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Markov state models (MSMs) have become the tool of choice to analyze large amounts of molecular
dynamics data by approximating them as a Markov jump process between suitably predefined states.
Here we investigate “Core Set MSMs,” a new type of MSMs that build on metastable core sets
acting as milestones for tracing the rare event kinetics. We present a thorough analysis of Core Set
MSMs based on the existing milestoning framework, Bayesian estimation methods and Transition
Path Theory (TPT). We show that Core Set MSMs can be used to extract phenomenological rate
constants between the metastable sets of the system and to approximate the evolution of certain key
observables. The performance of Core Set MSMs in comparison to standard MSMs is analyzed and
illustrated on a toy example and in the context of the torsion angle dynamics of alanine dipeptide.
© 2011 American Institute of Physics. [doi:10.1063/1.3590108]

. INTRODUCTION

Conformational transitions are essential to the func-
tion of proteins, nucleic acids, and other macromolecules.
These transitions span large ranges of length scales, time
scales, and complexity, and include processes as important as
folding,"? complex conformational rearrangements between
native protein substates,>* and ligand binding.’> Molecular
dynamics (MD) simulations are becoming increasingly ac-
cepted as a tool to investigate both the structural and the
dynamical features of these transitions at a level of detail
that is beyond that accessible in laboratory experiments.®®
Modern computing technologies, such as massively parallel
simulation,” special-purpose high-performance computers,'’
and high-performance GPUs (Ref. 11) permit to generate MD
data in amounts too large to be grasped by traditional “look
and see” analyses. This calls for robust and automated meth-
ods to extract the essential structural and dynamical properties
from these data in a manner that is little or not depending on
human subjectivity.

To this end, a decade of work has led to the develop-
ment of analysis techniques which rely on the partitioning of
the conformation space into discrete substates and reduce the
molecular kinetics to transitions between these states.'>2> A
particular successful class of methods of this type are Markov
state models (MSMs), in which the transitions between the
states in the partition are assumed to be memoryless jumps.
Their kinetics is then described fully in terms of the transition
probabilities that the system will have jumped from one state
to another after a prescribed lag time 7.2!:232426-32 These
probabilities are estimated from the MD simulation data.
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As yet, most MSMs have been based on discretiza-
tions that fully partition the molecular state space. Thorough
analysis'*?3-3 has shown that these full-partition MSMs can
approximate the original dynamics arbitrarily well, and their
accuracy can be improved in two ways: (i) by increasing the
lag time 7,3* or (ii) by increasing the number of states in
the partition.'?33-3% Both procedures, however, have caveats:
(i) reduces the time resolution of the model, whereas (ii) can
be difficult to achieve in practice because the number of states
is practically limited by available trajectory statistics.

For systems with strongly dominant metastable
states,’:3> a different approach to model the essential
kinetic properties of the system may be adequate. In these
systems the energy landscape is such that there are regions
(the metastable states) in the vicinity of which a typical MD
trajectory will remain for a long time before making a transi-
tion towards another such region. In these situations, Buchete
and Hummer'® have proposed to avoid a full partition and
instead define a few cores, one for each dominant metastable
state. Instead of finely subdividing the intervening transition
regions, one only considers transitions of the MD trajectories
between these cores and constructs a statistical model of the
molecular kinetics from this information.

The aim of this paper is to give a solid theoretical foun-
dation to such MSMs based on cores by treating these sets
as milestones in the sense of Elber.*? Specifically, we show
how the framework of Markovian milestoning®’ can be com-
bined with maximum estimation techniques and Bayesian
sampling methods to construct a new type of core MSMs.
This viewpoint helps the estimation of the statistical error of
these new core MSMs due to finite sampling. It also permits
to interpret the various quantities in these core MSMs using
Transition Path Theory (TPT),*'* which indicates how the
core MSMs can be used not only to estimate the rate of transi-
tions between the cores but also to approximate the evolution
of certain key observables in the system. One surprise of our
analysis is that doing both requires the introduction of two
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FIG. 1. Schematic illustration of the main quantities employed in this study.
The exact dynamics described by the continuous generator L with station-
ary distribution j gives rise to exact transition rates between milestones, k;;
which can be reweighted to phenomenological rates, kf‘j These quantities can
also be approximated by proper counting based on trajectory data.

sets of rates: the milestoning rates Igi ;> which give the aver-
age number of transitions between core sets per unit time, and
the phenomenological rates 121*1, which are related to the mea-
surable relaxation timescales of the observables. The relation
between these rates is illustrated in Fig. 1 which also gives a
roadmap to the main concepts discussed in this paper.

The remainder of this paper is organized as follows. In
Sec. II, we first show how to estimate the milestoning rates
k; ; from a given trajectory of finite length 7. Furthermore,
we outline how to convert these milestoning rates to the
phenomenological rates /2;; In Sec. III, we use TPT to derive
equations for the exact milestoning rates k;; for T — oo,
i.e., for the case of perfect sampling. On the one hand,
these equations explain the formula for extraction of phe-
nomenological rates from the milestoning rates. On the other
hand, they explain when and why the milestoning process is
approximately Markov. In Secs. IV and V, all the different
quantities from Fig. 1 are illustrated on a simple test system
and a small peptide example, and the performances of the new
core MSMs are compared to those of standard full-partition
MSMs. We give concluding remarks in Sec. VI. The most
technical derivations are deferred to several appendices. For
further mathematical details on how Markov models based on
such cores may indeed approximate accurately the essential
kinetic features of an MD system, and in some cases may
even be superior to full partition Markov models, we refer
the reader to Refs. 35 and 46.

Il. TRANSITION RATES BETWEEN CORE SETS
FROM MILESTONING

In this section, we assume that a few disjoint sets of state
space have been identified as “cores,” each one assigned to
one of the dominant metastable states of the system. A core
is the center of some metastable set in state space so that the
system stays in the vicinity of this core for relatively long pe-
riods of time before making a transition towards another core.
Below we derive an unbiased estimator for the transition rates
between these core sets which is based on treating them as
milestones.'%3%4 Note that the magnitude of these transition
rates may be sensitive to the precise definition of the core sets
and are thus not phenomenological transition rates as, e.g.,
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obtained by reactive flux theory*’ or comparable approaches.
In order to calculate phenomenological rates the transition
rates between the cores must be reweighted as described in
Sec. II F. We emphasize that the following considerations do
not depend on the dimensionality of the system, and that the
accuracy only depends on the choice of the core sets and on
the extend of sampling available.

A. Microscopic dynamics and core sets

Consider a state space 2 which contains all dynamical
variables needed to describe the instantaneous state of the
system. 2 may be discrete or continuous, and we treat the
more general continuous case here. For molecular systems, €2
usually contains both positions and velocities of the species
of interest and surrounding bath particles. x () € Q2 will de-
note the microscopic dynamical process considered, which is
continuous in space, and may be either time-continuous or
time-discrete (e.g., when considering time-stepping schemes
for computational purposes). We will adapt our notation to the
time-continuous case and will add short remarks if the time-
discrete case differs in some important aspect.

It is required that x(#) is uniformly ergodic, i.e., for
t — oo the trajectory will come arbitrarily close to each state
x infinitely often. The fraction of time that the system spends
in any of its states during an infinitely long trajectory can
then be estimated from its unique, positive stationary density
u(x) that in molecular processes corresponds to the equilib-
rium probability density for some associated thermodynamic
ensemble (e.g., NVT, NpT). For molecular dynamics at con-
stant temperature 7', the dynamics above yield a stationary
density wu(x) that is a function of 7', namely the Boltzmann
distribution u(x) = Z(B)~! exp (—B H(x)) with Hamiltonian
H(x) and B = 1/kgT where kp is the Boltzmann constant
and kpT is the thermal energy. Z(8) = fexp (—BH((x))dx
is the partition function.

At this point we do neither assume that x(¢) is Markovian
nor that it fulfills detailed balance. However, when both these
properties are fulfilled, then some particularly simple formal
statements relating the microscopic and macroscopic dynam-
ics can be made (see Sec. III).

In the following, x(¢) shall also indicate a realization (tra-
jectory) of the process under investigation. While it is as-
sumed for simplicity that a single long trajectory is studied,
the procedure is straightforwardly applicable to multiple tra-
jectories provided that they are “sufficiently long” (see below
for details).

B. Set-up: Core sets and milestoning

We are interested particularly in metastable dynamical
systems and want to quantify the statistics of rare events in
such systems. For this, we introduce disjoint core sets By,
Bs,..., By that will act as milestones.'®3%* The core sets
form a subset of state space, | J; B; C €, but in general they
do not partition state space. The basic idea is that in order to
describe the rare event statistics, it is sufficient to know which
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milestones the system has visited at which times. Implicit in
this idea are two assumptions:

1. The time to equilibrate within (the vicinity of) any
one core set B; is much faster than the mean time to
transition between any two core sets B; and B;. That
is, no core set must contain multiple subsets that are
metastable on the timescale of interest.

2. When x(r) is outside any core (x(t) & |J; B;), it will
“quickly” (compared to the slow timescales of interest)
hit one of the cores. That is to say that all dominant
metastable states of the system are characterized by core
sets (there may be lots of additional metastable states
whose life time is well below the timescales of interest).

Some comments on how to find good core sets in practice
will be given below. For now, we assume that a trajectory x(z)
and the core sets are given. Next, x(¢) is mapped onto the
core states by defining a coarse-grained trajectory b(¢) which
contains, at any time ¢, the index of the last milestone x () hit:

b(t) = index of the last milestone hit by x(#). €))]

Thus, b(t) is a piecewise constant function taking values in
{1,2,..., N} which jumps from one value to another each
time the trajectory x(¢) hits a new milestone (successive hits
of the same milestone without hit of another one in between
do not change b(t)).

The key assumption made in milestoning is that the evo-
lution of b(¢) can be modeled by a continuous-time Markov
jump process. The validity of this assumption will be dis-
cussed in Sec. III. For now we assume that b(t) is a Markov
process and explore the consequences of this assumption.

The evolution of some Markov process b(¢) in discrete,
finite state space is completely specified by a set of rates
ki j = 0 with i # j, each of which gives the average number
of jumps from state i and into state j per unit time. For ex-
ample, the probability that b(¢) = i, which we denote as p;(¢),

evolves according to the Master equation*®
dpl (t)
=Y oiOkij+ Y pi()k; . 2)
J# J#i

The first term at the right hand side of this equation accounts
for changes in p;(t) due to the probability flux out of state i
whereas the second one accounts for changes due to the flux
into this state.

For later use, let us also characterize the probability that
b(t) follows a particular path

path = [(bo, Ao), (b1, A1), ..., (bu, Au)], 3

i.e., b(t) was in state by during the interval [0, ¢) for a time
Ay = t1, then jumped to state b; where it stayed during [#;, ;)
for a time A} = 1, — 14, etc., and then finally jumped to state
by at time )y where it stayed during [z, T') for a time Ay,
=7 —

As we assume that b(¢) is a Markov process, the proba-
bility of this realization can be written as a product of proba-
bilities of single jumps:

P (path|rates) = pp,.5, (A0) 0,5, (A1) Py b (A pr—1),

“
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with the individual probabilities p; ; given by the rates k; ;:

pi(A) = e” 2=t (i # ), 5)
as the basic theory of Poisson processes tells us.*® Formula (4)
is normalized such that if we sum the indices by, by, ..., by

from 1 to N and integrate all A; from 0 to co, we obtain 1.

Formula (4) gives the probability P(path|rates) to ob-
serve a specific path of b(¢) given the rates k; ;. These rates,
however, are unknown a priori. In order to estimate them from
the available MD data what we need instead of Eq. (4) is the
probability of the rates k; ; given the path. This inversion can
be done via Bayes formula given in Sec. I C. The Bayes for-
mula is the basis both for the maximum likelihood estima-
tion (MLE) procedure presented in Sec. II D and the sampling
strategy presented in Sec. I E.

C. Bayesian formalism

Suppose that we have observed the MD trajectory x(z)
over times [0, T'] and thereby deduced a path b(¢) between
core sets as given by Eq. (3). Neglecting the last step wait-
ing time which is undetermined due to the termination of the
trajectory at 7', the probability of the path P is given by the
product in Eq. (4), which can be rewritten as

PP (path]rates) = ]_[ k| NG kiR (6)

i,j=1
i#]

Here Nl.’Tj is the number of transitions from state i to state j
observed along b(7) during the time interval [0, T] and R/
is the total time during which b(t) =i in [0, T], i.e., R]
= fo Sibndt. As we will see shortly, N; T- and R are the
only quantities needed to estimate the rates

The notation P(path|rates) in Eq. (6) stresses that this
quantity is the probability of the path b(¢), t € [0, T] given
the rates k; ;. As explained before, what we need to es-
timate these rates is the probability of k; ; given the spe-
cific, observed path, P(rates|path). The two probabilities
P(path|rates) and PP(rates|path) can be related to each other
via Bayes formula

P (path|rates)P (rates) = P (rates|path)P(path), @)

where P(rates) and P(path) are the probabilities of the rates
ki j and of the path b(¢), t € [0, T), respectively. IP(rates) is
usually referred to as the prior probability and it incorporates
any a priori information we have about the rates k; ;. IP(path)
does not depend on k; ;, and so it can be incorporated in a
normalization constant as far as sampling P (rates|path) over
the rates is concerned. Therefore combining Egs. (6) and (7)
we obtain that P(rates|path) is simply given by

PP (rates|path) oc IP(rates) l_[ ki ; N gk B )

i,j=I
i#]

In the limit of poor statistics, the choice of the prior signifi-
cantly influences the results. Hummer'® has proposed to use
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a prior that is uniform in the logarithm of the rates. Here, we
assume for simplicity a uniform prior (IP(rates) o 1), which
is acceptable in the limit of good statistics, and work out the
results based on this choice. For a uniform prior, the posterior
probability (8) is proportional to the likelihood, and is thus
maximized by maximizing the likelihood.

D. Maximum likelihood estimate

The larger the amount of available data (i.e., the larger
T and thus the longer the observed path), the larger N; ; T and

R become—both these quantities grow linearly in T when
T — oo, see Sec. III B. Since P(rates) is fixed (it does not
depend on T') this implies that Eq. (8) becomes increasingly
peaked around the values of k; ; that maximizes the product
in Eq. (8). It is easy to see by differentiation of this product
over k; ; and direct solution of the resulting equations that it
is maximized by

R N,
kij=—+,
b RT

1

i #j. ©))

This is the so-called MLE for the rates k; ;. The MLE k; ; is
unbiased, i.e., it converges to the exact rates of this process
when T — oo. In practice, however, the available data are
always finite, 7 < oo, that is, we have to consider the finite-
ness of the sampling that underlies the MLE 12,», j- As usual
this finite sampling introduces some statistical errors. How to
estimate these sampling errors based on the available data is
discussed in Sec. II E.

E. Statistical uncertainty

When the amount of available data is finite, instead of
maximizing the product in Eq. (8) we can sample this proba-
bility over the rates k; ;. This permits to estimate the statisti-
cal errors in the rates and it is especially simple for a uniform
prior. In this case, Eq. (8) shows that the rates k; ; are statis-
tically independent, and each k;_; is distributed according to a
gamma distribution with scale parameter Ni!Tj + 1 and shape
parameter 1/R. When it is desired to estimate statistical un-
certainties of quantities derived from K, these distributions
can be sampled straightforwardly using standard routines for
generation of gamma distributed random numbers such as e.g.
gamrnd in MATLAB. This is one aspect in which core MSMs
based on milestoning are easier to work with than the standard
MSM approaches discussed in Appendix D.

F. Phenomenological rates

While the rates k;; quantify the number of transitions per
time between core sets, one is often interested in the so-called
phenomenological rate matrix K* with entries k7' ; that can
be compared to the appropriately estimated reactive flux rate
constants, see Refs. 47 and 49. The k' ;; are the rate constants
that are typically of interest to Chemical Physicists since the
eigenvalues of K* are the intrinsic relaxation rates AY, ..., A},
which can be probed experimentally. In the special case of a
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system with 2-state kinetics, there is a single relaxation rate
My =kip k)
In order to explain how these phenomenological rates can
be computed from the k;;, let us denote by R; T - the total time a
trajectory generated on [0, T'] spent while bemg i — j reac-
tive and assigned to B;. Based on this, we define the so-called
mass matrix M by
T
Wi = Rij (10)
iLj — T °
R;
m; ; is the fraction of time the system is i — j reactive.
Given the mass matrix M = [, ;], the matrix of phe-
nomenological rate constants can be derived as

K*=M"'K. (11)
This equation is not intuitively obvious but will be derived
in Sec. III.

lll. RELATION BETWEEN MILESTONING DYNAMICS
AND MICROSCOPIC DYNAMICS

In this section, we investigate the exact transition rates
of milestoning dynamics between core sets, i.e., the rates ob-
tained in the limit of an infinitely long trajectory (i.e., when
T — o0) where the statistical uncertainty vanishes. This is
done by expressing the milestoning rates in terms of the
original microscopic dynamics in continuous state space via
Transition Path Theory.*'* This relation provides the theo-
retical basis for further investigations on how the milestoning
rates depend on the size and exact definition of the core sets.
This will allow us to analyse the relation between the mile-
stoning rates and phenomenological rates of the process under
investigation which is treated in Sec. III D.

A. Microscopic dynamics and generator

We now define some properties of the microscopic dy-
namics x(¢). For the present chapter we assume x(¢) is a
Markov process, i.e., the instantaneous change of the system
(dx(t)/dt in time-continuous and x (¢ + At) in time-discrete
dynamics with time step At), is calculated based on x(z)
alone and does not require the previous history. As a re-
sult of Markovianity in €2, the transition probability density
p(x, y;7) is well defined: For every pair of state x, y € Q
and a given lag time T € Ry, itis given by

px,y;0)dy =Plx(t + 1) edy | x(t) =x], 12)

i.e., by the probability that a trajectory started at time ¢ from
the point x € Q2 will be in an infinitesimal region dy around
apoint y € Q at time t 4 7.

Furthermore, we assume that x(¢) is reversible, i.e.,
p(y, x; 7) fulfills the condition of detailed balance:

p(x, y; 1) w(x) = p(y, x;7) u(y), (13)

i.e., in equilibrium, the number of systems transitioning from
Xx to y per time is the same as the number of system transi-
tioning from y to x. Note that this “reversibility” is a more
general concept than the time-reversibility of the dynamical
equations as, e.g., encountered in Hamiltonian dynamics. For
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example, Brownian dynamics on some potential are reversible
as they fulfill Eq. (13), but are not time reversible in the same
sense as Hamiltonian dynamics. Although detailed balance is
not formally required to construct MSMs using milestoning,
it is useful for the theoretical results of the present section; in
Ref. 46 it has been worked out how to deal with the non-
reversible case in a way very similar to what is outlined in the
following. Note that detailed balance is expected to hold in
equilibrium molecular dynamics due to basic physical argu-
ments, although this is not true for all computer implementa-
tions of equilibrium molecular dynamics.'?

With the definition of the transition probabilities in
Eq. (12), we can easily write down how the probability den-
sity p(x, t = 0) of finding the system (or, more generally, an
arbitrary function) in state x is propagated by the microscopic
dynamics:

p(y, DY) = /Qp(x,y;t)p(x,t= Ou(x)dx,  (14)

where we used probability densities relative to the invari-
ant measure which has technical advantages because of re-
versibility. The propagation equation (14) can be written in
much simpler form since the Markov property of the underly-
ing dynamics implies that is has a generator:

dp(x, 1)
dt

= Lop(x, 1), (15)

such that p(x, t) = exp(tL)p(x, 0). This generator exists for
all time-continuous Markov processes but can take signifi-
cantly different from: For example, for diffusive dynamics the
Eq. (15) is just the Fokker-Planck equation; this specific case
and the associated formula for L (that gives L as a partial
differential operator) is outlined in Appendix A. For Markov
jump processes in discrete state space, L is a rate matrix in-
stead. In the discrete-time setting, Eq. (15) has to be modified,
see Ref. 46 for details.

B. Exact milestoning rates from transition path theory

Using TPT together with the generator description of the
microscopic dynamics, we can derive exact expressions for
some useful quantities that will help us to characterize the
transition rates of the milestoning process:

T NT

T = lim —i, U[,j = Thm %, (l ?é ]) (16)
—>00

T—o0
Here 7; is the proportion of time during which the last mile-
stone hit was B; while v; ; is the average rate of transition
between B; and B; (i # j). Clearly, in terms of these limits,
the exactrate k; ; = limy_. k; ; is given by

Vi,j . .
kij=—=, ((#J) (17
TT;
m; is the equilibrium distribution of the Markov jump pro-
cess b(t) (i.e., the stationary solution of Eq. (2)) provided that
the microscopic dynamics x(¢) is reversible. In that case, v; ;
= v;;, which from Eq. (17) implies a detailed balance condi-
tion of the milestoning dynamics in which 7; is the equilib-
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rium distribution:
niki,j Zﬂjqu,'. (18)

To see how the limits in Eq. (16) can be computed using TPT,
we need to recall a few key facts about this theory. In a nut-
shell, TPT analyzes the property of the reactive trajectories by
which specific reactions occur. In the present context the re-
actions of interest are the N reactions where each of core set
B; is taken as a product state, and the union of all other core
sets, U;; B;, as reactant state. As shown in TPT, the statistical
properties of the reactive trajectories associated with each of
these reactions can by expressed solely in terms of the equilib-
rium probability density of the system p(x), and the so-called
committor functions (one per core set) which are the solutions
qi of

Lqgi(x)=0 x ¢ B;Vj,
X € Bi, (]9)
x ¢ BiVj#i,

where the operator L again denotes the infinitesimal genera-
tor of the original process, the boundary conditions for g; are
specified by the second and third line.

The committor functions have a simple probabilistic in-
terpretation: g;(x) gives the probability that the trajectory
starting at x will reach B; before it reaches any of the other
sets, i.e., before U;V ;i Bj 1s entered. This property, together
with the fact that the dynamics is Markovian can be used to
get v; ; and 7; as follows. Suppose we ask what the equilib-
rium probability density p; (x) is to find the process in x given
that the last milestone it came from was B;? Using reversibil-
ity under time reversal, this is equivalent to ask what is the
equilibrium probability density to find the process in x and
that the next set it will hit is B; and so p;(x) is given explic-
itly by

gi(x) =1
gi(x)=0

pi(x) = pu(x)q;(x). (20)

If we now integrate this quantity w.r.t. x over all the config-
uration space we obtain the equilibrium probability that the
last set hit was B; regardless of where the process actually is.
From Eq. (16) this is precisely 7; and so

T =/Qu(x)qi(x)dx. (21)

A similar argument can be used to obtain v; ; for all reversible
processes*® and show that it can be calculated by means of

Vi,j =/Q/L(x)qi(X)(qu)(x)dx- (22)

We outline the details of the derivation of Eq. (22) for the case
of diffusive dynamics in Appendix B.

Formulas (21) and (22) are the desired expressions for 7;
and v; ;. Therefore, whenever the (reversible) dynamics has
a generator L and a unique equilibrium probability density,
this density together with the committor functions uniquely
determine the quantities 7r; and v; ; that are needed to compute
the exact rates k; ; via Eq. (17).
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C. Galerkin projection interpretation

It is interesting to revisit the formula above from the view
point of Galerkin projection. Therefore consider the space of
square-integrable functions

H={f:Q—>R: / | £ ()P u(x)dx < oo}, (23)
Q

equipped with the scalar product

(fs 8l =/Qu(x)f(X)g(x)dx- (24)

We consider the operator P that when acting on a func-
tion f € H returns its best approximation Pf in the finite-
dimensional subspace

N
S={f:Q—>R: f=) g, o eR}, (25

i=1

that is spanned by the functions gy,..., gy. As outlined in
Appendix C the best approximation Pf can be computed
from its property that the associated approximation error
f — Pf is orthogonal to S, and thus has to satisfy

(f = Pfig))y=0, Vj=1,....N. (26)

Again from Appendix C we learn that therefore P can be
expressed as

N
(PAYx) =Y qi(e)(S i jlaj» [ (27)
ij=1
where S~! is the inverse of the matrix with entries
Sij =A{qi>qj)us (28)

which exists since the ¢; are linearly independent. Consider
now the eigenvalue problem associated with the generator L
of the process:

L¢® = A¢°, (29)

where the superscript “e” stands for exact. The Galerkin pro-
jection of this equation on the subspace S reads

PLP$ = AP¢. (30)

After a little algebra, it is easy to see that this equation can be
written explicitly as

Zv,',jrjz)qu,-,jrj, (31)

where v; ; is given by

vij = {qi» Lqj)u. (32)

as already discussed and we defined

N N
Py = Zriq,-, st. 1= Z(S_])'FJ'(%’ ). (33)
i=1 j=1
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Dividing both side of Eq. (31) by m;, and defining the so-
called mass matrix with entries
S,"j
mi ;= — (34)

I

Equation (31) can also be expressed as

N N
Zki’jrjz)»Zmi,jrj, (35)
j=1 j=1

where k; ; is the rate matrix defined in Eq. (17). This
means that (a) we can compute the exact transition rates k;_;
= limr_ 12,,_, of the milestoning process by means of
Galerkin projection of the generator and that (b) the associ-
ated eigenvalues A; of the generalized eigenvalue problem
(35) will somehow be approximations of the original eigen-
values A€ of the original eigenvalue problem L¢°® = L°¢°.
What does the approximation by Galerkin projection
entail in terms of evolution of observables and densities?
Since for reversible processes L is a self-adjoint operator the
propagation of observables as well as densities under the un-
derlying microscopic dynamics is related to the action of the
propagator exp(zL). That is, when starting with an observable
or density f at time 0, its evolution in state space is given by
exp(tL)f. Suppose that we start from some f(x) which be-
longs to the subspace spanned by ¢, ¢», - . ., gn, i.€., such that
f = Pf. Then, the value at time ¢ of this observable will be

exp(tL)Pf, (36)
and its projection on the subspace spanned by g1, g2, ..., gn
is simply

Pexp(tL)Pf. 37

From the considerations above it is easy to see that the
Galerkin projection amounts to approximating the evolution
of the observable by

exp(tPLP)f. (38)

In Refs. 35 and 50 the associated approximation error is
analyzed and bounds on the error are derived.

To sum up, what the above considerations show is that
milestoning does more than give the Markov approxima-
tion of the evolution of the index process b(t) discussed in
Sec. II B. Milestoning also permits to approximate the evo-
lution of observables in the system and, in particular, it gives
estimates of the leading eigenvalues of the generator of the
original process via solution of Eq. (35).

D. Exact phenomenological rate constants

We now combine the results of Secs. III A-III C in order
to provide an estimator of phenomenological rate constants
between the metastable states of the system. In Sec. II, it was
described how the milestoning rate constants k; ; can be es-
timated. Those rates, however, are sensitive to the exact defi-
nition of cores within the metastable states. In order to arrive
at phenomenological rate constants, the milestoning rate con-
stants k; ; need to be corrected for the influence of the core
definition. As was shown in Sec. III C this can be done by
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introducing the masses m;_ ;, see Eq. (35). We can rewrite this
generalized Eigenvalue problem in matrix form as

Kr =AMr, (39)

from which we see that the reweighted matrix K* = M~'K
with

K*r = Ar, (40)

has eigenvalues that approximate the original eigenvalues of
the system and therefore its dominant intrinsic relaxation
timescales.

Even though the derivation of Eq. (35) relies on the in-
terpretation of m; ; in terms of the committor functions g;, in
milestoning we can obtain both m; ; without explicit knowl-
edge of g;. The factors s; ; defined in Eq. (34) give the propor-
tion of time during which the trajectory is on its way from B;
to B;, that is the last milestone hit was B; and the next mile-
stone hit will be B;. It follows that 5;; = lim7_, o Rg With

the approximate mass matrix M with entries 7; ; as defined in
Eq. (10), the entries of the exact mass matrix are thus given
by

mi ;= YJLII;omijv 41

which directly provides an estimator of m; ; from finite-time
trajectories. That is, the mass matrix can be approximated
from a long trajectory by monitoring transition times. This is
remarkable because the calculation of ¢; is a formidable task
in high dimensional systems. Based on the estimate of m; ;,
K* can be estimated as described in Sec. II F.

E. Consequences for the definition of the core sets

The approximation quality of the MSM based on mile-
stoning depends on both the characteristics of the original dy-
namics and on the choice of the core sets B, B,,..., By.
How to assess the error that the Markov assumption intro-
duces is not obvious. Mathematical results in this direction
are available in Refs. 35, 46, and 50, whose intuition can
be understood from our interpretation via Galerkin projec-
tion discussed in Sec. III C. Indeed, this interpretation sug-
gests that the MSM based on milestoning will work well if
the space spanned by the eigenvectors corresponding to the
low-lying eigenvalues of L is well approximated by the space
spanned by the committor functions ¢, ..., gy. In this case,
the Galerkin projection P L P will approximate well the low-
lying eigenvalues of the generator L, so that the long-time
behavior will be captured, see the example in Sec. IV, and
especially the discussion of Fig. 4.

Furthermore, it can be shown that if the Galerkin projec-
tion error is small, then also the Markov assumption for the
process b(t) is justified.>> This will also be illustrated in one
of the examples in Sec. IV.

How to use this assessment to constructively choose the
core sets is a much harder question which goes beyond the
scope of this paper. However, let us make a few comments.
Technically, the above considerations require that the gener-
ator L of the original dynamics possesses a group of eigen-
values which are somewhat smaller in magnitude than all the
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other ones. The existence of small eigenvalues indicates that
slow processes are taking place in the original state space.
These slow processes are what the generalized eigenvalue
problem in Eq. (35) is meant to capture, in the sense that the
generalized eigenvalues should be close to the small eigen-
values of the original process. Clearly, this shows that we
should choose N sets if there are N small eigenvalues, since a
Markov jump process on N states has exactly N eigenvalues.
In fact, if we assume that the original process has N small
eigenvalues, then general results guarantee the existence of
a good collection of sets By, By, ..., By. What this argu-
ment does not tell, however, is how to choose these sets, be-
cause in general we will not be able to compute the dominant
eigenvectors and committor functions that would be needed
to identify the sets based on the above insight. In other words,
what these sets are is not given explicitly, except for the rather
vague property that the trajectory x(¢) should oscillate inside
and around each for a long time before visiting another. How
to use this criterion in a constructive way is the subject of cur-
rent research, and we shall not dwell on this issue further here.
However, the questions discussed above will be illustrated via
examples in Secs. [V and V.

IV. ILLUSTRATIVE EXAMPLE: DOUBLE WELL
POTENTIAL WITH DIFFUSIVE TRANSITION REGION

As a first example, Let us consider a one-dimensional
overdamped diffusion processes. The associated equation of
motion in the one-dimensional energy landscape V (x) reads

yx(t) = =V'(x@®) + 2B~y n), (42)

where y is the friction coefficient, and 8 = 1/kpT where kp
is Botzmann’s constant and 7' the system temperature, 7(¢) a
white-noise process, i.e., a Gaussian process with mean zero
and covariance (n(t)n(z")) = 8(t —t’), and V' dnotes the first
derivative of the energy landscape function. We consider y
=1 and B! = 0.25 together with the potential V(x) given
by

(1 —x2)7?, x <0
Vix) = ‘5—‘ + écos(nx), 0<x<8; (43)
(1-(x—=8?%% x=8.

The potential has two deep wells connected by an extended
transition region with substructure, see Fig. 2.

The transition region between the two deep wells con-
tains four smaller wells that each acts as dynamical trap for
the transitions between these two deep wells. This can be
seen from the equilibrium density also shown in Fig. 2. The
minima in the two deep wells are located at xo = —1 and
x1 = 9, and the respective saddle points that separate the deep
wells from the rest of the landscape are located at x; = 0, and
x{ = 8, respectively, with energy barrier equal to 1.

The associated generator L is given by Eq. (A3) in the
appendix. Its eigenvalues can be obtained by solving Eq. (29)
numerically. This gives the following estimates for the first 7
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FIG. 2. (a) The potential V(x) with extended transition region and (b) the
associated equilibrium density u(x) = exp(—BV(x)) for B! =0.25.

eigenvalues with smallest amplitude: A{, = 0 and
AS AS A Ag A¢ A¢
—0.0036 —0.0283 —0.0860 —0.1631 —0.2298 —1.3603

The eigenvalue A{ measures the metastability between the two
deep wells: the associated timescale is | |=! &~ 275.69. The
four next eigenvalues A$, ..., A{ measure metastable effects
associated with switches between the four additional small
wells. These effects make the example more challenging.

To build the MSM using either milestoning or the stan-
dard procedure based on a full partition of state space,'> we
generated a long trajectory from the overdamped equation.
This trajectory was computed using the Euler-Maruyama dis-
cretization with the stepsize At = 0.001 in the time interval
[0, T] with T = 100000. This stepsize is so small that we
can consider the discrete solution to be almost identical to a
path of the solution such that we can consider it as “almost
continuous.”

A. Core MSM based on milestoning
We choose two core sets of the form

B) = (—00,x0+ 8], B} =[x —8,00).  (44)

J. Chem. Phys. 134, 204105 (2011)

FIG. 3. Comparison of eigenvalues for different core MSM based on mile-
stoning for the potential shown in Fig. 2. The flat dashed-dotted line in-
dicates the first non-trivial eigenvalue of the original process, the dashed
line the §-dependent first non-trivial eigenvalue of K, and the solid curved
line indicates the first non-trivial eigenvalue of the corrected rate matrix K;.
The vertical lines are the statistical error estimation based on 100 realizations
of trajectories with length 7 = 100 000.

Here § is an adjustable parameter used to assess the robustness
of the milestoning approximation with respect to the precise
definition of the core sets. Note in particular that for § < 0,
the core sets do not include the minima in the two deep well
of the potential, whereas for § > 1 these sets include the first
saddle point next to these minima. As a result, we expect that
the accuracy of the core MSMs based on milestoning will de-
teriorate when either § < O or § > 1, but that these MSMs will
be rather insensitive to the value of § in the range 0 < § < 1.
The results below confirm this intuition.

First we compare the leading eigenvalue of the mileston-
ing rate matrix K and the corrected eigenvalue due to Eq. (31)
to the true leading eigenvalue. Figure 3 shows the result for
different values of §. It is observed that the eigenvalue of the
uncorrected milestoning rate matrix K is biased. It signifi-
cantly overestimates A{ for small values of § and then rapidly
decays at large values of §, with no significant range of § val-
ues where A{ is estimated correctly. In contrast, the corrected
eigenvalue estimate using Eq. (31) is an excellent estimator
for A{ in the range § € [—0.25, 0.5], showing that the cor-
rected milestoning rate matrix is a useful dynamical model.
For very small and very large § values, this estimate deterio-
rates as well.

To corroborate these observations, in Fig. 4 we show
the eigenfunction of L corresponding to the first non-trivial
eigenvalue, and its projection onto the subspace spanned by
the commiittors g and g for different core sets depending on
8. We observe that for the core sets with § = 0.1, the eigen-
function is almost identical to its projection, while for § = 1
some discrepancy is visible which explains why the error in
the eigenvalues in Fig. 3 for § = 0.1 is much smaller than for
s§=1.

Finally, Fig. 5 exhibits the distribution of residence times
r1 in core set Bf for § = 1.0; the residence times r; are the
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FIG. 4. Comparison of eigenfunction of L corresponding to the first non-
trivial eigenvalue (solid lines) and its projection on the subspace spanned
by the committors (dashed lines) for different core sets ((a) § = 0.1 and
(b) 8 = 1) for the potential shown in Fig. 2.

length of the periods with b(t) = 1 along the time series. If
b(t) were a perfect Markov process the distribution of resi-
dence times in the core sets would be perfectly exponential
with a decay rate given by the respective rate. We observe a
distribution close to a single exponential and thus the devia-
tions from the Markov property are small.

B. Full partition MSM

As recalled in Appendix D, in order to specify a standard
MSM we have to specify a full partition of the state space
into N sets and a lagtime . We will consider the following
four partitions, A, A;, Az, and Ay, with N = 2, 3, 4, and 6:

Ay = (—00,4], (4, 00),

Ay = (=00,0], (0, 8), [8, 00),

Az = (—00,0],(0,4], (4, 8), [8, 00),

Ay = (—00,0],(0,2],(2,4], (4, 6], (6, 8), [8, 00),

where the refinements of the two-set partition are chosen such
that the wells in the extended transition region are more and
more resolved. For these partitions we computed the associ-

J. Chem. Phys. 134, 204105 (2011)

5=1

10 - - - -
500 1000 1500 2000
exit time
FIG. 5. Distribution of residence times in state i = 1 in a trajectory of length

T = 12000000 for cores sets Bf for 6 = 1.0: semi-logarithmic plot indicat-
ing almost singly exponential decay.

ated transition matrix P* for different lagtimes t based on
the full observation. Figure 6 shows the estimated first non-
trivial eigenvalue A for the original process computed from
the second-largest eigenvalue p of P* via A = log(u)/t de-
pending on the lagtime t, compare Eq. (D4).

We observe that the quality of the approximation gets bet-
ter as we increase the number of sets in the partition and/or
lagtime. For large enough lagtime and fine enough partition
the approximation quality is superior to that of the core MSM.

Finally, in Fig. 7 we compare the different MSM ap-
proaches and show the statistical (sampling) error of the
eigenvalue estimate using 100 realizations of trajectories. The
statistical error increases with the lagtime 7, since for larger
T the number of observed transitions decreases. In compari-
son to the core MSM, we observe that for small lagtime t, the

-0.005} ﬁ

-0.01p
—-0.015¢
-0.021

—0.025F,

-0.03
0

a

FIG. 6. Comparison of eigenvalue estimate for full-partition MSM with the
different partitions A, Az, ... for the potential shown in Fig. 2. The flat
dashed-dotted line indicates the first non-trivial eigenvalue of the original
process, and the four solid lines the estimate using P* depending on the lag
time 7. The higher the blue line, the more sets in the partition, from 2 for the
bottom line (partition A») to 6 for the top one (partition Ag).
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FIG. 7. Comparison of eigenvalue estimate using MSM based on mileston-
ing and based on a full partition of state space into 6 sets. The flat dashed-
dotted line indicates the first non-trivial eigenvalue of the original process,
the flat dashed line the estimate using core set MSM with § = 0.4, and the
solid (curved) line indicates the estimate using the standard MSM with 6 sets.
The statistical errors are indicated with vertical lines: The one in the middle
(r = 50) corresponds to the milestoning MSM, while the others are associ-
ated with the particular lagtime used.

statistical error of the full-partition MSM with fine partition
is smaller, since for a trajectory with same length we have
significantly more transitions between the boundaries of the
sets in the partition than between the core sets. However, to
achieve similar accuracy of the eigenvalue estimate, we need
large lagtime (v = 100 in the figure), and the statistical error
of the full-partition MSM then becomes similar to that of the
core MSM. The reason is that the information in the trajectory
that is useful to get the estimate of the first non-trivial eigen-
value is the transition between the core sets. While we have
more transitions between the sets in the full partition when the
number of these sets is large, they do not help in estimating
the first non-trivial eigenvalue. Hence, for small 7, statistical
errors are small but systematic bias is large, whereas for large
7, the systematic bias is reduced but the statistical errors be-
come comparable to the ones of core set MSM.

V. PEPTIDE EXAMPLE

In this section the different ways to construct MSMs are
compared by their ability to estimate the transition timescales
of the « = p transition in explicitly solvated alanine
dipeptide.

One molecule alanine dipeptide with termini ACE and
CT3 using the CHARMM 27 force field was simulated in a
box of 256 TIP3P water molecules using the program NAMD
version 2.7bl. The box size was obtained by a short NPT
equilibration and then held fixed followed by a 1 us produc-
tion run with Langevin dynamics at 300 K, using a friction
constant of 5 ps~! and options rigibonds all (all bond lengths
fixed) and useSettle. Frames were saved every 10 fs. The dy-
namics of the system are monitored via its ¢ and ¥ backbone
dihedral angles, a density plot generated from a histogram of
the simulation snapshots is shown in Fig. 8. This illustrates
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FIG. 8. Stationary distribution of alanine dipeptide in ¢/ angle space. The
two core centers are shown as white bullets.

that the density is maximal at the o and B regimes, with a
transition region between them at which trajectories cross be-
tween the two states.

We construct a full-partition MSM based on a partition of
the ¢ /Y coordinates. This partition was obtained by k-means
clustering based on ¢ /v coordinates iterated to convergence.
The use of ¢/ is not essential here; we could also start from
a clustering based on all or most dimensions of the state space.
Here, we used k-means based on k = 10, 50, and 250 clusters
which produced complete partitions of different resolution of
the data set. Discrete trajectories were generated by mapping
the continuous trajectories onto cluster numbers and count-
ing transitions ¢;;(7) at several different lagtimes 7. The max-
imum likelihood transition matrices amongst these clusters
were estimated via p;;(t) = c;j(t)/ D_, cir(t), thus generat-
ing a series of standard Markov state models. Their slowest
implied timescale is shown in Fig. 9 depending on the num-
ber of clusters used and the parameter 7. It is apparent that
the ITS converges after t =~ 20 ps, i.e., the discretization er-
ror of the MSM requires a minimum lagtime of about 20 ps to
decay. This convergence behavior depends on the spatial res-
olution of the partition used: convergence is faster when more
clusters are used, thus being able to better approximate the
transfer operator eigenfunctions. The standard MSM allows
the timescale of the slowest process to be estimated, this being
~ 19 ps based on the apparent convergence. We should, how-
ever, be aware that this estimate remains somewhat uncertain
since it depends on where we agree to observe convergence.
Statistical error estimates for the ITS were performed using
the Bayesian error estimation algorithm described in Ref. 51,
being on the order of the line thickness in Fig. 9. Thus, the
statistical error is irrelevant in the current dataset, and signif-
icant deviations of the ITS estimates at small 7 are due to
discretization errors.

The full-partition MSM also provides an estimate of the
transition rates between the two states if we consider the slow-
est transition process to be defined by the switching process
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FIG. 9. Implied timescale of the process between the « and 8 conformations
based on standard Markov state models as described in the text.

between the o and § regions and using
k* =kyp + Ky,

. ) (45)
Takyg = pke.

o = 0.4735 and g = 0.5265 were estimated from the sta-
tionary density of P where the 8 region was defined via the
density minima to be ¢ € [—130, 40] and the « region to be
the rest. Using k* = 1/19 ps, this provides the estimates:

ki ~ 0.0277,
(46)
ks, ~ 0.0249,

that are shown in Fig. 11.

In order to obtain an estimation using a core MSM based
on milestoning, two core centers were defined at angular
coordinates x, = (—80, —60) and xg = (—80, 170). Circular
cores with a radius r were defined around these centers, and
the milestoning MSMs were computed for different core sizes
r. The results are shown in Fig. 10, where the 19-ps estimate

40 \ \ \ \
| — — estimate from core-generator K ]|
| | — estimate from Galerkin projection (K,M)
‘l - estimate from standard MSM
30 —
1
\

ITS (ps)

0 \ \ \ \ \

0 10 20 30 40 50 60
core size (angles)

FIG. 10. Estimate of the implied timescales from the core-generator, the
Galerkin projection, and the standard Markov state model.
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FIG. 11. Estimate of the implied timescales from the core-generator, the
Galerkin projection, and the standard Markov state model.

from the full partitioning MSM is drawn as a dashed line, to
indicate the reference solution. Both the straightforward core
generator (K ) and the Galerkin projection (K, M) generators
strongly underestimate the ITS at large core sizes. This obser-
vation correspond to the observation that standard MSMs un-
derestimate the ITS at small lagtimes: Large cores are unable
to approximate the eigenfunctions corresponding to the ITS
estimated, thus producing a discretization error that leads to
underestimated ITS. The core generator K then has a roughly
linearly increasing estimate of the ITS until the ITS is much
too large for very small cores. This overestimation is due to
the fact that at very small core sizes the core generator esti-
mate misses some trajectories which have actually entered a
given basin, but leave this basin before hitting the small core.
For the core generator estimate there is no apparent indicator
that would help to identify the core size that provides a correct
estimate of the timescale. On the other hand, the Galerkin pro-
jection method does converge towards the MSM estimate of
the ITS for small core sizes. Only at a core size of 1° also this
estimate breaks down, presumably due to statistical reasons.
The transition rates k; and kg, are also directly obtained us-
ing the core generator and Galerkin projection approaches.
Correspondingly to the ITS behavior, the rates are overesti-
mated with large core sizes in both approaches, see Fig. 11.
For small core sizes, the Galerkin projection converges to-
wards a robust estimate close to the one of the full partition
MSM, while the core MSM based on milrestoning does not.

These results indicate that the Galerkin projection
method used with the core MSM based on milestoning is able
to provide a robust estimate of the true ITS and rates of the
system (A) without requiring a coarse time resolution as the
full-partition MSM does and (B) based on just 2 sets instead
of a full partition of state space.

This peptide example is still particularly well suited for
the full-partition MSM approaches since our a priori knowl-
edge about the importance of the two peptide angles allows an
arbitrarily fine partition of the two-dimensional peptide angle
sub-manifold. On the one hand this permits to approximate
the rates rather precisely using a full-partition MSM and thus
evaluate the accuracy of the core set MSM rates in compari-
son. On the other hand the reader should not forget that for a

Downloaded 01 Jun 2011 to 160.45.109.30. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



204105-12  Schiitte et al.

more complicated molecular system such a low-dimensional
essential sub-manifold may not be given or known a priori
and thus any achievable partition will be in danger of being
too coarse (especially in the transition regions). In such a case
the core set MSM will have an advantage which cannot be
underestimated: it “only” requires to find the centers of the
relevant metastable sets for use as core sets and partition of
the transition regions is not needed.

VL. CONCLUSION

The framrework of milestoning allows us to introduce a
new type of Markov state model. This new class of MSM dif-
fers from standard MSM in three main aspects:

1. Instead of a finite partition of state space we only need
some disjoint core sets which should be the cores of
metastable sets of the process under consideration; the
core sets can be pretty small neighborhoods around the
energy minima in the most pronounced wells in the
energy landscape.

2. We do not need to choose a lag time but can compute the
generator characterizing the MSM directly from the MD
timeseries; therefore core set MSMs do not introduce a
lower bound on the resolvable timescales (which in case
of standard MSM is given by the lag time).

3. The a posteriori estimators for the sampling error caused
by the finiteness of the timeseries can be explicitly eval-
uated entrywise with core MSMs based on milestoning
and it does not require sampling of multivariate, con-
strained distributions like for full-partition MSMs.

Here, we demonstrated how to compute maximum likelihood
estimates of the generator of core MSM from the MD time-
series of finite length, constructed explicit expressions for this
generator in the limit of infinitely long time series via TPT,
and showed how to project the eigenvalue problem of the gen-
erator of the original process via a Galerkin ansatz. Numerical
experiments on a model system with extended diffusive tran-
sition region and on a small peptide illustrated that the core
MSMs based on milestoning allow to approximate the slowest
timescales of the original process well, especially when based
on the Galerkin projection ansatz. The results in Refs. 35,46,
and 50 form a solid basis for our approach to core MSMs
in the sense that they show that the discretization error (core
MSM compared to original dynamics on longest timescales)
will be small for optimal core sets. The key questions in the
context of core set MSMs thus is how to choose the core sets
optimally: this question will be the topic of future investiga-
tions.
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APPENDIX A: GENERATORS OF MARKOV
PROCESSES

Here we give some details about generators for Markov
processes.

Let us consider overdamped diffusion processes first. The
general equation of motion for an overdamped diffusion in
energy landscape V = V(x) reads

yx(t) = =VV(x(®) + 2B~y n(t).

Here y is the friction coefficient, and 8 = 1/kgT where kp is
Botzmann’s constant and T the system temperature. Finally
n(¢) is a white-noise process, i.e., a Gaussian process with
mean zero and covariance (§(t)y7 (t')) = 8(t — t')Id where Id
denotes the identity matrix. The associated invariant measure
is

(AL)

wx)=Z"1ePV®  where Z = / e PV®dx,  (A2)
Q

and the corresponding infinitesimal generator

L=-VV()-V+p'A. (A3)

Here V denotes the gradient operator with respect to x and A
denotes the associated Laplacian.

The equations of motion of a system governed by
Langevin dynamics are for x = (r,v) and given by (using
mass-weighted coordinates)

{ F(t) =v(1),
V()= —=VV(r@) —yv)+ /287y (),

where r(¢) and v(¢) denotes positions and momenta, respec-
tively, while V, y, B, and 7 are as above in the case of over-
damped diffusion. For simplicity we assumed the molecular
mass matrix to be the identity, which can always be achieved
by using mass-weighted coordinates. The equilibirium prob-
ability density associated with Eq. (A4) is

(A4)

w0 = exp(— (Vi + 3v'v))
x)=—exp| — rH+-viv)),
O =7 P 2
where Z is a normalization constant. The generator associated
with Eq. (A4) is

L=—yv -V, —v -V, +V,V(r)-V, + 7'A,.

In case x(¢) is a Markov jump process on discrete state
space {1, ..., N} we consider the time-¢ transition kernel be-
tween its discrete states,

p(t,i, j) =Px@) = jlx(0) =),

and get the generator L with entries
.1 .
li,j = IE%IJF ;(P(f, i, j)—8ij),

where §;; denotes the Kronecker symbol. The transition ker-
nel P, i.e., the stochastic matrix with entries p(t, i, j), relates
to the generator as

P, = exp(tL),

and the equilibirium probability distribution of the process
solves 0 = u L or u” = u’P,.
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APPENDIX B: COMPUTATION OF v; ;

For simplicity let us focus on the overdamped case first
and come back to the general situation at the end of this
subsection.

Assume that the committor functions ¢; from Eq. (19) are
given, and u; and 7r; have been computed from Egs. (20) and
(21). The starting point for obtaining the v; ; is the following
expression for the probability current of reactive trajectories
(these are all parts of an infinitely long trajectory that go from
B; to U;; B; directly, i.e., without going back to B; before
entering U;; B;)

Ji(x) = u(x)Vg;(x). (B1)

The integral of this current through the boundary of set
B; # B; gives the net probability flux out of this set in the
reaction from U;; B; to B;. By invariance under time rever-
sal this is also the net flux into B; # B; in the reaction from
B; to Uj; B;. In other words

v = f WER;(x) - Vai(x)doj(x), i #j,  (B2)
where d B; denotes the boundary of B}, 71 ;(x) the unit normal
pointing out of 9B;, and do;(x) is the surface element on
0B;. Itis easy to see that Eq. (B2) can be expressed as

Vij=— /Q nx)Vai(x) - Vq;(x)dx, i ] (B3)

Indeed Eq. (B2) is what remains if one integrates Eq. (B3) by
parts and uses Eq. (19). Equation(B3) shows that v; ; > 0 as
needed. Another integration by parts indicates that Eq. (B3)
can also be expressed as

Vi =/Q;L(x)q,-(x)(qu)(x)dx,

as we have outlined above.

This derivation can be transfered to other dynamics, too.
For example, if the evolution is governed by the Langevin
equation, then the positions x must simply be replaced by
the set of positions and velocities, (x, v). For Markov jump
processes in discrete state space see Ref. 46.

APPENDIX C: PROJECTION OPERATOR

The projection operator P maps a function f to its best
approximation Pf in

N
S=1f:Q—>R: f:Za[qi, aieR},
i=1
and is thus defined by Pf = u € S with
llu— f1I = min [lv — f], (CH
vesS
where the norm is defined via the scalar product, |g]?

= (g, &), For some real-valued scalar s and an arbitrary
v € S we get from Eq. (C1) that Pf = u satisfies

lu — FIF <l +sv)— fII
=llu— fI*P+2sv,u— f)u+ sV,

J. Chem. Phys. 134, 204105 (2011)

which, for s > 0, reduces to 2(v, u — f), + s|[v|*> > 0 and in
the limit s — 0 yields (v, u — f), > 0. Since we get (v, u —
f)u <0fors < 0and s is arbitrary it must be

(vou—f), =0.

Since v also has been arbitrary, the last identity holds for all
v € S, and thus

(gj» f = Pflu=0,

Since Pf € S, we have Pf = Zi «;q; for some coefficients
«;. Using the orthogonality of the error, we get

> ilgi aidn = (@js Flus

Vji=1,...,N.

which can be written as the system of linear equations
> ;isij = {qj, f), when introducing the matrix S = (s;;)
with s;; = (g}, g;),.. Formal solution of this system of linear
equations yields

N
(PAYx) =Y qi(x)(S i), -

ij=1

APPENDIX D: COMPARISON WITH STANDARD
MARKOV STATE MODELS

In this section, we recall the standard procedure used
to build Markov state models and stress the differences with
milestoning.

1. Set up

In contrast with milestoning, a standard MSM is typically
based on a complete subdivision of state space €2 into disjoint
sets Ay, ..., Ay such that @ = U; A;. The index process i(t)
associated with these sets can be defined as before, which now
results in the simpler relation

it)y=j if x(t) € A;. (D1)

A second difference with milestoning is that stan-
dard MSMs analyze the discrete-time process i(kt), T > 0,
k=0,1,2,... instead of its continuous-time version. The
key assumption made is that for appropriate choices of the
lag time t the process i (k7) can be modeled by a discrete-time
Markov process. The validity of this assumption depends on
the choice of both the sets A; and the lag time 7.

Assuming Markovianity, the evolution of the process
i(kt) is completely specified by a set of transition probabil-
ities p; ; > 0 which depends on 7 and give the probabilities
that i((k + 1)t) = j given that i(kt) =i (when i = j, p;;
gives the probability of staying in state i after one step of
length 7). This implies in particular that, given the initial state
i(0) = jo and the transition probabilities p; ;, the probability
that the process i(kt) evolves along the (discrete) trajectory
Jis .-, jn is (compare Eq. (4))

P(path|prob) = pj, ;i ==+ Pjr_i jus (D2)
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2. Bayesian formalism, MLE, and error estimates

Formula (D2) gives the probability to observe a path
given the transition probabilities p; ;. As before, what is avail-
able from MD data is the path i(kt),k =0, 1,2, ..., and not
the transition probabilities p; ; and to estimate p; ; we need
their probability given the path. Combining Bayes formula
with Eq. (D2), we get

N r
P (problpath) = C E(prob) [ ] », /',

i,j=1

(D3)

where C is a normalization constant, [P (prob) is the prior in
the set of all possible transition probabilities, and NLTj is the
number of transitions from state i to state j observed along
i(kt) during the time interval [0, T'] (Nfi counts the number
of events such that ai(kt) =i and i((k + 1)) = i).

The maximum likelihood estimate for the transition prob-
abilities p; ; can be computed analytically by maximizing
Eq. (D3) over all p; ; subject to the constraints that p; ; > 0
and }; pij = 1:

T

L (D4)

x
p. L=,
LJ NiT

where NiT is the number of visits of the process i (kt) in state
i, i.e., the number of discrete times with i(kt) =i in [0, T].
In order to access the statistical uncertainty of the MLE (D4)
one has to construct an ensemble of transition matrices that
is distributed according to P(prob|path). Because of the con-
straints p; ; > 0 and > jpij = 1, there is no simple formula
that permits to compute this uncertainty entrywise (as is the
case for the rates in the milestoning, see Eq. (8)). However,
there are sampling algorithms that generate an ensemble of
transition matrices distributed according to Eq. (D3).

3. Exact formulas

We can again ask what is the exact representation formula
for the transition probabilities p; ;. It is simply:

pij = [ ax / dy p(x)p(x, y;7),  (D5)
Ha; Ja; Aj

where (x) is the equilibrium probability density of the pro-

cess x(t), La, = fA’_ u(x)dx, and p(x, y; t) denotes the tran-

sition probability density already introduced in Eq. (13). De-

noting by P, = exp(r L) the transition kernel at lag-time ,

we can express Eq. (D5) as

(Xis PfXj)p.

) D6
(Xi» Xidu (0e)

pij =

where x; is the indicator function of the set A;: x;(x) = 1 if
x € A;, xi(x) = 0 otherwise.

4. Galerkin projection interpretation

A standard MSM can be also understood as a Galerkin
approximation using the space spanned by xi, ..., xy. The
eigenvalue problem associated with the transition matrix P,
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is (compare Eq. (29)):

Pro® = pfet, (D7)
where ¢ = e*7. The projected version of this equation is
(compare Eq. (30))

P, P.P,o = g, (D8)

where the projection operator P, is the equivalent of Eq. (27)
with g; replaced by y;

N
(P )X =D &) (D9)
i=1

After a little algebra, it is easy to see that Eq. (D8) can be
written as

N
> pigrt = prf, (D10)
j=1

where r/! is the equivalent of Eq. (33) with g; replaced by x;

x _ X9l

! (Xis Xiu
Compared with a Markov state model based on milestoning,
we see that the mass matrix m; ; is simply the identity matrix
since the functions y; are orthogonal with each other and the
weights (x;, xi), are included in the p; ;.

Finally, let us comment on the approximation error in
standard MSMs. The relevant error measure the deviation
of the probability transport described by the MLE p; j» that
has been computed based on a finite trajectory in [0, T'] via
Eq. (D4), and the probability transport of the underlying pro-
cess x(t). This error can be decomposed into the deviation
between the probability transport of p;; from the transport
given by the exact representation p; ; from Eq. (D5), and the
deviation between p; ; and the original probability transport
of x(t). The former is the statistical error which depends on
the length of the finite trajectory and for which we have an
a posteriori estimator via the likelihood as described above.
The latter is the discretization error that depends on the choice
of the sets Ay, ..., Ay (spatial discretization error) as well as
the lag time t (temporal discretization error). In Ref. 50 an
estimate for the discretization error is given which shows that
it can be made small if the lag time is large enough and the
sets are chosen appropriately. In particular this result shows
that for large enough lag times, only the spatial discretization
error remains while the temporal error vanishes.
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