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Abstract: We study a large class of reversible Markov chains with discrete state spac
and transition matriPy . We define the notion of a setwitastable pointsas a subset of

the state spacey such that (i) this set is reached from any pairg "y without return

to x with probability at leasb,, while (i) for any two points, y in the metastable set,
the probability7; yl to reachy from x without return tax is smaller tham < by.
Under some additional non-degeneracy assumption, we show that in such a situation

(i) To each metastable point corresponds a metastable state, whose mean exit time
be computed precisely.

(i) To each metastable point corresponds one simple eigenvalue-oPxt which is
essentially equal to the inverse mean exit time from this state. Moreover, these resu
imply very sharp uniform control of the deviation of the probability distribution of
metastable exit times from the exponential distribution.

1. Introduction

In a recent paper [BEGK] we have presented rather sharp estimates on metastable tr
sition times, both on the level of their mean values, their Laplace transforms, and the
distribution, for a class of reversible Markov chains that may best be characterized ¢
random walks in multi-well potentials, and that arise naturally in the context of Glaube
dynamics for certain mean field models. These results allow for a very precise contr
of the behaviour of such processes over very long times.

In the present paper we continue our investigation of metastability in Markov chain:
focusing however on the connection betweagtastability and spectral theory while
working in a more general abstract context. Relating metastability to spectral chara
teristics of the Markov generator or transition matrix is in fact a rather old topic. First
mathematical results go back at least as far as Wentzell [W1,W2,W3] and Freidlin an
Wentzell [FW]. Freidlin and Wentzell relate the eigenvalues of the transition matrix of
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Markov processes with exponentially small transition probabilities to exit times from
“cycles”; Wentzell has a similar result for the spectral gap in the case of certain diffusion
processes. All these relations are on the level of logarithmic equivalence, i.e. of the form
limeoeIn(A{TS) = 0, wheree is the small parameter, and, 7 are the eigenvalues,
resp. exittimes. For more recent results of this type, see [M,Sc]. Rather recently, Gaveau
and Schulman [GS] (see also [BK] for an interesting discussion) have developed a more
general program to give a spectdafinition of metastability in a rather general setting
of Markov chains with discrete state space. In their approach low lying eigenvalues are
related to metastable time scales and the corresponding eigenfunctions are related to
metastable states. This interesting approach, which was initiated earlier by the work of
Davies [D1,D2,D3] still suffers, however, from rather imprecise relations between eigen-
values and time-scales, and eigenfunctions and states. Moreover this approach always
relies on a priori assumptions on the spectrum.

In this paper we will put these notions on a mathematically clean and precise basis
for a wide class of Markov chaing; with countable state spafgy !, indexed by some
large parameteN . Our starting point will be the definition ofraetastable set of points
each of which is supposed to be a representative ofhmtastable state, on a chosen
time scale. It is important that our approach allows one to consider the case where the
cardinality of My depends orV. The key idea behind our definition will be that it
ensures that the time it takes to visit the representative point once the process enters a
“metastable state” is very short compared to the lifetime of the metastable state. Thus,
observing the visits of the process at the metastable set suffices largely to trace the
history of the process. We will then show that (under certain conditions ensuring the
simplicity of the low-lying spectrum) the expected times of transitions from each such
metastable point to “more stable” ones (this notion will be defined precisely later) are
precisely equal to the inverse of one eigenvalue (ife.= ){1(1 + 0(1))) and that
the corresponding eigenfunction is essentially the indicator function oétthactor
of the corresponding metastable point. This relation between times and eigenvalues
can be considered as the analogue of a quantum mechanical “uncertainty principle”.
Moreover, we will give precise formulas expressing these metastable transition times in
terms of escape probabilities and the invariant measure. Finally, we will derive uniform
convergence results for the probability distribution of these times to the exponential
distribution. Let us note that one main clue to the precise uncertainty principle is that
we considertransition times between metastable points, rather thexit times from
domains. In the existing literature, the problem of transitions between states involving
the passage through some “saddle point” (or “bottle neck”) is almost persistently avoided
(for reasons that we have pointed out in the introduction of [BEGK]), except in one-
dimensional situations where special methods can be used (as mentioned e.g. in the very
recent paper [GM]). But the passage through the saddle point has a significant impact
on the transition time which in general can be neglected only on the level of logarithmic
equivalencé. Our results here, together with those in [BEGK], appear to be the first that
systematically control these effects.

Letus now introduce our setting. We consider a discretetand specify our Markov
chains by their transition matriRy whose elementgy (x, y), x, y € 'y denote the
one-step transition probabilities of the chain. In this paper we focus on the case where

1 We expect that this approach can be extended with suitable modifications to processes with continuous
state space. Work on this problem is in progress.

2 E.g. the lack of precision in the relatidfy, = O(1/(1 — (1 — A)")) in [GS] is partly due to this fact.
3 Thereis no difficulty in applying our results to continuous time chains by using suitable embeddings.
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the chain isreversible* with respect to some probability meas@g on I'y. We will
always be interested in the case where the cardinalifiyo finite but tends to infinity
asN 1 oo. Intuitively, metastability corresponds to a situation where the state $pace
can be decomposed into a number of disjoint components each containing a state st
that the time to reach one of these states from anywhere is much smaller than the tir
it takes to travel between any two of these states. We will now make this notion precis
Recall from [BEGK] the notation; for the first instance the chain startingxirat time

0 reaches the sétc I'y,

tfzinf{t>O:X,eI|Xo:x}. (1.0

Definition 1.1. Aset My C I'y will be called a set of metastable points if, for finite

positive constants ay, by such that, for some sequence ey | O, ag,l < gyby it holds
that

(i) Forallz e Ty,

P[tig, = 75] 2 by (12)

(i) Forany x # y € My,

P [r;‘ < r;‘] < a&l. (1.3)

Remark. Note that for a given Markov chain one can often fidifferent setsM y that
are sets of metastable points correspondingifterent “scales”ay, by .
We associate with eache My its local valley

Alx) = {z ely:P [rj = r/thN] = yes/';I/leP [ryz = ‘L'JZV[N]} . (1.4)

We will set

Qn (x)

R, =
Qn (A(x))

(1.5)

and

max R, <1,
xeMy

min R, > 0.
xeMy

N
1.6
ot (1.6)

Note that the setd (x) are not necessarily disjoint. We will however show later that
the set of points that belong to more than one local valley has very small mass und
Qp - The above conditions do not i1 uniquely. It will be reasonable to choogd y
always such that for ak € My,

Qn(x) = sup Qn(2). (1.7)

z€A(x)

4 The case of irreversible Markov chains will be studied in a forthcoming publication [EK].
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The quantitie® [r;‘ < rjj], I c My furnish crucial characteristics of the chain. We
will therefore introduce some special notation for them:far My andx € My\1,
set

Tor= (Plrf <o) " (1.8)
and
Tr= sup Ty;g. (2.9)
xeMpy\I

Note that these quantities depend®neven though this is suppressed in the notation.

For simplicity we will consider in this paper only chains that satisfy an additional
assumption ofion-degeneracy:

Definition 1.2. We say that the family of Markov chainsisgenericon the level of the set
My, if there exists a sequence §y | 0, such that

(i) Forall pairsx,y € My, and any set I C My\{x, y} either T, ; < 65T, OF
Ty <OnTy .
(i) Thereexistsmy € My, st.for all x € My\m1, Qn(x) < SyQun(m1).

We can now state our main results. We do this in a slightly simplified form; more
precise statements, containing explicit estimates of the error terms, will be formulated
in the later sections.

Theorem 1.3.Consider a discrete time Markov chain with state space I'y, transition
matrix Py, and metastable set M (as defined in Definition 1.1). Assume that the
chain is generic on the level M in the sense of Definition 1.2. Assume further that
rven|TalIMpyl 1 0,and ryendéy | 0,asN 1 oo. For every x € My set My (x) =
{y e My : Qn(y) > Qun(x)}, define the metastable exit timg, = ch\/iN(x)' Then

(i) Foranyx e My,
Ety = R py o (1 + 0(D). (1.10)

(i) Foranyx € My, there exists an eigenvalue A, of 1 — Py that satisfies

1
E¢,

Moreover, there exists a constant ¢ > 0 such that for all N,

Ay = — (14 0(1)). (1.11)

o (1 — Py)\ Uremty Ax C (chy|Tn| 71, 2] (1.12)

(here o (1 — Py) denotesthe spectrumof 1 — Py).
(i) 1f ¢, denotesthe right-eigenvector of Py corresponding to the eigenvalue A, nor-
malized so that ¢ (x) = 1, then

Pl < r/yVlN(x)](l—i—o(l)), if Pl < r/yMN(x)] > 8N

:(0) = O@6N), otherwise

(1.13)
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(iv) For anyx € My, for all r > 0,
Plt, > tEt,] = e Ao (1 4 o(1)). (1.14)

Remark. We will see thafP[t; < T/yvt,v(x)] is extremely close to one for afl € A(x),
with the possible exception of some points for whighy (y) <« Qu (x). Therefore,

the corresponding (normalized) left eigenvectprgy) = % are to very
zely JPx )

good approximation equal to the invariant measure conditioned on the vafley

As the invariant measur®, conditioned onA(x) can be reasonably identified with

a metastable state, this establishes in a precise way the relation between eigenvect
and metastable distributions. Brought to a point, our theorem then says that the le
eigenfunctions of - Py are the metastable states, the corresponding eigenvalues th
mean lifetime of these states which can be computed in terms of exit probabilities vi
(1.10), and that the lifetime of a metastable state is exponentially distributed.

Remark. Theorem 1.3 actually holds under slightly weaker hypothesis than those state
in Definition 1.2. Namely, as will become clear in the proof given in Sect. 5, the non-
degeneracy of the quantiti@s ; is needed only for certain seis On the other hand,

if these weaker conditions fail, the theorem will no longer be true in this simple form.
Namely, in a situation where certain subsgts- My are such that foralt € S;, Ty s

(for certain relevant sets, see Sect. 5) differ only by constant factors, the eigenvalues
and eigenfunctions corresponding to this set will have to be computed specially throuc
a finite dimensional, non-trivial diagonalisation problem. While this can in principle be
done on the basis of the methods presented here, we prefer to stay within the conte
of the more transparent generic situation for the purposes of this paper. Even mo
interesting situations creating a genuinely new effect occur when degenerate subsets
states whose cardinality tends to infinity withare present. While these fall beyond the
scope of the present paper, the tools provided here and in [BEGK] can still be of use, :
is shown in [BBG].

Let us comment on the general motivation behind the formulation of Theorem 1.3
The theorem allows, in a very general setting, to reduce all relevant quantities governir
the metastable behaviour of a Markov chain to the computation of the key parametel
T,y andRy, x, y € My. The first point to observe is that these quantities are in many
situations rather easy to control with good precision. In fact, contr@l.aequires only
knowledge of the invariant measure. Moreover, the “escape probablllﬂ§f§,, are
related by a facto®y (x) to theNewtonian capacity of the pointy relative tox and thus
satisfy avariational principle that allows to express them in terms of certain constraint
minima of the Dirichlet form of the Markov chain in question. In [BEGK] we have
shown how this well-known fact (see e.g. [Li], Sect. 6) can be used to give very shar
estimates on these quantities for the discrete diffusion processes studied there. Sim
ideas may be used in a wide variety of situations (for another example, see [BBG]); w
remind the reader that the same variational representation is at the basis of the “elect
network” method [DS]. Let us mention that our general obsession with sharp results |
motivated mainly by applications @isordered models where the transition matriy
is itself a random variable. Fluctuation effects on the long-time behaviour provoked b
the disorder can then only be analysed if sharp estimates on the relevant quantities
available. For examples see [BEGK,BBG,BM].

In fact, in the setting of [BEGK], i.e. a random walk @%/N)? N A with reversible
measureQy (x) = exp(—N Fy(x)), whereFy is “close” to some smooth functiof
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with finite number of local minima satisfying some additional genericity requirements,
and the natural choice fo¥1 being the set of local minima dfy, the key quantities
of Theorem 1.3 were estimated as

by > cN~ 12, (1.15)

ry < cN_d/z, (1.16)

cy < CNY/2?, .
Tyy = eo(l)N—(d—2)/2eN[FN(z*(x,)’))—FN(X)], (1.17)

wherez*(x, y) is the position of the saddle point betweeandy. Moreover, under the
genericity assumption of [BEGK],

sy <e M (1.18)

for somex > 0. The reader will check that Theorem 1.3, together with the precisions
detailed in the later sections, provides very sharp estimates on the low-lying eigenvalues
of 1 — Py and considerably sharpens the estimates on the distribution function of the
metastable transition times given in [BEGK].

Let us note that Theorem 1.3 allows one to get results under much milder regularity
assumptions on the functiongy than were assumed in [BEGK]; in particular, it is
clear that one can deal with situations where an unbounded number of “shallow” local
minima is present. Most of such minima can simply be ignored in the definition of the
metastable seM y which then will take into account only sufficiently deep minima.
This is an important point in many applications, e.g. to spin glass-like models (but also
molecular dynamics, as discussed below), where the number of local minima is expected
to be very large (e.g. expN)), while the metastable behaviour is dominated by much
fewer “valleys”. For a discussion from a physics point of view, see e.g. [BK].

In [BM] we have applied the result of this paper to the setting of Markov chains with
exponentially small transition probabilities in the sense of Freidlin and Wentzell [FW].

It turns out that in this setting, capacities can be computed very precisely and as a result,
explicit expressions for metastable exit times and small eigenvalues can be computed
up to multiplicative errors tending to one exponentially fast. As a particular example we
treat there the Glauber dynamics of the Ising model in finite volume at low temperatures.

A second motivation for Theorem 1.3 is given by recent work of Schitte et al.
[S, SFHD]. There, a numerical method for the analysis of metastable conformational
states of macromolecules is proposed that relies on the numerical investigation of the
Gibbs distribution for the molecular equilibrium state via a Markovian molecular dy-
namics (on a discretized state space). The key idea of the approach is to replace the
time-consuming full simulation of the chain by a numerical computation of the low-
lying spectrum and the corresponding eigenfunctions, and to deduce from here results
on the metastable states and their life times. Our theorem allows one to rigorously jus-
tify these deductions in a quantitative way in a setting that is sufficiently general to
incorporate their situations.

The remainder of this article is organized as follows. In Sect. 2 we recall some basic
notions, and more importantly, show that the knowledg&,of for all x, y € My is
enough to estimate more general transition probabilities. As a byproduct, we will show
the existence of a natural “valley-structure” on the state space, and the existence of a
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natural (asymptotic) ultra-metric on the sety. In Sect. 3 we show how to estimate
mean transition times. The key result will be Theorem 3.5 which will imply the first
assertion of Theorem 1.3. In Sect. 4 we begin our investigation of the relation betwee
spectra and transition times. The key observation is a characterization of parts of t
spectrum of 1 — Py) in terms of the roots of some non-linear equation involving certain
Laplace transforms of transition times, as well as a representation of the correspondil
eigenvectors in terms of such Laplace transforms. This is a special and in our conte
particularly useful case of general results due to Wentzell [W2]. This together with
some analysis of the properties of these Laplace transforms and an upper bound, us
a Donsker—Varadhan [DV] argument, will give sharp two-sided estimates on the firs
eigenvalue of general Dirichlet operators in terms of mean exit times. These estimat
will furnish a crucial input for Sect. 5 where we will prove that the low-lying eigenvalues
of 1 — Py are very close to the principal eigenvalues of certain Dirichlet operators
(1 — Py)¥i, with suitably constructed exclusion sefs. This will prove the second
assertion of Theorem 1.3. In the course of the proof we will also provide rather precis
estimates on the corresponding eigenfunction. In the last section we use the spect
information obtained before to derive, using Laplace inversion formulas, very shar,
estimates on the probability distributions of transition times. These will in particular
imply the last assertion of Theorem 1.3.

2. Some Notation and Elementary Facts

In this section we collect some useful notations and a number of more or less simp
facts that we will come back to repeatedly.

The most common notion we will use are the stopping timjedefined in (1.1). To
avoid having to distinguish cases where I, it will sometimes be convenient to use
the alternative quantities

of =min{t >0: X, € I | Xo = x} (2.1)

that take the value O if € I.
Our analysis is largely based on the study of Laplace transforms of transition time:
For IcI'y we denote by Py)’ the Dirichlet operator
(PV)! = Ac Py @ AR — 2 cRYN, I¢=Ty\I. (2.2)

Since our Markov chains are reversible with respect to the me#&3nrethe matrix
(Py)! is a symmetric operator ony&¥2(T'y, Q) and thus

1Py 1] = max{|a] | & € o (Py))), (2.3)

where|| - || denotes the operator norm induced by (I"y, Q). For a pointx € 'y,
subsetd, JcT'y andu € C, R(u) < —log||(Py)'Y7||, we define

o
G} ) =E[e" T Upx x| =Y e“"Plef =1 < 7}] (2.4)
t=1
and
. G, ) for x¢IUJ,
Kj () = E[e" ]lale(,;] = 1 for xel, (2.5)
0 for x e J\I.
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The Perron—Frobenius theorem applied to the positive magiy’ implies thatGy ; (u)
andK7y ;(u) converge locally uniformly on their domain of definition, more preC|ser

- Iog||(PN)1|| =suplu € R| K}‘,,(u) exists for all x ¢ I}. (2.6)

We now collect a number of useful standard results that follow trivially from the
strong Markov property and/or reversibility, for easy reference.
From the strong Markov property one gets:

Lemma 2.1.Fix I, J, LCTy. Thenfor all %(u) < —log||(Py)"Y’ ||,

Gy, ) =Gl o @+ Y G oK) ;).  xely. (27
yeL

In the following we will adopt the (slightly awkward) notatio®y F* =
ZzeFN Py (x, z) F*. The following are useful specializations of this lemma, which we
state without proof:

Corollary 2.2. Fix I, JCT'y. Thenfor x € T'y,
e"PNKy ;) = Gy ;(u), xely (2.8)
and
(1—e"Py)du K] ;) =G} ;(w), x¢IUJ, (2.9)
where 9,, denotes differentiation w.r.t. u.
The followingrenewal equation will be used heavily:
Corollary 2.3. Let IcT'y. Thenfor all x ¢ I Uy and %i(u) < —log||(Py)"Y7]|,

G)xc TUx (u)

Gy (W) = — 0,
! 1- G; IU\(u)

(2.10)

and in particular, settingu = 0

I ]P’[t}‘uy < 1] ’

finally, from reversibility of the chain one has

Lemma 2.4.Fixx,y €e 'y and ICI'y. Then
QNG jur = QNG 1y (2.12)

The next few lemmata imply the existence of a nested valley structure and that
the knowledge of the quantiti€s. , and the invariant measure are enough to control
all transition probabilities with sufficient precision. The main result is an approximate
ultra-metric triangle inequality. Let us define (the capacity oflative toy) E(x, y) =
Qw (x)T,}. We will show that
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Lemma 2.5.Assume that y,m € Ty and JCTy\y\m such that for 0 < § < 1,
E(m,J) <3E(m,y). Then

1-25 E(m,J) 1
< <

. 2.13
1-8 — E(y,J) —1-38 (2.13)
Proof. We first prove the upper bound. We write
Qn(x)
Pl " = Pl 71. 2.14
[} <1, );QN(””) [, <171 ( )
Now
Pl < t)0,]
Pt} < o351 =Pt} <}, 75 < 3]+ Pt} < o), -, 2.15
(1, <171 [t, <717, 7y <771+ Plr, < TJUy]P[T'J"Uy = ( )
Now by assumption,
Plef < tjin] - Pl < 7] (2.16)

]P’[ITUy <ty]l TPl <yl T

Inserting (2.16) into (2.15) we arrive at

Pz, < 171 < ]P’[r; <1y, 7, <171+ 68P[t), < r}“uy] < ]P’[r; < 171+ 8P[1;, < 771

(2.17)
Inserting this inequality into (2.14) implies
Pz <" < (1— 5)—1%%} <7l (2.18)
We now turn to the lower bound. We first show that the assumption implies
Plr) < ] <8(1—8)71 (2.19)
Namely,
Plz} < ty] = Plr)! < 1) <11 =Pl1) < I PlTy < Tl (2.20)
But

]P’[T;” < Tl = IP’[T;” <t —Plt) < 5’,” < 1]

> ]P’[t;," <l —Plr} < 1,1 (2.21)
> P[] < o 1(L— ),

where the last inequality follows from the assumption. Thus
P} < /1> ]P)[‘L';l < r,Z"]IP’[t}‘ < 1 ](1—=6). (2.22)

Solving this inequality fo?[t] < 7, ], the assumption yields (2.19).
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We continue as in the proof of the upper bound and writecfarJ, using (2.19),
P[r;‘ <1y]= IP’[I;,‘ <17,T, <17] —i—]P’[r; < r}‘Um]IP’[tf < 1]

<Plry <71+ Plr} <1j18(1—8)"", (2.23)

proving

1-5

1-25

Inserting (2.24) into (2.14) fom = y and, using once more (2.14) in the resulting
estimate, we obtain

]P’[r;‘ < 137] < Plz;, < 7] (2.24)

1-6 Qvm)_ . m

Pt} <t)] < — =P < T, 2.25
R X TG0 R (2.29)
which yields the lower bound in (2.13).0
Corollary 2.6. Assumethat x, y, z € My. Then
1 .
E(x,y) > 3 min(E(x, z), E(z,y)). (2.26)

Proof. By contradiction. Assume thatE(x,y) < %min(E(x, 2), E(z, y)).
ThenE(x, y) < 3E(x, z), and so by Lemma 2.5,

1<E(x,y)<3

- ey 2.27
27 E(z,y) ~ 2 (2.27)
and in particulaiE (z, y) < 2E(x, y), in contradiction with the assumptionm
If we set
e,y = | TME@ Y, ifxEy (2.28)
0, if x=y

then Lemma 2.5 implies that furnishes an “almost” ultra-metric, i.e. it holds that
e(x,y) < maxe(x, z), e(z, y)) + In 3 which will turn out to be a useful tool later. We
mention that in the case of discrete diffusions in potentials, the quantities) are
essentiallyN times the heights of the essential saddles between poentsly.

The appearance of a natural ultra-metric structure on the set of metastable states
under our minimal assumptions is interesting in itself.

A simple corollary of Lemma 2.5 shows that the notion of elementary valkeys),
is reasonable in the sense that “few” points may belong to more than one valley.

Lemma 2.7.Assumethat x, m € My andy € I'y. Then
Pl < ;5] >e¢ and Pt < tyy] > € (2.29)
implies that
Qn () < 2 Qu(m)PL)" < 771 (2.30)

We leave the easy proof to the reader.



Metastability and Spectra 229

3. Mean Transition Times

In this section we will prove various estimates of conditioned transition titfes 7; <

7], wherel U JCMy. The control obtained is crucial for the investigation of the low
lying spectrumin Sects. 4 and 5. In the particular setting of the paper [BEGK], essentiall
the same types of estimates have been proven. Apart from re-proving these in the mc
abstract setting we consider here, we also present entirely different proofs that avoid tl
inductive structure of the proofs givenin [BEGK]. Instead, it uses heavily arepresentatio
formula for the Green’s function which is the discrete analogue of a classical relatiol
between the Green’s function, equilibrium potential, and capacity (see e.g. [So]) an
which has been used also in Sect. 3, Eq. (3.12) of [BEGKYhile the new proofs are
maybe less intuitive from a probabilistic point of view, they are considerably simpler.

Theorem 3.1.Fixanonempty, irreducible, proper subset QCTy. Let (1— Py) ¥ denote
the Dirichlet operator with zero boundary conditions at €. Then the Green’s function
defined as G (x, y) = (1 — Py)¥) M, (x), x, y € Q, isgiven by

_ Qn() Ploy < 73]
Qn(x) Pltge < 1¥]
Proof. This theorem follows essentially from the proof of Eq. (3.12) of [BEGK]. Using

e.g. the maximum principle, it follows thal — Py)** is invertible. From (2.8) we
obtain, using (2.5),

(x,y € Q). (3.2)

GS¥ (x,y)

(1= P K] e(0) = 1:(0)GG ,(0)  (x,y € Q). 3.2

This function serves as a fundamental solution and we compute foe €2, using the
symmetry of(1 — Py)<¥,

Qv ()G, (OGE (x,y) = (A1~ P))F K 0e (0), GF (. 1))y
= (K0, 1= PNFGE (,y)gy  (33)
=QNv(K; o (0).
This proves (3.1). O

Remark. Observe that (3.1) still makes sense foe Q2 andy € 92, where we define
the boundary! of a set/ CI"y to be

dal={xel|3yel : Py(y,x) > 0} (3.4)

For suchx andy reversibility (2.12) and the renewal relation (2.10) for= 0 and
I = Q¢ imply

GY (x.y) =Pt =1%] (xeQ,yed). (3.5)

Based on Theorem 3.1 we can derive an alternative representation of a particul
h-transform of the Green'’s function with(y) = IP’[r,y < rjy] that will prove useful in
the sequel.

5 More recently, the same formula was rederived by Gaveau and Moreau [GM] also for the non-reversibl
case.



230 A. Bovier, M. Eckhoff, V. Gayrard, M. Klein

Proposition 3.2.For every nontrivial partition 7/ U J = Q¢ such that I and J are not
empty and 7\ J communicates with Q we have

]P’[a;f <71yl <17l

y y
Plrge < 3]

Plr} < 317G (v, y)PIT) < 1)1 = ., x,ye. (3.6)

Proof. Obviously,G%" (x, y) is a symmetric operator iA(Qy). Therefore, by Theo-
rem 3.1,

: N G) e Ploy < 73]
G (x,y) = G (y,x) = —2—. 3.7
NN = 0w OV Pltde < 171 &9
Using that forQ2¢ = I U J by the strong Markov property
]P’[o;‘ <t1,77 <17]= }P’[a;‘ <1 <717]l= }P’[o;‘ < rj‘UJ]IP[IIy < 1;], (3.8)

(3.7) immediately implies (3.6).0

The representation (3.6) for the Green'’s function implies immediately a correspond-
ing representation for the (conditioned) expectation of entrance tithe®o see this,
recall from (2.9) foru = 0 that

(1— Py)/YE [o}’ﬂ{gly@;}] =Pt} <7}, y¢IUL (3.9)

This yields immediately
Corollary 3.3. Let I, JcTy. Thenforall x ¢ 1U J,

Eltf |t} <tj]= Z Pz} < rf]_lGl%(:(x, WPy <171
ye(lUuJ)e

- Qn () Plo? < 1), 1 Ple) <)) (3.10)
setroe Qv Plt},, < ¥ Plrf < 1]
A first consequence of the representation given above is
Corollary 3.4. Fix ICMy. Thenfor all x € T'y,
Elr} |t} < Thygl < bty (3.11)
In particular,
Elr},,] < by ITwl. (3.12)
Proof. Using (3.6) in (3.11), we get that
Bl <= Y o=l g

y y
ey My P[rMN < 15]

Using the lower bound (1.2) from Definition 1.1 we get

E[rﬂtf < tfle\l] < b;,l Z ]P’[U;‘ < tylty < rwa\,] (3.14)
yel N\ My
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from which the claimed estimate follows by bounding the conditional probability by
oné. The special case = M y follows in the same way, with the more explicit bound

Eth,, byt D Ploy <1yl (3.15)
yeln\My
This concludes the proof of the corollaryo
Theorem 3.1 allows to compute very easily the mean times of metastable transition
Theorem 3.5.Assumethat J ¢ My, x € My, and x, J satisfy the condition
Tej=T;. (3.16)
Then

;= iAW) Rl M|
BT = QP < 1] <1+0(1)< Dy +5NRch)>. (3.17)

Proof. Specializing Corollary 3.3 to the cage= I, we get the representation
1

Etr} = Plof <t 3.18
J = OB <] ; QN ()P 71 (3.18)
We will decompose the sum into three pieces corresponding to the two sets
Q1 = A(x),
3.19
Qo =Ty \A)\J. (3.19)
The sum oveg2; gives the main contribution; the trivial upper bound
Y Qv(Plof <1)1< Y Qn(y) (3.20)

yeQ] yeq

is complemented by a lower bound that uses (we ignore the triviabhcase where
Plof <171=1)

IP’[rJy < 'l:yy]

P[TX <TJ]—1 ]P)[TJ <TX]>1—m. (321)
By Lemma 2.5, ifP[t} < rf] < 3P[r{ < 7], then
3Qn(x) x
IE”[IJ <7 ] EQN( )]P’[TJ <1l (3.22)
so that
]P’[IJ < tyy] 3 |MN|
Qn(y )—]P’[ o S 2@ N(x ) (3.23)

6 Itis obvious thatin cases wh¢Ry | = oo this bound can in many cases be improved to yield a reasonable
estimate. Details will however depend upon assumptions on the global geometry.
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On the other hand, P[t} < {] > 3P[r{ < 7], then

Qn(y) =3Qn(x) (3.24)

—[§ ]3@(>'MN'
P} < 1)1

Thus

S QvoPlel <71z Y Qv - ' "
e yesn (3.25)

— QN(AM) (1 3JAM)|R, 'MN'>.
NaN

We now consider the remaining contributions. This is bounded by

5 2 Lm (3.26)
@N(xﬂpr,q v
where
Ln= Y La= Y  QuPloi <)l (3.27)
yeAm)\J yeA(m)\J

Assume first thap is such that

(CJ) QN()’)P[TJ < T}] ~ QN(m)]P)[TJ < Tm] and
(CX) Qv(P[Ty < 131~ Qn(m)P[!" < 7] hold,

where we introduced the notatian~ b < % < <3.Then

Ln(y) < 9@m>H (3.28)
J

There are two cases:

- ( )]P) "1]
(i) If EGm,J) < 3E(m, x), then by Lemma 2. % <3or

Qn(m) < @N(X) <Nz QN(X) (3.29)

Hence

Qwn ()’) 3

R.Qn(A 3.30
= avem N Qn (A(x)). (3.30)

Lm (Y) QN (y)

(i) If E(m,J) > 3E(m,x), thenE(x,J) > $E(m,x) or Qy(0)P[t} < t¥] >
%QN(m)IP’[t;” < '] so that

Ln(y) < 27QN()’)QN(X) T,y < 275\ R, Qv

Qv(m) Tey — Qn(

Finally we must consider the cases where (CJ) or (Cx) are violated.

QN( (x)). (3:31)
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(iii) Assume that (Cx) fails. Then by Lemma 2B[z)" < /] > %]P’[r;," < 711 which

implies that
m m m m M
Lun <y><@N<y)<3@N(m)¥ - 3y (m P T IMy |
]P)[ Tm ] bN
- SQN(x)IP[T:l <bfx 1IIMn| < 3bIMN|Rx@N(A(x)).
N NAN
(3.32)

(iv) Finally it remains the case where (CJ) fails but (Cx) holds. Tﬁ[arj <1 M IS
Pl < 11 > g andQu(»Pl < 1] < 3Qu(m)PT! < 7] =

3QN)PITE < 1. ThusL,, (y) satisfies equally the bound (3.32).
Using these four bounds, summing oyeone gets

R |[MyI|AGm)] x) '

3.33
bran (3:33)

L, <27Qn(A(x)) max <8NR

Putting everything together, we arrive at the assertion of the theorem.
Remark. As a trivial corollary from the proof of Theorem 3.5 one has

Corollary 3.6. Let x € My and J € My (x). Then the conclusions of Theorem 3.5
also hold.

Finally, we can easily prove a general upper bound on any conditional expectation

Theorem 3.7.Foranyx e Ty and I, J C My,

E[tflrf <tj]<C sup (RuPlT]l, < t,’;’])_l. (3.34)
meMpy\I\J

To prove this theorem the representation of the Green'’s function given in Propositio
2.2 is particularly convenient. It yields

B[l <t]= )

yel'y\I\J

H”[ay

P[tlw < ry}]

< tflty <17l

(3.35)

Note first that the terms with such thai?[rlyw < rﬁ] > §by Yyield a contribution of no
more thanTy|(8bx)~1 which is negligible. To treat the remaining terms, we use that
1vy:enevery € A(m), Lemma 2.5 implies tth[r,UJ < r\] > %’Xl((”y’))IP’[r;”w <.

us

Tl Y Oy Qn(y) Ploy < 77lty =17l

Eltfltzf <t)| < — +
[e7177 = 7] Sby Qn(m)  Pleyy, < oyl

meMn\I\J yeA(m)

r 1
< ﬂ + Z R’;lp—
meMy\I\J [Tjur < @]

(3.36)
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from which the claim of the theorem follows by our general assumptions. Note that by
very much the same arguments as used before, it is possible to prove that

}P’[a;‘ <17l <171 < A+ 8Plo;, < 17lry < 17] (3.37)

which allows to get the sharper estimate

ITn| Pl < tf|tf <1t
Elfflf <= ="+ Y. A+oR," e ! <’Tm] /2. (3.38)
meMn\I\J JUI m

We conclude this section by stating some consequences of the two preceding theorems
that will be useful later.

Lemma 3.8.Let I, m satisfy the hypothesis of Theorem 3.5. Then
mng[zf] =E[7]"1(1 + OT1um/T1)). (3.39)

Moreover, we have

E[t"

m

T < 1/']

Plei <om (L= OT1um/ 1)) (3.40)
In particular,
By, o < '] = Ry, (L+ O(Tyum/ 1) - (3.41)

Proof. Decomposing into the events whenes and is not visited beforg, and, using
the strong Markov property, one gets

Elt]] =Plr; < 1, ]E[t] |77 < 1,1+ Plt;, < rf](]E[r,flh;‘l < 17] —}—E[r}”]).
(3.42)

Using Theorems 3.5 and 3.7, this implies (3.39) readily. In the same way, or by differ-
entiating the renewal equation (2.10), one gets
Elz,y, T = 1}']

E[T}n] = ]E[T;”|T}n < T’Z/l] —+ W
1 m

(3.43)

Bounding the first summand on the right by Theorem 3.7 gives (3.40). Using Theorem
3.5 for the right-hand side of (3.40) gives (3.41)1

4. Laplace Transforms and Spectra

In this section we present a characterization of the spectrum of the Dirichlet operator
(1 — Py)!, IcMy, in terms of Laplace transforms of transition times (defined in
(2.4) and (2.5)). This connection forms the basis of the investigation of the low-lying
spectrum that is presented in Sect. 5. To exploit this characterization we study the region
of analyticity and boundedness of Laplace transforms. As a first consequence we then
show that the principal eigenvalue for Dirichlet operators are with high precision equal
to the inverse of expected transition times. A combination of these results then leads to
the characterization of the low-lying spectrum given in the next section.
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The following lemma is a particularly useful application of Schwartz’s alternating
procedure to the investigation of eigenvalue equations, as developed in the context
Markov processes by Wentzell [W2]. For any M y we denote the principal eigenvalue
of the Dirichlet-operatoP;, by

A;=mino((1— Py)’). (4.1)

For I, JC My we define the matrix

Gr.s(0) = (S = Gy @) (4.2)

wheres, , is Kronecker's symbol. We then have

Lemma 4.1.Fixsubsets I, JC My suchthat J\I # @andanumber0 < A=1—e*
suchthat1 — | < |1 — A;uy|. Then

reo(d-Py)) <«  detG; ;) =0. (4.3)

Moreover, the map kerG; j(u) > ¢ +— ¢ € 1;cR'~ defined by
¢—>dpx)= > ¢uky @), xeTly (4.4)
meJ\1

is an isomor phism onto the eigenspace corresponding to the eigenvalue A.

Proof. Although this result can be deduced from the more general approach of [W2], ir
the present context we can give an extremely simple elementary proof. () hetan
eigenfunction with corresponding eigenvabue: ;. We have to prove thal; ; («)

is singular. Define

px)= Y ¢mKy ),  xeTly. (4.5)

meJ\I

By (2.6), the conditiori.;; > A implies thate is finite. Furthermore, (2.8) and (2.5)
imply, forx € Ty,

e"(L— Py — (L— e ™)p(x) = (1 —e“Py)p(x)

> e Y 60m) (b — G yy ).

m'elUJ meJ\1
(4.6)

Let A = ¢ — ¢. We want to showA = 0. Now it is obvious from the definition ok
thatA vanishes o U J and thatp vanishes ori. Combining (4.6) with the eigenvalue
equation forp and the choice of, we obtain

Q= P! A =Tgupe@ = P A = Tqupe (A= P0)'é = L= Py)@)

=1qus(rdp — (L—e™)¢) = AA.
4.7)
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Sincea ¢ o ((1— Py)'Y7), we concluder = 0. Thereforep is an eigenfunction with
eigenvalue. and the right-hand side of (4.6) must vanish, i.e. , forale J\I,

> ¢m) (am/,m - Ggf,w(u)) -0,  xel (4.8)

meJ

Therefore the vectap (m), m € J\I isin kerG; ;(u), and so de@; ;(u) = 0.

(ii) We now prove the converse implication. Again sinde— | < |1 — A;uy]
the entries of the matrig; s (u) are finite. Since d&j; ;(u) = 0, there exist vectors
om € kerGy j(u). Constructingp(x) in (4.5) with¢ (m) = ¢,,, the right-hand side of
(4.6) vanishes, proving thatis an eigenfunction with eigenvalugu). This concludes
the proof of the lemma. O

As a first step we now derive a lower bound on these eigenvalues, using a Donsker—
Varadhan [DV] like argument that we will later prove to be sharp.

Lemma 4.2.For every nonempty subset J C M y we have

Ay maxE[zry] > 1. (4.9)
x¢J
Proof. For¢ € RI'V we have for allx, y € 'y andC > 0,

1
P(NP(x) < §<¢>(x>zc +¢(0)?/0). (4.10)

Thus choosingC = ¥ (y)/¥(x), wherey € RV is such thaty(x) > 0 for all
X € suppgy, we compute, using reversibility,

1
(Pné. bl = 5 Y Q@) PN (x, @AW 0/ P () + ¢ 0N2W () /Y (1))

x,yel'n
P P
= 3 Qv NV =<¢>< N"’),¢> .
= e v ) %o,

(4.11)

Let ¢ be an eigenfunction for the principal eigenvalue and/s@t) = E[o7], x € I'y.
Invoking (2.9) foru = 0 andl = J we get

219118, = (@/¥. d)ay- (4.12)
which in turn gives the assertiono

We now study the behavior of Laplace transforms slightly away from their first pole
on the real axis.

Lemma 4.3.Fix nonempty subsets /, JCMy. Let G} ; be the Laplace transform de-
fined in (2.4). It follows that for some ¢ > 0 and for k = 0, 1 uniformly in 0 <
R(u), [S@)| < c/(enTruy) andx € Ty,

G ;) = L+ O(ulenTius)) 95 G} 4 (0). (4.13)
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Proof. By (2.6), we knowtha6] ,(u),x € I'y, arefinite for alk such that e~ <
Arug. Put

Kuw= K}, ) = K}, (v). (4.14)
Equations (2.8) and (2.9) imply that fér= 0, 1,
A P (0,0 Kuo= L — e K, ) + 8 1Ko, (4.15)

We first consider the case whdre= 0. Using (3.6), we get from (4.15) forall¢ 1U J,

Gt (u) Plo* < t¥|tf < 151 G ,(u)
1t A-e Y 17 L (4.16)
G]’J(O) VEIUJ Plriur < 5] G[’J(O)
Setting
0, G7 ;)
My i (u) = max ——11 (4.17)

x¢lUJ G),“J(O)

. kG% (O i .
and, using that oLsO) _ E[t} |ty < t}1, we obtain from (4.16) that for & e =@ <

Gy ,0
AJUJT
1-1-e"Myou)Mn1(0) < My o) <14 |1—e "My ou)My 1(0).
(4.18)
But by Theorem 3.7 we have a uniform bound My 1(0), and this implies (4.13) for
x &€I1UJ.

Fork =1 (4.15) gives
WGy ;) 9,G7 ;(0)
6,0 ~ Gj,0

Z Ploy < tj |t} 5 5] <1_eu)a“G,;J(”) G?’J(u) _1>
Pltjus < 73] G'}J(O) G;,(O) ’
(4.19)
and the same arguments together with (4.13%fet 0 show, for some > 0 and all
0 < R(u), ISw)| < ccy T, that
My 1(u) < My 1(0) (1 + O(lulenTrup) + 11— e My 1(u)My 1(0).  (4.20)
In particular, we conclude that on the same set,
My 1(u) = O(My 1(0)) = O(enTiuy)- (4.21)
Inserting this estimate into (4.19) (3.10) and (4.13)/o& 0 again gives for all O<
N, |¥w)| < cenTrug,
% = 1+ O(lulenTsuk)) %

which yields (4.13) fok = 1 andx ¢ 1 U J.

The remaining part, namelye 1 U J, follows by first using (2.8), respectively (2.9),
to express the quantitieSé‘G’,‘)J in terms ofakG{J with y ¢ I U J and then applying
the result obtained before.o

ye¢luJ

x¢luUlJ, (4.22)
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We now have all tools to establish a sharp relation between mean exit times and the
principal eigenvalué.; of P). Setu; = —In(1— ;). We want to show that
G (ur) =1 (4.23)

Indeed, this follows from Lemma 4.1 with= 1 U {m}, m € My, if we can show that
Al < Ajum. Now it is obvious by monotonicity that; < A;u,. But if equality held,
then by (2.6), lim., G;, ; () = +o0; by continuity, it follows that there exists < u;

such thatG)} ; () = 1, implying by Lemma 4.1 that + e™" < 1, is an eigenvalue of

Pl(,, contradicting the fact that; is the smallest eigenvalue aS’fI(,. We must conclude
thati; < Ajum and that (4.23) holds.

Theorem 4.4.Fix a proper nonempty subset /CMy. Let m € My\I be the unique
local minimum satisfying 7y = Ty,,.;. Then

= L+ OTrum/ Tr) Elef' 14 (4.24)
In particular,
= Ry T; (L4 O@yITN| + ITx1/Gnanby))) - (4.25)
Proof. Using that forx > 0, ¢* > 1+ x, for real and positive,
G () =E [gurz: Mqlm] > P[t" < "] + uE [r,;’; ]l,;;:<,;n] . (4.26)
Using this in (4.23), we immediately obtain the upper bound

Plr)" < ]
N ]E[t Ay o ]

uy

(4.27)

Using now Lemma 3.8 to bound the right-hand side, gives the upper bound of (4.24).
The lower bound is of course already contained in Lemma 42.

The a priori control of the Laplace transforms given in Lemma 4.3 can be used to
control denominators in the renewal relation (2.10) which will be important for the
construction of the solution of the equation appearing in (4.3). We are interested in the
behavior ofG) g hearu;.

Lemma 4.5.Under the hypothesis of Theorem 4.4 there exists ¢ > 0 such that for all
0 <Nw) < c/(enTrum),

1@ = 1=E [t | (1= s + (= upO(enTion)) w28
= W+ OGN )Ry (1 = ur + (« —un?OlexTrom). '

Proof. Performing a Taylor expansioniat= u; to second order of the Laplace transform
on the left-hand side of (4.28) and recalling (4.23) we get

G ) = 1=0,Gln ) (0 = up) = (= up)*Ry 8,6t ;™). (429)
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where
1 ..
Ri(u) = / sGom (L= s)ug + su)ds. (4.30)
0 ,

Equation(4.29) then follows from Cauchy’s inequality combined with (4.13) and (4.25)
which shows, for > 0 small enough¢C < oo large enough, and all considered in the
theorem, that

G )| < Gy (c/(enTiom)) < CenTromduGoe ; (¢/(enTiom))

, . (4.31)
< C%enTiumduG,, (0),

where we used Lemma 4.3. Using Lemma 3.8, the assertion of the lemma follaws.

5. Low Lying Eigenvalues

In the present section we prove the main new result of this paper. Namely, we establi
a precise relation between the low-lying part of the spectrum of the operatéyland

the metastable exit times associated to the\dgt. Together with the results of Sect. 2,
this allows us to give sharp estimates on the entire low-lying spectrum in terms of th
transition probabilities between points.M y and the invariant measure.

As a matter of fact we will prove a somewhat more general result. Namely, instead c
computing just the low-lying spectrum of1 Py, we will do so for any of the Dirichlet
operatorg1 — Py)’, with I ¢ My (including the casé = ¢). In the sequel we will
fix IcMy with I £ My.

The strategy of our proof will be to show that to each of the paimtse My \I
corresponds exactly one eigenvak{eof (1 — Py)! and that this eigenvalue in turn is
close to the principal eigenvalue of some Dirichlet operéter Py)>,withI C ; C
My . We will now show how to construct these s&tsin such a way as to obtain an
ordered sequence of eigenvalues.

We set the first exclusion s&ly and the first effective depth to be

Yo=1 and T1 = Ty, (5.1)

whereTk, KCMy, is defined in (1.9). IT # ¢, letm1 be the unique point itM y\ 7
such that

Tml,l = Tl~ (52)
If I =@, letm1 be the unique element 8#y such thaQy (m1) = max, e, Qn (m).
Forj =2,..., jo,jo = IMn\I|,wedefine the corresponding quantities inductively
by
Y;1=Xj 2Umj_1 and T; = Ts, 4 (5.3)

andm; € My\X;_1 is determined by the equation
Iy 30 =1j. (5.4)

In order to avoid distinction as to whether or not=jp, it will be convenient to set
Tip+1 = bg,l. Note that this construction and hence all the setsdepend onV. An



240 A. Bovier, M. Eckhoff, V. Gayrard, M. Klein

important fact is that the sequeneis decreasing. To see this, note that by construction
and the assumption of genericity

I =Tn,5 = 81:71TWH+1,2/71 z 81;1Tm1+1»21 = ‘SltllTHl' (5.5)

The basic heuristic picture behind this construction can be summarized as follows. To
eachj = 1,..., jo associate a rank one operator obtained by projecting the Dirichlet
operator(1 — Py)*i-1 onto the eigenspace corresponding to its principal eigenvalue
Ay g~ Tj‘l. Note that our construction & ; as an increasing sequence automatically
guarantees that these eigenvalues will be in increasing order. The direct sum of these rank
one operators acts approximately lide— Py)! on the eigenspace corresponding to the
exponentially small part of its spectrum. Hence the difference between both operators
can be treated as a small perturbation.

Remark. We can now explain what the minimal non-degeneracy conditions are that are
necessary for Theorem 1.3 to hold. Namely, what must be ensured is that the preceding
construction of the sequence of setangjue, and that thel’s; are by a diverging factor

ey larger than all othef x .

We are now ready to formulate the main theorem of this section.Al.eti =
1,...,|Tn\|, be the ™ eigenvalue of(1 — Py)! written in increasing order and
counted with multiplicity and pick a corresponding eigenfunctigrsuch thai(¢;); is
an orthonormal basis of;4¢2(I'y, Q). We then have

Theorem 5.1.Set jo = |[My\I|. There is ¢ > 0 such that the Dirichlet operator
(1 — Py)! hasprecisely jo simple eigenvaluesin theinterval [0, cby)|Ty|, i.e.

(L= P N0, chby|TyI™) = (A1, ..., Ajg)- (5.6)

Define 71 = oo andfor j = 2,..., jo,

T = min Tuem,/Tj = 835 (5.7)
1<k<j A
Then
3= (14 0T+ Tj/ Tj)) Az, o, (5.8)
where Lx, KC My, isdefined in (4.1).
Moreover, the eigenfunction ¢; satisfiesfor k =1,...,j -1
¢j(mi) = ¢j(m;)O (R, Tnyom;/ Tj) - (5.9)

Remark. Combining Theorem 5.1 with Theorem 4.4 and Theorem 3.5, we get immedi-
ately

Corollary 5.2. With the notation of Theorem 5.1, for j = 1,... , jo that
A= (14O + T/ TH)E[ 75 |
(5.10)

1
= 7 Rm 1+ O (I'nI(N + 1/(anbnén)))) -
j
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Note that Corollary 5.2 is a precise version of (ii) of Theorem 1.3. The estimate (5.9)
together with the representation (4.4) and the estimates of the Laplace transforms
Lemma 4.3, gives a precise control of the eigenfunctions and implies in particular (iv
of Theorem 4.3.

The strategy of the proof will be to seek, for eatk: X, for a solution of the equation
appearing in (4.3) with near the principle eigenvalue of the associated Dirichlet operator
(1 — Py)>i-1. We then show that these eigenvalues are simple and that no other sme
eigenvalues occur.

For the investigation of the structure of the equations written in (4.3) we have to tak
a closer look at the properties of the effective depths defined in (5.3). We introduce fc
allm € My\I the associated “metastable depth” with exclusioh by

Ty(m) = Ty Mym. Where My(@m)=1U{m" € My |Qn@m') > QN("E)} )
511

Let us define forj = 2, ..., jo,

(‘:j = lrgnligj Tml,zj\ml. (5.12)

The following result relates our inductive definition to these geometrically more
transparent objects and establishes some crucial properties:

Lemma 5.3.Every effective depth is a metastable depth, more precisely for all j =
1, ..., joitfollows

Tj =Tn(m;)(1+ O@N|IMNI)). (5.13)
For j =2,..., jowehave
T = &/T; = 835~ (5.14)
Moreover, for j, I =1,..., jo,l < j, wehave
Ty svm = T j\my (L+ OGN | Mn])). (5.15)

Proof. Fix ! < j. It will be convenient to decompose; = ;1 Um; U ZJJF, where

EJJF = X;\X;. We will use heavily the (almost) ultra-metwd¢., -) introduced in Sect. 2;

for the purposes of the proof we can ignore the irrelevant errors in the ultra-metri
inequalities (i.e. all equalities and inequalities relating the functioinsthe course of

the proof are understood up to error of at most In 3). Note th&t In= e(x, J) — f(x),
where f(x) = —InQu (x). In particulard; = InT; = e(m;, Xj—1) — f(m;). As a first
step we prove the following general fact that will be used several times:

Lemma 5.4.Letm besuchthate(m, m;) < e(m;, X;-1).Then f(m) > f(m;)+|Indy|.
Proof. Note that by ultra-metricity,
e(m, Xj—1) = max(e(m, my), e(m;, X;-1)) = e(my, Lj-1). (5.16)
But since for anyn,
em, 2j—1) — f(m) <d; —|Inéy| = e(m;, Bj—1) — f(m) —[Indy|,  (5.17)
which implies by (5.16)f (m;) < f(m) —|Indy|. O
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Let us now start by proving (5.14). The first inequality is trivial. We distinguish the
cases where(m;, Ej*) is larger or smaller thaa(m;, ;_1).

(ii) Lete(m;, BF) = e(my, i-1).

Since e(m;, £;\m;) = min (e(ml, Si_1), e(my, E;F)), this implies that
e(my, Xj\my) = e(my, £j-1).
Then, using (5.5) and genericity from Definition 1.2,

e(my, Xj\my) — f(my) =e(my, Xj_1) — f(my)
=d; > e(mj_1,%-1) — f(mj-1)
>emj_1X;-2) — f(m;_2)
= djfj_ > dj +1Indy|.

(5.18)

Obviously, this gives (5.14) in this case.
(ii) Let e(my, E;r) <e(my, Xi_1).

In this case there must exiat; € E}” such thatke(m;, £ ;\m;) = e(m;, my), and

hencee(my, m;) < e(m;, ¥;—1). Thus we can use Lemma 5.4 far= m,. Together
with the trivial inequalitye (my, m;) > e(my, Zr—1), it follows that

e(my, Xj\my) — f(my) = e(my, my) — f(my)
> e(mg, Tg-1) — f(mg) + f(my) — f(mg)  (5.19)
>di+|Indy| > dj +1Indy|.

This implies (5.14) in that case and concludes the proof of this inequality.

We now turn to the proof of (5.15). We want to prove that the maximumﬁygr/. g
is realized form = m;. Note first that it is clear that the maximum cannot be realized
form € X;\m; (since in that cas&,, x;\m, = 1). Thus fixm ¢ ;. We distinguish the
cases(m,m;) less or larger thaa(m, X ;j\m;).

(i) Assumee(m,m;) < e(m, X;\my).

The ultra-metric property of then implies that(m;, X ;\m;) = e(m, X ;\m;), and
hence, using the argument from aboyés:) > f(mn;) + | InSy|. Thus

e(my, Xj\my) — f(m;) = e(m, Xj\m;) — f(m) + f(m) — f(m)

5.20
> e(m, j\m;) — f(m) +[Inéyl, (5:20)

which excludes that in this cage may realize the maximum. We turn to the next
case.

(ity Assumee(m, m;) > e(m, X j\my).
We have to distinguish the two sub-cases like in the proof of (5.14).
(il.1) e(mi, £F) = e(my, 1)
Here we note simply that by (5.18),

e(mp, X;\my) = e(my, £j—1) — f(my) =d; > e(m, ¥j—1) — f(m)

5.21
> e(m, Xj\m;) — f(m), 21)

which implies thain cannot be the maximizer.
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(ii.2) e(my, 2/.*) <e(my, Ti_1).
This time we use (5.19) for some; € E;F and so

e(m, Xj\mp) — f(mp) > dp > e(m, Lx—1) — f(m)
> e(m, X;\my) — f(m),
where in the last inequality we used that by assumpton, m;) >

e(m, X ;\my). Again (5.22) rules out: as a maximizer, and since all cases
are exhausted, we must conclude that (5.15) holds.

(5.22)

It remains to show that 5.13 holds. Now the crucial observation is that by Lemma 5.4
MN(mj)ﬂ{meMN ce(mj,m) <e(mj,2j_1)} ={. (5.23)
Thus, for allm € My (m;), Tnjom = Timj.3; 4, which implies of course that

ij,/\/l(mj) Z Tm_/,z_/_l' (524)

To show that the converse inequality also holds, it is obviously enough to show that th
set

{m|ij,m = ij,Ej,l} ﬂMN(n’lj) F* @. (525)

Assume the contrary, i.e. that for all € M(m;) Tnjm > Tmj.x; 4. NOW letm ¢
I be such a point. Then alsam;, m) > e(m;, X;_1), and so by ultra-metricity
e(m,X;j_1) = maX(e(mj,m),e(mj, Ej,l)) > e(mj, Xj_1). But, since f(m) <
f(mj), it follows that

Tm,Zj,]_ > ij,zj',l (526)

in contradiction with the defining property o#;. Thus (5.25) must hold, and so
Ton; Mymj) < Tnjzjq- This concludes the proof of the lemmax

We now turn to the constructive part of the investigation of the low lying spectrum.
Having in mind the heuristic picture described before Theorem 5.1 we are searchir
for solutionsu of (4.3) for J = X; nearus; ; = —log(1 — Ay, ;). The procedure of
findingu is as follows. The casg¢ = 1 was studied in Theorem 4.4. Fp= 2, ..., jo
we consider the matric&®; = G, 5, defined in (4.2), i.e.

mi m1 mi
1-Gis —Gpis o ~Gpt s,
—_G™2
. . mi1,%
G: = ( KJ _é’,,!. > — . !
] = _ A\ _ J = .
(gj) 1 ij.zj‘ .
mj_1
mj,Ej
_ mj _ mj _ mj
Gml,E,/ Gm.f—l»E.f 1 ij)zj
(5.27)

and define

Afj =D; —K;, where D; =diagl- GZ?,Ej)likj' (5.28)
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Equipped with the structure of the effective depths written in Lemma 5.3 and the
control of Laplace transforms of transition times obtained in the previous chapter one
simply can write a Neumann series fOF]IDj(u)_le (u) foru nearus, , proving the
invertibility of KC; (u). We then compute

detgj = det(_(‘f_g[ GO) =G; detICj, (5.29)
J J
where
Gi=1- GZ-}’:’EJ_ —(g))'K e (5.30)

This follows by simply adding the column vector

/C _
( (g»)’C g

(which clearly is a linear combination of the firgt— 1 columns ofG;) to the last
column inG;, and the fact that this operation leaves the determinant unchanged. From
this representation we construct solutiansnearuy,; , of (4.3). We begin with

Lemmab5.5.Forall j =2,..., jothereareconstantsc > 0, C < oo such that for all
C' <ocoandall
CRu, &M < Nw) < cci™ Ty, I3@)] < ¢/(enTj1) (5.31)

the inverse of ; (1) exists. The ™ component of Kj (u)_lgj (u) restricted to the real
axisis strictly monotone increasing and, uniformly in u,

(K;w) g i) = OD)|Z;||ul Ry, T, 2 (l=1...,j—-1. (532

mi fmy,m
Moreover, we obtain
r=l-eteo(l-Py)) <<=  Gju) =0, (5.33)
where G ; (1) is defined in (5.30)
Remark. Let us mention that the bound &) in (5.31) is not optimal and chosen just

for the sake of convenience. The optimal bounds with respect to our control can easily
be derived but they are of no particular relevance for the following analysis.

Proof. Fix j =2,..., jo. Formally we obtain

-1 oo
K™= (1= Dan ™M) D™ = Y (D N @) D~
s=0
(5.34)
To use these formal calculations and to extract the decay estimate in (5.32) we must

estimate the summands in (5.34). To do this we use a straightforward random walk
representation for the matrix elements

. -1
(2@ N5 Djw)

> Gy, () (5.35)
Co.z, -1 .
Z l_[l GwzlZ (u )(1_G:::,):j(u)) , 1<l,k<],

w: ))l]*)Wlk = 1 a)[ 1,
|lw|=s
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wherew : m; — my denotes a sequeneg = (wo, ... , ®|u|) SUCh thatwy = my,
O] =M, 0 € L\ UJ)andw;_1 # o, forallt =1,..., |w|. Assuming that the
series in (5.34) converges, (5.35) gives the convenient representation

|| 3 1 ()
(i@ g = 30 []= G;,El (5.36)

wmp—mjt=1 w—1,%; (u)

where the sum is now over all walks of arbitrary length. We will now show that this sum
over random walks does indeed converge under our hypothesis.

By virtue of (5.15) we may apply (4.28) far = m; and/ = X;\m; and conclude
that there are > 0 andC < oo such that for allC’ < oo and allu € C satisfying
(5.31),

G, 5, —1= 1+ 0GN)R, ( —usj\m) (14 @ —us\m)OenTs;)))
= (14 Oy + 2c)uRy, L,
(5.37)

where we ysed thats;\,»,, < cy&;. In addition, shrinking possibly > 0 in (5.31),
(4.13) implies that foralk,/ =1, ..., j, k #1,

Gz, ) = (14 O(ulenTj41) Gy 5, (0) < ODP[ry < 157 (5.38)

mk 3
Using these two bounds, (5.36) yields

|l

Kjwgjwu = Y [[O®Re Pleg™ <o ™ (5.39)

wmp—>m; t=1

To bound the product of probabilities, the following lemma is useful:

Lemma 5.6.Let wg, w1, w2, ... w; € X; suchthat w; # w;41, for all i and wo # wi.
Then

k
HIP’[twt < tw’ < ]P’[r“) <2
=1

k—1
(E o\ \woUag (€D (5.40)

Proof. The proof is by induction ovek. Fork = 1 the claim is trivial. Assume that it
for k = 1. We will show that it holds fok =1 + 1. Lets = max0 <t <[ |w; = wo}.
Note that by induction hypothesis and definitionsof

I+1

on Wr— s s 1 1
[T Presr* = o2 1 < Plags <15, w PlEer, < T JE)' L (541)
t=s+1
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Now
P[t®s

<1 ]
o4l — "Ej\osy1\. \w1+1

> P[c®

O+l — 2 j\ws1..\wry1’

1Pz

o1 < TE\ogn\ o]

<T

T wl+1]

Wy
wj
=Pl = T80 1\ e

Plta,, < Ty ] (5.42)

(Z \@s+1\.. \w—1)Uwr+1

=Pt <ty
1 — "X \ws+1\.-\@,
PO PITE o\ AopUorgs < o1

]P’['L’le = TE ]

> Pty < Tz ] = o
: s\ HD[T(Xllj\ws+1\--~\wl)UwH—l < Twll]

Now the denominator on the right is,
Pt <t < P[T;)i-\wz <t <& (5.43)

U j\0s41\--\on U1
by (5.15). Thus, using the obvious bound
)
[TPres <1< € (5.44)
=1 .

and once more thabg € X;\wyy1\... \wit1, (5.42) inserted into (5.41) yields the
claim fork = I + 1 which concludes the proof.0

Using Lemma 5.6 in (5.38) and the trivial bouRd, < 1, we get

CRy, (CQ)""‘l

(Kjw) gy < Ployt <l Y

=TI
. J
00 k=1
CR,, (C|Zi|E;
= Ploy) <1 ) = (—|ﬁ/| ’ (5.45)
k=1
CRylul™t

< P[rml_ < r"”]

1-C|ZjIE)lul=t

If C|%; |€|u|~1 is say smaller than/R, the estimate (5.32) follows immediately. (5.33)
thenis a direct consequence of (4.3) and (5.29), since by (5.32) the determiiigi4 pf
cannot vanish in the domain afvalues considered.

Remark. Defining
Dy = dlag(l Gt i )i=i=jor N1 =Dr—Gramy and
(f D" = (G )1=k=jo

whereg; 4, is defined in (4.2), a slight modification of the proof above shows that for
¢ > 0 small enough and alt(«) < cb;,1 such that

(5.46)

— ; 1 -1
oy = melj\]/lt?v\l |G My @ — 1> (1/o)cy me%a:,(v Tm,/\/lN\m’ (5.47)
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-1
one can write an absolutely convergent Neumann serieé]fe% D;l(u)/\/} w)) .

Furthermore, as a consequence of a random walk expansion similar to (5.45) we obte
the bound

Grmy W7 1)) = Olay ey T, 1) (5.48)

This estimate is needed for the proof of Lemma 5.5. We are searching for solutions
nearuy, , of the equation appearing in (5.33). The cgse- 1 is already treated in
Theorem4.4.Fiy = 2, ..., jo. We want to apply Lagrange’s Theorem to this equation
(see [WW]) which tells us the following: Fix a poiate C and an analytic functiod
defined on a domain containing the painAssume that there is a contour in the domain
surroundingz such that on this contour the estim@le(¢)| < |¢ — a| holds. Then the
equation

{=a+ V() (5.49)
has a unique solution in the interior of the contour. Furthermore, the solution can b
expanded in the form
o0
C=a+ Z(n!)*lag—lxp(a)". (5.50)
n=1
We are in a position to prove

Proposition 5.7.For j = 1,..., jo thereis a smple eigenvalue ij =1—-¢" <
Ax; such that (5.8), (5.10) hold if we replace 4; by Xj. Let 43]- be a corresponding
eigenfunction. Then (5.9) holdsif we replace ¢ ; by é e

Proof. By means of Theorem 4.4 and (4.4) we may assumejthat2, ..., jo. The
equation in (5.33) can be written as

Gl x, () = 14 ®;(0) =0, (5.51)

where we have set= uE[rth’;l] and

mj

j—-1
;) =) G, 5 (K@) g;w. (5.52)
=1

Fix constants > 0, C < oo and let us denote by ; the strip of allz € C such that
cTj/E <R (&) < CTj/Tj41, I3 < CTj/(Tj+arnen). (5.53)

Putting¢s, , = uzjflE[‘c;n]'_’;l] it follows ¢z, , = 1+ O(8y) from (4.26) and (4.25)
and we may apply (4.28) far > 0 small enough and al € U; to obtain

G, 5, —1=Eltg’ 1771+ OCGN)R,} (4 — ¢yt (€ - 42_,_1)2Rj<;)) :
(5.54)
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whereR;(¢) = E[f;”;ffl]flnzjfl(u) is defined in (4.30). By (5.54) it follows that
(5.51) is equivalent to

for some function¥'; satisfying
Wj(6) = Elrg) 11+ OGNIR, () + (€ = &3, )°R;(©). (5.56)
Using (3.17) in combination with (5.4), it follows

R;(©€) = O(Tj31/Tj). (5.57)

Using (5.32) and the estimate (5.38), as well as (3.17), we see that forsome,
C <ooforall|¢ —¢x; 41 <1,

T
):.1

j-1
nm; m; _ _ -1
E[tzjj—l]E I:‘L'mjj ]l‘[,’:,ljj - m{-:| (DJ (é‘) = Z O <C12VT]2Tm[il-mj ij]:ml) S O(C12V7; )
=1
(5.58)
By means of (5.57) and (5.58) it follows foy — ¢x, ;| <1,
Vi) =0T, + Tja/ T)). (5.59)
SinceT; > &;, by (5.14) and Definition 1.2, we may apply Lagrange’s Theorem to (5.55)
giving the existence of a solutign = ﬁjE[rgjf_l] of (5.51) satisfyind; — ¢z, ;| < 1.
We rewrite (5.55) in the form
g =054+ O+ T/ T)). (5.60)

By (5.33)Xj = 1 — ¢% defines an eigenvalue. Since from the invertibilitykof(i ;)

it follows that the kernel of; (i ;) is at most one-dimensional, (4.4) implies thatis
simple. Using (4.24) and (4.25) fdr= X;_1, we derive from (5.60) that (5.10) and
(r5].8) hold, if we replace.; by Xj. Moreover, usingi; < uyx; from (4.4), we conclude
that

@j(m))1=i<j = ;(mHK; (i) g )). (5.61)
Hence from (5.32) and; = eo(l)uE];l we obtain that (5.9) is satisfied if we replace
¢jbyd;. O
Now it is very easy to finish the

Proof of 5.1. Proposition 5.7 tells us thaf < amfork=1,... , Jo- Assume now that
there isk = 2, ..., jo such thatyy < . Letk = 2,..., jo be minimal with this
property. Sincé.;_1 = A,_1 is simple, we have;_1 < A;. Lemma 5.5 in combination
with (5.30) now tells us that fof = 1, ..., jo some constants > 0, C < oo and all
Cc;,léfjfl <u< ccg,lTjjrll the functionG ; (u) is strictly monotone decreasing, i.e. has
at most one zero. Hence from (5.33) for= k — 1 andGy_1(iix—1) = 0 we deduce
thatu, > ccg,lTk_l. But since we already know that < Cc;,lTk_1 for someC, it then
follows from (5.33) forj = k that Gy (ux) = 0 implying the contradiction; = i.

Since j, is simple, (5.33) forj = jo andG j,(u,) = 0impliesi ;o1 > cby, where
¢ denotes the constant appearing in (5.31).

The remaining assertions of Theorem 5.1 then follow from Proposition %17.
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6. The Distribution Function

The content of this chapter is to show how the structure of the low lying spectrum implie:
aprecise control of the distribution function of the timés in cases where Theorem 3.5
applies, i.eICMy, I, My\I # @, andmy € My\I with T} = T,,, ;. Itis already
known that the normalized distribution function converges weakly to the exponentia
distribution (see [BEGK] for the sharpest estimates beyond weak convergence in the mc
general case). The derivation of the asymptotics of the distribution function proceec
by inverting the Laplace transforngs;'* (1), making use of the information about the
analytic structure of these functions that is contained in the spectral decomposition
the low lying spectrum of1 — Py)’ obtained in the previous section.

Let us denote by y the Laplace transform of the complementary distribution func-
tion, i.e.

Ly@) =Lyt =) Pl > 1] (Re(w) < up). (6.1)
t=0

whereu; is definedin (4.26). The Perron—Frobenius Theorem givedlim log P[r}”l >

t] = —u;. Hence the Laplace transform defined above is locally uniformly exponentially
convergent. In order to obtain the continuationgf to the whole plane we perform a
partial summation in the sum on the right-hand side of (6.1) and get

G -1
Ly@) = L~ = (6.2)
et —1
Invoking (2.8) a straightforward computation for= 1 — ¢™* shows

Gl )= (1—-Py)' =0 A PyIpEx) (g D), (6.3)
where the operator appearing on the right-hand side is defined in (2.2). Menisea
meromorphic function with poles im = — In(1 — 1), wherex € o ((1 — Py)’). Since

Ly is 2r-periodic in the imaginary direction, a short computation shows

mi 1 i —tu

Plr;* > t] = -— e "Lyw)du. (6.4)

2ri J_in

We shall now introduce a slightly stronger condition on the chain which guarantee
that the points:; — In(1 — A;) e (0, oo) corresponding to the eigenvalugg, j =
1,...,|Mpn\I]|, constructed in Theorem 5.1 are the only singularities gfin U, =

[0, «] x [—m, r]. Note that a priori there could be further singularitieq tm(u)| = 7,
associated with negative eigenvalues(8fy)’. These are related to 2-periodicity or
“almost” 2-periodicity of( Py )!. Under a weak additional assumption this problem does
not arise, and we can then obtain improved results on the distribution function.

Proposition 6.1.Assume that the conditions of Theorem 5.1 are satisfied. Assume in
addition that

(C) The conditions of Theorem 5.1 are satisfied for the same set M y by the chainswith
transition matrix (Py)2.
Then for JC My and somec > O,

o((1— Py)")cl0,2 — eb ITn . (6.5)
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Proof. We introduce the transition matriPy); with absorption in/ by

1 for y=xelJ
(Py)j(x,y) = 0 for y#£AxelJ (6.6)
Py(x,y) for xelJ€

We first observe that under the conditions on the chains with transition ni&ii»@ the
proof of 5.1 carries over to the Dirichlet operatdis— ((Py);)?)’. Note in particular
that since(((Pn) )%’ = ((Pn)”?)? the Dirichlet operator is symmetric with respect to
Qp - This allows to conclude by repeating the proof of 5.1 that for some0,

lo (L — (Pn)1??) N[0, ey = IMy\J| (6.7)

and that every eigenvalue in this set is simple. Using ag@iPy) )%’ = ((Py)”)?,
we obtain from (6.7) that there are preciseM y\J| eigenvalues of(Py)’)? above
1 — cby|Ty|~1 and that they are simple. Since 5.1 tells us that abovechy |y |1
there are as many eigenvalues(®fy)’, we conclude that below-1 + cb,j,1|1“N|*1

there are no eigenvalues@y)’. O

Deforming the contour in (6.4) gives far, < a < ujy 41,

1 a4im
Ple" > 1] = %/ L MLnGdu— ) eTtires, Ly, (68)

u;jely

where reg Ly denotes the residue d@fy atu. Here we have used that periodicity of
Ly shows that the integrals over + ix, iw] and[—ix, @ — izr] cancel. Furthermore,
by virtue of (6.5) for/ = I there are no other poles U4, thanu;, j = 1,..., jo =
[IMpy\I].

The main result of this section can now be formulated as follows:

Theorem 6.2.Let jo = [ My \1|. Assume that condition (C) holds. Then thereisc > 0
such that for some ¢ > 0,

Jo im

P[T}nl >t]=— Ze*tuj resdj ‘CN + e*tcbxll(zni)—l/ eituﬁN(u)du, (69)
j=1 —im
wheretheu; = —In(1—A;)and A; aretheeigenvaluesof (1—Py)! that are estimated

in Theorem 4.1. Moreover, the residues satisfy

resy Ly = =1+ O (RuenT2/T1)
res;; Ly = O (RuyenTj/T1) (G =2,..., jo)

while the remainder integral on the right-hand side of (6.9) is bounded by

(6.10)

im
(2ﬂi)_1/ e "Ly)du = O (og(ICn|/bn)(ITNI/bN)/(enTD)) - (6.11)
Remark. Recalling (3.17) and Theorem 4.1 it obviously one sees that Theorem 6.2 shows
that the distribution of;"* is to a remarkable precision a pure exponential. In particular,
one has the
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Corollary 6.3. Uniformlyinz € E[r, 11N,

Plr/" > tE[t]"]] = (1 + O(Ruycn T2/ T1)) e~ (HORmenT2/Tn) (6.12)
We start with the computation of the residue of the Laplace transform. at
Lemma 6.4.
res, Ly = =14+ O(Ryp,en T2/ T1). (6.13)

Proof. From (4.23) form = m1 and the renewal relation (2.10) and (6.2) follows

() u—uq 1 G o(uy)
res,, Ly = lim Clmy - m 6.14
S AN = u=uy e —1 Gt (u1) — G 1("‘) etr —1 GZi,I( uy) (6.14)
Sinceus = e®DN-1R,,,d7 %, (4.13) fork = 0, 1 gives for some& < oo,
(u1) 0
“”—1 = 1+ ORmyenT2/ T2) > ,’,,f” (6.15)
Gt () Gt (0

Hence (6.13) follows from (6.14) in combination with (5.10) and (3.4@).

In general we cannot prove lower bounds for the higher residues for the reasc
described in the remark after Theorem 4.1. However, we can show that they are ve
small:

Lemma 6.5.
res,; Ly = O (T;/Tv)) G=2...,j0. (6.16)
Proof. Forfixedj =0, ..., jo we compute using (6.2) and (6.3),
1 —u; U PNy, ¢
res, Ly = lim | (s Py ]’¢’>QN¢j(m1)

u—suj et —1(L—e ) —(1—e)  (llgjlloy)?
el (N Pyly, ¢j)oy

T =1 (16)lloy)? #i(ma)

We can assume that;(m;) = 1. We can expresg;(x) using the definition (4.4),
Lemma 4.3, and Theorem 5.1 in the form

(6.17)

j—1
$j(X) = L+ O0NKy, 5,0+ O}/ Ty m)) L+ OWNKy, 5 (0
=1
= L+ O0()Ploy, <75 1+ 0,

(6.18)

wherey = Ry, max(7 1, Tj+1/T;) Using Lemma 2.7, one sees easily that this implies
that for anye > 0,

(1$jllon)? = A+ O ™M )NQy({x € Ty | 1x —mj| <&/2}) = (1 - E)QN(A((lg]fg-)
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From (4.4) forJ = X; we conclude that

(e PNy, ¢j)q E ¢,(mk) E Qn () Py (x, MK, 5 (u))
= xel'y
yel

] (6.20)
— Z (my) Z Qv PN (y, ¥)K,,. z, W),
=1

xel'y
yel

where we have used symmetry Bf;. Applying (2.8) and (2.12) to the right-hand side
of (6.20) we get

J
(U Pyly. ¢)g Z¢/(mk) Y QNG 5 W)

yel

(6.21)
J
Z jm)Qn (m) G, (u)).
Using thatg; (m ;) = 1 we deduce from (5.9) and reversibility that
Qn mi)¢j (mi) = Qn (m NORL T/ Tonjmy)- (6.22)

Combining (6.22) with (5.38), (6.19), and once more (%93 1 gives

T2
O ( R, !
k=1 ’ Tml,ijmj,kamk,I (623)

T2
0 ij . J ,
Tml,mj ij,l

where we have used Lemma 5.6 for the sequemces(m ;, my, m) in the last equation.
It is easy to verify that

M-~

(N1 llx) 20 (m1) (U Py, ¢ ) oy =

2
7 T

Tml,mj ij,I - ij,IUmlTl

(6.24)

Inserting (6.23) and (6.24) into (6.17), using= R, Tj*1(1+(9(l/N)) andZy;, 1umy >
T; we arrive at (6.16). O

The last ingredient for the proof of Theorem 6.2 consists of estimation of the remain-
der integral in (6.9). This essentially boils down to

Lemma 6.6.Thereis § > 0 such that for all §=1R,,, Tj, < @ < Sby|Ty|~ and all
A=1—e"onthecircle|r — 1] = e~ * we have

Gy = O@ eyt ™. (6.25)
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Proof. From the strong Markov property (2.7) fdr= I andL = My\I we obtain
for M(u) < upry,

Jo
Ky ) =Kj \ )+ Y K@Ky @) (xely). (6.26)
=1

Applying (1— Py — )" to both sides of the previous equation and evaluating the resulting

equation atc = my, k =1, ..., jo we conclude as in (4.8) via (2.9) and (2.5),
Jo
0=—G7% W+ GG —Ght (W) (6.27)
=1

Thus the vector

¥y = (Grln,ll @) 1<i<jo (6.28)
solves the system of equations
Gi.My@V¥ = fr(u), (6.29)

whereG; g, (1) and f;(u) are defined in (4.2) and (5.46), respectively. In order to be
able to apply (5.48) we claim that for somgc > O, forallu = & + iv, v € [—7, 7],
and for allm € My\1,

G ay ) — 1] = car. (6.30)
We first observe that (2.2) shows for all®§ < u 4, ,

Qu(m)(G g, () — 1) = =" (L= P)YM" — 0K ), K )y
(6.31)

where we have extended the inner producEte in the canonical way such that it is
C-linear in the second argument. Hor+ | < ca for somec > 0 we simply get from
(6.31) foru’ = u using (6.5) forJ = Muy\J,

|Qn (m) Ree™ (G}, v, ) — D)

_ ‘<((1 — MYV (L e cosm)DK) 0 (), K’;?MN(M)>QN‘ 632)

> A+ e (A= v?) — 2+ /bIKS) py @llgy)?

> (c'by — a — Pa®)Qn (m) = e PaQy (m),

where we have used that* > 1—x. For|jv+ 7| > ca, |[v — 7| > ca and|v] > a, we
derive from (6.31) fou’ = u and some: > 0,

Qv (m) IM(e™ (G vy () — D) = [ sin()le (KL 1y @0)llgy)?

> Qn(m)cae™™.

(6.33)
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In the remaining case, namely wheog < o, we use (6.31) for" = u z,\,» and obtain
via (4.4) forl = My\m, J = m,

Qe (G () = D = & — Ayl K g @0 K Watym))ay -
(6.34)

From (4.13) it follows for somé > 0 uniformly inx € I'y and|v| < «,
oy (1) = L+ 80D) Ky g, Aty \m)- (6.35)

Since the minimum of the functign —AMy\m|isattained at = 1—e~%, we conclude
from (6.34) and (6.35) in combination with (4.4) fér= m1 and (6.19) for some > 0
and alljy| < «,

Qn (m)e™ (G pg, @) = DI = elh = Ayl (1K g Gaty i) loy)

) (6.36)

> c“Qn(Am)(L—e™).
Equations(6.36), (6.33) and (6.32) prove (6.30). Since by definition (5.3) and (5.14) it
follows that

. -1
dj, = ijo,MN\mjo = mren/{[t],v Ton, My\m = bN ’ (6.37)

by is defined in Definition 1.1, combining (6.30) with (5.48) shows that the solution of
(6.29) satisfies

Vimy) = @1 = O (a2t ) (6.38)

Proof of Theorem 6.2. The proof of Theorem 6.2 now is reduced to the application of the
Laplace inversion formula and estimation of the remainder integral. In view of (6.13)
and (6.16) it remains to estimate the remainder integral on the right-hand side of (6.8).
But this is by means of (6.2) and (6.3) in combination with (6.25xfes chy |y |1,

0 <c < é,farlyeasy. O

Proof of Theorem 1.3, part (iv). Under condition (C), Theorem 6.2 gives an even much
stronger statement than (iv) of Theorem 1.3. Without condition (iv), it is still true that
all poles have real part larger or equal to the real part of the first reakipoknd the
imaginary values are 0 atr. Thus we can repeat the proof of Theorem 6.2 using a
contour that singles out the (at most two) poles with real parNote that only the one

with real part zero will give a significant contribution due to the denomingter 1 in

(6.1). The remaining contour can be taken along e.g. the path parallel to the imaginary
axis at real parRe(u) > u;. This is enough to get the weak statement in Theorem 1.3.

|
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