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Abstract

The mechanism of transition (reaction coordinate) during an activated process is best described in terms of the isocommittor
surfaces. These surfaces can be used to identify effective transition tubes inside which the reactive trajectories involved in the acti-
vated process stay confined. It is shown that the isocommittor surfaces can be identified directly, i.e., without ever sampling actual
reactive trajectories, and some procedures to turn this observation into practical algorithms such as the finite temperature string
method are discussed.
! 2005 Elsevier B.V. All rights reserved.

1. Introduction

Activated processes such as nucleation events during
phase transition, conformational changes of macromol-
ecules, or chemical reactions are rare events relative to
the time scale of the atomic vibrations. The reason is
that these events require the system to find its way
through dynamical bottlenecks such as energetic or
entropic barriers which separate metastable sets in con-
figuration space. The wide separation of time-scales
makes conventional molecular dynamics simulations
ineffective for these rare events and there is a crucial
need for alternative techniques that are capable of deter-
mining the transition pathways of activated processes
arising in complex systems.

In this Letter, we argue that the best reaction coordi-
nate to describe the activated process, in fact the reac-
tion coordinate, consists of the isocommittor surfaces,
defined in such a way that a trajectory launched any-

where on one of these surfaces has the same probability
to reach first one of the metastable sets rather than the
other. The idea of using the isocommittor surfaces as
reaction coordinates is not new (see, e.g. [2,3,5,6]), and
yet more can be said about these surfaces.

First, we show that the isocommittor surfaces are the
only surfaces such that the distribution of where the
reactive trajectories hit these surfaces is the same as
the distribution of where all trajectories hit. Therefore,
this distribution is given by the equilibrium distribution
restricted to the isocommittor surfaces – on any other
set of surfaces, there is a biasing factor to add to the
equilibrium distribution to describe the distribution of
hits by reactive trajectories. This property can be used
to define tubes in configuration space inside which the
reactive trajectories stay confined with high probability.
This is done by weighting the isocommittor surfaces by
the equilibrium probability distribution and identifying
regions of large probability within these surfaces. The
transition tubes generalize the notion of minimum en-
ergy path to situations where the energy landscape is
rough and/or entropic effects dominate.

Second, we discuss how to identify the isocommit-
tor surfaces directly, that is without ever having to
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sample actual reactive trajectories. The direct identifi-
cation is based on the observation that the isocommit-
tor surfaces are the level sets (isosurfaces) of the
solution of the backward Kolmogorov equation, a
well known equation in stochastic process theory.
The backward Kolmogorov equation admits a varia-
tional formulation (least square principle), which
serves as a starting point to use appropriate test func-
tions to identify the best approximation to the iso-
committor surfaces within a certain class (like, e.g.,
hyperplanes). This way, practical algorithms can be
designed. We shall discuss in particular the finite tem-
perature string method (FTS), which can be thought
of as an adaptive version of the blue moon sampling
technique where one samples the equilibrium distribu-
tion within a family of hyperplanes, and updates these
planes according to some criterion until they converge
towards the isocommittor surfaces.

Identifying the isocommittor surfaces directly is
quite different from what is usually done to deter-
mine transition pathways. Indeed, the idea behind
most of the current techniques is to introduce some
bias on the dynamics to enhance the probability to
observe reactive trajectories. Following Pratt!s origi-
nal suggestion [1], this can be done by using Monte
Carlo sampling in trajectory space, with the con-
straint that the end points of the trajectories belong
to different metastable sets. Examples of techniques
which sample reactive trajectories directly include
transition path sampling (TPS) [2,3], or the action
based methods introduced by Elber and collabora-
tors [4].

It should be noted, however, that the reactive tra-
jectories can be very complicated, and the information
these trajectories provide on the mechanism of the
transition is very indirect. In particular, the isocom-
mittor surfaces cannot be identified directly from the
ensemble of reactive trajectories since, by definition,
these trajectories always connect one metastable set
to the other and therefore any point along these tra-
jectories seems to have committor value either one
or zero. Another way to see the problem is to realize
that the reactive trajectories are parametrized by time,
and time is not a good indicator of the advancement
of the reaction. In general, two trajectories leaving a
set at the same time will hit an isocommittor surface
at different times. Even worse, a single reactive trajec-
tory may hit an isocommittor surface many times dur-
ing a transition. This makes the reconstruction of the
isocommittor surfaces from the reactive trajectories a
very challenging numerical task [6]. By identifying
the isocommittor surfaces directly we avoid these dif-
ficulties altogether.

A few words about the organization of the Letter. We
are primarily interested in systems governed by the
Langevin equation

_x ¼ vðtÞ;

_vðtÞ ¼ rV ðxðtÞÞ $ cM$1vðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2cb$1

q
M$1=2gðtÞ;

(

ð1Þ

where ðxðtÞ; vðtÞÞ 2 Rn & Rn (n degrees of freedom with n
large in general), V(x) is the potential, b = 1/kBT, the in-
verse temperature, c, the friction coefficient,M, the diag-
onal mass matrix, and g(t), a white-noise satisfying
Ægi(t)gj(t 0)æ = dijd(t $ t 0). Most of our results formally
apply in the limit of zero friction, c ! 0, when (1) re-
duces to Hamilton!s equation of motion, but it should
be stressed that the results below are rigorous only when
the friction coefficient is positive. For simplicity of pre-
sentation, we will consider first in Sections 2 and 3 the
high friction situation when c ' 1 which is technically
simpler. Then, in Section 4 we will show that the conclu-
sions we draw from the high friction dynamics in terms
of mechanism of transition also apply to (1), provided
that the mechanism of transition can be described accu-
rately in configuration space alone. Finally, in Section 5
we discuss algorithms like the finite temperature string
method (FTS) which allow to identify the isocommittor
surfaces.

2. Isocommittor surfaces and backward Kolmogorov
equation

Consider a system governed by

c _xðtÞ ¼ $rV ðxðtÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2cb$1

q
gðtÞ. ð2Þ

This equation arises from (1) in the high friction limit,
c ' 1, and we will return to (1) in Section 4.

The dynamics in (2) is ergodic with respect to the
Boltzmann–Gibbs probability density function (NVT
ensemble)

Z$1e$bV ðxÞ; where Z ¼
Z

Rn
e$bV ðxÞ dx. ð3Þ

We will assume that it has been established that (1) is
metastable over the two sets A ( Rn and B ( Rn in con-
figuration space. By this we mean that the volume of
these sets may be relatively small, and yet the probabil-
ity to find the system inside one of these sets is close to
one:

1 ) Z$1

Z

A[B
e$bV ðxÞ dx. ð4Þ

By ergodicity, transitions between these sets must occur,
and our main purpose is to understand how they occur.
How to systematically identify A and B may for instance
be done by analyzing the spectrum of the infinitesimal
generator associated with (1) – metastability is related
to the existence of a spectral gap, and the metastable sets
can be identified from the eigenfunctions associated with
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the smallest eigenvalues (see, e.g., Ref. [16]) – but we will
not dwell on this issue here. Also, we note that the situ-
ation with more than two metastable sets, say,
{Aj}j = 1 ,. . . ,n can be considered as well by iterating the
arguments below on A1,[j 6¼ 1Aj, then A2,[j 6¼ 2Aj, etc.

As mentioned in Section 1, the reaction coordinate
for describing the mechanism of transition between A
and B consists of the isocommittor surfaces. We explain
why this is the case Section 3, but before doing so we
note that, in principle at least, there is a systematic
way to identify these isocommittor surfaces without run-
ning any dynamical trajectories. Indeed, let q(x) be the
solution of

0 ¼ Lq * $rV +rqþ b$1Dq; qjx2A ¼ 0; qjx2B ¼ 1;

ð5Þ

The operator L is infinitesimal generator of the Markov
process defined by (2), and (5) is the backward Kol-
mogorov equation associated with (2). Then q(x) has
the following probabilistic interpretation:

q(x) is the probability that a trajectory initiated at x
reaches the set B before reaching the set A.

It follows that the level set (or isosurface)
q(x) = z 2 [0,1] is the set of points which have a uniform
probability z to reach B before A, i.e., it is the isocom-
mittor surface with committor value z. These statements
are classical results of stochastic process theory and are
reviewed, e.g., in Chapter 5 of [10] or Chapter 4 in [11].

3. Reaction coordinate and transition tubes

The main purpose of this section is to show that by
weighting the isocommittor surfaces q(x) = z by the
equilibrium probability density (3) restricted to these
surfaces, we can define regions on the isocommittor sur-
face through which reactive trajectories pass with high
probability. (Recall that by reactive trajectories we mean
the portions of a trajectory when, after leaving the meta-
stable set A, it enters first B before returning to A, or the
other way around.)

Consider an arbitrary surface S (i.e., not necessarily
an isocommittor surface) in the configuration space
and an arbitrary point x on S. Then the probability den-
sity that a reactive trajectory hits S at x is

qSðxÞ ¼ Z$1
S qðxÞð1$ qðxÞÞe$bV ðxÞ; ð6Þ

where ZS = "Sq(x)(1 $ q(x))e$bV(x) dr(x) and dr(x) is
the surface element on S. To understand (6), note that
qSðxÞ is equal to the probability density that a trajectory
(whether reactive or not) hits S at x, times the probabil-
ity that the trajectory came from A in the past and that it
reaches B before reaching A in the future. Using the
strong Markov property and the statistical time revers-

ibility of the dynamics in (2) (i.e., the time series x($t)
is statistically equivalent to x(t)), this probability is
given by q(x)(1 $ q(x)), and this gives (6).

On an isocommittor surface, q(x) = cst by definition,
and therefore (6) simply reduces to the equilibrium
probability density on this surface

qSðxÞ ¼ !Z$1
S e$bV ðxÞ; ðS ¼ isocommittor surfaceÞ; ð7Þ

where !ZS ¼
R
S e

$bV ðxÞ drðxÞ. In other words,

The isocommitor surfaces have no bias, in the sense that
the distribution of where the reactive trajectories hit these
surfaces is the same as the distribution of where all the
trajectories hit.

Note that the isocommittor surfaces are the only sur-
face where the factor q(x)(1 $ q(x)) in (6) is constant,
i.e., they are the only surfaces that can be weighted by
the equilibrium density and yet provide some dynamical
information about the reactive trajectories.

These special properties of the isocommittor surfaces
can be used to define the transition tubes. Let
C(z) # {q(x) = z} be the region with the smallest volume
in the isocommittor surface such thatZ

CðzÞ
e$bV ðxÞ drðxÞ ¼ p

Z

qðxÞ¼z
e$bV ðxÞ drðxÞ; ð8Þ

where p 2 (0,1) is a parameter. Then we have:

The family {C(z):z 2 [0,1]} defines one or more tubes con-
necting a and b which are such that the reactive trajecto-
ries stay inside this tube with probability p.

Each such tube is naturally referred to as an effective
transition tube (or a p-transition tube to be more pre-
cise). If p is taken to be close to 1 in (8), then the regions
within the tubes where q(x) is close to 1/2 define the
transition regions: these regions have a significant
probability to be visited by the reactive trajectories
and from these regions, the probability of subsequently
committing to either A or B is close to 1/2. Notice that
both the tubes and the transition regions can be quite
wide.

Because the probability weight on the isocommittor
surface is simply the equilibrium probability density, it
is quite straightforward to sample these surfaces using,
e.g., the blue moon sampling method [12,13]. The
difficult part is of course to identify the isocommittor
surfaces using (5). We will consider this question in
Section 5.

4. Generalization to the finite friction case: least square
principle, etc.

Let us now go back to the Langevin equation in (1).
This dynamics is also ergodic with respect to the Boltz-
mann–Gibbs density in (3), and if A and B are metasta-
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ble sets for (2) in the sense that they satisfy (4), these sets
are also metastable sets for (1). Since (1) defines a Mar-
kov process as well, one can understand the mechanism
of transition between the sets A and B using as reaction
coordinate the solution of the equation similar to (5)
associated with (1):

0¼ ~L~q* v +r~q$rV + o~q$ cM$1v + o~qþ cb$1M$1 : oo~q;
~qjx2A ¼ 0; ~qjx2B ¼ 1;

(

ð9Þ

where $ denotes the gradient with respect to x, and o the
gradient with respect to v. The operator ~L is infinitesimal
generator of the Markov process defined by (1) and (9)
is the backward Kolmogorov equation associated with
(1). The main difference with (5) is that the solution of
(9) is defined on phase-space, ~q * ~qðx; vÞ, but it has the
same probabilistic interpretation as qðxÞ : ~qðx; vÞ is the
probability that a trajectory initiated at (x,v) reaches
set B before set A. In other words the level set
~qðx; vÞ ¼ z 2 ½0; 1- is the location of the points (in
phase-space) which have a uniform probability z to
reach B before A.

Eq. (9) seems even more complicated than (5). How-
ever, we claim that:

If the mechanism of transition between A and B can be
accurately described in configuration space alone, then
~qðx; vÞ ) qðxÞ, where q(x) is the solution of (5).

To see this, let us associate with (9) a least square var-
iational principle. Specifically, consider

I ¼
Z

Rn&Rn
e$bHðx;vÞj~L~qðx; vÞj2 dx dv; ð10Þ

where Hðx; vÞ ¼ 1
2 jvj

2 þ V ðxÞ is the Hamiltonian. The
solution of (9) minimizes I over all test functions ~q sat-
isfying ~qðx; vÞjx2a ¼ 0; ~qðx; vÞjx2b ¼ 1, and we have not
made any approximation yet. Let us now assume that
~q depends on x only, i.e., ~qðx; vÞ * !qðxÞ. This amounts
to making the assumption that the mechanism of transi-
tion can be described accurately in configuration space
alone. In this case, ~L~q ¼ v +r!q, and the integration over
v in (10) can be done explicitly. Up to an irrelevant con-
stant, the result is

I ¼
Z

Rn
e$bV ðxÞjr!qðxÞj2 dx. ð11Þ

The Euler–Lagrange equation associated with mini-
mizing this object function subject to !qðxÞjx2A ¼ 0;
!qðxÞjx2B ¼ 1 precisely is (5). It means that, in the range
of value of c such that to a good approximation,
~qðx; vÞ depends only on x, the mechanism of transition
is insensitive to c and ~qðx; vÞ ¼ qðxÞ as claimed. In the se-
quel, we will work within this approximation but we
note that, should it fail in a given situation, one can in

principle refine upon it by going back to (10) and choos-
ing test functions that are more appropriate than
~qðx; vÞ ¼ !qðxÞ.

5. Practical implementation: string method, etc.

The variational principle associated with (11) (or (10)
if necessary) offers ways to systematically develop prac-
tical procedure to identify q(x) and the isocommittor
surfaces. The idea is to use appropriate test functions
to approximate q(x). For instance, we could assume that
q(x) = f(g1(x) ,. . .,gN(x)), where {g1(x) ,. . .,gN(x)} are gi-
ven coarse variables in terms of which the transition can
be described accurately. Minimizing (11) over such test
functions can be done, and it leads to a description of
the transition pathways in terms of the minimum free
energy paths defined on the free energy associated with
the variables {g1(x) ,. . .,gN(x)}. These results will be pre-
sented elsewhere. Here, we focus on the main ideas be-
hind the finite temperature string method (FTS) [7–9]
which makes only minimum a priori assumptions about
the mechanism of transition. We refer the reader to [9]
for more details about the implementation of the meth-
od and its application for the study of the isomerization
of alanine dipeptide.

The main assumption behind FTS is that the family
of level sets q(x) = z, z 2 [0, 1], can be approximated
by a family of planes, at least locally around each tran-
sition tube specified by (8) for p close to one. This family
of planes can be represented by a parameterized curve in
configuration space (a string) u(a), with a 2 [0, 1], such
that: (i) the plane labeled by a, which we will denote
by P(a) contains the point x = u(a); (ii) the unit normal
of P(a) is n̂ðaÞ; (iii) the point u(a) is the mean position in
the plane with respect to the equilibrium density (3) now
restricted to S = P(a), i.e.

uðaÞ ¼ hxiP ðaÞ *
R
PðaÞ xe

$bV ðxÞ drðxÞ
R
P ðaÞ e

$bV ðxÞ drðxÞ
. ð12Þ

Note that the parametrization by a may be different
from the one by z. Using the identity

I ¼
Z

Rn
jrqðxÞj2e$bV ðxÞ dx

¼
Z 1

0

Z

Rn
jrqðxÞj2e$bV ðxÞdðqðxÞ $ zÞ dx

" #
dz; ð13Þ

it was shown in [7] (see also the remark at the end of this
section) that, under the planar approximation, this
objective function reduces to

I ¼
Z 1

0

ðf 0ðaÞÞ2e$bF ðaÞjn̂ðaÞ + u0ðaÞj$1 da; ð14Þ

where f(a) = q(u(a)), the prime denotes derivative with
respect to a, and we defined the free energy
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F ðaÞ ¼ $b$1 ln

Z

Rn
e$bV ðxÞdðn̂ðaÞ + ðx$ uðaÞÞÞ dx. ð15Þ

The derivation of (14) uses f 0ðaÞ ¼ dqðuÞ=da ¼
jn̂ + u0jjrqðuÞj and requires localization in the sense that

ðn̂ðaÞ + u0ðaÞÞ2 ' hðn̂0ðaÞ + ðx$ uðaÞÞÞ2iP ðaÞ; ð16Þ

which relates the width of the transition tube to the local
curvature of the string. (16) is required since otherwise
the regions of high probability on the planes would in-
clude regions where these planes intersect, thereby inval-
idating the local planar assumption for the level sets of
q(x).

Eq. (14) must be minimized over u; n̂ and f , subject
to (12) and the conditions that f(0) = 0, f(1) = 1, and
that the end points of u belong to the metastable sets
A and B. This calculation was performed in [7], and it
was shown that the minimum is achieved when:

n̂ðaÞku0ðaÞ ð17Þ

and

f ðaÞ ¼
R a
0 e

bF ða0Þ da0
R 1

0 e
bF ða0Þ da0

. ð18Þ

The region such that f ðaHÞ ) 1
2 is the transition state re-

gion. Notice that this region is also the one where the
free energy is maximum.

Eqs. (17) and (18) can be justified heuristically as fol-
lows. The minimum of the factor jn̂ + u0j$1 in (14) is
achieved under the condition (17) (without loosing in
generality, we assume the length of u 0(a) is a constant).
When (17) holds, (14) reduces to

I ¼
Z 1

0

ðf 0ðaÞÞ2e$bF ðaÞ da; ð19Þ

up to a constant. The minimizer of (19) is given by (18),
which is also the solution to the one-dimensional version
of the backward Kolmogorov equation:

$F 0ðaÞf 0ðaÞ þ b$1f 00ðaÞ ¼ 0 ð20Þ

with boundary conditions f(0) = 0 and f(1) = 1. In par-
ticular, notice that (18) simply is the equivalent of the
function q(x) for a one-dimensional particle moving by
high friction dynamics in the free energy potential.

Eqs. (12) and (17) indicate that the family of planes
P(a) is such that the mean position within these planes
form a curve u which must be everywhere perpendicular
to the planes. In fact, (12) and (17) are a natural finite
temperature generalization of the concept of minimum
energy path (recall that if u were a minimum energy
path, then 0 = $V(u)^ along it, see, e.g. [7]). As a result
FTS is a natural generalization of the zero temperature
string method developed in [14,15], and it can be imple-
mented numerically in a similar way by moving curves in
configuration space.

More precisely, FTS method is an iterative method
for solving

uðaÞ ¼ hxiPa; ð21Þ

subject to

n̂ðaÞku0ðaÞ. ð22Þ

This is done sampling on hyperplanes satisfying (22),
then updating the position of these hyperplanes until
(21) is satisfied. For more details, see [8,9].

Remark. We derive the formula (14) from (13):

I¼
Z

X0
jrqðxÞj2e$bV ðxÞ dx

¼
Z 1

0

dz
Z

X0
jrqðxÞj2e$bV ðxÞdðqðxÞ$ zÞdx

¼
Z 1

0

f 0ðaÞda
Z

X0
jrqðxÞje$bV ðxÞdðn̂ðaÞ + ðx$uðaÞÞÞdx

¼
Z 1

0

f 0ðaÞjrqðuðaÞÞjda
Z

X0
e$bV ðxÞ

&dðn̂ðaÞ + ðx$uðaÞÞÞdx

¼
Z 1

0

f 0ðaÞ2ðn̂ðaÞ +u0ðaÞÞ$1e$bF ðaÞ da. ð23Þ

where X0 ¼ Rn n ðA [ BÞ. To go from the third to the
fourth line, we made the assumption that the isocommit-
tor surface is locally planar with normal n̂ðaÞ, and de-
fined f(a) = q(u(a)). To go from the fourth to the fifth
line, we used (16). In the last step, we defined the free en-
ergy F(a) as in (15) and used f 0ðaÞ ¼ rqðuÞ + u0 ¼
jrqðuÞjðn̂ + u0Þ.
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