue.

Moreover,

IoTTly =0, and therefore TTlg = I TIl;,

which implies self-adjointness of the operator T113. Now set U = span{ug, ..., Un_1},
and let II be the orthogonal projection onto U. Then the operator IITTI3 1T has ex-
actly the eigenvalues \q,...,\,,—1 and an additional eigenvalue zero, which corre-
sponds to the eigenvector ug.

From (4.15) it follows that QIIyQ = IIy and hence

QTTI;Q = QTQ — Tl

The same argument as above shows that the operator QTH(J)-Q has the same spectrum
as QT'Q, only with the corresponding eigenvalue of ug changed from A\g = 1 to zero.
Using the results from [20, Theorem 2.2] we find for the error (4.14)

(4.17) E(0) = _max |- Ail < (M = Amin( ) max sin?(0;(U, D)),

1=1,...,

with © = (U, D) = {0y, ...,0m_1}, a vector of principal angles between the sub-
spaces U and D. Apin(w+p) is the smallest eigenvalue of the operator ZT'Z, where Z is
an orthogonal projection on the space U + D. In our case this means Ayinw4p) = 0.
Let 0;(A) and A;(B) denote the ith singular value of operator A and ith eigenvalue
of operator B, respectively. The principal angles are defined as cos(6;) = o;(QII).
Moreover, the definition of leading singular values yields

(4.18) o?(QI) = A;((QI)*QII) = A;(TIQM), i=1,...,m—1,

where (QII)* denotes the adjoint of (QII) in Li, in which sense Q*Q = @ also holds.
We get

(4.19)  sin®(8;) =1 — cos?(6;) = 1 — A;(IQTT) = A,;(TT — TIQTI) = A;(TIQ*1I).
As in (4.18),
(4.20) A(IQH) = o (Q*IL) < [|Q1T|1%.

Now let v, ||v|| = 1 be arbitrary. If we define & € R™~! as

’[)j=<’U,Uj>, j:l,...,m—l,
and denote the usual 1- and 2-norms on R™~1 by || - ||; and | - ||2, respectively, we
find immediately that
m—1 m—1 1/2
@21) > v,u)| = olh < Vm=T|[olla = vVm =T | > (v,u)’ |  <vVm-T1.
i=1 =1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/15/15 to 162.105.68.31. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EIGENVALUE ERROR OF MARKOV STATE MODELS 69
Since Q1 ug =0,
m—1

m—1
Q1| = (v, 1) Qg || < D 1w, uy)|1Q )
7=1

—

<

(4.22)

3

IN

[(v,u;)]6 <vVm—1-4.

1

J
Combining (4.19), (4.20), and (4.22), we obtain
(4.23) sin?(6;) < [|Q* |2 < (m — 1) 6%

Putting everything together gives (4.14). d
Remark 4.1. Inserting (4.2) into (4.14), we get the lag time—dependent eigenvalue
estimate

(4.24) E(r,0)= _max |\~ i < eMT(m—1) 62,

1=1,...,m—

where ();) are the dominant eigenvalues of the transfer operator T, and (\;) the
dominant eigenvalues of the projection QT Q.
Since Ay < 0,

(4.25) E(r,0) -0 for 7 — oo,

which stems from the asymptotic convergence to the invariant measure. Furthermore,
for the relative eigenvalue error we have, at least for the first nontrivial eigenvalue,

(4.26) =M (m—1) 62,
A1

from which we see that by decreasing the maximal projection error we will have control
even over the relative eigenvalue error.

Remark 4.2. In [11], we analyzed how well the state-to-state dynamics of the
original process with transfer operator 1" can be approximated by the coarse grained
process with transfer operator Q7'QQ. An upper bound for the propagation error
E(k) = |QT*Q — (QTQ)¥|| is provided that shows that, e.g., maxy F(k) is small if
the projection error ¢ and the additional constant n = exp(—7|A,, — A1|) are both
small. Thus, the question of whether the state-to-state of the original process can be
approximated well can be discussed independently of whether the milestoning process
is Markovian or not. Furthermore, whenever E(k) is small, all errors in computing
time-correlation functions will be small also; see [11] for details.

Remark 4.3. The above result does not require any specific assumptions about
spectral gaps or comparable quantities. Since this may seem strange we want to add
two comments: First, there are a variety of results for metastable processes that show
that the existence of a spectral gap (that is, the existence of a group of dominant
eigenvalues which are separated from all the other ones by significant interval without
eigenvalues) leads to a small projection error d, for example, for diffusion processes
in multiwell potentials; see [21, 16, 17]. Second, there are also cases with small §
for original dynamics with wide spectrum without any significant spectral gaps [6].
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This frequent observation is most easily illustrated by the 3-state Markov chain with
transition matrix

l—-a « 0
P = 1/2 0 1/2 ,
0 a 11—«
with some a € (0,1). Its eigenvalues are A = 1,1 — o, —« with a clear Perron

cluster and a spectral gap for « close to 0 and no gap for a closer to 1. We have
p=1/3-(1,1,1) and us = /3/2- (1,0, —1). With core sets C; = {1} and Co = {3}
we easily compute Qu; = wy such that § = 0 for m = 2 independent of «. In fact,
QT (@ has the matrix representation

(1 1)

with eigenvalues A= 1,1 —a.

Remark 4.4. As outlined in the introduction we are mainly interested in build-
ing MSMs for metastable processes. Thus it is of interest whether the existence of
metastable sets may induce a small projection error §. Let us first consider the simple
situation of a reversible finite state space Markov chain with two disjoint metastable
sets A and B. Metastability of A and B is related to the expected return time to
M = AU B if starting in the transition region between A and B,

R= %%E(T(M)IXO =),

and to the expected transition times between A and B,
Wag =E(7(B)| Xy € A), Wga =E(r(A)| Xy € B),

where 7(C') denotes the first entry time into set C. Following [5] we call A and B

metastable if
r—maux{i i} <1
Wap Wpa '

For this and more general situations [22] provides an upper bound on ¢ which is
small as long as 7 is small such that the core sets are metastable sets. This shows
that metastability implies small projection error as long as the core sets are chosen
appropriately.

Our next question is, how well do the eigenvalues of the projected generator QLQ
approximate the original eigenvalues of L7 Because the generator L is self-adjoint and
its spectrum o (L) is nonpositive, setting A = ald — £ with an arbitrary scalar a > 0
such that « € o(L) defines a positive definite, self-adjoint operator that has the same
eigenvectors as £. We will see that we need the scalar product induced by A in L;Zw
being defined via

(u,v) 4 = {u, Av).

We can use different results from [20] to show the following.
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THEOREM 4.3. Let 0 = Ag > Ay > -+ > A,,,_1 be the m largest eigenvalues
of L; i.e., for every other eigenvalue A it holds that A < Ay,—1. Let ug,u1, ..., Um—1
be the corresponding normalized eigenvectors, D C Li a linear subspace with

(4.27) 1eD, dim(D) =: n > m,

Q 4 the orthogonal projection onto AY2D w.r.t. (-,-) (see below for details), and Q the
orthogonal projection onto D w.r.t. (-,-). Moreover, let 0 = Ao > Al > > Am,l
be the m dominant eigenvalues of the projected operator QLQ.

Then we have that |A;| > |A] for i =0,...,m — 1, and for every positive scalar
€ the following estimate holds:

Ai 1
(4.28) Ep = max % <(1+¢€(m—1)0%,

where

da= _max [Qjull
m—1

with A = e|A1|1d — L, is the mazimal projection error of the eigenvectors to the space
D w.r.t. the scalar product induced by A.

Proof. Set A = ald — L for some « > 0 such that o & o(L). The nonpositive
eigenvalues A € (L) of £ induce positive eigenvalues A4 = o — A of A with identical
eigenvectors. Therefore the eigenvalues 0 < o = Ay < A < -~ < A2 | of A
are associated with the largest eigenvalues of £, and U = span{ug, ..., Up,—1} is an
A-invariant m-dimensional subspace associated with the smallest eigenvalues of A.

Let IT be the orthogonal projection onto U w.r.t. (-, -), and let @ be the orthonor-
mal projection onto D, again w.r.t. (-,-). Then the m smallest eigenvalues of QAQ
are o = A < A <o < AA | with A | =a — Ay,

Using the results from [20, Theorem 2.5], we find

A_RA
(4.29) max |AA7AA| < m?xsin2(9i7A(U, D)),
with ©4 = ©4(U,D) = {00, 4,...,0m—1,4}, a vector of principal angles between the
subspaces U and D w.r.t. (-,-) 4. Furthermore one finds there that 0 < AZ < A#,
from which it immediately follows that |A;| > |A;].

Let us again assume that the subspace D is given by D = span{qi, ..., ¢}, where
the ¢; are linearly independent and not necessarily orthogonal functions.

According to [23, Theorem 2.9] the values sin?6; 4 (U, D) can be computed as
follows: Let A'/2 denote the square root of A, and consider the subspaces AY/2U =
span{ui, ..., um_1} = U and AY/2D = span{A'/2qy,..., AY?q,}. Then

sin? 0; 4(U, D) = sin® 0;(AY?U, Al/QD)7

where the angles 6;(A'Y/2U, AY/2D) are defined via the original scalar product (-,-)
and can be computed as in the previous proof.

Using the same tricks as in the previous proof and analogous arguments, we thus
get

(4.30) sin?(0; 4) < (m —1) - 6%,
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where 04 = max; ||Q4u;||, with Q4 denoting the orthogonal projection w.r.t. the
original scalar product onto A/2D, i.e.,

Qav = Z(S_Zl)ij<Al/QQjaU>A1/2qm Sai; = (AY2q;, AY2q;) = (qi, q;) -
ij

Putting everything together gives
(4.31) . max # <(m-—1)-0%.

Furthermore we have
11 1
A AL T —a/Al
However, all the while our positive scalar o has been arbitrary, so that

= ¢ L@@
A~ Ay A;

is some arbitrarily small positive scalar with

111
AL A 1 +€

(2

Putting this and [A2 — A2| = |A; — A;| into (4.31) finally yields (4.28). O
Remark 4.5. Starting with

Qav =AY (51 ")ijla, AP0)ai,  Saij = (g a5)
j

we can use the orthonormal projection onto D w.r.t. (-,-) 4,

Qav =Y (S3")ij{a5 v adi,

j
to get Qau; = |A3—4|’1/2A1/2QAuj, and thus
Qs = (A7) "2 Qaujll 4.

Therefore, with the A-orthonormal basis ¢; = uj/,/Aj‘ of U we find [|Qau;|| =
|Qa¢jll 4, and therefore

da = 1Qusll = 11Q4¢; 4,

since [|Qu;1* = [lug|® = 1Qaus]1* = ll¢; 1% — 1Qads11% = Q4651
5. Illustrative examples.

5.1. Double well potential with diffusive transition region. We consider
the diffusion process

(5.1) vdX, = —VV(X,)dt + /2~ 7dB,
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F1G. 5.1. The potential V with extended transition region and the associated tnvariant measure
for o =0.8.

with B; denoting Brownian motion in a potential V' with two wells that are connected
by an extended transition region. The potential V' and its unique invariant measure
u are shown in Figure 5.1; we set the noise intensity o = /28~y = 0.8 with v = 1.

We observe that the transition region between the two main wells contains four
smaller wells that will each have their own, less pronounced metastability. The minima
in the two main wells are located at zg = —1 and z; = 6.62, the respective saddle
points that separate the main wells from the rest of the landscape at xoi =x9+t1and
xli =11 + 1, respectively.

In order to find the transfer operator for this process we start with the Fokker—
Planck equation d;u = Lu, u(t = 0,2) = f(z) that governs the propagation of a func-
tion f by the diffusion process. In the weighted Hilbert space Li the generator in the
Fokker—Planck equation reads £ = —VV (z)-V, + 37 1A,, where V, denotes the first

derivative w.r.t. z and A, the associated Laplacian. Thus, the transfer operator reads
(5.2) T, = exp(tL).

This operator is self-adjoint since the diffusion process is reversible. The dominant
eigenvalues of L take the following values:

Ao Ay Ao As Ay As Ag A
+0.0000 | —0.0115 | —0.0784 | —0.2347 | —0.4640 | —0.7017 | —2.9652 | —3.2861

The main metastability has a corresponding implied timescale (ITS) |1/A1] ~ 88
related to the transitions from one of the main wells to the other. Four other, minor
metastable timescales related to the interwell switches between the main and the
four additional small wells exist in addition. The eigenvalues have been computed by
solving the eigenvalue problem for the partial differential operator £ by an adaptive
finite element (FE) discretization with an accuracy requirement of tol = le — 8.

5.2. Two core sets. In the following paragraphs we will compare the eigenval-
ues and ITS of the original process to the ones resulting from different MSMs. More
precisely, we first choose a lag time 7 and consider the transfer operator 7T’.. Because
of (4.2) we can compute the ITS

T
ln(/\LT)’

where A\; < 1 is the largest nontrivial eigenvalue of T’..

(5.3) /0] = —
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Next we choose two core sets of the form C§ = (—o0,z¢+ s] and Cj = [z1 — s, 00)
for some parameter s; it should be obvious that the sets C¥ = [z; — s, 2; + s] would
define exactly the same milestoning process such that we can talk of small core sets
for small values of s. In what follows, we consider the subspace D that is spanned
by the committor functions defined by the core sets C7, and we denote by @ the
associated orthogonal projection.

Next we compare the ITS from (5.3) to the one that corresponds to the largest
nontrivial eigenvalue /A\i,T of the projected operator QT;Q,

T

(5.4) |1/A1|=—m'

Since the process under investigation is just one-dimensional, we can compute the
committor functions from the already mentioned FE discretization of £ and just
compute very accurate FE approximations of T, and M, which allows us to compute
the eigenvalues of Q7@ as in Theorem 4.1. Figure 5.2 shows the dependence of the
nontrivial eigenvalue on the core set size s for different values of the lag time 7.

0.99

lagtime 1;1 L ‘ ‘ ‘ lagtime 1::‘5
0.989 ] 0as  e

0.988

<0987 Iy
0.986 0,935
0.985
0.984 0.93
205 0 05 1 1.5 2.5 0 0.5 1 15
S S

Fic. 5.2. Nontrivial eigenvalues A\ . < 1 of the generalized eigenvalue problem Trr = AMr
versus core set size parameter s for lag times T = 1 (left) and T = 5 (right) in comparison to the
ezact first nontrivial eigenvalue exp(TA1).

We observe that for small enough core sets the approximation of the exact first
nontrivial eigenvalue of T, exp(TA1), is good, while for too large core sets the ap-
proximation quality decreases. This can be understood since for s > 1 the core sets
contain parts of the transition regions of the process where recrossing events lead to
an overestimation of the transition probability between the cores.

Let us finally compare the effect of our choice of (two) core sets on the approxima-
tion error of dominant eigenvalues with the statements of Theorem 4.2 (with m = 2).
To this end we will study the relative error

(5.5) Eyel(1,6) = M
)\1,7'

for different core set sizes s; see Figure 5.3. We observe that for small lag times the
real relative error is significantly smaller than the upper bound (here given by the
T-independent, square of the projection error § = ||Q>uy]|), but for larger lag times
the upper bound and the real error are very close.

Last but not least, Figure 5.4 presents the comparison between relative eigenvalue
error and upper bound as of Theorem 4.3 based on generators instead of transfer
operators. Again we observe impressively small deviations, which shows that the
upper bound incorporates the main aspects of the underlying error. In addition we
again see that the relative error increases significantly with increasing core set size s.
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Fi1c. 5.3. Relative error E,.¢ (T, s) versus lag time T (dashed line) compared to the upper bound
82 given by Theorem 4.2 (solid line) for s = 0.5 (left) and s = 2 (right).

. 2
0.5[| ——projection error &,

- @ =relative error EL

0.4

relative error
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F1c. 5.4. Projection error |Q4u1l|? (solid line) and relative eigenvalue error Ey, for the gener-
ator eigenvalues (dashed line) versus size of core sets, i.e., the parameter s. (Results are insensitive
to changes in the parameter € in Theorem 4.3 for small enough values of €.)

Despite this observation, Figure 5.4 demonstrates that the approximation quality is
rather robust w.r.t. changes of the core sets as long as the core sets are not extended
beyond the vicinity of the respective main wells of the energy landscape. This last
observation can be made for many similar systems (cf. [5], or [14] for high dimensions):
Core sets that are part of the attractive basin around the main wells in the energy
landscape lead to rather good approximation of the longest timescales.

5.3. Full partition of state space. Let us fix m = 2 and observe how the
relative eigenvalue error E,.; as defined in (5.5) above behaves in this case, especially
for different full subdivisions of the state space and different lag times. From Theorem
4.2 we know that, as above, the bound on the relative eigenvalue error is given by
the square of the projection error §. First we choose n = 2 and the subdivision
Aj = (—o0,z] and Ay = (x,0). Figures 5.5 and 5.6 show the bound §% compared to
the relative error E,..;(7,0), for two different subdivisions, i.e., different values of x.
We can see that the error converges to the respective value of 62 for increasing 7.
Also, a better choice of the subdivision results not only in a smaller relative error, but
also in its faster convergence to the bound. This is important because in practice one
would like to use the smallest possible lag times in order to limit the simulation length
needed to parametrize the coarse grained model. That is, for simulation purposes good
approximation quality is required for rather small lag times, despite the analytical
insight that longer lag times will always improve the approximation quality.
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F1G. 5.7. Relative error for eigenvalues and bound for 7 = 0.5 and n = 6.

Now we consider the full partition of a state space into n = 6 sets. The sets are
chosen in such a way that every well belongs to one set. This choice of sets results in
a smaller bound and faster convergence of the relative error to this bound, which can
be seen in Figure 5.7.

Let us finally compare the results for full subdivisions to the approximation via
two core sets. We observe the following: Even the optimal full subdivision into n = 2
sets cannot compete with the approximation quality of the approximation based on
two “reasonable/good” core sets. Good core sets result in an approximation error
that is even better than the one for the optimal full subdivision into n = 6 sets which
already resolves the well structure of the energy landscape. Thus, MSMs based on
fuzzy ansatz spaces resulting from appropriate core sets and associated committor
ansatz functions seem to lead to a better approximation quality than comparable full
subdivision MSMs, especially in the presence of extended transition regions. Partic-
ularly if one is interested in a small coarse grained model for the dynamics on the
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slowest timescales, core set MSMs seem to provide the opportunity to construct such
models without having to add sets inside of the transition region, which would cause
an increase in size of the resulting Markov model.

5.4. Three well potential. In this example we will study the influence of noise
in (5.1) on the choice of core sets and the approximation quality of slow timescales.
Moreover, we will now consider a two-dimensional diffusion process as in (5.1) with
v =1 and f = 6.67. The potential and its invariant measure are illustrated in
Figure 5.8.

0.025

0.02

1 05 0.015
P 0.01
3 05 0.005

-1.5 -1 -0.5 0 0.5 1 1.5 0

Fic. 5.8. Left: Levelsets of potential V' and indication of chosen core sets (small grids in the
wells of the energy landscape). Right: Invariant measure (the peak in the third well of the energy
landscape is below the threshold of wvisibility in this map).

The eigenvalues of the corresponding generator are given by

Ao Ay Ao As Ay As Ag
+0.0000 | —0.0000003 | —0.0463 | —2.793 | —4.939 | —5.3301 | —6.5049

Motivated by the results above and the visualization of the second and third eigen-
vectors in Figure 5.9, three core sets have been chosen around the local minima of the

potential, as illustrated in Figure 5.8.
0.9 0.9
0.8 0.8
1.5 .
0.7 0.7
1 0.6 0.6
0.5 0.5
0.5 .
0.4 0.4
0.3 0.3
0.2 0.2
-0.5 .
0.1 0.1
1.5 -1 -0.5 0 0.5 1 15 0 -1.5 -1 -0.5 0 0.5 1 1.5 0

[=)

Fia. 5.9. Left: Second eigenvalue wy. Right: Third eigenvalue uz. The map of the third
eigenvector seems to show that it is nonnegative in the region colored white; this is not true since
the eigenvalue has small negative values there.

One should note that the second and third eigenvalues differ by a factor of
10°. Together with the image of the invariant measure in Figure 5.8 being con-
centrated around the two main wells for small noise, one would typically choose only
two core sets. Nevertheless we introduce a small third core set around the third
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minimum, such that the eigenvectors are almost constant on the chosen core sets
and the projection errors to the space spanned by the committors are small, i.e.,
QL u1| < 0.00002, [|QLus|| < 0.005. Therefore, we can even approximate the third
slowest timescale corresponding to As. If we were interested in the slowest timescale
only, it would be possible to choose two rather than three core sets, and we would
get an insignificantly better approximation. Now Figure 5.10 shows the two slowest
timescales of the original process: the approximation by the timescales from (5.4) and
the bound from Theorem 4.2.
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Fi1c. 5.10. ITS of original generator L (dark solid line), ITS estimate (dashed line) as in (5.4),
and bound from Theorem 4.2 (light solid line). Left: ITS 1/A1. Right: ITS 1/As.

Increasing the noise. Finally we perform the same experiment for the three
well potential as above, but we increase the noise intensity (and thus the temperature)
by setting o = 1.1 (8 = 1.67). The eigenvalues of the corresponding generator now
take the form

AO Al AQ A3 A4 A5 AG
40.0000 | —0.0818 | —0.7809 | —3.9230 | —5.4286 | —6.7504 | —7.001

That is, the gap between the slowest timescales has closed, such that A; and Ay differ
only by a factor of 10! now. In this situation one could be interested in an approxi-
mation of the third timescale as well. Moreover, the invariant measure (Figure 5.11)
is not completely concentrated in the two main wells anymore, but the regions around
the wells have grown and the third well also carries significant invariant measure.

FiG. 5.11. Left: Levelsets of potential V. Right: Invariant measure.
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On the other hand Figure 5.12 shows that one has to be more careful with the
introduction of a third core set, because the variation of the second eigenvector u;
increases in the region around the third local minimum. That is, we have to keep
this third core set small in order to avoid introducing a large projection error of the
second eigenvector to the committors, which would yield a worse approximation of
the slowest timescale 1/A;. Nevertheless the projection errors to the space spanned
by the committors increase, i.e., [|Qu1| < 0.0086, [|Qus|| < 0.0911.
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F1G. 5.12. Left: Second eigenvalue uy. Right: Third eigenvalue uz. o = 1.1.

This results in a good, but slightly worse, approximation quality of the timescales
compared to the small noise situation, as one can see by comparing Figures 5.13
and 5.10.

ITS

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
T T

Fic. 5.13. ITS of original generator L (dark solid line), ITS estimate (dashed line) as in (5.4),
and bound from Theorem 4.2 (light solid line). Left: ITS 1/A1. Right: ITS 1/A2.

Conclusion. We presented a quite general estimate for the approximation qual-
ity of the dominant eigenvalues of an ergodic, metastable Markov process by Markov
state models (MSMs). We employed the approach via Galerkin projections to low-
dimensional subspaces, and particularly considered subspaces D spanned by the com-
mittor functions defined by some core sets via the milestoning process. Our interpre-
tation suggests that the associated MSM will approximate the dominant eigenvalues
well if the space spanned by the corresponding eigenvectors of the transfer operator
T; (or low-lying eigenvalues of the respective generator L) is well approximated by the
ansatz space D. In this case, the Galerkin projection QT'Q of the transfer operator (or
of the generator, respectively) onto D captures the long-time behavior of the original
process well.
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Technically, our theorems do not require that the transfer operator/generator of
the original dynamics T' possess a spectral gap, i.e., a group of dominant eigenvalues
which are separated from all the other ones by a significant interval without eigen-
values. This is in partial contrast to the usual belief: The existence of a cluster of
eigenvalues close to the largest eigenvalue A = 1 and a spectral gap is often thought of
as the fundamental condition under which MSMs can have good approximation qual-
ity. What we need instead is that our committor functions be good approximations
of the dominant eigenvectors. Since the committors depend on the choice of the core
sets, smallness of the projection error can be achieved only for appropriately chosen
core sets.

What our approximation theorems do not tell, however, is how to choose the core
sets, because in general we will not be able to compute the dominant eigenvectors and
committor functions (such that we cannot compute the respective projection errors
0 or d4) that would be needed to identify the sets based on the above insight. The
results presented herein can thus only guide the investigation of how to choose core
sets optimally. Algorithmic research will therefore have to concentrate on estimating
the projection error based on trajectories of the underlying dynamics. Some of these
issues are discussed in [14], where the interested reader may also find an application
to a high-dimensional example from molecular dynamics.

Acknowledgment. We are indebted to P. Metzner for providing us with the
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