N,
LINEAR ALGEBRA

S’i@ AND ITS
ﬂb APPLICATIONS

ELSEVIER Linear Algebra and its Applications 315 (2000) 39-59
www.elsevier.com/locate/laa

|dentification of almost invariant aggregates in
reversible nearly uncoupled Markov chains

P. Deuflhard?*, W. Huisinga?, A. Fischer?, Ch. Schiitté"P

8Konrad-Zuse-Zentrum fir Informationstechnik, Takustrasse 7, 14195 Berlin, Germany
bEachbereich Mathematik, Freie Universitét Berlin, Arnimallee 2-6, 14195 Berlin, Germany

Received 12 March 1999; accepted 1 March 2000
Submitted by V. Mehrmann

Abstract

The topic of the present paper has been motivated by a recent computational approach to
identify metastable chemical conformations and patterns of conformational changes within
molecular systems. After proper discretization, such conformations show up as almost invari-
ant aggregates in reversible, nearly uncoupled Markov chains (NUMCs). Most of the former
work on this subject treated thirect problem: given the aggregates, analyze the loose cou-
pling in connection with the computation of the stationary distribution (aggregation/disaggre-
gation techniques). In contrast to that, the present paper focusesiomeghseproblem: given
the system as a whole, identify the almost invariant aggregates together with the (small) prob-
abilities of transitions between them. A robust algorithm is worked out on the basis of some
detailed perturbation analysis and illustrated at a simple molecular system. © 2000 Elsevier
Science Inc. All rights reserved.
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1. Introduction

The work to be presented here has been motivated by a recently suggested ap-
proach to identify and computeetastable chemical conformations of biomolecules
Given the physical characterization of such molecules in terms of their kinetic and
potential energies, such conformations can be understaahast invariant subsets
of the related dynamical systems, see [1,2]. After discretization of a certain Mar-
kov operator, a finite-dimensional (time-homogeneous) Markov chain arises, which
has the nice additional property of beirayersible—i.e., symmetric with respect to
time reversal. Per definition, every Markov chain with finite state space is associated
with a stochastic transition matrixX®ue to the reversibility of the Markov chain, the
transition matrix issymmetridn some weighted-sense. The new method involves
the determination of conformations via the numerical solution and careful analy-
sis of eigenvalue cluster problems around the so-called Perronreat, which
characterizes the stochasticity of the transition matrix.

First, in Section 2, we start with a recollection of known basic results for revers-
ible uncoupledMarkov chains (UMCs) in terms of some block structure of their
associated transition matrices. We introduce some weigptpbduct and derive a
discriminating sign structure for the identificationinfariant aggregateghe finite-
dimensional analog of invariant subsets that characterize the conformations to be
determined. Next, in Section 3, we treat the casesalrly uncoupledarkov chains,
wherein only a perturbed block structure is present, which is even hidden due to
some unknown permutation. In addition, the numibef blocks is a priori unknown
and must be determined. This case is first studied in terms of a lpegaurbation
analysisfor the transition matrix (Section 3.1). In order to define “small” perturba-
tions, coupling measures between aggregates are discussed (Section 3.2). On this
basis, we derive a robust identification algorithm in Section 4. Part of the algorithm
has been transformed intograph coloring problem, which is known to be NP-
complete. As a consequence, heuristics are justified to play an important role in the
implementation of the algorithm. Finally, in Section 5, numerical experiments for
simple model problems are illustrated.

2. Markov chains and transition matrices

For the convenience of the reader, we first recollect basic results about the connec-
tion between finite-dimensional Markov chains and their related transition matrices.
This involves the stochastic characterization as well as its linear algebra counterpart.

2.1. Properties of transition matrices

Let the (row)stochastic(n, n)-matrix P = (p;;) be atransition matrixassoci-
ated with a (homogeneouB)arkov chainover some finite se’ = {s1, ..., s,} of
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discrete states. Given that the dynamical system is in the individual statfeach
matrix entry p;; represents the probability of the system to move to statéor

a more detailed understanding of Markov chains and their interpretation, we refer
to textbooks like [3]. Throughout this paper, we will assume tas primitive,

i.e., there exists a positive integersuch thatP™ > 0 elementwise [3]. Primitive
stochastic matrices have some nice properties, which we recall now.

Theorem 2.1[3,4]. Let P be a primitive stochastic matrix. Then:

1.the Perron rooth = 1 is simple and dominant.e., |A| < 1 for any other eigen-
valuer # 1,

2.there are positive left and right eigenvectors corresponding te 1, which are
unigue up to constant multiples.

In particular, thaight eigenvector correspondingio= 1ise = (1,...,1)7, the
correspondindeft eigenvectorr = (1, ..., 7,)' represents thetationary distri-
bution under the assumption that'e = 1 is chosen as normalization. In matrix
notation we have

7'P=n" and Pe=ce.

From our application context [2], the eigenvectors given a priori. Moreover, the
underlying Markov chains are known to beversibleso that the so-calledetailed
balance conditiornolds

i Pij = Tjpji forall i, J (1)
or, in terms of someveighting matrixz = diag(,/m;), equivalently
72p = P12, @)

Throughout the subsequent analysis, we will conveniently assume that the discrete
states have been selected such #fla¢élements ofr are strictly positive or, equiva-
lently, that the weighting matrif is non-singular. If this assumption were not satis-
fied in practice, one would just have to restrict the state spaeecordingly. Once

7 > 0, we may introduce the inner prodyet), as

(X, Y)x = x F?y.

This inner product corresponds to the finite-dimensiovgightedEuclidean space
172, (n). Two vectorsy, y satisfying(x, y) = 0 will be calledz-orthogonal.

Proposition 2.2. Let P be a reversible primitive stochastic matrix. Then P is sym-
metric with respect to the inner produgt-) .

Proof. Due to (2), we immediately havex, Py), = xT2?Py = xTPT%?%y =
(Px,y),. O

The stochastic matriR possesses the following structural properties:
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P.1 There exists a basis mforthogonal right eigenvectors, which diagonalifes
P.2 All eigenvalues of are real and contained in the interyall, +1].

P.3 For everyight eigenvectoix there is an associatdelft eigenvectory = %?x,
which corresponds to the same eigenvalue.

P.4 The matriXP is similar to the symmetric, in general non-stochastic matgj, =
P71 (see also [5)).

2.2. Uncoupled Markov chains

As a generalization of transition probabilities between single statese will
need to define transition probabilities between non-void subsets of state space, usu-
ally calledaggregates

Definition 2.3. Given a Markov chain by its transition matriX (not necessarily
primitive) and a stationary distribution > 0. Given any non-empty index subdet
define its characteristic vectey = (e ;)i=1,..n bye;; =1fori € I ande;; =0
otherwise. ldentify index set& andB with their two corresponding aggregat&s
andB. Then the (conditionakransition probabilityfrom A to B with respect tor is
defined to be the conditional probability of the system being to move toB in a
single step, which is given by

DacAbeBTa Pab _ (ep, Pea)x
ZaEA Ta (ea,ea)rn

wr (A, B) =

Definition 2.4 [7,8]. Let Ay, ..., A; denote a disjoint decomposition of the state
space intk aggregates. Then the associated stochastig{matrix W, defined by

(Wﬂ)l/Zwﬂ(AlaA/)a iajzla'-'aka

is called thecoupling matrixof the decomposition.

For the special casg¢ = B, we callw, (A, A) the probability for the system to
stay within A An aggregaté@ satisfyingw, (A, A) = 1 is said to bénvariant, which
means that whenever the dynamical system i4,iit will remain in A for infinite
time A Markov chain is calledincoupledif it allows the state space to be decom-
posed into disjoint invariant aggregatés, ..., Ag, i.e.,

wyr(A;, Aj) ES 5,']' or W, = |dk. (3)

Formally speaking, the stationary distribution in this case is not unique, since the
corresponding transition matrix is not primitive. The probabilities, however, are in-
dependent of any choice of stationary distribution. On the side of the transition matrix
P, a UMC withk aggregates—assuming appropriate ordering of states—shows up in
someblock-diagonaform
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Fig. 1. Uncoupled Markov chain with = 3 aggregates. The state spdeg .. ., sgo} divides into the
aggregates\] = {sq, ..., s29}, A2 = {s30, - . ., s49} andAz = {sgp, . .., : sg0}- (&) Characteristic function

XA, (b) A possible basis of the eigenspace corresponding=ol. Observe that each eigenvector is
constant on each aggregate. The sign structure forgjaie (4, —, 0) in the sense of Lemma 2.5.

Dy 0O -~ 0
p=p=|°% Pz - 0} 4
0 0 - D

where each bloclb;; is a squaretochastianatrix, symmetriowith respect to some
corresponding stationary subdistribution. Assume again that each of these matrices
D;; is primitive. Then, due to the Perron—Frobenius theorem, each hipclkos-
sesses a unique eigenveatpe (1, ..., 1)T of length dim(D;;) corresponding to its
Perronroot; = 1. Therefore, in terms of the total transition matfixhe eigenvalue
A = 1isk-fold and the corresponding eigenspace is spanned by the vectors

x4, =(0,...,0,¢,0,...,007, i=1... k
In view of the inverse problem to be treated, our notation deliberately emphasizes
that these eigenvectors can be interpretedresacteristic function®f the invari-
ant aggregates (see Fig. 1(a)). In general, any H4a&ig—1 i of the eigenspace

corresponding té. = 1 can be written as a linear combination of the characteristic
functionsy 4, with coefficientsy;; € R such that

k
Xi:ZO[inAJ., l:].,k (5)
j=1

As a consequence, eigenvectors correspondingtadl areconstant on each aggre-
gate (see Fig. 1(b)).

With these preparations, we are now ready to derive the key tool for our algorithm
to be presented in Section 4.

Lemma 2.5. Given a block-diagonal transition matrix P consisting of reversible
primitive blocks a stationary distributionz > 0 and a w-orthogonal basis
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{Xi}i=1,. x of its eigenspace correspondingXo= 1. Associate with every state
its sign structure

si > (SIgN((X1)i), - . ., SIGN((Xk)i))- (6)

Then
1. invariant aggregates are collections of states with common sign structure
2. different aggregates exhibit different sign structures.

Proof. In order to prove statement 1, recall that each eigenvector corresponding to
A = 1 is constant on each of the aggregates, which implies that states belonging to
the same aggregate must share the same sign structure.

As for statement 2, let, without loss of generality, every aggregate consists of only
one state. In a first step, we demonstrate the assertion for an orthogonal eigenvec-
second step, we then generalize it to the assertion stated in the proposition.

Define thek x k matrixQ = [Q1 - - - Qx]. SinceQis orthogonal,i.e. QT = 01,
the transpos@" is an orthogonal matrix, too. Thus, the rows@#re orthogonal, a
fact that we will exploit in the following.

Now consider ar-orthogonal eigenvector basfX;}i—1. .. of P. ThenX; =
7710, fori =1, ..., k. Since the transformation matrix ! has positive diagonal
entries, the sign structures & andQ;,i = 1, ..., k, are the same.

In view of Property P.4, the sign structure of tinth aggregate is equal to the sign
structure of themth row of X = [ X3 - - - Xx]. Now suppose there exist two aggregates
A; andA ; with the same sign structure. Then ftieandjth row of X, and thus o,
are equal in sign, which is a contradiction to the orthogonalit@.of [J

Summarizing, Lemma 2.5 indicates that the sdt n§ht eigenvectors associated
with the k-fold eigenvaluer = 1 can be conveniently used tdentify kinvariant
aggregatesia sign structures-to be testedcomponentwisand therefore indepen-
dent of any (unknown) permutation. In principle, this testing could be performed
via left as well as viaight eigenvectors, whose sign structures are known to be the
same. Just recall that for every left eigenvectet (y;) there exists an associated
right eigenvector = (x;) with y; = m;x;, hence sigty;) = sign(x;). Due to their
constant level structure, however, the right eigenvectors seem to be better suited in
view of a treatment of inverse problems in the presence of perturbations, which will
be treated in the following section.

3. Nearly uncoupled Markov chains (NUMCSs)

In most real life applications including those from molecular dynamics, perturba-
tions occur that give rise toearly uncoupledather than UMCs—corresponding to
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a decomposition intinvariant rather than invariant aggregates. Roughly speaking,
whenever the dynamical system is within a nearly invariant aggregate, then it will
stay therefor a long timerather than for infinite time—henametastabilityrath-

er than stability is the term to describe this situation. On the side of the transition
matrices,block-diagonally dominantather than block-diagonal matrices will oc-
cur. As will turn out, right eigenvectors d® can again be used to identify such
aggregates—based on some subtle perturbation analysis to be given first.

3.1. Perturbation analysis

The theoretical perturbation analysis to be worked out in this section rather closely
follows the lines of work of Stewart [8] on general primitive stochastic matrices.
However, we additionally exploiteversibility of the Markov chain here using the
framework prepared in Section 2. In the perturbed situation to be tackled now, the
stationary distributiomr of the transition matrix is unique, so that the inner product
with respect tar is well defined. We may therefore drop the subscripand just
write w(A, B) = w; (A, B) for the probabilities andV = W, for the coupling ma-
trix. For our perturbation analysis, we will employ the well-known theory of Kato
[9], specified here to the case ®fmmetrianatrices in the sense of Proposition 2.2.

Recall from (3) that an invariant aggreg#tés defined byw(A, A) = 1. There-
fore, again roughly speaking, an aggregateill be said to bealmost invariant if
w(A, A) =~ 1. In a similar way, a Markov chain will be calletearly uncoupled
if its state space can be decomposed iktdisjoint almost invariantaggregates
A1, ..., A; such that

w(Ai, Aj) =~ &; or W = ld. @)

In this situation, the states of an NUMC wiktaggregatesan be orderecguch that
the transition matriP is of block-diagonally dominarform

Di1 E12 -+ Exn
p=ptE=|F2 P2 - Ix (8)
Exy1 Ex2 -+ Dk

Herein the perturbation matrkis understood to satisf§ = O(e) in terms of some
perturbation parameterto be further specified in Section 3.2. For the time being,
we just want to analyze the underlying block-diagonally dominant structure as a
function of this perturbation parameter. LR{¢) be a family of matrices and define
€« such thatP (e.) = P. Note that in our application context not only the actual size
of e, will be unknown but also the numbek of blocks in the representation (8).
Both of these aspects depend on the choice of criteria to mea&ale coupling
between aggregates—a topic left to Section 3.2. In order to be able to perform our
linear perturbation analysis, we adopt from [9] the following technical assumptions.
Regularity conditiongRC). In accordance with Theorem 6.1 from [9], let
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P(e) = P(0) +ePD +e2p@ 4.

be a family of matrices that is analytic in a domain of the complex plane containing
the origin, such thaP (¢) is reversible and stochastic for reaFurthermore, leP (¢)
be primitive for reak # 0 andP (0) of block-diagonal form (4) with primitive blocks
D;i,i=1,...,k. By Theorem 2.1 eacl?(¢) admits a uniqueositive stationary
distributionz (¢). We assume the set of all¢) to be uniformly bounded away from
zero, i.e., there exists a consté@ht- 0 such thatr;(e) > Cfori = 1,...,n and real
€ includinge = 0.

These regularity conditions assure that, for sufficiently smallR, the eigen-
values are continuous iand the spectrum a?(¢) can be divided into three parts

[7-9]:
1. the Perronroati(e) = 1,
2. acluster ok — 1 eigenvaluegs(¢), ..., At (¢) that approach 1 for — 0, and

3. the remaining part of the spectrum, which is bounded away fromd fer0.

In other words: For sufficiently small real there exists a well-identifiable cluster
of k eigenvalues around the Perron root—to be caledon clusterherein—that
may be understood as the splitting d&fold Perron root under perturbation. The fol-
lowing theorem gives a characterization of the eigenvectars), ..., Xy (¢) cor-
responding to the Perron cluster.

Theorem 3.1. Let P(¢) be a family of matrices satisfying the regularity conditions
(RO). LetII; denote ther-orthogonal projection on the eigenspace spanned by the
eigenvectorX ; of the unperturbed transition matrix’ (0). Then for real ¢, there
existr-orthonormal eigenvectorX (¢), . .., Xk (¢) of the following form

(i) An eigenvector corresponding to the Perron ragte) = 1 given by

X16)=(@,....,1T,

(i) A set ofk — 1 eigenvectors corresponding to the eigenvalue clusiét), . . .,
M (€) neard = 1 of the form
k

Xi(e) = Y aijxa; +eX;P + O(?) 9)
j=1
with
X, = 1, PYx; (10)
Jj= k+1
for approprlate coefficients;;, 8;; € R and aggregateds, ..., A; correspond-

ing to the block-diagonal form af(0).

Proof. SinceP(¢) is primitive for reale + 0, the eigenvalue1(¢) = 1 is simple
for reale # 0. The corresponding left-eigenvectofe), the stationary distribution,
is positive and analytic for real [9, Theorem 11.2.3]. Define the transformation
matrix Z(e) = diag(+/mi(€)); since ther(¢) are “uniformly bounded away from
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zero”, Z(e) is invertible for reale. The transformed family of matriceBsym(e) =
D(e)P(e)Z(e) Lis analytic ine and symmetric for real (consequence 2.1 of Prop-
osition 2.2).

By [9, Section I1.6.2] there exist right eigenvectdfge), ..., Yi(¢) of Psym(e)
corresponding to the eigenvalugs(e), ..., Ax(¢), which are analytic for reat.
Transforming these vectors liy(¢) ™1, we see thak;(¢) = Z(¢)1Y;(e), the cor-
responding eigenvectors for the reversible matrieés), are analytic for read and
therefore admit an expansiondnX; (¢) = X; + ¢X; Y 4+ O(e?).

Now, letll(e) = II1(¢) + - - - + I} (¢) denote ther-orthogonal projection on the
eigenspace of (¢) corresponding to the eigenvaluege), ..., Ax(¢). Then, by [9,
Section 11.2.1]I1(¢) is analytic ine and

n

(e) =110 +e€ »

je=krr T M

(H(O)P(l)Hj + 11 P<1>H(0)) +O(e?).

PluggingX; (¢) = X; + €X; Y 4+ O(e?) into the identityX; (¢) = I1(€) X, (¢) fori =
1,...,k, one obtains

Xi D= Z:Blj

1m;PYX;

j=k+1 1 M
for appropriate coefficienté,-j € R. Using Eg. (5) then completes the proof[]

Combining Egs. (9) and (10), the first order perturbation result from Theorem 3.1

Xi(e) = Z((xl, +eBij 11, PYX; 4+ O(e?) (11)

—k+1

0 an

permits an intriguing observation: The terms (l) are just shifts (up or down) of the
locally constant levels to be associated with the almost invariant aggregates. This
part of the error will not spoil the sign structure. The terms (1), however, which are
of the forme B + O(e?), can pollute the constant level pattern to some extent, but
may affect the sign structure from Lemma 2.5 only to a smaller extent—with caution
to be taken with respect to the perturbation of any “almost zero” levels (for details
see Section 4). The above two parts of the perturbation permit a further interpretation
in terms of the “weak modesX;,i =k + 1, ..., n, and the “dominant modesX;,

i =1,...,k: the term (I) represents the “dominant—dominant” coupling, whereas
the terms (Il) represent the “weak—dominant” coupling terms. Finally, observe that
the terms (I1) depend dominantly on the spectral gap .1 between the Perron

root and the remaining part of the spectrum, but not on the spectralgap ;1
between the Perron cluster and the rest.
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3.2. Weak coupling between aggregates

We now turn to the important question of how to define the perturbation parameter
€ more precisely than just by the vague assumption (7). As soon dsdhmost-
invariant aggregates have been computed(khk) coupling matrixw/ can be com-
puted as well from its Definition 2.3. On this basis, we will call a Markov chain
nearly uncouplegif

W —diagW)llec =1 —minw(4;, A;) = e (12)

with the notation diagW) = diag(w1s, . . ., wx) and for “sufficiently small’e,, > 0
(compare the previous definitiaP(e.) = P). This implies that perturbations of the
transition matrix (8) are then characterized by

1Z%E |00 < € (13)

with & = diag(,/7;) the weighting matrix as in Section 2.2. The above upper bound
(13) may be easily verified using Definition 2.3 and relation (12).

Remark. Our characterization of NUMCs is different from thecoupling measure
of Hartfiel and Meyer [10], but related to the concept of te@ductancef a Markov
chain of Sinclair [11].

With this specification, we now return to the identification process. As already
stated at the end of Section 3.1, we want to exploit the sign structure on the theoretical
basis of the above the perturbation results. Assume that the identification process via
the sign structure has supplied certain aggregédes. ., A, suspected to be almost
invariant. Upon using the x k matricesy = [xa, --- xa,] andX = [X1--- Xx] =
X (€), the perturbation result (11) may be expressed in view of actual computation as

X = x4+ B +0(?)

with ak x k coefficient matrixe/ = .«7(¢) and ann x k matrix B representing the
“weak—dominant” coupling terms (II) from (11). In view of the underlying perturba-
tion theory, we may determine a non-singular coefficient mafix (a;;) by means

of theleast squares fit

k
Xa— »_aiX;| =minl foralli=1...k (14)
j=1

T
in the weighted nornf - ||, introduced in Section 2.
Next, with the notation = diag(r1, ..., Ax) = A(e) for the Perron cluster of
eigenvalues, the coupling matrix can be written as

W= (x"2%) Yx"2%Py) = A Ak + €.

Again, the term«Z ~1 4.« describes the “dominant-dominant” interaction, whereas
the matrix4 represents the “weak—dominant” interaction given by
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A=X"9%BA — ABTZ?X + O(e).

Recall that, in the case of amcoupledMarkov chain, we had = 0 andA = Id,
implying 4 = 0 andW = .«# "1 A.«/ = Id,. For the nearly uncoupled Markov chains
under consideration here, we may expett! 4.« ~ Id; and therefore interpret the
k x k matrix

ernAL, ..., An) =ed=W — o/ T Ao/ (15)

aserror indicator. Recall from the perturbation analysis in Section 3.1 that this in-

dicator measures the coupling of the weak modes to the dominant modes, i.e., it

measures that part of the coupling whicdnnotbe described in terms of the eigen-

space of the Perron cluster. If an entry ofdr, . . ., Ay) is large, this may be caused

by one of the following reasons:

1. The values, might be “not small enough” to permit the linear perturbation anal-
ysis.

2. The regularity conditions might be violated.

3. Our identification algorithm might have supplied “wrong” almost invariant aggre-
gates—a phenomenon which may occur, if the perturbations had crucially spoiled
the sign structure. Of course, there is an overlap with the first reason above.

4. Identification algorithm

In this section, we present details of implementation of our algorithm for the iden-
tification of almost invariant aggregates. Recallkbg algorithmic idedo be worked
out:identify almost invariant aggregates componentwise via the sign structure of the
eigenvectors corresponding to the Perron cluster of eigenvalues

First, we have to determine tmeimber k of almost invariant aggregat&is is
done by computing a cluster of eigenvalues neat 1, the Perron cluster, which
should be well separated from the remaining part of the spectrum by a gap (Theorem
3.1). Iterative eigenvalue solvers with simultaneous subspace iteration (see e.g. [12]
or [6, Section 4]) would be the natural way to perform this task. In our present version
of the algorithm, however, we simply apply a direct eigenvalue solver to calculate
all eigenvalues and split off a Perron cluster by examination. Second, onte-the
right Perron eigenvectors (apart from the already known eigenvertmave been
computed, we want to decompose the state spac&ialtnost invariant aggregates.

As worked out in Section 2.2 fonncoupledMarkov chain, this can be done by
exploiting the eigenvectors in terms of their “piecewise constant level” structure or
their sign structure. However, foUMCs both perturbations of the eigenvectors and
permutations may cover these structures to an unknown extent. This makes the con-
struction of an efficient identification algorithm a quite subtle task. In what follows,
we will describe the three main steps of our suggested algorithm.

Stepl. Select states with stable sign structuvie start from the heuristics that
the sign of an eigenvector component is the “more likely” to remain stable under
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perturbation, the “larger” this component is. This means that we are particularly
interested in all those states= {1, ..., n}, for which at least one of the eigenvec-
tors X; has a “significantly large” componer¥;(s). In order to make the posi-

tive and negative parts of the different eigenvectors comparable in size, we scale
them as follows: foi = 1,..., k, we splitX; = X;* + X;” componentwise, where
X" (s) = max0, X;(s)) andX; (s) = min(0, X;(s)), and setX; = X;" /| X; oo +

X /IX; llo- This procedure leaves the eigenvector fo= 1 unchangedX; =

X1 = e. By means of a heuristic threshold valueQs < 1, which is common for

all eigenvectors, we then select those states that exhibit a “stable” sign structure
according to:

(S1) Determine’ = {s € {1, ..., n} : maX—1.__x|Xi(s)| > 8}.

Step2. Define sign structure classeBased on the sign structures of the states
in &, we proceed to defink equivalence classes with respect to sign structures.
Upon assigning each of the statesdnto one of thesé sign structure classes, a
surjective map : & — {1, ..., k} is defined. More details of this assignment pro-
cess are skipped here, but will be described later. Formally, the second step of the
identification algorithm then reads:

.....

(S2) Determinek equivalence classes of sign structures and the associate@ map
such that¥ decomposes int& disjoint subsets?1, ..., %%, each of which
represents the “core” of the almost invariant aggregates.

Step3. Identify piecewise constant level pattevie are finally left to assign each
of the remaining statese {1, ..., n}\.¥ to one of thek sign structure classes. Of
course, we aim at a complete decomposition of the state spac& aggregates.
Rather than using the sign structures of these states, which might be heavily per-
turbed, we exploit the fact that thkeeigenvectors(; are approximate linear combi-
nations of thek characteristic functions of the aggregates. Since subéetsf each
aggregate are already available, we modify ldest-squares fif14) such that it is
only based on the states.fi. For this purpose, we denote &y |~ the eigenvectors
reduced componentwise to the subgetf indices. This leads to:
(S3) Evaluate coefficients;; such that

k
Xoi = _ajiXjly| = mint fori=1,... k.
j=1 -
Once the coefficients;; have been determined over the index gtwe extend

the x o, tox; = Zl;=l aj; X overthe fullindex set 1 .., n. From this we determine
the aggregates via

Aj={sef{l,....,n}: xj(s) > xi(s) foralli # j}.
In case of ambiguity in the above componentwise selection, a state is assigned to an

arbitrary aggregate with maximal; (this case has never been observed in any of the
numerical experiments performed so far).
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Assignment procedures in StepA&. already indicated, the underlying idea is that
only “significantly large” entries in the scaled vectdés are permitted to contribute
to a sign structure. To this end, we define a sign struciiised) for states with
respect to some heuristicreshold valu@ with 0 < 6 < 1 by virtue of
with o; — {ggn@o@» if |Xi(s)| > 0,

o(s,0) = (o1,...,0%) otherwise

Obviously, the threshold value is understood to separate components with a clear
sign information from those that might have been perturbed to such an extent that
the sign information has been lost. BY.%, 0) = {o (s, 0) | s € ¥}, we denote the
set of all sign structures with respect@oTwo sign structures1 ando, are said
to be equivalent written aso1 ~ oo, iff their pointwise multiplication yields only
non-negative entries. This implies that any entry 0—determined via the threshold—
may be interpreted arbitrarily either as +1-et. Our goal is now to find the smallest
threshold, for which we can find an unambiguous assignment into exaclysses,
i.e.,o' ~ o’ if az(o’) = az(c”) for a surjective map; : S — {1,....k}.

To find a mapzy for a givend, we define a partial ordering on (X (%, 6), <) by
ol <oliff o' ~o/and(o/ =0 = of =0)forl =1,..., k. Let%maxbe the set
of all maximalelements given byX (%, 6), <). Obviously, if we find a majy on
2 (S max 0), we can extend it ta' (¥, 0), because each € (X (¥, O)\2 (L max 0))
can be assigned to the same class as the one of its maximal elements. Hence, by
restricting any search to maximal elements only, we expect to drastically reduce the
algorithmic complexity.

At this stage, we may directly transform our problem intgraph coloringprob-
lem, a standard problem in graph theory—see [13].4&¥max, E) be the graph,
where each maximal element is represented by a vertekdna’/) € E < o #
o/, i.e., maximal elements which are not equivalent are connected by edges. The
idea behind this definition o¥ is that ak-coloring decompose®’ max into k classes,
so that the elements of each class are mutually equivalent. In our algorithm, we
implemented a sequential coloring heuristics with recursive smallest last ordering as
described in detail, e.g., in [13]. In this way, we exploit the fact that the chromatic
numberyy monotonically decreases fropy = [ with[ > k for6 = 0to x4 = 1 for
0=1.

We thus arrive at the following procedure to compkitéasses', . . ., o} of sign
structures:

setd~ = 0 andd™ = 1 to perform a bisection
setmas the number of bisection steps
for j =1tom do

setd = (0~ +61)/2

determineX(%, 0), (S max 0) and%(Fmax, E)

compute a coloring o

set 4 the number of colors, which should be equal or closg4#o
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if x4 > k then

0t =0
else
6~ =46
end if
end for
if x4 =kford =067 then
determine thé color sets#1, . .., %
seto;" = sign(zae;/i 0)

else

go back to (S1) and choose another valuesfor

(this case is rare and never occurred in our examples).
end if

Having terminated withk sign structuresy, ..., o/, we still have to compute
the associated decomposition@fyielding the core sets’s, ..., ¥%. This is done
as follows: We start with?; = ¢ for all i = 1, ..., k. Then, successively for all
statess; from #: Setd = 0, and increase until there is anr € {1, ..., k} such that
o(sj,0) ~of. If ris unique, assign; to ¥, i.e., set¥, = &, U {s;}, otherwise
we donot assign the state; to any of the?’;. If any of the.#; remain empty, then
the whole procedure has failed and must be restarted with sMafiestep (S1).

Remark. We managed to transform our problem into the &&Papleteproblem

of graph coloring. Hencdjeuristicsare anyway justified to play a crucial role in

its computational solution. Under the additional constraint of a perturbed piecewise
constant level pattern in the eigenvectors, however, the space of permitted color-
ings of the corresponding graph.% max, ) is restricted—making our problem less
complex than a general unconstrained graph coloring problem.

5. Numerical experiments

We now want to illustrate the performance of our suggested identification algo-
rithm by two examples, one rather simple artificial example and one example from
molecular dynamics out of the problem class that has motivated this investigation.

5.1. lllustrative artificial example

This simple model problem is mainly presented to illustrate the perturbation the-
ory as given in Theorem 3.1. We construct a reversible primitive stochastic rRatrix
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with k = 3 blocks as follows: we first generate a symmetric block diagonal matrix
with three blocks and a strictly positive symmetric perturbation ma&yizoth with
equidistributed random entries. FoOu < 1, we define the symmetric matrix

Psym= (1—uw)D + pE. (16)
By normalizing Psym = ((psym)i;) such thatzl’{j:l(psym),-j =1, we obtain ae-

versible row stochastienatrix P = (p;;) = ((psym)ij/7:i) wherein the stationary
distribution 7 = (77;) is defined via

n
i =Y (Psymij-
j=1

If at least one of the diagonal entrigs; is different from zero (which is easy to
check), therP is alsoprimitive—see e.g. [4]. Fig. 2 shows an associated eigenvector
basis{X1, X», X3} of such a matrix that has been constructed as described with
u=0.3.

Computation of eigenbasishe Perron cluster of eigenvalues came outasiy,
A3) = (1, 0.75,0.52). The associated eigenvectofs, X», X3 are given in Fig. 2.
Compared with the related uncoupled case presented in Fig. 1, the sign structure is
still visible in the perturbed eigenspace basis, though an erratic sign structure occurs
close to the zero unperturbed level X§. As can be seen, there is no difficulty to
identify the three almost invariant aggregates “by eye”.

Almost invariant aggregateblext, the coefficient matrix/ = (a ;) of dimension
k x k has been computed on the basis of the least-squares fit (14). Fig. 3 compares
the linear combination of the eigenvectgrs; a;; X ; with the constant level char-
acteristic functionsg,, that are the object of interest. Despite the relatively wide
spreading of the Perron cluster, the approximation ofythieis indeed intriguing.

Coupling matrixIn the next step, we compute the coupling matkiaccording to
Definition 2.4 for the given decomposition into the three almost invariant aggregates
A1, A2, A3. Here we obtain the diagonally dominant matrix

()] SO

-0.5

Vs R N A
- ‘. = 0

0 30 60 20
Fig. 2. Eigenspace baské;, X2, X3 corresponding to Perron cluster= 1, 0.75, 0.52 of the transition
matrix associated with = 3 nearly uncoupled Markov chains. Observe the nearly constant level pattern
on each of the aggregatds, A, and A3—to be compared with Fig. 1 for the uncoupled case.
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1 1 1
0.5) 0.5} 0.5
0) 0| 0]

0 30 60 20 0 30 60 90 0 30 60 90
Fig. 3. lllustration of approximate characteristic functions for almost invariant aggregates of the arti-
ficial example from Fig. 2. Each of the figures shows one of the characteristic fungtionand its
approximationzj aj; X j (notation see text).

0.7271 01943 0078
W =10.2039 07138 Q0823
0.0829 00827 08343

According to (12) this yields the perturbation parametes 0.2862.

Error indicator. Recall the definition of the error indicator as given in (15). With
the Perron clustert, the coefficient matrixZ, and the coupling matrixV already
computed, we are able to evaluate this matrix as

0.0198 00222 —-0.0421
err=10.0235 00202 —-0.0437
0.0223 00212 -0.4340

The information in terms of the two matricééand err substantiates the following
observations: (a) the influence of the weak modes on the coupling of the aggregates
may be neglected in this example, and (b) the probabilities to stay within the aggre-
gates is not really close to one, which seems to be a consequence of the spreading of
the Perron cluster.

5.2. Metastable conformations of n-pentane

Our identification algorithm has already been successfully applied to (moderate
size) biomolecules (see [2,14]). For the purpose of illustration, we select the quite
small well understood-pentane molecule GH(CH,)3-CHs—see Fig. 4(a). The

o Nl

o 0

(o))

— torsion [I&J/mm]
o

\Y
o

-180 -90 0 90 180
(a) (b) o]

Fig. 4. (a) United atom model af-pentane with the two dihedral angles= (w1, w»). (b) Dihedral
angle potential due to Ryckaert and Bellemans [15]. Central minimum: main angular orientitits), (
left and right minimum:—gaucheand-+gaucheorientations.
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Fig. 5. Stationary distributior in dihedral angle plan&v1, w»).

most flexible part of the molecule is characterized by the so-called dihedral angles
w1, wp—see Fig. 4(b), for the two potentials with three minima each. Within chem-
istry, the orientationst{ans or gauché of these dihedral angles are known to give
rise to different “conformations” of the molecule.
By means of dybrid Monte Carlo metho(compare [2]) a primitive and revers-
ible stochastic 40& 400 matrix P has been generated. The left eigenveatas
given as a spatial projection of the well-known Boltzmann distribution—see Fig. 5.
Perron cluster.The first 10 eigenvalues @?, ordered with respect to absolute
value, are:

k|11l] 2 3 4 5 6 7 8 9 10
A | 1]0.986| 0.984| 0.982| 0.975| 0.941| 0.938| 0.599| 0.590| —0.562

The first nine ones are seen to be positive. From the 10th one onwards negative
eigenvalues appear. Obviously, the largest gaps arise betwesmd Ag, and, even
more significantly, betweeh; andig. Therefore we present the results of the iden-
tification algorithm both fok = 5 and fork = 7.

Corresponding eigenbasi3he right eigenvectors correspondingitp=1 (a)
andiz = 0.986 (b) are illustrated in Fig. 6. Of course, for = 1, we obtaine =
(1,..., DT, which in grid representation is just a flat plateau (ignoring zeroes for
cut-off states). Foio, the right eigenvector contains more information. Just as in

(b)

Fig. 6. (a) Right eigenvector for eigenvalig = 1 in an(w1, w2)-plane. Zero entries are cut-off states
(probability for the dynamical system to be within these states neglected). (b) Right eigenvector for ei-
genvalueio = 0.9859. Observe nearly constant levels.
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our model example (see Fig. 2), we can distinguish between different plateau levels,
which seem to indicate different almost invariant aggregates. Fig. 7 represents the
first seven eigenvectors split into their positive and negative parts (as described in
Section 4). Theight eigenvectors show the expected almost constant level structure,
which allows the state space to be decomposed using the algorithm explained in
Section 4. In contrast to this, theft eigenvectors have distinct maxima only at the
center of each constant level.

Almost invariant aggregatg& = 5). Our identification algorithm ended up with
the almost invariant aggregatds, ..., As as illustrated in Fig. 8. Thé&ansition
probabilitiesw(4;, A ;) between these aggregates are arranged in the follaveing
pling matrix

0.9783 00006 Q0162 00038 Q0011
0.0006 Q9774 Q0145 00007 Q0070
W=10.0044 00042 Q9823 Q0042 Q0049]|,
0.0040 Q0008 Q0162 09786 Q0004
0.0010 Q0066 Q0162 00004 Q9759

posiive part negaive part posiive part negaive part
m—— 2

Fig. 7. k = 7: Left (a) andright eigenvectors (b). Grey scaling with respect to maximum norm. First row
right: cf. Fig. 6(a). Second row right: compare Fig. 6(b).
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p =0.97735 p = 0.97863 p = 0.97588
C 20 20

Fig. 8. Almost invariant aggregates fbr= 5. The valueg denote the probabilities to stay within these
aggregates during the discrete time step 160 fs.

where the ordering of the aggregates corresponds to Fig. 8. Recall that the diagonal
entries inW show the high probabilities for the molecular system to stay within
A;, once it is inA;. According to (12) this coupling matrix yields the perturbation
parametee, = 0.0241.

The correspondingrror indicatoris

—0.0071 —0.0006 00071 00015 —-0.000
—0.0010 —-0.0098 00065 —0.0005 00046
err=| —0.0007 00001 -0.0016 00011 00011} .
0.0008 —0.0009 00081 —-0.0071 -—0.0003
—0.0016 Q0037 00066 —0.0003 —0.009

The fact that all its entries are small indicates that the identification process is
reliable.

Almost invariant aggregatg = 7). The seven aggregates shown in Fig. 9 were
identified. Observe that the eigenvectors correspondihg &md; (see Fig. 7) con-
tain the additional information about the separation of the so-called +gauche/+gauche-
and the—gauchef-gauche-conformation (see caption of Fig. 4 for terminology).
Therefore, we obtain a more detailed partitioning of the state space, even though the
probabilities to stay within the additional conformations are lower. If we again use
(12), we now obtain the perturbation parametes 0.0823, slightly larger than for
k = 5; such an increase is expected, since splitting almost invariant aggregates into
parts can shift the minimum in formula (12) only to this side.

p = 0.97909 p =0.97675
20 20

p = 0.97634 p = 0.98031
20
HHH
LT
I
1

20 K 20

15 15

10 10

T
5 10 15 20 5 10 15 20

Fig. 9. Almost invariant aggregates for= 7. Observe the splitting of aggregates compared with Fig. 8.
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Summarizing, the example clearly demonstrates that the algorithm can produce
satisfactory results, even if almost invariant aggregates exhibit substructures corre-
sponding to smaller eigenvalues in the Perron cluster. Both resulis#ds and for
k = 7, are in good agreement with chemically observed conformations. What is most
important, however: our new identification algorithm has automatically detected the
known chemical conformations without explicit a priori use of chemical insight.
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