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TRANSITION PATH THEORY FOR MARKOV JUMP PROCESSES∗

PHILIPP METZNER† , CHRISTOF SCHÜTTE† , AND ERIC VANDEN-EIJNDEN‡

Abstract. The framework of transition path theory (TPT) is developed in the context of
continuous-time Markov chains on discrete state-spaces. Under assumption of ergodicity, TPT singles
out any two subsets in the state-space and analyzes the statistical properties of the associated reactive
trajectories, i.e., those trajectories by which the random walker transits from one subset to another.
TPT gives properties such as the probability distribution of the reactive trajectories, their probability
current and flux, and their rate of occurrence and the dominant reaction pathways. In this paper
the framework of TPT for Markov chains is developed in detail, and the relation of the theory to
electric resistor network theory and data analysis tools such as Laplacian eigenmaps and diffusion
maps is discussed as well. Various algorithms for the numerical calculation of the various objects in
TPT are also introduced. Finally, the theory and the algorithms are illustrated in several examples.
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1. Introduction. Continuous-time Markov chains on discrete state-spaces have
an enormous range of applications. In recent years, especially, with the explosion of
new applications in network science, Markov chains have become the tool of choice
not only to model the dynamics on these networks but also to study their topolog-
ical properties [2, 26]. In this context, there is a need for new methods to analyze
Markov chains on large state-spaces with no specific symmetries, as is relevant for
large complex networks. This paper proposes one such method.

A natural starting point to analyze a Markov chain is to use spectral analysis.
This is especially relevant when the chain displays metastability, as was shown in
[8, 12] in the context of time-reversible chains. By definition, the generator of a
metastable chain possesses one or more clusters of eigenvalues near zero, and the
associated eigenvectors provide a natural way to partition the chain (and hence the
underlying network) into cluster of nodes on which the random walker remains for a
very long time before finding its way to another such cluster. This approach has been
used not only in the context of Markov chains arising from statistical physics (such as
glassy systems [4, 7] or biomolecules [30]) but also in the context of data segmentation
and embedding [32, 23, 29, 3, 14, 11, 21]. The problem with the spectral approach,
however, is that not all Markov chains of interest are time-reversible and metastable,
and, when they are not, the meaning of the first few eigenvectors of the generator is
less clear.

In this paper, we take another approach which does not require metastability
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and applies for non-time-reversible chains as well. The basic idea is to single out two
subsets of nodes of interest in the state-space of the chain and ask what the typical
mechanism is by which the walker transits from one of these subsets to the other. We
can also ask what the rate is at which these transitions occur, etc. The first object
which comes to mind to characterize these transitions is the path of maximum likeli-
hood by which they occur. However, this path can again be not very informative if
the two states one has singled out are not metastable states. The main objective of
this paper, however, is to show that we can give a precise meaning to the question of
finding typical mechanisms and rates of transition even in chains which are neither
metastable nor time-reversible. In so doing, we shall exploit the framework of tran-
sition path theory (TPT) which has been developed in [16, 34, 25] in the context of
diffusions. In a nutshell, given two subsets in state-space, TPT analyzes the statistical
properties of the associated reactive trajectories, i.e., the trajectories by which tran-
sition occur between these sets. TPT provides information such as the probability
distribution of these trajectories, their probability current and flux, and their rate
of occurrence. In this paper, we shall adapt TPT to continuous-time Markov chains
and illustrate the output of the theory via several examples. For the sake of brevity,
we will focus only on continuous-time Markov chains, but we note that our results
can be straightforwardly extended to the case of discrete-time Markov chains. We
choose illustrative examples motivated by molecular dynamics and chemical physics,
but the tools of TPT presented here can also be used for data segmentation and
data embedding. In this context, TPT may also provide an alternative to Laplacian
eigenmaps [29, 3] and diffusion maps [11], which have become very popular recently
in data analysis.

The remainder of this paper is organized as follows. In section 2 we present the
framework of TPT for Markov jump processes. In section 3 we discuss the algorithmic
aspects related to the numerical calculation of the various objects in TPT. We focus
especially on the reaction pathways whose calculation involve techniques from graph
theory which are nonstandard in the context of Markov chains. In section 4 we illus-
trate the theory and the algorithms in several examples arising in molecular dynamics
and chemical kinetics. Finally, in section 5 we make a few concluding remarks.

2. Theoretical aspects.

2.1. Preliminaries: Notation and assumptions. We will consider a Markov
jump process on the countable state-space S with infinitesimal generator (or rate
matrix) L = (lij)i,j∈S :

(2.1)

⎧⎨
⎩

lij ≥ 0 ∀i, j ∈ S, i �= j,∑
j∈S

lij = 0 ∀i ∈ S.

Recall that if the process is in state i at time t, then lijΔt + o(Δt) for j �= i gives
the probability that the process jumps from state i to state j during the infinitesimal
time interval [t, t + Δt], and this probability is independent of what happened to the
process before time t. We assume that the Markov jump process is irreducible and
ergodic with respect to the unique, strictly positive invariant distribution π = (πi)i∈S ,
the solution of

(2.2) 0 = πT L.

We will denote by {X(t)}t∈R an equilibrium sample path (or trajectory) of the Markov
jump process, i.e., any path obtained from {X(t)}t∈[T,∞) by pushing back the initial
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condition, X(T ) = x, to T = −∞. Following standard conventions, we assume that
{X(t)}t∈R is right-continuous with left limits (càdlàg) (i.e., at the times of the jumps
the process is assigned to the state it jumps into rather than to the one it jumped
from).

We will be interested in studying certain statistical properties of the ensemble of
equilibrium paths. In principle, this requires us to construct a suitable probability
space whose sample space is the ensemble of these equilibrium paths. Such a construc-
tion is standard (see, e.g., [10]), and we will not dwell on it here since, by assumption
of ergodicity, the statistical properties of the ensemble of equilibrium paths that we
are interested in can also be extracted from almost any path in this ensemble via
suitable time averaging. This is the viewpoint that we will adopt in this paper since
it gives an operational way to compute expectations from a trajectory generated, e.g.,
by numerical simulations.

Below, we will also need the process obtained from {X(t)}t∈R by time reversal.
We will denote this time-reversed process by {X̃(t)}t∈R and define it as

(2.3) X̃(t) = X∗(−t), where X∗(t) = lim
s→t−X(s).

By our assumptions of irreducibility and ergodicity, the process {X̃(t)}t∈R is again
a càdlàg Markov jump process with the same invariant distribution as {X(t)}t∈R, π,
and infinitesimal generator L̃ = (l̃ij)i,j∈S given by

(2.4) l̃ij =
πj

πi
lji.

Finally, recall that if the infinitesimal generator satisfies the detailed balance equations

(2.5) ∀i, j ∈ S : πilij = πj lji,

then L̃ ≡ L and, hence, the direct and the time-reversed process are statistically
indistinguishable. Such a process is called reversible. We do not assume reversibility
in this paper.

For the algorithmic part of this paper, it will be convenient to use the notation
and concepts of graph theory. We will mainly consider directed graphs G = G(S, E),
where the vertex set S is the set of all states of the Markov jump process and two
vertices i and j are connected by a directed edge if (i, j) ∈ E ⊆ (S × S).

We also recall the following definition.
Definition 2.1. A directed pathway w = (i0, i1, i2, . . . , in), ij ∈ S, j = 0, . . . , n,

in a graph G is a finite sequence of vertices such that (ij, ij+1) ∈ E, j = 0, . . . , n− 1.
A directed pathway w is called simple if w does not contain any self-intersections
(loops), i.e., ij �= ik for j, k ∈ {0, . . . , n}, j �= k.

We will later consider several forms of induced directed graphs.
Definition 2.2. Let E′ ⊂ E be a subset of edges of a graph G = G(S, E); then

we denote by G[E′] = G(S′, E′) the induced subgraph, i.e., the graph which consists
of all edges in E′ and the vertex set

S′ = {i ∈ S : ∃j ∈ S such that (i, j) ∈ E′ or (j, i) ∈ E′}.

Definition 2.3. Whenever a |S| × |S|-matrix C = (Cij) with nonnegative en-
tries is given, the weight-induced directed graph is denoted by G{C} = G(S, E). In
this graph the vertex set S is the set of all states of the Markov jump process, and
two vertices i and j are connected by a directed edge (i, j) ∈ E ⊆ (S × S) if the
corresponding weight Cij is positive.
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Fig. 1. Schematic representation of a piece of an ergodic trajectory. The subpiece connecting
A to B (shown in thick black) is a reactive trajectory, and the collection of reactive trajectories is
the ensemble of reactive trajectories.

2.2. Reactive trajectories. Let A and B be two nonempty, disjoint subsets of
the state-space S. By ergodicity, any equilibrium path {X(t)}t∈R oscillates infinitely
many times between set A and set B. We are interested in understanding how these
oscillations happen (mechanism, rate, etc.). If we view A as a reactant state and B as
a product state, then each oscillation from A to B is a reaction event, and so we are
asking about the mechanism, rate, etc., of these reaction events. To properly define
and characterize the reaction events, we proceed by pruning out of each equilibrium
trajectory {X(t)}t∈R the pieces during which it makes a transition from A to B (i.e.,
the reactive pieces), and we ask about various statistical properties of these reactive
pieces. The pruning is done as follows (see also Figure 1 for a schematic illustration).

First, given a trajectory {X(t)}t∈R we define a set of last-exit-before-entrance and
first-entrance-after-exit times σ = {tAn , tBn }n∈Z as follows.

Definition 2.4 (exit and entrance times). Given a trajectory {X(t)}t∈R, the
last-exit-before-entrance time tAn and the first-entrance-after-exit time tBn belong to σ
if and only if

(2.6)
limt→tA

n − X(t) = xA
n ∈ A, X(tBn ) = xB

n ∈ B

∀t ∈ [tAn , tBn ) : X(t) /∈ A ∪ B.

By ergodicity, we know that the cardinality of σ is almost surely (a.s.) infinite. It
is also clear that the times tAn and tBn form an increasing sequence, tAn ≤ tBn ≤ tAn+1, for
all n ∈ Z. Notice, however, that we may have tAn = tBn for some n ∈ Z corresponding to
events when the trajectory jumps directly from A to B. If, on the other hand, tAn < tBn ,
then the trajectory visits states outside of A and B when it makes a transition from
the former to the latter.

Next, given the set σ, we define the following.
Definition 2.5 (reactive times). The set R of reactive times is defined as

(2.7) R =
⋃
n∈Z

(tAn , tBn ) ⊂ R.

Finally, we denote by t1n ≡ tAn ≤ t2n ≤ · · · ≤ tkn
n ≤ tBn the set of all of the successive

jumping times of X(t) in [tAn , tBn ], i.e., all of the times in [tAn , tBn ] such that
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(2.8) lim
t→tk

n−
X(t) �= X(tkn) =: xk

n, k = 1, . . . , kn ∈ N,

and we define the following.
Definition 2.6 (reactive trajectories). The ordered sequence

(2.9) Pn = [xA
n , x1

n, x2
n . . . , xkn

n ≡ xB
n ]

consisting of the successive states visited during the nth transition from A to B (in-
cluding the last state in A, xA

n , and the first one in B, xB
n ≡ xkn

n ) is called the nth
reactive trajectory. The set of all such sequences,

(2.10) P =
⋃
n∈Z

{Pn},

is called the set of reactive trajectories.
(Note that we have kn = 1 when the trajectory hops directly from A to B at time

tAn = tBn , in which case Pn = [xA
n , xB

n ].)
Since the equilibrium trajectory {X(t)}t∈R used in the construction above is part

of a statistical ensemble, the sets R, Pn, and P are also random sets whose statistical
properties are induced by those of the ensemble of equilibrium trajectories. In the
next sections we obtain explicit expression for various expectations involving these
random sets. Using ergodicity, these expectations can be computed a.s. from a single
trajectory via time averaging, even though in this case σ, R, Pn, and P are fixed
sets. As already explained above, the second viewpoint is the one we will take in this
paper since it gives operational definitions to all of the statistical quantities we are
interested in.

2.3. Probability distribution of reactive trajectories. A first object rele-
vant to quantify the statistical properties of the reactive trajectories is the following
definition.

Definition 2.7. The distribution of reactive trajectories mR = (mR
i )i∈S is de-

fined so that for any i ∈ S we have

(2.11) lim
T→∞

1
2T

∫ T

−T

1{i}(X(t))1R(t)dt = mR
i ,

where 1C(·) denotes the characteristic function of the set C.
The distribution mR gives the equilibrium probability that the system is in state

i at time t and that it is reactive at that time; i.e., mR
i can also be expressed as

(2.12) mR
i = P(X(t) = i & t ∈ R),

where P denotes probability with respect to the ensemble of equilibrium trajectories.
To avoid confusion, note that the random objects in (2.12) are X(t) and R: the time t
in this expression is fixed, and mR

i does not depend on t since we look at equilibrium
reactive trajectories.

How can we find an expression for mR? Suppose we encounter the process X(t)
in a state i ∈ S. What is the probability that X(t) is reactive? Intuitively, this is the
probability that the process came from A rather than from B times the probability
that the process will reach B rather than A in the future. This indicates that the
following objects will play an important role.
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Definition 2.8. The discrete forward committor q+ = (q+
i )i∈S is defined as the

probability that the process starting in i ∈ S will first reach B rather than A. Anal-
ogously, we define the discrete backward committor q− = (q−i )i∈S as the probability
that the process arriving in state i last came from A rather than B.

The forward and backward committors both satisfy a discrete Dirichlet problem:

(2.13)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈S

lijq
+
j = 0 ∀i ∈ (A ∪ B)c,

q+
i = 0 ∀i ∈ A,

q+
i = 1 ∀i ∈ B

and

(2.14)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈S

l̃ijq
−
j = 0 ∀i ∈ (A ∪ B)c,

q−i = 1 ∀i ∈ A,

q−i = 0 ∀i ∈ B.

Here L = (lij)i,j∈S and L̃ = (l̃ij)i,j∈S denote the infinitesimal generator forward and
backward in time, respectively. For the reader’s convenience, we recall the derivation
of these equations in the appendix. The committor q+

i is related to hitting times with
respect to the sets A and B by

(2.15) q+
i = Pi(τ+

B < τ+
A ).

Here Pi denotes probability conditional on X(0) = i, τ+
A = min{t > 0 : X(t) ∈ A}

denotes the first entrance time of the set A, and τ+
B = min{t > 0 : X(t) ∈ B}

denotes the first entrance time of the set B; q−i can be defined similarly using the
time-reversed process as

(2.16) q−i = P̃i(τ−
B > τ−

A ),

where P̃i denotes probability with respect to the time-reversed process conditional on
X̃(0) = i, τ−

A = inf{t > 0 : X̃(t) ∈ A} denotes the last exit time of the subset A, and
τ−
B = inf{t > 0 : X̃(t) ∈ B} denotes the last exit time of the subset B.

We have the following theorem.
Theorem 2.9. The probability distribution of reactive trajectories defined in

(2.11) is given by

(2.17) mR
i = πiq

+
i q−i , i ∈ S.

Proof. Denote by xAB,+
i (t) the first state in A ∪ B reached by X(s), s ≥ t,

conditional on X(t) = i. Similarly, denote by xAB,−
i (t) the last state in A∪B left by

X(s), s ≤ t, conditional on X(t) = i, or, equivalently, the first state in A∪B reached
by X̃(s), s ≥ −t. In terms of these quantities, (2.11) can be written as

mR
i = lim

T→∞
1

2T

∫ T

−T

1{i}(X(t))1A(xAB,−
i (t))1B(xAB,+

i (t))dt.

Taking the limit as T → ∞ and using ergodicity together with the strong Markov
property, we deduce that

mR
i = πi Pi(τ+

B < τ+
A )P̃i(τ−

B > τ−
A ),
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which is (2.17) by definition of q+ and q−.
Notice that mR

i = 0 if i ∈ A ∪ B. Notice also that mR is not a normalized
distribution. In fact, from (2.12)

(2.18) ZAB =
∑
j∈S

mR
j =

∑
j∈S

πjq
+
j q−j < 1

is the probability that the trajectory is reactive at some given instance t in time, i.e.,

(2.19) ZAB = P(t ∈ R).

The distribution

(2.20) mAB
i = Z−1

ABmR
i = Z−1

ABπiq
+
i q−i

is then the normalized distribution of reactive trajectories which gives the probability
of observing the system in a reactive trajectory and in state i at time t conditional
on the trajectory being reactive at time t.

Remark 2.10. If the Markov process is reversible (i.e., πilij = πj lji), then
q+
i = 1 − q−i and the probability distribution of reactive trajectories reduces to

(2.21) mR
i = πiq

+
i (1 − q+

i ) (reversible process).

2.4. Probability current of reactive trajectories. In this section we are
interested in the probability current of reactive trajectories, i.e., the average rate at
which they flow from state i to state j. A precise definition amounts to counting how
many reactive trajectories jump from state i to state j on average in a time interval
of length s > 0 and then computing the limit as s → 0+ of the ratio between this
average number and s. In formula, this reads as follows.

Definition 2.11. The probability current of reactive trajectories fAB = (fAB
ij )i,j∈S

is defined so that for all pairs of states (i, j), i, j ∈ S, i �= j, we have

lim
s→0+

1
s

lim
T→∞

1
2T

∫ T

−T

1{i}(X(t))1{j}(X(t + s))

×
∑
n∈Z

1(−∞,tB
n ](t)1[tA

n ,∞)(t + s)dt = fAB
ij .

(2.22)

In addition, we set fAB
ii = 0 for all i ∈ S.

In (2.22), the factor
∑

n∈Z
1(−∞,tB

n ](t)1[tA
n ,∞)(t + s) is used to prune out of the

time average all of the times during which X(t) and X(t+s) are both not reactive. It
has this complicated looking form because we want the flux fAB

ij to be nonzero even
if i ∈ A: for any i /∈ A the pruning factor in (2.22) can be replaced by 1R(t)1R(t+ s),
but this is not adequate if i ∈ A because X(tnA) /∈ A by construction. For i /∈ A, fAB

ij

can be also be defined as

(2.23) fAB
ij = lim

s→0+

1
s

P(X(t) = i & X(t + s) = j & t ∈ R & t + s ∈ R).

We have the following theorem.
Theorem 2.12. The discrete probability current of reactive trajectories is given

by

(2.24) fAB
ij =

{
πiq

−
i lijq

+
j if i �= j,

0 otherwise.
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Proof. Using the same notation as in the proof of Theorem 2.9, (2.22) can also
be written as

fAB
ij = lim

s→0+

1
s

lim
T→∞

1
2T

∫ T

−T

1{i}(X(t))1{j}(X(t + s))

× 1A(xAB,−
i (t))1B(xAB,+

j (t + s))dt.

(2.25)

Taking the limit T → ∞ and using ergodicity, we deduce that

fAB
ij = lim

s→0+

1
s
πiq

−
i Ei[q+

X(s),1{j}(X(s))],

where Ei denotes the expectation conditional on X(0) = i. To take the limit s → 0+

we use

∀Φ : S �→ R : lim
s→0+

1
s
(Ei[Φ(X(s))] − Φ(i)) =

∑
j∈S

lijΦ(j),

and we are done since i �= j.
This result implies an expected property, namely the conservation of the discrete

probability current or flux in each node.
Theorem 2.13. For all i ∈ (A ∪ B)c the probability current is conserved, i.e.,

(2.26)
∑
j∈S

(fAB
ij − fAB

ji ) = 0 ∀i ∈ (A ∪ B)c.

Proof. By the definition of fAB for i ∈ (A ∪ B)c,∑
j∈S

(fAB
ij − fAB

ji ) = πiq
−
i

∑
j �=i

lijq
+
j − πiq

+
i

∑
j �=i

πj

πi
ljiq

−
j

= −q−i q+
i πilii + q−i q+

i πi l̃ii = 0,

where we used
∑

j∈S lijq
+
j = 0 if i ∈ (A ∪ B)c from (2.13) and

∑
j∈S l̃ijq

−
j = 0 if

i ∈ (A ∪ B)c from (2.14).
For later use we should also mention that conservation of the current in every

state i ∈ (A∪B)c immediately implies the following total conservation of the current:

(2.27)
∑

i∈A, j∈S

fAB
ij =

∑
j∈S, i∈B

fAB
ji ,

where we used that fAB
ij = 0 if i ∈ S and j ∈ A, and fAB

ij = 0 if i ∈ B and j ∈ S.

2.5. Transition rate and effective current. In this section we derive the
average number of transitions from A to B per time unit or, equivalently, the av-
erage number of reactive trajectories observed per time unit. More precisely, let
N−

T , N+
T ∈ Z be such that

(2.28) R ∩ [−T, T ] =
⋃

N−
T ≤n≤N+

T

(tAn , tBn );

that is, N+
T −N−

T is the number of reactive trajectories in the interval [−T, T ] in time.
Then we have the following definition.
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Definition 2.14. The transition rate kAB is defined as

(2.29) kAB = lim
T→∞

N+
T − N−

T

2T
.

We have the following theorem.
Theorem 2.15. The transition rate is given by

(2.30) kAB =
∑

i∈A, j∈S

fAB
ij =

∑
j∈S, k∈B

fAB
jk .

Proof. From (2.25) we get

(2.31)
∑

i∈A, j∈S

fAB
ij = lim

s→0+

1
s

lim
T→∞

1
2T

∫ T

−T

1A(X(t))
∑
j∈S

1B(xAB,+
j (t + s))dt.

Let us consider the integral; we can always restrict our attention to generic values of T
such that there is no n ∈ Z for which T = tAn or T = tBn . The integrand in this expres-
sion is nonzero if and only if X(t) ∈ A, X(t+s) ∈ Ac and t+s ∈ R, i.e., if tAn ∈ (t, t+s)
for some n ∈ Z. But this means that the integral of 1A(X(t))1B(xAB,+

j (t + s)) on
every interval t ∈ (tAn − s, tAn ) is equal to s and the only contributions to the integral
in (2.31) come from the intervals in [−T, T ]∩∪n∈Z (tAn − s, tAn ). But these are exactly
N+

T −N−
T intervals such that the whole integral amounts to (N+

T −N−
T )s. From (2.31)

and (2.28), this implies the first identity for the rate kAB. The second identity follows
from (2.27).

Notice that the rate can also be expressed as

(2.32) kAB =
∑

i∈A, j∈S

f+
ij ,

where we have the following definition.
Definition 2.16. The effective current is defined as

(2.33) f+
ij = max(fAB

ij − fAB
ji , 0).

Identity (2.32) follows from (2.30) and the fact that for all i ∈ A : f+
ij = fAB

ij

since fAB
ji = 0 and fAB

ij > 0 if i ∈ A. The effective current gives the net average
number of reactive trajectories per time unit making a transition from i to j on their
way from A to B. The effective current will be useful to define transition pathways
in section 2.7.

Remark 2.17. If the Markov process is reversible, then the effective current
reduces to

(2.34) f+
ij =

{
πilij(q+

j − q+
i ) if q+

j > q+
i ,

0 otherwise
(reversible process),

and the reaction rate can be expressed as

(2.35) kAB = 1
2

∑
i,j∈S

πilij(q+
j − q+

i )2, (reversible process).

The last identity can also be written as kAB = −
∑

i∈S, j∈B πilijq
+
i (for reversible pro-

cesses!), which in turn is identical to the expression that we know from Theorem 2.15:

kAB =
∑

i∈S, j∈B
i�=j

πilij(1 − q+
i ), (reversible process).
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2.6. Relations with electrical resistor networks. Before proceeding fur-
ther, it is interesting to revisit our result in the context of electrical resistor net-
works [15]. Recall that an electrical resistor network is a directed weighted graph
G(S, E) = G{C}, where C = (cij) is an entrywise nonnegative symmetric matrix (see
Definition 2.3), called the conductance matrix of G. The reciprocal rij of the con-
ductance cij is called the resistance of the edge (i, j). Establishing a voltage va = 0
and vb = 1 between two vertices a and b induces a voltage v = (vi)i∈S\{a,b} and an
electrical current Fij which are related by Ohm’s law:

(2.36) Fij =
vi − vj

rij
= (vi − vj)cij , i, j ∈ S, i �= j.

Furthermore, Kirchhoff’s current law, that is,

(2.37)
∑
j∈S

Fij = 0 ∀i ∈ S \ {a, b},

requires that the voltages have the property

(2.38) vi =
∑
j �=i

cij

ci
vj ∀i ∈ S \ {a, b},

where ci =
∑

j �=i cij . A reversible Markov jump process, given by its infinitesimal
generator L, can be seen as an electrical resistor network by setting up the conductance
matrix C via

(2.39) cij = πilij (j �= i),

where π = (πi)i∈S is the unique stationary distribution. Now observe that (2.38)
reduces to

(2.40) 0 =
∑
j∈S

lijvj ∀i ∈ S \ {a, b}.

But this means that the forward committor q+ with respect to the sets A = {a} and
B = {b} can be interpreted as a voltage (see (2.13)). Moreover, a short calculation
shows that the effective flux, defined in (2.33), pertains to the electrical current.

2.7. Dynamical bottlenecks and reaction pathways. The transition rate
kAB is a quantity which is important to describe the global transition behavior. In this
section we characterize the local bottlenecks of the ensemble of reactive trajectories
which determine the transition rate. In order to get a detailed insight into the local
transition behavior we characterize reaction pathways by looking at the amount of
reactive trajectories which is conducted from A to B by a sequence of states.

We use the notation of graph theory introduced at the end of section 2.1. Let
G(S, E) = G{f+} be the weight induced directed graph associated with the effective
current f+ = (f+

ij ), ij ∈ S. A simple pathway in the graph G, starting in A ⊂ S
and ending in B ⊂ S, is the natural choice for representing a specific reaction from
A to B because any loop during a transition would be redundant with respect to the
progress of the reaction.

Definition 2.18. A reaction pathway w = (i0, i1, . . . , in), ij ∈ S, j = 0, . . . , n,
from A to B is a simple pathway such that

i0 ∈ A, in ∈ B, ij ∈ (A ∪ B)c, j = 1, . . . , n − 1.
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The crucial observation which leads to a characterization of bottlenecks of reaction
pathways is that the amount of reactive trajectories which can be conducted by a
reaction pathway per time unit is confined by the minimal effective current of a
transition involved along the reaction pathway.

Definition 2.19. Let w = (i0, i1, . . . , in) be a reaction pathway in G{f+}. We
define the min-current of w by

(2.41) c(w) = min
e=(i,j)∈w

{f+
ij }.

The dynamical bottleneck of a reaction pathway is the edge with the minimal effective
current

(2.42) (b1, b2) = argmin
e=(i,j)∈w

{f+
ij }.

We call such an edge (b1, b2) a bottleneck.
Here and in the following we somewhat misuse our notation by writing e = (i, j) ∈

w whenever the edge e is involved in the pathway w = (i0, i1, . . . , in), i.e., if there is
an m ∈ {0, . . . , n − 1} such that (i, j) = (im, im+1).

Now it is straightforward to characterize the “best” reaction pathway, that is, the
one with the maximal min-current.

Remark 2.20. Notice that the problem of finding a pathway which maximizes the
minimal current is known as the maximum capacity augmenting path problem [1] in
the context of solving the maximal flow problem in a network.

In general, one cannot expect to find a unique “best” reaction pathway because
the bottleneck corresponding to the maximal min-current could be the bottleneck of
other reaction pathways too.

Definition 2.21. Let W be the set of all reaction pathways and denote the max-
imal min-current by cmax. Then we define the set of the dominant reaction pathways
WD ⊆ W by

WD = {w ∈ W : c(w) = cmax}.

Remark 2.22. To guarantee uniqueness of the bottleneck, we henceforth assume
that the nonvanishing effective currents are pairwise different, i.e., f+

e �= f+
e′ for all

pairs of edges e = (i, j), e′ = (i′, j′) with f+
e , f+

e′ > 0. Nevertheless, we are aware
that in applications the situation could show up where more than one bottleneck exists
because the corresponding currents are more or less equal. This ambiguity is taken
into account in an ordered decomposition of the set of all reaction pathways described
at the end of this section.

Let G[WD] = G(SD, ED) be the directed graph induced by the set WD, i.e.,
the graph whose vertex/edge set is composed of all vertices/edges that appear in at
least one of the pathways in WD. The next lemma shows that the graph G[WD] =
G(SD, ED) possesses a special structure which is crucial for the definition of a repre-
sentative dominant reaction pathway.

Lemma 2.23. Let b = (b1, b2) denote the unique bottleneck in G[WD]. Then
the graph G(SD, ED \ {b}) decomposes into two disconnected parts G[L] and G[R]
such that every reaction pathway w ∈ WD can be decomposed into two pathways wL

and wR,

(2.43) w = (il1 , . . . , iln = b1︸ ︷︷ ︸
=wL

, b2 = ir1 , . . . , irm︸ ︷︷ ︸
=wR

),
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BA

b1 b2

wL

wR

G[L] G[R]

G[WD]

Fig. 2. Schematic representation of the decomposition of WD. A reaction pathway w (shown
in thick black) can be decomposed into two simple pathways wL and wR.

where wL ∈ L is a simple pathway in G[L] starting in il1 ∈ A and ending in {b1}
and wR ∈ R is a simple pathway in G[R] starting in {b2} and ending up in irm ∈ B.
Whenever we have L = ∅, i.e., (b1 ∈ A), then G[L] = ({il1}, ∅); if R = ∅, then G[R]
is defined likewise.

Here and in the following we write wL ∈ L (and wR ∈ R, respectively) if we
want to express that for every edge e ∈ wL we have e ∈ L. The lemma expresses
the natural property that the graph G[WD] = G(SD, ED) can be decomposed into
two disconnected graphs by removing the bottleneck; see Figure 2 for a schematic
illustration.

Proof. It immediately follows from the definition of WD that the bottleneck b is
involved in every dominant reaction pathway because otherwise there would exist a
pathway w ∈ WD such that c(w) > cmax, which leads to a contradiction. By defini-
tion, a reaction pathway does not possess any loops. Consequently, the bottleneck b
separates WD, which proves the assertion.

According to the lemma, the set of dominant reaction pathways WD can be
represented as

(2.44) WD = L × R := {(wL, wR) : wL ∈ L, wR ∈ R} .

In Figure 2 we give a schematic representation of the decomposition of WD.
Next, we address the most likely case in applications where more than one domi-

nant reaction pathway exists. By definition, each dominant reaction pathway conducts
the same amount of current from A to B, but they could differ, e.g., with respect to
the maximal amount of current which they conduct from the set A to the bottleneck,
respectively. Now observe that the simple pathways in the set L could be seen as
reaction pathways with respect to the set A and the B-set {b1}. Hence, L itself again
possesses a set of dominant reaction pathways WD(L), and so on. This motivates the
following recursive definition of the representative dominant reaction pathway.

Definition 2.24. Let WD = L × R and suppose b = (b1, b2) is its (unique)
bottleneck. Then we define the representative dominant reaction pathway w∗ of WD
by

(2.45) w∗ = (w∗
L, w∗

R),

where w∗
L is the representative dominant pathway of the set WD(L) with respect to

the set A and the B-set {b1} and w∗
R is the representative of WD(R) with respect to
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the A-set {b2} and the set B. If L = ∅ and G[L] = ({i}, ∅), then w∗
L = {i}; if R = ∅,

then w∗
R is defined likewise.

Notice that the representative w∗ is unique under the assumption made in Re-
mark 2.22. Furthermore, it follows immediately from the recursive definition of w∗

that

w∗ = argmax
w∈WD

min
e=(i,j)∈w,

(i,j) �=(b1,b2)

{f+
ij }

= argmax
w∈WD

min
e=(i,j)∈w,

(i,j) �=(b1,b2)

{f+
ij − cmax}.

(2.46)

Finally, we turn our attention to the residuum current which results from updating
the effective current of each edge along the representative pathway w∗

1 = w∗ by
subtracting the min-current c

(1)
max = cmax. That is, the residuum current is defined as

(2.47) f r,1
ij =

{
f+

ij − c(1)
max if (i, j) ∈ w∗

1 ,

f+
ij otherwise.

The graph G1 = G{f r,1
ij } induced by the residuum current satisfies the current con-

servation property in analogy to (2.26). It again possesses a bottleneck, say b̃, a set
of dominant pathways, and a representative pathway, say w∗

2 . If we denote the min-
current of w∗

2 with respect to the residuum current by c
(2)
max, then it should be clear

that cmax = c
(1)
max > c

(2)
max holds. The property (2.46) of w∗

1 guarantees that c
(2)
max

is maximal with respect to all possible residuum currents. We can obviously repeat
this procedure by introducing the residuum current f r,2

ij by subtracting c
(2)
max from

f r,1
ij along the edges belonging to w∗

2 , and so on. The resulting iteration terminates
when the resulting induced graph GM+1 = G{f r,M+1

ij } no longer contains reaction
pathways and leads to an ordered enumeration (w∗

1 , w∗
2 , . . . , w∗

M ) of the set W of all
reaction pathways such that

c(i)
max > c(j)

max, 0 ≤ i < j ≤ M,

M∑
i=1

c(i)
max = kAB,

(2.48)

where the last identity simply follows from the following equation for the rates kAB(Gi)
associated with the graphs G1, . . . , GM :

kAB(Gi) = kAB(Gi−1) − c(i)
max,

where G0 denotes the original graph G{f+
ij }, and kAB(GM+1) = 0.

Remark 2.25. The composition of the total rate into fraction coming from cur-
rents along reactive pathways is quite a general concept in graph theory. We herein just
presented a specification of it. We refer the interested reader to, e.g., [1, section 3.5].

2.8. Relation with Laplacian eigenmaps and diffusion maps. Let us brief-
ly comment about the relevance of our results in the context of data analysis (in
particular, data segmentation and embedding, i.e., low-dimensional representation).
Recently, two classes of methods have been introduced to this aim: Laplacian eigen-
maps [32, 23, 29, 3, 14] and diffusion maps [11, 21]. The idea behind these approaches
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is quite simple. Given a set of data points, say S = {x1, x2, . . . , xn}, one associates a
weight induced graph with weight function w(x, y). This graph is constructed locally,
e.g., by connecting all points with equal weights that are below a cut-off distance
from each other. These weights are then renormalized by the degree of each node,
which means that w(x, y) can be reinterpreted as the stochastic matrix of a discrete-
time Markov chain. Alternatively, it is also possible to interpret the weights as rates
and thereby build the generator of a continuous-time Markov chain. In both cases,
the properties of the chain are then investigated via spectral analysis of the sto-
chastic matrix or the generator. In particular, the first N eigenvectors with leading
eigenvalues, say, φj(x), j = 1, . . . , N , can be used to embed the chain into R

N via
x �→ (φ1(x), . . . , φN (x)). The eigenvectors can also be used to segment the original
data set into important components (segmentation).

As explained in the introduction, the spectral approach is particularly relevant
if the Markov chain displays metastability, i.e., if there exists one or more clusters
of eigenvalues which are either very close to 1 (in the case of discrete-time Markov
chains) or 0 (in the case of continuous-time Markov chains). When the chain is not
metastable, however, the meaning of the first few eigenvectors is less clear, which
makes the spectral approach less appealing. In these situations, TPT may provide
an interesting alternative. For instance, if several points (or groups of points) with
some specific properties can be singled out in the data set, then, by analyzing the
reaction between pairs of such groups, one will disclose global information about the
data set (for instance, the committor functions between these pairs may be used
for embedding instead of the eigenvectors). The current of reactive trajectories and
dominant reaction pathways will also provide additional information about the global
structure of the data set which is not considered in the spectral approach.

In this paper, we will not, however, develop these ideas any further.

3. Algorithmic aspects. In this section we explain the algorithmic details for
the computation of the various quantities in TPT. Given the generator L and the two
sets A and B, the stationary distribution π = (πi)i∈S is computed by solving (2.2),
whereas the discrete forward and discrete backward committors, q+ = (q+

i )i∈S and
q− = (q−i )i∈S , are computed by solving (2.13) and (2.14). Solving these equations nu-
merically can be done using any standard linear algebra package. These objects allow
one to compute the probability distribution of reactive trajectories mR = (mR

i )i∈S

in (2.17), its normalized version mAB = (mAB
i )i∈S in (2.20), the probability cur-

rent of reactive trajectories fAB = (fAB
ij )i,j∈S in (2.24), and the effective current

f+ = (f+
ij )i,j∈S in (2.33). This also gives the reaction rate kAB via (2.30) or (2.32).

Next, we focus on the computation of the bottlenecks and representative dominant
reaction pathways which is less standard.

3.1. Computation of dynamical bottlenecks and representative domi-
nant reaction pathways. From the definition in (2.42) of the bottleneck b = (b1, b2)
associated with the set of dominant reaction pathways WD, it follows that

f+
e > f+

b ∀e ∈ ED, e �= b,

where f+ = (f+
ij )i,j∈S is the effective current and ED is the edge set of the induced

graph G = G[WD]. This observation leads to a characterization of the bottleneck
which is algorithmically more convenient. Let Esort = (e1, e2, . . . , e|E|) be an enu-
meration of the set of edges of G = G{f+} sorted in ascending order according
to their effective current. Then the edge b = em in Esort is the bottleneck if and
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only if the graph G(S, {em, . . . , e|E|}) contains a reaction pathway but the graph
G(S, {em+1, . . . , e|E|}) does not. The bisection algorithm stated in Algorithm 1 is a
direct consequence of this alternative characterization of the bottleneck and is related
to the capacity scaling algorithm [1, section 7.3] for solving the maximum flow algo-
rithm. For an alternative algorithm in the context of distributed computing which is
based on a modified Dijkstra algorithm; see [18].

Algorithm 1. Computation of the bottleneck
Input: Graph G = G{f+}.
Output: Bottleneck b = (b1, b2).

(1) Sort edges of G according to their weights in ascending order
=⇒ Esort = (e1, e2, . . . , e|E|).

(2) IF the edge e|E| connects A and B THEN RETURN bottleneck b := e|E|.
(3) Initialize l := 1, r := |E|.
(4) WHILE r − l > 1
(5) Set m := � r+l

2 �, E′(m) := {em, . . . , e|E|}.
(6) IF there exists a reaction pathway in G(S, E′(m))
(7) THEN l := m ELSE r := m.
(8) END WHILE
(9) RETURN bottleneck b := el.

We also have the following lemma.
Lemma 3.1. The computational cost of Algorithm 1 in the worst case is O(n log n),

where n = |E| denotes the number of edges of the graph G = G{f+}.
Proof. Assume that n = 2k, k > 1. First, notice that the sorting of the edges

of G = G{f+} can be performed in O(n log n). In the worst case scenario, the edge
e1 ∈ ESort is the bottleneck.1 When this is the case, the number of edges in the jth
repetition of the while-loop would be

n

2j
,

and we would have k − 1 repetitions. The cheapest way to determine whether there
exists a reactive trajectory is to perform a breadth-first search starting in A; the
computational cost of that step depends only linearly on the number of edges to be
considered, such that we deduce for the worst case effort T (n) of the entire procedure

T (n) = O(kn) + O
(

n

2

)
+ O

(
n

4

)
+ · · · + O

(
n

2k−1

)

= O
(

kn + n

(
1
2

+
1
4

+ · · · + 1
2k−1

))
= O(kn),

which by noting that k = log(n) ends the proof.
The algorithm for computing the unique representative pathway w∗ of the set of

dominant reaction pathways is a direct implementation of the recursive definition of

1We are aware that the edge e1 could never be the bottleneck unless all effective currents are
equal, which by Remark 2.22 is excluded. Nevertheless, the following reasoning with respect to e1

leads only to a slight overestimation of the computational cost.
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w∗ given in (2.45). Recalling that WD can be decomposed as stated in (2.44) and as-
suming that f+ takes different values for every edge (i, j), we end up with Algorithm 2.
A rough estimation of the computational cost of this algorithm is O(mn log n), where
m is the number of edges of the resulting representative pathway w∗ and n = |E|.

Algorithm 2. Representative pathways
Input: Graph G = G{f+}, set A, set B.
Output: Representative w∗ = (w∗

L, w∗
R) of WD(G).

(1) Determine bottleneck b = (b1, b2) in G via Algorithm 1.
(2) Determine decomposition WD(G) = L × R.

(3) Set w∗
L :=

{
b1 if b1 ∈ A,

result of the recursion with (G[L], A, {b1}) if b1 /∈ A.

(4) Set w∗
R :=

{
b2 if b2 ∈ B,

result of the recursion with (G[R], {b2}, B) if b2 /∈ B.

(5) RETURN (w∗
L, w∗

R).

4. Illustrative examples. In this section we illustrate the discrete TPT in three
examples. The first is the discrete equivalent of a diffusion, which we chose because the
results of TPT are transparent in this case. This example also establishes a link to the
case of continuous state-space. The second example deals with a problem in molecular
dynamics, the trialanine molecule, and shows that TPT allows us to characterize
reaction pathways between molecular conformations. There is an additional difficulty
in this example, namely that the process is given by an incomplete observation of
the system in a certain time interval, meaning that we have to deal with the issue of
reconstructing the generator of the process given the time series. The third example
we consider is a nonreversible Markov process arising from the modeling of a genetic
toggle switch in chemical kinetics.

4.1. Discrete analogue of a diffusion in a potential landscape. In [25],
TPT for diffusion processes was illustrated in the example of a particle whose dynam-
ics is governed by the stochastic differential equation

(4.1)

⎧⎪⎪⎨
⎪⎪⎩

dx(t) = −∂V (x(t), y(t))
∂x

dt +
√

2β−1 dWx(t),

dy(t) = −∂V (x(t), y(t))
∂y

dt +
√

2β−1 dWy(t),

where (x(t), y(t)) ∈ R
2 denotes the position of the particles, V (x, y) is the potential,

β > 0 is a parameter referred to as the inverse temperature, and Wx(t) and Wy(t)
are two independent Wiener processes, i.e., Gaussian processes with mean zero and
covariance EWx(t)Wx(s) = EWy(t)Wy(s) = min(t, s). For V (x, y) in [25] we chose
the three-hole potential

V (x, y) = 3e−x2−(y− 1
3 )2 − 3e−x2−(y− 5

3 )2

− 5e−(x−1)2−y2 − 5e−(x+1)2−y2

+
2
10

x4 +
2
10

(y − 1
3 )4

(4.2)

which has been already considered in [20, 27, 13]. As one can see in Figure 3 the
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Fig. 3. Level sets of the three-hole potential.
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Fig. 4. Left: Contour plot of the equilibrium density function exp(−βV (x)). Right: Box plot of
the stationary distribution (π(x,y))(x,y)∈S. Results for β = 1.67 and a 20 × 20 mesh discretization.

potential (4.2) has two deep minima approximately at (±1, 0), a shallow minimum
approximately at (0, 1.5), three saddle points approximately at (±0.6, 1.1), (−1.4, 0),
and a maximum at (0, 0.5). The process defined by (4.1) is ergodic with respect to
the Gibbs measure

(4.3) dμ(x, y) = Z−1 exp(−βV (x, y))dxdy,

where Z =
∫

R2 exp(−βV (x, y))dxdy is a normalization constant. If β is small enough,
then the measure is strongly peaked on the deep minima of the potential (see the
left panel of Figure 4), and the system displays metastability; i.e., the particle makes
transitions between the vicinity of these minima only very rarely. In [25] it was shown
that TPT can be used to describe the mechanism of the transition and compute their
rates. In particular, it was shown that transitions preferably occur by the upper
channel visible in Figure 3 when β is very small but that they proceed by the lower
channel when β is somewhat increased. The reasons for this entropic switch were
elucidated in [25], and we refer the reader to this paper for details. Our purpose here
is to apply TPT on a discrete analogue of (4.1).

In order to construct this analogue, we exploit the well-known fact that a diffusion
process can be approximated by a Markov jump process after discretization of state-
space (see, e.g., [17]). Here we approximate the dynamics (4.1) on a two-dimensional,
rectangular domain Ω = [a, b] × [c, d] ⊂ R

2 via a birth-death process on the discrete
state-space (mesh) S = ((a + hZ) × (c + hZ)) ∩ ([a, b] × [c, d]), where h > 0 is the
uniform mesh width. For clarity, in the present example we will denote by (x, y) the
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Fig. 5. Box plot of the discrete committors. Left: Forward committor q+. Right: Backward
committor q−. Results for β = 1.67 and a 20 × 20 mesh discretization.

state that is denoted by i. Then the generator is given in terms of its action on a test
function f as

(Lf)(x, y) = k+
x (x + h, y)(f(x + h, y) − f(x, y))

+ k−
x (x − h, y)(f(x − h, y) − f(x, y))

+ k+
y (x, y + h)(f(x, y + h) − f(x, y))

+ k−
y (x, y − h)(f(x, y − h) − f(x, y)),

(4.4)

where

k+
x (x + h, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β−1

h2
− 1

2h

∂V (x, y)
∂x

if x ∈ (a, b),

0 if x = b,
1
h

if x = a,

k−
x (x − h, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β−1

h2
+

1
2h

∂V (x, y)
∂x

if x ∈ (a, b),

0 if x = a,
1
h

if x = b

and the coefficients k+
y and k−

y are defined analogously with respect to ∂V (x, y)/∂y. In
the left panel of Figure 4 we show the level sets of the density function exp(−βV (x, y))
associated with the Gibbs measure (4.3). In the right panel of Figure 4 we illustrate
the stationary distribution π = (π(x,y))(x,y)∈S of the birth-death process as a box plot.

We now present the results of TPT in this example. The panels in Figure 5 show
the box plots of the forward committor q+ (left panel) and the backward committor
q− (right panel). The set A ⊂ S is chosen such that it sufficiently covers the region
around the left minimum. The set B is defined analogously for the right minimum.
The symmetry of the potential together with the symmetry of the sets A and B implies
that the particular 1

2 -committor surface, defined as the set {(x, y) ∈ S : q+
(x,y) = 0.5},

should correspond to the symmetry axis in y-direction, which is confirmed in Figure 5.
Notice how the presence of the shallow minima in the upper part of the potential
spreads the “level sets” of q+ in this region. This follows from the fact that the
reactive trajectories going through the upper channel get trapped in the shallow well
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Fig. 6. Left: Box plot of the discrete probability distribution of reactive trajectories mAB .
Right: Visualization of the effective current f+ between mesh points (boxes). An edge ((x, y), (x′, y′))
with positive effective current f+

((x,y),(x′,y′)) is depicted by a triangle pointing from the box which

corresponds to the state (x, y) towards the box identified with (x′, y′) ∈ S. The darker the color of
a triangle, the higher is the effective current.
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Fig. 7. Reaction pathway families for two different temperatures. Both families cover about
50% of the probability flux of reactive trajectories. The pathways are colored according to the values
of their min-currents. The darker the color, the more current that is conducted by the corresponding
reaction pathway. Left: Reaction pathway family at a high temperature β = 1.67. Right: Reaction
pathway family at a low temperature β = 6.67. Results for a 60 × 60 mesh discretization; for the
sake of illustration the mesh is chosen finer than before.

for a long period of time before exiting towards the set B. Next, we turn our attention
to the probability distribution of the reactive trajectories, shown in the left panel of
Figure 6. One can see that the distribution has a peak in the upper shallow minima,
whereas the effective current, visualized in the right panel of Figure 6, suggests that
most of the reactive trajectories prefer the lower channel. This again can be explained
by the fact that the reactive trajectories going through the upper channel get trapped
in the shallow well, whereas the reactive trajectories in the lower channel just need
to overcome the barrier. We end this example by discussing the family of dominant
reaction pathways resulting from the procedure described at the end of section 3.1. In
the left panel of Figure 7 we plot the family of reaction pathways which covers about
50% of the probability flux of reactive trajectories at the temperature β = 1.67. The
pathways are colored according to the values of their min-currents. The darker the
color, the larger is the current conducted by the corresponding reaction pathway. At
the high temperature (β = 1.67, left panel), the reaction occurs mostly via the lower
channel, whereas at the low temperature (β = 6.67, right panel) it occurs mostly via
the upper channel. This is consistent with the results presented in [27, 25].
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Fig. 8. Left: The trialanine molecule shown in ball-and-stick representation and the two torsion
angles Φ and Ψ. Right: Projection of the original time series (all atomic positions) onto the torsion
angle space spanned by Φ and Ψ, which reveals the metastable behavior.

4.2. Molecular dynamics: Trialanine. In this example we use discrete TPT
to study conformation changes of the trialanine molecule which is shown in ball-and-
stick representation in the left panel of Figure 8. Unlike in the first example, here
the process is implicitly given by a time series of two torsion angles. The time series
used herein was generated in vacuum using the hybrid Monte Carlo method [9] with
544.500 steps with GROMACS force field [5, 22] at a temperature of 750K. The
integration of the subtrajectories of the proposal step was realized with τ = 1 fs time
steps of the Verlet integration scheme. Hybrid Monte Carlo is based on a discrete-
time Markov chain in continuous state-space. Before explaining how we constructed
a Markov jump process with discrete state-space (and especially its generator) out of
this time series, let us give some background about this example.

4.2.1. Metastability and conformation states. A conformation of a mole-
cule is understood as a mean geometric structure of the molecule which is conserved
on a large time scale compared to the fastest molecular motions. From the dynamical
point of view, a conformation typically persists for a long time (again compared to
the fastest molecular motions) such that the associated subset of configurations is
metastable [31]. In the right panel of Figure 8 we show the projection of the time
series of the torsion angles Φ and Ψ which clearly reveals the metastable behavior.
The Ramachandran plot of the time series in the left panel of Figure 9 illustrates the
dependency of the conformation states on the two torsion angles. At first glance, the
molecule attains three conformations in the torsion angle space.

4.2.2. Generator estimation. The first step towards the application of dis-
crete TPT is to determine a coarse grained model of the dynamics in the torsion
angle space based on the given time series. We discretized the two-dimensional tor-
sion angle space with an equidistant box discretization and identified each element
of the time series with the box by which it is covered. Assuming that the resulting
discrete time series is Markovian, we estimated a reversible Markov jump process on
the discrete state-space of boxes which most likely explains the discrete time series.
This is done using an efficient generalization of the method recently presented in [6];
for details see [24]. The idea behind this method is to determine a generator such
that it maximizes the discrete likelihood of the given incomplete observation which is
accomplished by an expectation-maximization algorithm.

In the following, we denote by L̃ = (l̃(Φ,Ψ),(Φ′,Ψ′))(Φ,Ψ),(Φ′,Ψ′)∈S the infinitesimal
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Fig. 9. Left: Ramachandran plot of the torsion angles. Right: Box plot of the Gibbs energy,
− log(π(Φ,Ψ)), where (π(Φ,Ψ))(Φ,Ψ)∈S is the stationary distribution computed from the estimated

generator L̃. Results for an equidistant discretization of the torsion angle space into 20 × 20 boxes.
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Fig. 10. The forward committor q+ computed via (A.2). As the set A we chose the box (shown
as a white box with black boundary) which covers the peak of the restricted stationary distribution on
the lower conformation. The set B for the upper conformation (shown as a white box) was chosen
analogously.

generator of the estimated Markov jump process. For the sake of illustration, we show
in the right panel of Figure 9 the Gibbs energy, − logπ(Φ,Ψ), where (π(Φ,Ψ))(Φ,Ψ)∈S is
the stationary distribution computed from the estimated generator L̃ with respect to
a 20× 20 box discretization. The lighter the color of the boxes, the more probable it
is to encounter the equilibrated process in the corresponding state. As one can see,
the estimated process spends most of its time in three nonoverlapping regions which
correspond to the three conformations, respectively.

4.2.3. Analysis within TPT. We were interested in the reaction pathways
between the main conformations—the upper right one and the lower right one. As
the set B we chose the box in which the Gibbs energy restricted on the upper right
conformation attains its minimum. The set A was selected analogously with respect
to the lower conformation. The discrete forward committor q+ is given in Figure 10.
Comparison of the distribution of reactive trajectories mAB (illustrated in the left
panel of Figure 11) with the family of dominant reaction pathways (right panel of
Figure 11) again reveals that mAB is insufficient to describe the effective dynamics
from A to B. Again, this is explained by noting that whenever a reactive trajectory
makes a transition from A to B via the upper left conformation it gets trapped in that
upper left conformation, and thus it is more likely to encounter a reactive trajectory
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Fig. 11. Left: Box plot of the discrete probability distribution of reactive trajectories mAB .
Right: Family of dominant reaction pathways which cover 40% of the transition rate. The darker
the color of a pathway, the more current it conducts from A to B. For the sake of illustration, the
dominant reaction pathways are embedded in the box plot of the Gibbs energy.

there than in the direct channel.
The results shown here do not change significantly when the mesh of discretization

boxes is refined.

4.3. Chemical kinetics. In the last example, we consider a Markov jump pro-
cess which arises as a stochastic model of a genetic toggle switch consisting of two
genes that repress each others’ expression [28].

The expression of each of the two respective genes results in the production of
a specific type of protein; gene GA produces protein PA and gene GB protein PB .
Denote the number of available proteins of type PA by x and of type PB by y; the
model for the toggle switch proposed in [28] is a birth-death process on the discrete
state-space S = (Z × Z) ∩ ([0, d1] × [0, d2]), d1, d20, whose generator is given in terms
of its action on a test function f as

(Lf)(x, y) = c1(x + 1, y)(f(x + 1, y) − f(x, y))

+
x

τ1
(f(x − 1, y) − f(x, y))

+ c2(x, y + 1)(f(x, y + 1) − f(x, y))

+
y

τ2
(f(x, y − 1) − f(x, y)),

(4.5)

where

c1(x + 1, y) =

⎧⎨
⎩

a1

1 + (y/K2)n
if x ∈ [0, d1),

0 if x = d1,

c2(x, y + 1) =

⎧⎨
⎩

a2

1 + (x/K1)m
if y ∈ [0, d2),

0 if y = d2.

We refer the reader to [28] for the biological interpretation of the parameters in (4.5).
For our numerical experiments, we used the parameters a1 = 156, a2 = 30, n = 3,
m = 1, K1 = K2 = 1, and τ1 = τ2 = 1, consistent with [28]. With these parameters
the system’s dynamical behavior is as follows: There are two “metastable” states;
in the first of these, only gene GA is expressed and protein PA is produced until a
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Fig. 12. Left: Contour plot of the Gibbs energy, − log π(x,y), of the birth-death process (4.5) on
the state-space S = Z × Z ∩ ([0, 200] × [0, 60]). The white region in the right upper part of the panel
indicates the subset of states with almost vanishing stationary distribution (all boxes with distribution
less than machine precision have been colored white). Right: Contour plot of the eigenvector of the
first nontrivial right eigenvalue of L. Results for a1 = 156, a2 = 30, n = 3, m = 1, K1 = K2 = 1,
and τ1 = τ2 = 1.

certain number (around x = 155 for the parameters chosen) is reached which then is
rather stable, while gene GB is repressed and almost no protein PB is produced (so
that typically y = 0 or y = 1). After some rather long period of fluctuation in this
metastable state the system is able to exit from it which leads to expression of gene
GB and repression of GA. Then the system gets into a metastable state where the
number of protein PB fluctuates around a certain nonvanishing number (y = 30 for
our parameters) and PA is rather not produced (typically x = 0 or x = 1).

For the sake of illustration, we illustrate in the left panel of Figure 12 the Gibbs
energy, − logπ, of the birth-death process instead of its stationary distribution π
itself. Moreover, we neglected all states with almost vanishing stationary distribution
(depicted by the white region), and, in order to emphasize the states of interest,
we chose a log-log representation. The color scheme is chosen such that the darker
the color of a region, the more probable it is to find the process there. One can
clearly see that the process spends most of its time near the two metastable core sets
(x, y) ∈ {(155, 0), (155, 1)} and (x, y) ∈ {(0, 30), (1, 30)}.

We were interested in the reaction from the set A = {(155, 0), (155, 1)} towards
the set B = {(0, 30), (1, 30)}. The different shapes of the level sets of the discrete
forward and discrete backward committors, as shown in the left and right panels of
Figure 13, indicate the high nonreversibility of the birth-death process. Notice that
the geometry of the level sets of the forward committor q+ looks very similar to the
geometry of the eigenvector associated with the first nontrivial right eigenvalue of
L, as plotted in the right panel of Figure 12. Finally, the edges of the three most
dominant reaction pathways are plotted in the right panel of Figure 14. Again, the
reaction pathways deviate from the channel which is suggested by the distribution
mAB of reactive trajectories, shown in the left panel of Figure 14.

5. Conclusion. We developed the framework of transition path theory (TPT)
in the context of continuous-time Markov chains on discrete state-space. Under as-
sumption of ergodicity, TPT analyzes the statistical properties of the ensemble of
reactive trajectories between some start and target sets, and it yields properties such
as the probability distribution of the reactive trajectories, their effective probability
current, and their rate of occurrence and the dominant reaction paths.
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Whenever the generator of the Markov chain is given, the computational tasks
related to TPT are those of solving linear equations of the dimension of the state-space
and some ordered max-min flux problems on directed graphs. The efficient solution
of the latter task has been discussed in detail including links to related literature.
As emphasized the assumption of pairwise different effective currents can be relaxed;
however, one should be aware that the pathological situation of very many bottlenecks
carrying the same current can cause inefficiency. Thus, at least for nonpathological
cases there are efficient algorithms from numerical and discrete mathematics for the
two computational tasks, such that TPT can also be applied to rather large state-
spaces.

As demonstrated, the TPT framework has many interesting relations to other
topics in the Markov chain and network literature; we discussed the relation to electric
resistor network theory and data segmentation tools such as Laplacian eigenmaps and
diffusion maps. Future investigations should work out these and other relations in
more detail.

Appendix. Discrete committor equations. The discrete forward and dis-
crete backward committors play a central role in TPT. Recall that for a state i ∈ S
the discrete forward committor q+

i is defined as the probability that the Markov jump
process starting in state i will reach B rather than A. In other words, q+

i is the first
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entrance probability of the process {X(t), t ≥ 0, X(0) = i}) with respect to the set
B avoiding the set A. The usual step in dealing with entrance or hitting probabilities
with respect to a certain subset of states is the modification of the process such that
these states become absorbing states. Let L = (lij)i,j∈S be the infinitesimal generator
of a Markov jump process and A ⊂ S be a nonempty subset. Suppose we are inter-
ested in the process resulting from the declaration of the states in A to be absorbing
states. Then the infinitesimal generator L̂ = (l̂ij)i,j∈S of the modified process is given
by [33]

(A.1) l̂ij =

{
lij , i ∈ Ac, j ∈ S,

0, i ∈ A, j ∈ S.

From this viewpoint, now it is simple to prove the following theorem.
Theorem A.1. Let q+

i be the probability of reaching B before A, provided that the
process has started in state i ∈ S. Then the discrete forward committor q+ = (q+

i )i∈S

satisfies the equations

(A.2)

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈S

likq+
k = 0 ∀i ∈ (A ∪ B)c,

q+
i = 0 ∀i ∈ A,

q+
i = 1 ∀i ∈ B.

Proof. If we make the states in the set A absorbing states, then the discrete
forward committor q+ is the first entrance probability with respect to the set B
under the modified process. Thus q+ satisfies the discrete Dirichlet problem [33]

(A.3)

⎧⎨
⎩

∑
k∈S

l̂ikq+
k = 0 ∀i ∈ Bc,

q+
i = 1 ∀i ∈ B

or, equivalently,

(A.4)

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈S

likq+
k = 0 ∀i ∈ (A ∪ B)c,

q+
i = 0 ∀i ∈ A,

q+
i = 1 ∀i ∈ B,

which ends the proof.
Observe that if we substitute the “boundary conditions” into the equations in

(A.2), then we end up with a linear system

(A.5) Uq+ = v,

where the matrix U = (uij)i,j∈(A∪B)c is given by

uij = lij , i, j ∈ (A ∪ B)c,

and an entry of the vector v = (vi)i∈(A∪B)c on the right-hand side of (A.5) is defined
by vi = −

∑
k∈B lik for all i ∈ (A ∪ B)c. Now we can prove the following lemma.

Lemma A.2. If the matrix U is irreducible, then the solution of (A.2) is unique.
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Proof. By the definition of the matrix U there exists at least an index k ∈ (A∪B)c

such that

|ukk| >
∑
j �=k

ukj .

But this implies that U is weakly diagonally dominant. Together with its assumed
irreducibility, this implies that it is invertible [19].

Next, we turn our attention to the discrete backward committor q−i , i ∈ S, which
is defined as the probability that the process arriving at state i came from A rather
than from B. The crucial observation is now that q− = (q−i )i∈S is the discrete forward
committor with respect to the reversed time process.

Theorem A.3. The discrete backward committor q− = (q−i )i∈S satisfies the
linear system of equations

(A.6)

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈S

l̃ikq−k = 0 ∀i ∈ (A ∪ B)c,

q−i = 1 ∀i ∈ A,

q−i = 0 ∀i ∈ B,

where π = (πi)i∈S is a stationary distribution and l̃ik = πklki/πi is the generator
of the reversed time process (see (2.4)). Moreover, if the Markov jump process is
reversible, then the backward committor is simply related to the forward committor
by

(A.7) q− = 1 − q+.

Proof. The derivation of (A.6) is a straightforward generalization of the one of
(A.2). To derive (A.7), note that if the Markov jump process is reversible, then the
detailed balance condition

πilij = πj lji ∀i, j ∈ S

is satisfied and the discrete backward committor solves

(A.8)

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈S

likq−k = 0 ∀i ∈ (A ∪ B)c,

q−i = 1 ∀i ∈ A,

q−i = 0 ∀i ∈ B.

On one hand, the solution of the discrete Dirichlet problem (2.14) is unique (see
(A.2)). On the other hand, a short calculation shows that 1− q+ also satisfies (2.14).
Consequently, we have q− = 1 − q+, which ends the proof.
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[31] Ch. Schütte, W. Huisinga, and P. Deuflhard, Transfer operator approach to conforma-
tional dynamics in biomolecular systems, in Ergodic Theory, Analysis, and Efficient Sim-
ulation of Dynamical Systems, B. Fiedler, ed., Springer-Verlag, Berlin, 2001, pp. 191–223.



TRANSITION PATH THEORY 1219

[32] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal.
Mach. Intell., 22 (2000), pp. 888–905.

[33] R. Syski, Passage Times for Markov Chains, IOS Press, Amsterdam, 1992.
[34] E. Vanden-Eijnden, Transition path theory, in Computer Simulations in Condensed Matter:

From Materials to Chemical Biology, Vol. 2, Lecture Notes in Phys. 703, M. Ferrario, G.
Ciccotti, and K. Binder, eds., Springer-Verlag, Berlin, 2006, pp. 439–478.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


