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Given a large and complex network, we would like to find the best
partition of this network into a small number of clusters. This ques-
tion has been addressed in many different ways. Here we propose a
strategy along the lines of optimal prediction for the Markov chains
associated with the dynamics on these networks. We develop the
necessary ingredients for such an optimal partition strategy, and
we compare our strategy with the previous ones. We show that
when the Markov chain is lumpable, we recover the partition with
respect to which the chain is lumpable. We also discuss the case
of well-clustered networks. Finally, we illustrate our strategy on
several examples.
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I n recent years we have seen an explosive growth of interest and
activity on the structure and dynamics of complex networks (see

refs. 1–3 for a review of these activities). This growth is partly
due to the influx of new ideas, particularly ideas from statistical
mechanics, to the subject and partly due to the emergence of inter-
esting and challenging new examples of complex networks, such as
the internet and wireless communication networks. Network mod-
els have also become popular tools in social science, economics,
the design of transportation and communication systems, banking
systems, powergrid, etc, due to our increased capability of analyz-
ing these models. On a related but different front, recent advances
in computer vision and data mining have also relied heavily on the
idea of viewing a data set or an image as a graph or a network, in
order to extract information about the important features of the
images or more generally, the data sets (4–6).

Since these networks are typically very complex, it is of great
interest to see whether they can be reduced to much simpler sys-
tems. Such issues have been addressed before. In particular, much
effort has gone into partitioning the network into a small number
of clusters (see, e.g. refs. 4–25 for a recent comparative review). A
popular approach is to associate the network with some Markov
chains. Information on the topology and dynamics of the network
can then be extracted by analyzing this Markov chain, and this can
be used to partition the network (4, 5, 9–12, 16, 19, 24). Particu-
larly relevant to our work is the approach of Lafon and Lee (24) in
which the stochastic matrix of the Markov chain is used to intro-
duce a metric on the network, the diffusion distance, which can
then be used to partition the network into important components
(see Comparison with Other Partitioning Strategies for details).

In this paper, we will address such questions using the frame-
work of optimal prediction introduced by Chorin and coworkers
(26–28). In particular, we will look for the optimal partition of a
large network. For that purpose, we will define distance between
networks instead of distance on networks. Our strategy is differ-
ent from existing approaches to graph partitioning developed in
the computer science literature, such as the MNCut algorithm of
Meila and Shi (5) and the algorithm of Lafon and Lee (24). It is
also different from the approaches developed by physicists for net-
work analysis (see ref. 25 for a recent review). These differences
will be elucidated Comparison with Other Partitioning Strategies.

In what follows we develop optimal prediction theory in the
context of networks and show how this framework can be used to

optimally reduce the dimensionality of the network. In particular,
we show how optimal prediction can be used for partitioning the
networks into communities and we will compare our strategy with
other dimension reduction techniques currently used in network
partitioning. We also show that our approach becomes asymptoti-
cally equivalent to approaches based on spectral partitioning in the
simple case when the network is well clustered, in the sense that
the Markov chain presents a spectral gap with a few nearly piece-
wise constant eigenvectors with eigenvalues close to one. Finally,
we propose an algorithm to partition networks according to our
strategy and illustrate it with several examples.

Networks and Markov Chains
Let G(S, E) be a network (or a finite weighted directed graph) with
n nodes, where E = {e(x, y)}x,y∈S is the weight matrix and e(x, y)
is the weight for the edge connecting the nodes x and y. A simple
example of the weight matrix is given by the adjacency matrix:
e(x, y) = 0 or 1, depending on whether x and y are connected.

Assuming that e(x, y) ≥ 0 for any x, y ∈ S, one can relate this
network to a discrete-time Markov chain with stochastic matrix P
with entries p(x, y) given by

p(x, y) = e(x, y)
d(x)

, d(x) =
∑
z∈S

e(x, z), [1]

where d(x) is the degree of the node x (29, 30). If the network is
not directed, i.e., if e(x, y) = e(y, x), and if we define

µ(x) = d(x)∑
z∈S d(z)

[2]

then µ satisfies the detailed balance condition

µ(x)p(x, y) = µ(y)p(y, x). [3]

and ∑
x∈S

µ(x)p(x, y) = µ(y); [4]

i.e., µ(x) is a stationary distribution of this Markov chain. For sim-
plicity, throughout this paper we will assume that the network is
undirected, although most of our results can be easily generalized
to directed networks.

A basic idea is to infer properties of the network from those
of the random walkers moving on it, and this is the idea that
we will exploit. We will use the following elementary facts about
Markov chains. Assume that the initial distribution of the walkers
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on S is µ0(x). At a later time t ∈ N, their probability distribution
is µt(x) = ∑

y∈S µ0(y)pt(y, x), where pt(x, y) denote the entries of
the matrix Pt. To compute Pt, it is convenient to use the spec-
tral representation. Let {ϕk}n−1

k=0 and {ψk}n−1
k=0 be the right and left

eigenvectors of P, respectively:

Pϕk = λkϕk, ψT
k P = λkψ

T
k , k = 0, 1, . . . , n − 1. [5]

In the reversible case, all eigenvalues and eigenvectors are real
and lie in the interval [−1, 1]. We will order them such that
1 = λ0 ≥ |λ1| ≥ · · · ≥ |λn−1|. Note that ψ0 = µ and ϕ0 is a
constant vector. We also have ψk(y) = ϕk(y)µ(y). The spectral
decomposition of Pt is given by

pt(x, y) =
n−1∑
k=0

λt
kϕk(x)ϕk(y)µ(y). [6]

Optimal Prediction
The main question we will address is the following: Given N , which
is much smaller than n, how do we find a Markov chain on a net-
work with N nodes that best represent the dynamics of the original
Markov chain? We will address this question from the viewpoint
of optimal prediction introduced by Chorin and coworkers (26–
28). This is a framework for carrying out model reduction from a
variational viewpoint. The idea is to find a reduced model that best
approximates the original model in the sense that some objective
function is minimized. We will develop a framework for optimally
partitioning a complex network along these lines. The space of
models will be the space of Markov chains on the network S,
represented by their associated stochastic matrices. The reduced
models will be the lumped Markov chains on partitions of S with
N elements. Such Markov chains are naturally embedded into the
space of Markov chains on S itself.

Let us introduce a notion of metric on the space of Markov
chains (stochastic matrices) on S with stationary distribution µ. If
p1(x, y) [not necessarily equal to p(x, y)] is a stochastic matrix with
stationary distribution µ, we define its norm as

‖p1‖2
µ =

∑
x,y∈S

µ(x)
µ( y)

| p1(x, y)|2. [7]

It is easy to see [see supporting information (SI) Text)] that if p1
satisfies detailed balance this norm is in fact the sum of the ampli-
tude square of the eigenvalues of p1. The norm (Eq. 7) allows one
to define the distance between two stochastic matrices, p1 and p2,
both with invariant distribution µ, as

ρµ(p1, p2) = ‖p1 − p2‖µ. [8]

Taking p1 = p (the stochastic matrix of the original Markov chain)
and p2 to be a stochastic matrix in a certain class, we can then find
the stochastic matrix in this class, which best approximates the
original one by minimizing the distance (8).

Next take a partition of S as S = ∪N
i=1Si with Si ∩ Sj = ∅

if i �= j. Let p̂(Si, Sj) be a stochastic matrix on the state space
S = {S1, . . . , SN }. This matrix can be naturally lifted to the space
of stochastic matrices on the original state space S via

p̃(x, y) =
N∑

i, j=1

1Si (x)p̂(Si, Sj)µj(y), [9]

where 1Si (x) = 1 if x ∈ Si and 1Si (x) = 0 otherwise, and

µi(x) = µ(x)1Si (x)
µ̂(Si)

, µ̂(Si) =
∑
x∈Si

µ(x). [10]

Eq. 9 says that the probability of jump from any state in Si is the
same, and the walker enters Sj according to the equilibrium distri-
bution. This idea is consistent with trying to coarsen the original
dynamics onto the new state-space S = {S1, . . . , SN } and ignore
the details of the dynamics within the sets Si. Note that p̃ is a sto-
chastic matrix on S with stationary distribution µ if p̂ is a stochastic
matrix on S with equilibrium distribution µ̂ (see SI Text).

We now ask: Given the partition S and given some t ≥ 1, what
is the p̃ that best approximates pt? If optimality is understood in
terms of the metric (Eq. 7), the best p̃ is the minimizer of

E(p̃) = ‖p̃ − pt‖2
µ [11]

over all p̃ of the form (Eq. 9). A direct calculation (see SI Text)
shows that the minimizer of E(p̃) is one in which p̂ is given by

p̂∗(Si, Sj) =
∑
x∈Si
y∈Sj

µi(x)pt(x, y)

=
n−1∑
k=0

λt
kϕ̃k(Si)ϕ̃k(Sj)µ̂(Sj), [12]

where Eq. 6 was used and where

ϕ̃k(Si) =
∑

x∈Si
µ(x)ϕk(x)∑

x∈Si
µ(x)

. [13]

We also have E(p̃∗) ≡ E∗ with

E∗ =
∑
x,y∈S

µ(x)
µ(y)

| pt(x, y)|2 −
N∑

i,j=1

µ̂(Si)
µ̂(Sj)

| p̂∗(Si, Sj)|2

≡ ‖pt‖2
µ − ‖p̂∗‖2

µ̂. [14]

It can be checked (see SI Text) that p̂∗ and, hence,

p̃∗(x, y) =
N∑

i,j=1

1Si (x)p̂∗(Si, Sj)µj(y). [15]

are both stochastic matrices and that µ̂(Si) is an equilibrium dis-
tribution for the Markov chain on S with transition matrix p̂∗. It
can also be checked that p̂∗ satisfies a detailed balance condition
with respect to µ̂. The matrix p̃∗ is the stochastic matrix in the class
(Eq. 9) that best approximates the original one.

Notice that the rank of the matrix p̃ in Eq. 9 is at most N . Thus,
the residual E∗ ≥ 0 obtained by using Eq. 12 in Eq. 9 cannot be
less than what is obtained by minimizing Eq. 11 over all rank-N
matrices p̃(x, y). A direct calculation shows that the minimizer of
Eq. 11 over all such matrices is

p̃∗∗(x, y) =
N−1∑
k=0

λt
kϕk(x)ϕk(y)µ(y). [16]

Note that, in general, Eq. 16 is not a stochastic matrix because
some of the entries p̃∗∗(x, y) can be negative. Nevertheless, E∗∗ =
‖pt − p̃∗∗‖2

µ gives a lower bound for the residual E∗.

Lumpability
A chain with stochastic matrix p(x, y) is lumpable with respect to
the partition S = {S1, . . . , SN } iff the law of a walker (in the original
chain) on these sets is itself Markov. We have the following.

Theorem 1. Assume that p̂∗ defined by Eq. 12 is nonsingular. Then
E∗ ≥ E∗∗, and E∗ = E∗∗ iff the Markov chain is lumpable with
respect to the partition S. In this case, we also have p̃∗∗(x, y) =
p̃∗(x, y).
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This theorem is an easy consequence of a result by Meila and
Shi (5) who proved that the Markov chain with stochastic matrix
p is lumpable on the sets {S1, S2, . . . , SN } iff either of the following
two conditions is satisfied:

1. For each Si,
∑

y∈Sj
p(x, y) is independent of x ∈ Si and the

matrix p̂∗(Si, Sj) = ∑
y∈Sj

p(x, y) with x ∈ Si is nonsingular.
2. The first N eigenvectors ϕk(x), k = 0, . . . , N −1, are piece-

wise constant with respect to the partition {S1, S2, . . . , SN }.
In this case, it is easy to see that ϕk(x) for k = 0, . . . , N − 1 must
be of the form

ϕk(x) =
N∑

j=1

ck, j1Sj (x), [17]

where c0, j = 1 and, for k = 1, . . . , N −1, the coefficients ck,j satisfy

N∑
j=1

ck, jµ̂(Sj) = 0,
N∑

j=1

ck, jcl, jµ̂(Sj) = δk,l . [18]

The orthogonality condition of the eigenvectors implies that, for
k = N , . . . , n − 1 and any j = 1, . . . , N , we have∑

x∈Sj

ϕk(x)µ(x) = 0. [19]

Consequently, we have

ϕ̃k(Sj) = ck, j, k = 0, . . . , N − 1
ϕ̃k(Sj) = 0, k = N , . . . , n − 1,

[20]

which, from Eqs. 12 and 15, implies that

p̃∗(x, y) =
N∑

i, j=1

1Si (x)
N−1∑
k=0

λt
kck,ick,j1Sj ( y)µ( y)

≡ p̃∗∗(x, y). [21]

In the general case, the Markov chain will not be lumpable
with respect to the partition {S1, S2, . . . , SN } and Eq. 16 will not
be a stochastic matrix and, hence, not an acceptable approxi-
mation. However, Eq. 15 remains the optimal approximation of
the stochastic matrix of the original Markov chain, and E∗ − E∗∗
gives a measure of the quality of this approximation in terms of
lumpability. Later, we will see that the condition of Theorem 1 are
approximately satisfied for well clustered networks.

Optimal Partitioning
The next question we address is: Given N , what is the best par-
tition {S1, . . . , SN }? To answer this question, we view Eq. 14 as a
function of {S1, . . . , SN }, E∗ ≡ E(S1, . . . , SN ) and compute

min
{S1, ... , SN }

E(S1, . . . , SN )

= − max
{S1, ... , SN }

N∑
i, j=1

µ̂(Si)
µ̂(Sj)

| p̂∗(Si, Sj)|2. [22]

As a direct generalization of Theorem 1, we have the following.

Theorem 2. Denote by {S∗
1, . . . , S∗

N } the partition that minimizes
Eq. 22 and let E∗∗ = ‖pt − p̃∗∗‖2

µ where p̃∗∗(x, y) is given by Eq. 16.
Then E(S∗

1, . . . , S∗
N ) ≥ E∗∗ and E(S∗

1, . . . , S∗
N ) = E∗∗ iff the Markov

chain is lumpable with respect to the partition S
∗ = {S∗

1, . . . , S∗
N }.

In other words, if the Markov chain is lumpable with respect to
a partition with N sets, then the minimization problem in Eq. 22
will identify these sets. Below, we propose a variant of a k-means

algorithm to solve this minimization problem. But before doing so,
let us compare our criterion with other criteria introduced before
for partitioning networks.

Comparison with Other Partitioning Strategies. In ref. 24, a unified
framework for partitioning networks is proposed. The basic idea is
to introduce the following diffusion distance between nodes on the
network (this should be contrasted with Eq. 8, which is a distance
between networks):

D2
t (x, y) =

∑
z∈S

(pt(x, z) − pt( y, z))2

µ(z)

=
n−1∑
k=0

λ2t
k (ϕk(x) − ϕk( y))2.

[23]

Based on this diffusion distance, Lafon and Lee (24) suggest to
partition the network by minimizing the following distortion:

min
{S1, ... ,SN }

N∑
i=1

∑
x∈Si

µ(x)
n−1∑
k=0

λ2t
k (ϕk(x) − ϕ̃k(Si))2, [24]

where ϕ̃k(Si) is defined in Eq. 13. This object, or more precisely
the vector (

λt
1ϕ̃1(Si), . . . , λt

n−1ϕ̃n−1(Si)
)
, [25]

is called the geometric centroid in ref. 24. By expanding
Eq. 24 and using Eqs. 6 and 12, it is easy to see that Eq. 24 can be
reexpressed as

min
{S1, ... ,SN }

(∑
x∈S

pt(x, x) −
N∑

i=1

p̂∗(Si, Si)

)
[26]

or, equivalently,

max
{S1, ... ,SN }

N∑
i=1

p̂∗(Si, Si)

= max
{S1, ... ,SN }

N∑
i=1

∑
x∈Si , y∈Si

µ(x)pt(x, y)∑
x∈Si

µ(x)
. [27]

This criterion is also the one used in the MNcut algorithm pro-
posed in ref. 5 and the one of almost (or most) invariant sets
introduced in ref. 31 and further developed and used in refs. 32
and 33.

To see the difference between Eqs. 27 and 22, we note that
in the case when the Markov chain is lumpable with respect
to {S1, . . . , SN }, the minimizer of Eq. 27 might be a partition
{S′

1, . . . , S′
N }, which is different from {S1, . . . , SN }, unlike the

minimizer of Eq. 22.
Here is a simple example which illustrates this point. Suppose

that S = {1, . . . 2n} and assume that p(x, y) = 1
2 if x = 2, . . . , 2n−1

and y = x ± 1, p(1, 2) = 1 = p(2n, 2n − 1) = 1, and p(x, y) = 0
in all other cases (i.e., each node is connected to its two direct
neighbors on the line). This chain is lumpable onto a two-state
chain with S1 = {1, 3, . . . , 2n − 1} and S2 = {2, 4, . . . , 2n} with

p̂∗(S1, S1) = p̂∗(S2, S2) = 0,
p̂∗(S1, S2) = p̂∗(S2, S1) = 1, [28]

and indeed the residual E(S1, S2) = E∗∗ with this choice, consis-
tent with Theorem 2. On the other hand, Eq. 27 leads to the optimal
partition S′

1 = {1, 2, . . . , n} and S′
2 = {n+1, n+2, . . . , 2n}, and the

Markov chain is not lumpable with respect to this partition. Thus
partition algorithms based on Eqs. 22 and 27 are indeed different.
We suspect that Eq. 27 might be more useful in the context of data
segmentation (i.e., if the dynamics on the network is irrelevant),
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and Eq. 22 is more preferable if one is interested in dynamical
properties of the network.

Finally, it is interesting to note that although Eqs. 22 and 27 are
different, they become equivalent for well clustered networks, as
shown below.

The Case of Well Clustered Networks. By definition, we call a net-
work well clustered if the associated Markov chain has a spectral
gap, i.e., if the eigenvalue of P defined in Eq. 5 satisfy

λk = 1 − ηkδ for k = 0, . . . , N − 1
|λk| < λ� for k = N . . . , n − 1, [29]

where 0 < δ � 1, and ηk > 0 and λ� ∈ (0, 1) are O(1) in δ.
One can show that, in this case, there exists a partition of S in
N sets, {S1, . . . , SN }, such that the first N eigenvectors of p are
approximately piecewise constant over these sets

ϕk(x) =
m∑

i=1

ck,i1Si (x) + o(1), k = 0, . . . , N − 1, [30]

where c0,i = 1 and the coefficients ck,i satisfy Eq. 18 for k =
1, . . . , N − 1. This shows that the Markov chain is approximately
lumpable over the sets {S1, . . . , SN } and, by Theorem 2, the resid-
ual over these sets, E(S1, . . . , SN ), tends to E∗∗ as δ → 0. In fact,
in this case, we have that

‖p̃∗ − pt(δ)‖2
µ → 0 as δ → 0, [31]

where t(δ) = 1/δ and p̃∗(x, y) is given by Eq. 15. This is
Khasminskii’s averaging theorem (34) in the discrete-time setting.

A similar calculation shows that {S1, . . . , SN } is also the opti-
mal partition according to Eq. 24 with t(δ) = 1/δ in pt(x, y). Thus,
for well clustered networks, Eqs. 22 and 24 are asymptotically
equivalent.

Algorithmic Aspects
In practice, it is important that the minimization problem in
Eq. 22 be tractable. In ref. 24, it is shown that minimization prob-
lem Eq. 24 can be solved using the k-means algorithm (35). Here
we show that a variant of this algorithm can also be used to handle
Eq. 22. Given an initial partition {S(0)

i }N
i=1, for n ≥ 0 use

S(n+1)
i = {

x : i = argmin
j

Ē(x, S(n)
j )

}
, [32]

where

Ē(x, Sj) =
N∑

k=1

∑
y∈Sk

µ(x)µ( y)
∣∣∣∣pt(x, y)

µ( y)
− p̂∗(Sj, Sk)

µ̂(Sk)

∣∣∣∣
2

. [33]

This algorithm has the advantage that it converges very fast even
though, like all k-means algorithms, it may not converge to the
global minimum. In fact, the situation is slightly worse than usual
here because Ē(x, Sj) depends implicitly on the previous partition
due to the presence of Sk in Eq. 33. As a result, the objective
function E(S1, . . . , SN ) is not guaranteed to decrease at every iter-
ation. This problem can be solved by terminating the iteration
if the objective function increases or remains constant, then repeat
the calculation with several initial partitions, {S(0)

i }N
i=1 and keep the

best result (as is usually done with k-means algorithms). This is
the procedure we used on the examples Results.

Results
Zachary’s Karate Club Network. As a first test, we used the well
known example of the karate club network (36). This network was
constructed by Wayne Zachary after he observed social interac-
tions between members of a karate club at an American university.
Soon after, a dispute arose between the club’s administrator and

Fig. 1. The two clusters identified by our approach in Zachary’s karate club
network (36). The administrator and the instructor are represented by nodes
1 and 33, respectively. As initial condition for our k-means algorithm, we
took random partitions. We obtained S1 = {1 : 8, 10 : 14, 17, 18, 20, 22}
and S2 = {9, 15, 16, 19, 21, 23 : 34}, which is very similar to Zachary’s actual
observation: Only one node, node 11, is misclassified.

main teacher and the club split into two smaller clubs. We used
Zachary’s original network in our procedure. As an initial condi-
tion for the k-means algorithm, we took random partitions. The
partition that we obtained is shown in Fig. 1 and corresponds to
S1 = {1 : 8, 10 : 14, 17, 18, 20, 22} and S2 = {9, 15, 16, 19, 21, 23 :
34}. This is very similar to the actual structure of the smaller clubs
observed by Zachary after the split: S1 = {1 : 8, 11 : 14, 17, 18,
20, 22} and S2 = {9, 10, 15, 16, 19, 21, 23 : 34}. Only one node,
node 10, is misclassified.

Ad Hoc Networks. As second test, we used the example of the ad
hoc networks which were originally proposed in ref. 16 and were
used to compare the performances of various partitioning strate-
gies in ref. 25. These networks have a known community structure
and are constructed as follows. They have n = 128 nodes, split into
4 communities containing 32 nodes each. Pairs of nodes belonging
to the same communities are linked with probability pin, and pairs
belonging to different communities with probability pout. These
values are chosen so that the average node degree, k, is fixed at
k = 16. In other words, pin and pout are related as

31pin + 96pout = 16. [34]

Typically, we define zout as the average number of links a node has
to nodes belonging to any other communities, i.e. zout = 96pout,
and we use this quantity as a control parameter. The larger the
zout, the more diffuse the communities become.

We first used our strategy to partition the network by assuming
that the number of communities is known, N = 4. We consid-
ered several values of zout between 0 and 8 and calculated the
fraction f of correctly identified nodes by our procedure (to com-
pute this fraction f , we used the criterion proposed in ref. 16 and
used in ref. 25 for a comparative study). To make our results less
dependent on the specific network chosen, for each value of zout,
we took 100 realizations of the network and computed the mean
and standard deviation of f over these 100 realizations. To apply
our k-means algorithm, in each case, we took 100, 300, 500, and
finally 1,000 random initial partitions and kept the best result
(i.e., the one with the smallest residual E∗). The final result for
the mean of f is shown in Fig. 2. It shows that our procedure
performs very well at identifying the right communities all the
way up to zout = 7.5 (where zout/k = 0.4688 and f = 0.93 with
500 trials) and only deteriorates for zout = 8 (where zout/k = 0.5

7910 www.pnas.org / cgi / doi / 10.1073 / pnas.0707563105 E et al.
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Fig. 2. The mean fraction of correctly identified nodes versus the propor-
tion of links towards the other communities. The four curves show the results
of our k-means algorithm with 100, 300, 500, and 1,000 random initial parti-
tions. As can be seen, the results improve as the number of initial conditions
is increased, but the results eventually saturate (the curve with 500 trials can
barely be distinguished below the one with 1,000 trials). The results show
that our algorithm is among the very best of those compared in ref. 25.

and f = 0.7367 with 500 trials). Even in this case, however, our
method remains very competitive compared with the techniques
listed in ref. 25, being outperformed only by two of these tech-
niques at the last data point, zout/k = 0.5. Next, we discuss in more
details the performance of our technique in terms of accuracy and
efficiency.

Accuracy. The results shown in Fig. 2 indicate that our tech-
nique identifies a fraction f of >90% of the modes correctly up to
zout = 7.5. Our method does deteriorate, however, when zout = 8,
and it is interesting to investigate what happens then. The first
issue that we need to address is whether our k-means algorithm
does identify the minimum E∗ of the objective function (Eq. 22)
because this depends on the number of random initial partitions
used. The result in Fig. 2 indicates that this is indeed the case, at
least if the number of initial partitions is >500. The result shown
in Fig. 3 also corroborates this finding by displaying the residual
E∗ of the k-means algorithm obtained for 100 independent real-
izations of the ad hoc network with zout = 8 using 100, 300, 500,
and finally 1,000 random initial partitions. Fig. 3 also explains the
difficulty inherent in partitioning networks with a diffuse commu-
nity structure such as the ad hoc networks when zout = 8. Indeed,
it can be seen that the residual E∗ calculated from the known com-
munity structure is typically larger than the residual identified by
our k-means algorithm. Thus, at least in terms of lumpability, the
community structure has often become so diffusive when zout = 8
that another set of communities is actually better, and this is why
the fraction f of correctly identified nodes becomes smaller in that
case.

Efficiency. Our procedure is very competitive with respect to
those compared in ref. 25 in terms of accuracy, but how does it do
in terms of efficiency? It can be shown (see SI Text) that the cost
of every iteration in our k-means algorithm (i.e., the cost of eval-
uating Eqs. 32 and 33) is O(N(n + m)), where N is the number of
communities, n is the number of nodes in the network, and m is
the numbers of edges. This number thus provides a lower bound
on the cost of our k-means algorithm. To estimate the algorithm’s
actual cost, we still need to estimate how many random initial par-
titions must be used to identify the actual minimum and how many

Fig. 3. The residual E∗ of the k-means algorithm obtained for 100 indepen-
dent realizations of the ad hoc network with zout = 8 using 100, 300, 500,
and finally 1,000 random initial partitions. Also shown is the residual E∗ cal-
culated with the known partition of the network. As can be seen, the actual
residual E∗ identified by our k-means algorithm is often smaller than the one
computed with the known community. This result reflects the very diffuse
nature of the community structure in the ad hoc network when zout = 8. The
vertical lines on the graph act as a visual aid to identify the various points
associated with the different realizations.

iterations the algorithm takes before reaching a local minimum.
These numbers are much harder to compute analytically. In tests
with ad hoc networks of increasing sizes, we observed that these
numbers seem to depend only weakly on the size of the network:
Typically, 500 random initial partitions are enough, and for each
the algorithm converges in a few tenths of an iteration, even for
large networks (i.e., with n between 128 and 1,280). Should these
results be generic, this would make our method one of the least
expensive among the techniques compared in ref. 25. This point,
however, requires further study.

Determining the number N of communities. So far, we have
assumed that the number of communities, N , was given. In many
applications, however, this number is unknown beforehand and
needs to be determined by the partitioning technique itself. One
way to do so with our method is to apply it with several val-
ues of N and compare the results. For instance, setting zout = 6
and applying our method with N = 2, 3, . . . , 8 communities, we
observed the following. When N = 2, our technique identified
one community with 32 nodes which was one of the correct com-
munities, and one with 96 nodes, which was the union of the
remaining three correct communities. When N = 3, our tech-
nique correctly identified two communities with 32 nodes and
lumped together the other two. When N = 4, we got the cor-
rect classification. When N = 5, we got the correct classification,
except that one of the communities of 32 nodes was split into two.
Similarly, when N = 6, N = 7, and N = 8, two, three, and four
of the correct communities, respectively, with 32 nodes were split
into two.

How can we a priori identify which value of N was the actual
one from these results? The most natural method is to look at the
relative residual, E∗ − E∗∗, in each case. In the example of the
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ad hoc network with zout = 6, we observed that E∗ −E∗∗ increases
slightly from N = 2 to N = 4, then faster when N > 4. This result
seems to corroborate that N = 4 is the optimal choice (because
using more communities worsen the result more significantly), but
this point too deserves further study.

Discussion
In summary, we have proposed an approach to partition com-
plex networks based on the framework of optimal prediction.
The approach is tailored to situations for which the dynamics
on the network matters and it gives the coarse network which
respects best the dynamics on the original network. As we have
shown, however, our approach can also be used in the context

of network partitioning. In this context, it may be an attractive
alternative to existing techniques both in terms of accuracy and
computational cost.
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