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Abstract

The topic of the present paper has been motivated by a recent computational approach to
identify metastable chemical conformations and patterns of conformational changes within
molecular systems. After proper discretization, such conformations show up as almost invari-
ant aggregates in reversible, nearly uncoupled Markov chains (NUMCs). Most of the former
work on this subject treated thedirect problem: given the aggregates, analyze the loose cou-
pling in connection with the computation of the stationary distribution (aggregation/disaggre-
gation techniques). In contrast to that, the present paper focuses on theinverseproblem: given
the system as a whole, identify the almost invariant aggregates together with the (small) prob-
abilities of transitions between them. A robust algorithm is worked out on the basis of some
detailed perturbation analysis and illustrated at a simple molecular system. © 2000 Elsevier
Science Inc. All rights reserved.
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1. Introduction

The work to be presented here has been motivated by a recently suggested ap-
proach to identify and computemetastable chemical conformations of biomolecules.
Given the physical characterization of such molecules in terms of their kinetic and
potential energies, such conformations can be understood asalmost invariant subsets
of the related dynamical systems, see [1,2]. After discretization of a certain Mar-
kov operator, a finite-dimensional (time-homogeneous) Markov chain arises, which
has the nice additional property of beingreversible—i.e., symmetric with respect to
time reversal. Per definition, every Markov chain with finite state space is associated
with a stochastic transition matrix. Due to the reversibility of the Markov chain, the
transition matrix issymmetricin some weightedl2-sense. The new method involves
the determination of conformations via the numerical solution and careful analy-
sis of eigenvalue cluster problems around the so-called Perron rootλ = 1, which
characterizes the stochasticity of the transition matrix.

First, in Section 2, we start with a recollection of known basic results for revers-
ible uncoupledMarkov chains (UMCs) in terms of some block structure of their
associated transition matrices. We introduce some weightedl2-product and derive a
discriminating sign structure for the identification ofinvariant aggregates, the finite-
dimensional analog of invariant subsets that characterize the conformations to be
determined. Next, in Section 3, we treat the case ofnearly uncoupledMarkov chains,
wherein only a perturbed block structure is present, which is even hidden due to
some unknown permutation. In addition, the numberk of blocks is a priori unknown
and must be determined. This case is first studied in terms of a linearperturbation
analysisfor the transition matrix (Section 3.1). In order to define “small” perturba-
tions, coupling measures between aggregates are discussed (Section 3.2). On this
basis, we derive a robust identification algorithm in Section 4. Part of the algorithm
has been transformed into agraph coloringproblem, which is known to be NP-
complete. As a consequence, heuristics are justified to play an important role in the
implementation of the algorithm. Finally, in Section 5, numerical experiments for
simple model problems are illustrated.

2. Markov chains and transition matrices

For the convenience of the reader, we first recollect basic results about the connec-
tion between finite-dimensional Markov chains and their related transition matrices.
This involves the stochastic characterization as well as its linear algebra counterpart.

2.1. Properties of transition matrices

Let the (row)stochastic(n, n)-matrix P = (pij ) be atransition matrixassoci-
ated with a (homogeneous)Markov chainover some finite setS = {s1, . . . , sn} of
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discrete statessi . Given that the dynamical system is in the individual statesi , each
matrix entrypij represents the probability of the system to move to statesj . For
a more detailed understanding of Markov chains and their interpretation, we refer
to textbooks like [3]. Throughout this paper, we will assume thatP is primitive,
i.e., there exists a positive integerm such thatPm > 0 elementwise [3]. Primitive
stochastic matrices have some nice properties, which we recall now.

Theorem 2.1[3,4]. Let P be a primitive stochastic matrix. Then:
1. the Perron rootλ = 1 is simple and dominant, i.e., |λ| < 1 for any other eigen-

valueλ /= 1,

2. there are positive left and right eigenvectors corresponding toλ = 1, which are
unique up to constant multiples.

In particular, theright eigenvector corresponding toλ = 1 ise = (1, . . . , 1)T, the
correspondingleft eigenvectorπ = (π1, . . . , πn)

T represents thestationary distri-
bution under the assumption thatπTe = 1 is chosen as normalization. In matrix
notation we have

πTP = πT and Pe = e.

From our application context [2], the eigenvectorπ is given a priori. Moreover, the
underlying Markov chains are known to bereversibleso that the so-calleddetailed
balance conditionholds

πipij = πjpji for all i, j (1)

or, in terms of someweighting matrixD = diag(
√

πi), equivalently

D2P = P TD2. (2)

Throughout the subsequent analysis, we will conveniently assume that the discrete
states have been selected such thatall elements ofπ are strictly positive or, equiva-
lently, that the weighting matrixD is non-singular. If this assumption were not satis-
fied in practice, one would just have to restrict the state spaceS accordingly. Once
π > 0, we may introduce the inner product〈·,·〉π as

〈x, y〉π = xTD2y.

This inner product corresponds to the finite-dimensionalweightedEuclidean space
l2π(n). Two vectorsx, y satisfying〈x, y〉π = 0 will be calledπ-orthogonal.

Proposition 2.2. Let P be a reversible primitive stochastic matrix. Then P is sym-
metric with respect to the inner product〈·,·〉π .

Proof. Due to (2), we immediately have〈x, Py〉π = xTD2Py = xTP TD2y =
〈Px, y〉π . �

The stochastic matrixP possesses the following structural properties:
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P.1 There exists a basis ofπ-orthogonal right eigenvectors, which diagonalizesP.

P.2 All eigenvalues ofP are real and contained in the interval[−1,+1].
P.3 For everyright eigenvectorx there is an associatedleft eigenvectory = D2x,

which corresponds to the same eigenvalue.

P.4 The matrixP is similar to the symmetric, in general non-stochastic matrixPsym =
DPD−1 (see also [5]).

2.2. Uncoupled Markov chains

As a generalization of transition probabilities between single statessi we will
need to define transition probabilities between non-void subsets of state space, usu-
ally calledaggregates.

Definition 2.3. Given a Markov chain by its transition matrixP (not necessarily
primitive) and a stationary distributionπ > 0. Given any non-empty index subsetI,
define its characteristic vectoreI = (eI,i )i=1,...,n by eI,i = 1 for i ∈ I andeI,i = 0
otherwise. Identify index setsA andB with their two corresponding aggregatesA
andB. Then the (conditional)transition probabilityfrom A to B with respect toπ is
defined to be the conditional probability of the system being inA to move toB in a
single step, which is given by

wπ(A,B) =
∑

a∈A,b∈B πa pab∑
a∈A πa

= 〈eB, PeA〉π
〈eA, eA〉π .

Definition 2.4 [7,8]. Let A1, . . . , Ak denote a disjoint decomposition of the state
space intok aggregates. Then the associated stochastic (k, k)-matrixWπ defined by

(Wπ)ij = wπ(Ai,Aj ), i, j = 1, . . . , k,

is called thecoupling matrixof the decomposition.

For the special caseA = B, we callwπ(A,A) the probability for the system to
stay within A. An aggregateA satisfyingwπ(A,A) = 1 is said to beinvariant, which
means that whenever the dynamical system is inA, it will remain in A for infinite
time. A Markov chain is calleduncoupled, if it allows the state space to be decom-
posed into disjoint invariant aggregatesA1, . . . , Ak, i.e.,

wπ(Ai,Aj ) = δij or Wπ = Idk. (3)

Formally speaking, the stationary distribution in this case is not unique, since the
corresponding transition matrix is not primitive. The probabilities, however, are in-
dependent of any choice of stationary distribution. On the side of the transition matrix
P, a UMC withk aggregates—assuming appropriate ordering of states—shows up in
someblock-diagonalform
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Fig. 1. Uncoupled Markov chain withk = 3 aggregates. The state space{s1, . . . , s90} divides into the
aggregatesA1 = {s1, . . . , s29}, A2 = {s30, . . . , s49} andA3 = {s50, . . . , s90}. (a) Characteristic function
χA2. (b) A possible basis of the eigenspace corresponding toλ = 1. Observe that each eigenvector is
constant on each aggregate. The sign structure for states69 is (+,−, 0) in the sense of Lemma 2.5.

P = D =




D11 0 · · · 0
0 D22 · · · 0
· · ·
0 0 · · · Dkk


 , (4)

where each blockDii is a squarestochasticmatrix,symmetricwith respect to some
corresponding stationary subdistribution. Assume again that each of these matrices
Dii is primitive. Then, due to the Perron–Frobenius theorem, each blockDii pos-
sesses a unique eigenvectorei = (1, . . . , 1)T of length dim(Dii) corresponding to its
Perron rootλi = 1. Therefore, in terms of the total transition matrixP, the eigenvalue
λ = 1 isk-fold and the corresponding eigenspace is spanned by the vectors

χAi = (0, . . . , 0, eT
i , 0, . . . , 0)T, i = 1, . . . , k.

In view of the inverse problem to be treated, our notation deliberately emphasizes
that these eigenvectors can be interpreted ascharacteristic functionsof the invari-
ant aggregates (see Fig. 1(a)). In general, any basis{Xi}i=1,...,k of the eigenspace
corresponding toλ = 1 can be written as a linear combination of the characteristic
functionsχAi with coefficientsαij ∈ R such that

Xi =
k∑

j=1

αij χAj , i = 1, . . . k. (5)

As a consequence, eigenvectors corresponding toλ = 1 areconstant on each aggre-
gate (see Fig. 1(b)).

With these preparations, we are now ready to derive the key tool for our algorithm
to be presented in Section 4.

Lemma 2.5. Given a block-diagonal transition matrix P consisting of reversible,

primitive blocks, a stationary distributionπ > 0 and a π-orthogonal basis
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{Xi}i=1,...,k of its eigenspace corresponding toλ = 1. Associate with every statesi
its sign structure

si 7−→ (sign((X1)i), . . . , sign((Xk)i)). (6)

Then:
1. invariant aggregates are collections of states with common sign structure,

2. different aggregates exhibit different sign structures.

Proof. In order to prove statement 1, recall that each eigenvector corresponding to
λ = 1 is constant on each of the aggregates, which implies that states belonging to
the same aggregate must share the same sign structure.

As for statement 2, let, without loss of generality, every aggregate consists of only
one state. In a first step, we demonstrate the assertion for an orthogonal eigenvec-
tor basis{Qi}i=1,...,k of the symmetric matrixPsym = DPD−1 (Property P.4). In a
second step, we then generalize it to the assertion stated in the proposition.

Define thek × k matrixQ = [Q1 · · ·Qk]. SinceQ is orthogonal, i.e.,QT = Q−1,
the transposeQT is an orthogonal matrix, too. Thus, the rows ofQ are orthogonal, a
fact that we will exploit in the following.

Now consider aπ-orthogonal eigenvector basis{Xi}i=1,...,k of P . ThenXi =
D−1Qi for i = 1, . . . , k. Since the transformation matrixD−1 has positive diagonal
entries, the sign structures ofXi andQi , i = 1, . . . , k, are the same.

In view of Property P.4, the sign structure of themth aggregate is equal to the sign
structure of themth row ofX = [X1 · · · Xk]. Now suppose there exist two aggregates
Ai andAj with the same sign structure. Then theith andjth row ofX, and thus ofQ,
are equal in sign, which is a contradiction to the orthogonality ofQ. �

Summarizing, Lemma 2.5 indicates that the set ofk right eigenvectors associated
with the k-fold eigenvalueλ = 1 can be conveniently used toidentify k invariant
aggregatesvia sign structures—to be testedcomponentwiseand therefore indepen-
dent of any (unknown) permutation. In principle, this testing could be performed
via left as well as viaright eigenvectors, whose sign structures are known to be the
same. Just recall that for every left eigenvectory = (yi) there exists an associated
right eigenvectorx = (xi) with yi = πixi , hence sign(yi) = sign(xi). Due to their
constant level structure, however, the right eigenvectors seem to be better suited in
view of a treatment of inverse problems in the presence of perturbations, which will
be treated in the following section.

3. Nearly uncoupled Markov chains (NUMCs)

In most real life applications including those from molecular dynamics, perturba-
tions occur that give rise tonearly uncoupledrather than UMCs—corresponding to
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a decomposition intoinvariant rather than invariant aggregates. Roughly speaking,
whenever the dynamical system is within a nearly invariant aggregate, then it will
stay therefor a long timerather than for infinite time—hencemetastabilityrath-
er than stability is the term to describe this situation. On the side of the transition
matrices,block-diagonally dominantrather than block-diagonal matrices will oc-
cur. As will turn out, right eigenvectors ofP can again be used to identify such
aggregates—based on some subtle perturbation analysis to be given first.

3.1. Perturbation analysis

The theoretical perturbation analysis to be worked out in this section rather closely
follows the lines of work of Stewart [8] on general primitive stochastic matrices.
However, we additionally exploitreversibility of the Markov chain here using the
framework prepared in Section 2. In the perturbed situation to be tackled now, the
stationary distributionπ of the transition matrix is unique, so that the inner product
with respect toπ is well defined. We may therefore drop the subscriptπ and just
write w(A,B) = wπ(A,B) for the probabilities andW = Wπ for the coupling ma-
trix. For our perturbation analysis, we will employ the well-known theory of Kato
[9], specified here to the case ofsymmetricmatrices in the sense of Proposition 2.2.

Recall from (3) that an invariant aggregateA is defined byw(A,A) = 1. There-
fore, again roughly speaking, an aggregateA will be said to bealmost invariant, if
w(A,A) ≈ 1. In a similar way, a Markov chain will be callednearly uncoupled,
if its state space can be decomposed intok disjoint almost invariantaggregates
A1, . . . , Ak such that

w(Ai,Aj ) ≈ δij or W ≈ Idk. (7)

In this situation, the states of an NUMC withk aggregatescan be orderedsuch that
the transition matrixP is of block-diagonally dominantform

P = D + E =




D11 E12 · · · E1k

E21 D22 · · · E2k

· · ·
Ek1 Ek2 · · · Dkk


 . (8)

Herein the perturbation matrixE is understood to satisfyE = O(ε) in terms of some
perturbation parameterε to be further specified in Section 3.2. For the time being,
we just want to analyze the underlying block-diagonally dominant structure as a
function of this perturbation parameter. LetP(ε) be a family of matrices and define
ε∗ such thatP(ε∗) = P . Note that in our application context not only the actual size
of ε∗ will be unknown, but also the numberk of blocks in the representation (8).
Both of these aspects depend on the choice of criteria to measureweak coupling
between aggregates—a topic left to Section 3.2. In order to be able to perform our
linear perturbation analysis, we adopt from [9] the following technical assumptions.

Regularity conditions(RC). In accordance with Theorem 6.1 from [9], let
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P(ε) = P(0) + εP (1) + ε2P (2) + · · ·
be a family of matrices that is analytic in a domain of the complex plane containing
the origin, such thatP(ε) is reversible and stochastic for realε. Furthermore, letP(ε)

be primitive for realε /= 0 andP(0) of block-diagonal form (4) with primitive blocks
Dii , i = 1, . . . , k. By Theorem 2.1 eachP(ε) admits a uniquepositivestationary
distributionπ(ε). We assume the set of allπ(ε) to be uniformly bounded away from
zero, i.e., there exists a constantC > 0 such thatπi(ε) > C for i = 1, . . . , n and real
ε includingε = 0.

These regularity conditions assure that, for sufficiently smallε ∈ R, the eigen-
values are continuous inε and the spectrum ofP(ε) can be divided into three parts
[7–9]:
1. the Perron rootλ1(ε) ≡ 1,
2. a cluster ofk − 1 eigenvaluesλ2(ε), . . . , λk(ε) that approach 1 forε → 0, and
3. the remaining part of the spectrum, which is bounded away from 1 forε → 0.

In other words: For sufficiently small realε, there exists a well-identifiable cluster
of k eigenvalues around the Perron root—to be calledPerron clusterherein—that
may be understood as the splitting of ak-fold Perron root under perturbation. The fol-
lowing theorem gives a characterization of the eigenvectorsX1(ε), . . . , Xk(ε) cor-
responding to the Perron cluster.

Theorem 3.1. LetP(ε) be a family of matrices satisfying the regularity conditions
(RC). LetPj denote theπ-orthogonal projection on the eigenspace spanned by the
eigenvectorXj of the unperturbed transition matrixP(0). Then, for real ε, there
existπ-orthonormal eigenvectorsX1(ε), . . . , Xk(ε) of the following form:
(i) An eigenvector corresponding to the Perron rootλ1(ε) ≡ 1 given by

X1(ε) ≡ (1, . . . , 1)T,

(ii) A set ofk − 1 eigenvectors corresponding to the eigenvalue clusterλ2(ε), . . . ,

λk(ε) nearλ = 1 of the form

Xi(ε) =
k∑

j=1

αij χAj + εXi
(1) + O(ε2) (9)

with

Xi
(1) =

k∑
j=1

βij χAj +
n∑

j=k+1

1

1 − λj

PjP
(1)Xi (10)

for appropriate coefficientsαij , βij ∈ R and aggregatesA1, . . . , Ak correspond-
ing to the block-diagonal form ofP(0).

Proof. SinceP(ε) is primitive for realε /= 0, the eigenvalueλ1(ε) ≡ 1 is simple
for realε /= 0. The corresponding left-eigenvectorπ(ε), the stationary distribution,
is positive and analytic for realε [9, Theorem II.2.3]. Define the transformation
matrix D(ε) = diag(

√
πi(ε)); since theπ(ε) are “uniformly bounded away from
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zero”,D(ε) is invertible for realε. The transformed family of matricesPsym(ε) =
D(ε)P (ε)D(ε)−1 is analytic inε and symmetric for realε (consequence 2.1 of Prop-
osition 2.2).

By [9, Section II.6.2] there exist right eigenvectorsY1(ε), . . . , Yk(ε) of Psym(ε)

corresponding to the eigenvaluesλ1(ε), . . . , λk(ε), which are analytic for realε.
Transforming these vectors byD(ε)−1, we see thatXi(ε) = D(ε)−1Yi(ε), the cor-
responding eigenvectors for the reversible matricesP(ε), are analytic for realε and
therefore admit an expansion inε: Xi(ε) = Xi + εXi

(1) + O(ε2).
Now, letP(ε) = P1(ε) + · · · + Pk(ε) denote theπ-orthogonal projection on the

eigenspace ofP(ε) corresponding to the eigenvaluesλ1(ε), . . . , λk(ε). Then, by [9,
Section II.2.1],P(ε) is analytic inε and

P(ε) = P(0) + ε

n∑
j=k+1

1

1 − λj

(
P(0)P (1)Pj + PjP

(1)P(0)
)

+ O(ε2).

PluggingXi(ε) = Xi + εXi
(1) + O(ε2) into the identityXi(ε) = P(ε)Xi(ε) for i =

1, . . . , k, one obtains

Xi
(1) =

k∑
j=1

β̃ijXj +
n∑

j=k+1

1

1 − λj

PjP
(1)Xi

for appropriate coefficients̃βij ∈ R. Using Eq. (5) then completes the proof.�

Combining Eqs. (9) and (10), the first order perturbation result from Theorem 3.1

Xi(ε) =
k∑

j=1

(αij + ε βij ) χAj

︸ ︷︷ ︸
(I)

+ ε

n∑
j=k+1

1

1 − λj

PjP
(1)Xi + O(ε2)

︸ ︷︷ ︸
(II)

(11)

permits an intriguing observation: The terms (I) are just shifts (up or down) of the
locally constant levels to be associated with the almost invariant aggregates. This
part of the error will not spoil the sign structure. The terms (II), however, which are
of the formεB + O(ε2), can pollute the constant level pattern to some extent, but
may affect the sign structure from Lemma 2.5 only to a smaller extent—with caution
to be taken with respect to the perturbation of any “almost zero” levels (for details
see Section 4). The above two parts of the perturbation permit a further interpretation
in terms of the “weak modes”Xi , i = k + 1, . . . , n, and the “dominant modes”Xi ,
i = 1, . . . , k: the term (I) represents the “dominant–dominant” coupling, whereas
the terms (II) represent the “weak–dominant” coupling terms. Finally, observe that
the terms (II) depend dominantly on the spectral gap 1− λk+1 between the Perron
root and the remaining part of the spectrum, but not on the spectral gapλk − λk+1
between the Perron cluster and the rest.
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3.2. Weak coupling between aggregates

We now turn to the important question of how to define the perturbation parameter
ε more precisely than just by the vague assumption (7). As soon as thek almost-
invariant aggregates have been computed, the(k, k) coupling matrixW can be com-
puted as well from its Definition 2.3. On this basis, we will call a Markov chain
nearly uncoupled, if

‖W − diag(W)‖∞ = 1 − min
i

w(Ai,Ai) = ε∗ (12)

with the notation diag(W) = diag(w11, . . . , wkk) and for “sufficiently small”ε∗ > 0
(compare the previous definitionP(ε∗) = P ). This implies that perturbations of the
transition matrix (8) are then characterized by

‖D2E‖∞ 6 ε∗ (13)

with D = diag(
√

πi) the weighting matrix as in Section 2.2. The above upper bound
(13) may be easily verified using Definition 2.3 and relation (12).

Remark. Our characterization of NUMCs is different from theuncoupling measure
of Hartfiel and Meyer [10], but related to the concept of theconductanceof a Markov
chain of Sinclair [11].

With this specification, we now return to the identification process. As already
stated at the end of Section 3.1, we want to exploit the sign structure on the theoretical
basis of the above the perturbation results. Assume that the identification process via
the sign structure has supplied certain aggregatesA1, . . . , Ak, suspected to be almost
invariant. Upon using then × k matricesχ = [χA1 · · ·χAk ] andX = [X1 · · · Xk] =
X(ε), the perturbation result (11) may be expressed in view of actual computation as

X = χA−1 + εB + O(ε2)

with a k × k coefficient matrixA = A(ε) and ann × k matrix B representing the
“weak–dominant” coupling terms (II) from (11). In view of the underlying perturba-
tion theory, we may determine a non-singular coefficient matrixA = (aij ) by means
of the least squares fit∥∥∥∥∥∥χAi −

k∑
j=1

ajiXj

∥∥∥∥∥∥
π

= min! for all i = 1, . . . , k (14)

in the weighted norm‖ · ‖π introduced in Section 2.
Next, with the notationK = diag(λ1, . . . , λk) = K(ε) for the Perron cluster of

eigenvalues, the coupling matrix can be written as

W = (χTD2χ)−1(χTD2Pχ) = A−1KA + εD.

Again, the termA−1KA describes the “dominant–dominant” interaction, whereas
the matrixD represents the “weak–dominant” interaction given by
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D = XTD2BK − KBTD2X + O(ε).

Recall that, in the case of anuncoupledMarkov chain, we hadB = 0 andK = Idk,
implying D = 0 andW = A−1KA = Idk. For the nearly uncoupled Markov chains
under consideration here, we may expectA−1KA ≈ Idk and therefore interpret the
k × k matrix

err(A1, . . . , Ak) = εD = W − A−1KA (15)

aserror indicator. Recall from the perturbation analysis in Section 3.1 that this in-
dicator measures the coupling of the weak modes to the dominant modes, i.e., it
measures that part of the coupling whichcannotbe described in terms of the eigen-
space of the Perron cluster. If an entry of err(A1, . . . , Ak) is large, this may be caused
by one of the following reasons:
1. The valueε∗ might be “not small enough” to permit the linear perturbation anal-

ysis.
2. The regularity conditions might be violated.
3. Our identification algorithm might have supplied “wrong” almost invariant aggre-

gates—a phenomenon which may occur, if the perturbations had crucially spoiled
the sign structure. Of course, there is an overlap with the first reason above.

4. Identification algorithm

In this section, we present details of implementation of our algorithm for the iden-
tification of almost invariant aggregates. Recall thekey algorithmic ideato be worked
out: identify almost invariant aggregates componentwise via the sign structure of the
eigenvectors corresponding to the Perron cluster of eigenvalues.

First, we have to determine thenumber k of almost invariant aggregates. This is
done by computing a cluster of eigenvalues nearλ = 1, the Perron cluster, which
should be well separated from the remaining part of the spectrum by a gap (Theorem
3.1). Iterative eigenvalue solvers with simultaneous subspace iteration (see e.g. [12]
or [6, Section 4]) would be the natural way to perform this task. In our present version
of the algorithm, however, we simply apply a direct eigenvalue solver to calculate
all eigenvalues and split off a Perron cluster by examination. Second, once thek − 1
right Perron eigenvectors (apart from the already known eigenvectore) have been
computed, we want to decompose the state space intok almost invariant aggregates.
As worked out in Section 2.2 foruncoupledMarkov chain, this can be done by
exploiting the eigenvectors in terms of their “piecewise constant level” structure or
their sign structure. However, forNUMCs, both perturbations of the eigenvectors and
permutations may cover these structures to an unknown extent. This makes the con-
struction of an efficient identification algorithm a quite subtle task. In what follows,
we will describe the three main steps of our suggested algorithm.

Step1. Select states with stable sign structure. We start from the heuristics that
the sign of an eigenvector component is the “more likely” to remain stable under
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perturbation, the “larger” this component is. This means that we are particularly
interested in all those statess ∈ {1, . . . , n}, for which at least one of the eigenvec-
tors Xi has a “significantly large” componentXi(s). In order to make the posi-
tive and negative parts of the different eigenvectors comparable in size, we scale
them as follows: fori = 1, . . . , k, we splitXi = X+

i + X−
i componentwise, where

X+
i (s) = max(0,Xi(s)) andX−

i (s) = min(0,Xi(s)), and setX̃i = X+
i /‖X+

i ‖∞ +
X−

i /‖X−
i ‖∞. This procedure leaves the eigenvector forλ = 1 unchanged:X̃1 =

X1 = e. By means of a heuristic threshold value 0� δ < 1, which is common for
all eigenvectors, we then select those states that exhibit a “stable” sign structure
according to:

(S1) DetermineS = {s ∈ {1, . . . , n} : maxi=1,...,k |X̃i(s)| > δ}.
Step2. Define sign structure classes.Based on the sign structures of the states

in S, we proceed to definek equivalence classes with respect to sign structures.
Upon assigning each of the states inS to one of thesek sign structure classes, a
surjective mapa : S → {1, . . . , k} is defined. More details of this assignment pro-
cess are skipped here, but will be described later. Formally, the second step of the
identification algorithm then reads:

(S2) Determinek equivalence classes of sign structures and the associated mapa
such thatS decomposes intok disjoint subsetsS1, . . . ,Sk, each of which
represents the “core” of the almost invariant aggregates.

Step3. Identify piecewise constant level pattern.We are finally left to assign each
of the remaining statess ∈ {1, . . . , n}\S to one of thek sign structure classes. Of
course, we aim at a complete decomposition of the state space intok aggregates.
Rather than using the sign structures of these states, which might be heavily per-
turbed, we exploit the fact that thek eigenvectorsXi are approximate linear combi-
nations of thek characteristic functions of the aggregates. Since subsetsSj of each
aggregate are already available, we modify theleast-squares fit(14) such that it is
only based on the states inS. For this purpose, we denote byXj |S the eigenvectors
reduced componentwise to the subsetS of indices. This leads to:
(S3) Evaluate coefficientsaji such that∥∥∥∥∥∥χSi −

k∑
j=1

ajiXj |S
∥∥∥∥∥∥

π

= min! for i = 1, . . . , k.

Once the coefficientsaji have been determined over the index setS, we extend
theχSi toχi = ∑k

j=1 ajiXj over the full index set 1, . . . , n. From this we determine
the aggregates via

Aj = {s ∈ {1, . . . , n} : χj (s) > χi(s) for all i 6= j }.
In case of ambiguity in the above componentwise selection, a state is assigned to an
arbitrary aggregate with maximalχj (this case has never been observed in any of the
numerical experiments performed so far).
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Assignment procedures in Step 2.As already indicated, the underlying idea is that
only “significantly large” entries in the scaled vectorsX̃i are permitted to contribute
to a sign structure. To this end, we define a sign structureσ(s, θ) for states with
respect to some heuristicthreshold valueθ with 0 < θ < 1 by virtue of

σ(s, θ) = (σ1, . . . , σk) with σi =
{

sign(X̃i(s)) if |X̃i(s)| > θ,

0 otherwise.

Obviously, the threshold value is understood to separate components with a clear
sign information from those that might have been perturbed to such an extent that
the sign information has been lost. ByR(S, θ) = {σ(s, θ) | s ∈ S}, we denote the
set of all sign structures with respect toθ . Two sign structuresσ1 andσ2 are said
to beequivalent, written asσ1 ∼ σ2, iff their pointwise multiplication yields only
non-negative entries. This implies that any entry 0—determined via the threshold—
may be interpreted arbitrarily either as +1 or−1. Our goal is now to find the smallest
thresholdθ̃ , for which we can find an unambiguous assignment into exactlyk classes,
i.e.,σ i ∼ σj if aθ̃ (σ

i) = aθ̃ (σ
j ) for a surjective mapaθ̃ : S → {1, . . . , k}.

To find a mapaθ for a givenθ , we define a partial ordering≺ on (R(S, θ),≺) by
σ i ≺ σj iff σ i ∼ σj and(σ

j
l = 0 ⇒ σ i

l = 0) for l = 1, . . . , k. LetSmax be the set
of all maximalelements given by(R(S, θ),≺). Obviously, if we find a mapaθ on
R(Smax, θ), we can extend it toR(S, θ), because eachσ ∈ (R(S, θ)\R(Smax, θ))

can be assigned to the same class as the one of its maximal elements. Hence, by
restricting any search to maximal elements only, we expect to drastically reduce the
algorithmic complexity.

At this stage, we may directly transform our problem into agraph coloringprob-
lem, a standard problem in graph theory—see [13]. LetG(Smax, E) be the graph,
where each maximal element is represented by a vertex and(σ i , σ j ) ∈ E ⇔ σ i 6∼
σ j , i.e., maximal elements which are not equivalent are connected by edges. The
idea behind this definition ofG is that ak-coloring decomposesSmax into k classes,
so that the elements of each class are mutually equivalent. In our algorithm, we
implemented a sequential coloring heuristics with recursive smallest last ordering as
described in detail, e.g., in [13]. In this way, we exploit the fact that the chromatic
numberχG monotonically decreases fromχG = l with l > k for θ = 0 toχG = 1 for
θ = 1.

We thus arrive at the following procedure to computek classesσ ∗
1 , . . . , σ ∗

k of sign
structures:

setθ− = 0 andθ+ = 1 to perform a bisection
setmas the number of bisection steps
for j = 1 tom do

setθ̃ = (θ− + θ+)/2

determineR(S, θ̃ ), R(Smax, θ̃ ) andG(Smax, E)

compute a coloring ofG

setχ̃G the number of colors, which should be equal or close toχG
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if χ̃G > k then

θ+ = θ̃

else

θ− = θ̃

end if

end for
if χ̃G = k for θ = θ+ then

determine thek color setsS̃1, . . . , S̃k

setσ ∗
i = sign

(∑
σ∈S̃i

σ
)

else

go back to (S1) and choose another value forδ

(this case is rare and never occurred in our examples).

end if

Having terminated withk sign structuresσ ∗
1 , . . . , σ ∗

k , we still have to compute
the associated decomposition ofS yielding the core setsS1, . . . ,Sk. This is done
as follows: We start withSi = ∅ for all i = 1, . . . , k. Then, successively for all
statessj fromS: Setθ = 0, and increaseθ until there is anr ∈ {1, . . . , k} such that
σ(sj , θ) ∼ σ ∗

r . If r is unique, assignsj to Sr , i.e., setSr = Sr ∪ {sj }, otherwise
we donot assign the statesj to any of theSi . If any of theSi remain empty, then
the whole procedure has failed and must be restarted with smallerδ in step (S1).

Remark. We managed to transform our problem into the NP-completeproblem
of graph coloring. Hence,heuristicsare anyway justified to play a crucial role in
its computational solution. Under the additional constraint of a perturbed piecewise
constant level pattern in the eigenvectors, however, the space of permitted color-
ings of the corresponding graphG(Smax, θ̃ ) is restricted—making our problem less
complex than a general unconstrained graph coloring problem.

5. Numerical experiments

We now want to illustrate the performance of our suggested identification algo-
rithm by two examples, one rather simple artificial example and one example from
molecular dynamics out of the problem class that has motivated this investigation.

5.1. Illustrative artificial example

This simple model problem is mainly presented to illustrate the perturbation the-
ory as given in Theorem 3.1. We construct a reversible primitive stochastic matrixP
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with k = 3 blocks as follows: we first generate a symmetric block diagonal matrixD
with three blocks and a strictly positive symmetric perturbation matrixE, both with
equidistributed random entries. For 0< µ < 1, we define the symmetric matrix

Psym = (1 − µ)D + µE. (16)

By normalizingPsym = ((psym)ij ) such that
∑n

i,j=1(psym)ij = 1, we obtain are-
versible row stochasticmatrix P = (pij ) = ((psym)ij /πi) wherein the stationary
distribution π = (πi) is defined via

πi =
n∑

j=1

(psym)ij .

If at least one of the diagonal entriespii is different from zero (which is easy to
check), thenP is alsoprimitive—see e.g. [4]. Fig. 2 shows an associated eigenvector
basis{X1,X2,X3} of such a matrix that has been constructed as described with
µ = 0.3.

Computation of eigenbasis.The Perron cluster of eigenvalues came out as(λ1, λ2,

λ3) = (1, 0.75, 0.52). The associated eigenvectorsX1,X2,X3 are given in Fig. 2.
Compared with the related uncoupled case presented in Fig. 1, the sign structure is
still visible in the perturbed eigenspace basis, though an erratic sign structure occurs
close to the zero unperturbed level ofX3. As can be seen, there is no difficulty to
identify the three almost invariant aggregates “by eye”.

Almost invariant aggregates.Next, the coefficient matrixA = (aji) of dimension
k × k has been computed on the basis of the least-squares fit (14). Fig. 3 compares
the linear combination of the eigenvectors

∑
j ajiXj with the constant level char-

acteristic functionsχAi that are the object of interest. Despite the relatively wide
spreading of the Perron cluster, the approximation of theχAi is indeed intriguing.

Coupling matrix.In the next step, we compute the coupling matrixWaccording to
Definition 2.4 for the given decomposition into the three almost invariant aggregates
A1, A2, A3. Here we obtain the diagonally dominant matrix

Fig. 2. Eigenspace basisX1, X2, X3 corresponding to Perron clusterλ = 1, 0.75, 0.52 of the transition
matrix associated withk = 3 nearly uncoupled Markov chains. Observe the nearly constant level pattern
on each of the aggregatesA1, A2 andA3—to be compared with Fig. 1 for the uncoupled case.
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Fig. 3. Illustration of approximate characteristic functions for almost invariant aggregates of the arti-
ficial example from Fig. 2. Each of the figures shows one of the characteristic functionsχAi

and its
approximation

∑
j ajiXj (notation see text).

W =

0.7271 0.1943 0.0786

0.2039 0.7138 0.0823
0.0829 0.0827 0.8343


 .

According to (12) this yields the perturbation parameterε∗ = 0.2862.
Error indicator. Recall the definition of the error indicator as given in (15). With

the Perron clusterK, the coefficient matrixA, and the coupling matrixW already
computed, we are able to evaluate this matrix as

err =

0.0198 0.0222 −0.0421

0.0235 0.0202 −0.0437
0.0223 0.0212 −0.4340


 .

The information in terms of the two matricesW and err substantiates the following
observations: (a) the influence of the weak modes on the coupling of the aggregates
may be neglected in this example, and (b) the probabilities to stay within the aggre-
gates is not really close to one, which seems to be a consequence of the spreading of
the Perron cluster.

5.2. Metastable conformations of n-pentane

Our identification algorithm has already been successfully applied to (moderate
size) biomolecules (see [2,14]). For the purpose of illustration, we select the quite
small well understoodn-pentane molecule CH3–(CH2)3–CH3—see Fig. 4(a). The

Fig. 4. (a) United atom model ofn-pentane with the two dihedral anglesω = (ω1, ω2). (b) Dihedral
angle potential due to Ryckaert and Bellemans [15]. Central minimum: main angular orientation (trans),
left and right minimum:−gaucheand+gaucheorientations.
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Fig. 5. Stationary distributionπ in dihedral angle plane(ω1, ω2).

most flexible part of the molecule is characterized by the so-called dihedral angles
ω1, ω2—see Fig. 4(b), for the two potentials with three minima each. Within chem-
istry, the orientations (transor gauche) of these dihedral angles are known to give
rise to different “conformations” of the molecule.

By means of ahybrid Monte Carlo method(compare [2]) a primitive and revers-
ible stochastic 400× 400 matrixP has been generated. The left eigenvectorπ is
given as a spatial projection of the well-known Boltzmann distribution—see Fig. 5.

Perron cluster.The first 10 eigenvalues ofP, ordered with respect to absolute
value, are:

k 1 2 3 4 5 6 7 8 9 10
λk 1 0.986 0.984 0.982 0.975 0.941 0.938 0.599 0.590 −0.562

The first nine ones are seen to be positive. From the 10th one onwards negative
eigenvalues appear. Obviously, the largest gaps arise betweenλ5 andλ6, and, even
more significantly, betweenλ7 andλ8. Therefore we present the results of the iden-
tification algorithm both fork = 5 and fork = 7.

Corresponding eigenbasis.The right eigenvectors corresponding toλ1 = 1 (a)
andλ2 = 0.986 (b) are illustrated in Fig. 6. Of course, forλ1 = 1, we obtaine =
(1, . . . , 1)T, which in grid representation is just a flat plateau (ignoring zeroes for
cut-off states). Forλ2, the right eigenvector contains more information. Just as in

Fig. 6. (a) Right eigenvector for eigenvalueλ1 = 1 in an(ω1, ω2)-plane. Zero entries are cut-off states
(probability for the dynamical system to be within these states neglected). (b) Right eigenvector for ei-
genvalueλ2 = 0.9859. Observe nearly constant levels.
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our model example (see Fig. 2), we can distinguish between different plateau levels,
which seem to indicate different almost invariant aggregates. Fig. 7 represents the
first seven eigenvectors split into their positive and negative parts (as described in
Section 4). Theright eigenvectors show the expected almost constant level structure,
which allows the state space to be decomposed using the algorithm explained in
Section 4. In contrast to this, theleft eigenvectors have distinct maxima only at the
center of each constant level.

Almost invariant aggregates(k = 5). Our identification algorithm ended up with
the almost invariant aggregatesA1, . . . , A5 as illustrated in Fig. 8. Thetransition
probabilitiesw(Ai,Aj ) between these aggregates are arranged in the followingcou-
pling matrix:

W =




0.9783 0.0006 0.0162 0.0038 0.0011
0.0006 0.9774 0.0145 0.0007 0.0070
0.0044 0.0042 0.9823 0.0042 0.0049
0.0040 0.0008 0.0162 0.9786 0.0004
0.0010 0.0066 0.0162 0.0004 0.9759


 ,

Fig. 7. k = 7: Left (a) andright eigenvectors (b). Grey scaling with respect to maximum norm. First row
right: cf. Fig. 6(a). Second row right: compare Fig. 6(b).
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Fig. 8. Almost invariant aggregates fork = 5. The valuesp denote the probabilities to stay within these
aggregates during the discrete time stepτ = 160 fs.

where the ordering of the aggregates corresponds to Fig. 8. Recall that the diagonal
entries inW show the high probabilities for the molecular system to stay within
Ai , once it is inAi . According to (12) this coupling matrix yields the perturbation
parameterε∗ = 0.0241.

The correspondingerror indicator is

err=




−0.0071 −0.0006 0.0071 0.0015 −0.0007
−0.0010 −0.0098 0.0065 −0.0005 0.0046
−0.0007 0.0001 −0.0016 0.0011 0.0011

0.0008 −0.0009 0.0081 −0.0071 −0.0003
−0.0016 0.0037 0.0066 −0.0003 −0.0091


 .

The fact that all its entries are small indicates that the identification process is
reliable.

Almost invariant aggregates(k = 7). The seven aggregates shown in Fig. 9 were
identified. Observe that the eigenvectors corresponding toλ6 andλ7 (see Fig. 7) con-
tain the additional information about the separation of the so-called +gauche/+gauche-
and the−gauche/−gauche-conformation (see caption of Fig. 4 for terminology).
Therefore, we obtain a more detailed partitioning of the state space, even though the
probabilities to stay within the additional conformations are lower. If we again use
(12), we now obtain the perturbation parameterε∗ = 0.0823, slightly larger than for
k = 5; such an increase is expected, since splitting almost invariant aggregates into
parts can shift the minimum in formula (12) only to this side.

Fig. 9. Almost invariant aggregates fork = 7. Observe the splitting of aggregates compared with Fig. 8.
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Summarizing, the example clearly demonstrates that the algorithm can produce
satisfactory results, even if almost invariant aggregates exhibit substructures corre-
sponding to smaller eigenvalues in the Perron cluster. Both results, fork = 5 and for
k = 7, are in good agreement with chemically observed conformations. What is most
important, however: our new identification algorithm has automatically detected the
known chemical conformations without explicit a priori use of chemical insight.
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