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Diffusion models arising in analysis of large biochemical models and
other complex systems are typically far too complex for exact solution or even
meaningful simulation. The purpose of this paper is to develop foundations
for model reduction and new modeling techniques for diffusion models.

These foundations are all based upon the recent spectral theory of Markov
processes. The main assumption imposed is V -uniform ergodicity of the
process. This is equivalent to any common formulation of exponential
ergodicity and is known to be far weaker than the Donsker–Varadahn
conditions in large deviations theory. Under this assumption it is shown that
the associated semigroup admits a spectral gap in a weighted L∞-norm and
real eigenfunctions provide a decomposition of the state space into “almost”-
absorbing subsets. It is shown that the process mixes rapidly in each of these
subsets prior to exiting and that the conditional distributions of exit times are
approximately exponential.

These results represent a significant expansion of the classical Wentzell–
Freidlin theory. In particular, the results require no special structure beyond
geometric ergodicity; reversibility is not assumed and meaningful conclu-
sions can be drawn even for models with significant variability.
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1. Introduction. Markovian models are commonly used to represent the
dynamics of a range of physical systems. In particular, diffusion models are a
popular alternative to the classical description of molecular processes in terms
of Hamiltonian equations of motion. Although these models may be faithful to
physical realities, in practice a Markovian model is far too complex for exact
solution or even long-term simulation. This is particularly true for biochemical
systems with hundreds or thousands of atoms. How can we devise alternative
models that capture essential features?

Recently there has been renewed interest in model reduction techniques based
on variants of the classical Wentzell–Freidlin theory (see, e.g., [3, 6, 32]). The
basic idea is that for certain Markov processes with small variability one can
decompose the process into several “almost irreducible” subprocesses. To quantify
this principle the recent paper [3] gives precise bounds on the distribution of exit
times for certain countable state space chains and extensions to diffusions are
contained in [6, 5, 3]. A key assumption imposed in these works is reversibility
of the Markov process considered.

A related approach to the analysis of transition times is via the theory of quasi-
stationary distributions of Markov process as introduced in [37, 41] for countable
and general state-space processes, respectively. This theory has seen significant
extensions in the recent papers [16, 17] through application of shift-coupling
techniques [40]. These results are based upon the construction of an eigenfunction
on a restricted domain of the state space. A similar approach is pursued in [11,
12] for diffusions with small noise to give bounds on exit times from a smooth
domain. The papers [34, 36] describe new approaches to state space decomposition
based on an analysis of the Perron cluster of eigenvalues for the full generator of
the Markov processes. It is argued that eigenfunctions corresponding to dominant
eigenvalues may be used to decompose the state space into metastable subsets.

The present paper builds upon the results and insights of the papers [3, 7,
12, 16] and [34], combined with recent results concerning large deviations and
spectral theory for ψ-irreducible Markov processes [1, 21, 20]. The main results
demonstrate a strong form of quasi-stationarity for certain subsets of the state
space. This implies precise bounds on the corresponding exit times and from these
results we infer that the transition events of the diffusion are approximated by jump
times of an associated continuous-time, finite state-space Markov chain.

A special case considered in [36] and in Section 5 is the Smoluchowski equation
on R,

dX = − 1

γ
∇U(X)dt + σ

γ
dW,(1)
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FIG. 1. The three-well potential U(x).

for a given potential U : R → R+. The differential generator is defined for h ∈ C2

by

Dh(x) =
(

1

2

σ 2

γ 2
� − 1

γ
∇U(x) · ∇

)
h.(2)

When σ > 0 this is an elliptic diffusion, so that the semigroup has a family of
smooth densities, P t(x, dy) = p(x, y; t) dy, x, y ∈ Rd [23]. Hence the Markov
process X is ψ-irreducible, with ψ equal to Lebesgue measure on Rd .

A specific example is the three-well potential defined by the potential func-
tion U shown in Figure 1. The function U is a sixth-degree polynomial [see (32)].
For small σ , the process is almost decomposable into three processes, each at-
tracted to a minimum of the function U .

In this paper we refine and extend these concepts for a general multivariate
diffusion X by providing answers to the following questions:

(i) What is the appropriate function-analytic setting to investigate a spectral
gap when the process is not reversible? When does the associated semigroup have
a “spectral gap?”

(ii) It is well known that the value of the second eigenvalue determines
the rate of convergence of the distributions for a Markov process. What is the
physical significance of the associated second eigenfunction and higher-order
eigenfunctions?

(iii) Can a complicated diffusion process be approximated by a simpler process,
such as a finite state-space Markov chain, that preserves essential spectral structure
and is a useful predictor of essential dynamics?

To address (i) we interpret the semigroup of the process as a semigroup of linear
operators on a weighted L∞ space. We demonstrate in Theorem 3.1 that a small
spectral gap in this setting is equivalent to a form of metastability of the state space.
A spectral gap is also equivalent to geometric ergodicity, which is equivalent to the
existence of a Lyapunov function [28, 9].
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Under geometric ergodicity alone we demonstrate that real eigenfunctions
provide a decomposition of the state space into metastable subsets. For any
metastable set M we construct a diffusion on M, the “twisted process,” through
a change of measure. We show that this restricted process is also geometrically
ergodic, which implies that the original process mixes rapidly in each of these
subsets prior to exiting.

To address approximations as in (iii) we consider the statistics of the exit time
from a given metastable set M. As a direct consequence of geometric ergodicity
of the associated twisted process we find that the distribution of the exit time is
approximately exponential. The magnitude of the error is related to the spectral
gap for this twisted process.

The remainder of the paper is organized as follows. In the following section
we review some ergodic theory from [9] and [21] and give a formal definition
of spectrum for an ergodic diffusion. We also develop some structural theory for
nonprobabilistic positive semigroups associated with the diffusion.

Section 3 introduces metastability and related concepts and develops structural
results for the associated twisted process. Metastability is shown to be equivalent
to geometric ergodicity of the twisted process, which gives a simple proof of the
desired bounds on exit times. This section also contains a comparison of the results
obtained here with conclusions from the large deviations theory of Wentzell and
Freidlin.

The impact of a cluster of eigenvalues is investigated in Section 4 and in this
section we describe a finite state-space approximating Markov chain. Section 5
contains a detailed numerical study of the Smoluchowski equation on R for the
three-well potential.

2. Spectral theory. Here we review some general theory for ψ-irreducible
Markov processes, including some recent spectral theory for the associated
semigroup. The state space X is assumed to be an open, connected subset of Rd

and we assume that time is continuous, T := R+. Eventually we will specialize to
hypoelliptic diffusions on X.

2.1. Irreducible Markov processes. Let ψ denote a finite, positive measure
on the Borel sigma-field B = B(X) and let B+ denote the set of functions
s : X → [0,∞] satisfying ψ(s) = ∫

s(x)ψ(dx) > 0. The set of finite, nonnegative
measures ν satisfying ν(X) > 0 is denoted M+.

For each β > 0 the resolvent kernel is given as the Laplace transform,

Rβ :=
∫ ∞

0
e−βtP t dt,(3)

where P t is the transition function corresponding to the diffusion defined in (1).
We note that Uβ := βRβ is the transition kernel of the Markov chain on X obtained
by sampling X at the jump times of a Poisson process. We write R := Uβ = Rβ

when β = 1.



METASTABILITY IN MARKOV PROCESSES 423

Set characterizations.

(i) A set C ∈ B is called full if ψ(Cc) = 0.
(ii) The set C ∈ B is absorbing if R(x,Cc) = 0 for x ∈ C. A nonempty

absorbing set is always full ([28], Proposition 4.2.3).
(iii) A function s and a measure ν are called small if, for some β > 0,

Rβ(x,A) ≥ s(x)ν(A), x ∈ X,A ∈ B(X).(4)

If C ∈ B and for some ε > 0 the function s := ε1C is small, then we say that C is
small.

In Proposition 5.5.5 of [28] it is shown that for a ψ-irreducible process in
discrete time, one can find a pair (s, ν) satisfying a bound analogous to (4) with
s(x) > 0 for all x, and with ν equivalent to the maximal irreducibility measure ψ

in the sense that they have the same null sets. This carries over to continuous time
processes by considering the discrete-time Markov chain with transition kernel R

(see, e.g., [27]).

Irreducibility and recurrence.

(i) The Markov process X is called ψ-irreducible if

R(x, s) :=
∫

X

R(x, dy)s(y) > 0, x ∈ X, s ∈ B+.

We assume that ψ is maximal in the sense that ψ ′ ≺ ψ for any other irreducibility
measure ψ ′ [28].

(ii) X is called aperiodic if for any s ∈ B+, and any initial condition x,

P t(x, s) > 0 for all t sufficiently large.

(iii) A ψ-irreducible Markov process is recurrent if

Ex

[∫ ∞
0

s(X(t)) dt

]
= ∞

for all s ∈ B+, x ∈ X.
(iv) A ψ-irreducible Markov process is Harris recurrent if∫ ∞

0
s(X(t)) dt = ∞, a.s. [Px],

for all s ∈ B+, x ∈ X.

For a given set A ∈ B we define the stopping times,

τA := inf
{
t > 0 :X(t) ∈ A

}
, ρA := inf

(
t > 0 :

∫ t

0
1
(
X(s) ∈ A

)
ds > 0

)
.

The stopping time τA is the usual first-hitting time and ρA is the first time to enter
the set A for some non-null time interval. The use of the latter stopping time is
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to improve solidarity between the continuous time process and the Markov chain
with transition kernel R. For example, we have

Px(ρA < ∞) = 0 ⇐⇒ R(x,A) = 0, x ∈ X, A ∈ B.

Consequently, many of the characterizations given above may be conveniently
expressed in terms of this stopping time, for example, a set C ∈ B(X) is absorbing
if Px(ρCc < ∞) = 0 for all x ∈ C; and the process is Harris recurrent if Px(ρA <

∞) = 1 for any A ∈ B+ and all x ∈ X [29].
We henceforth restrict to a diffusion X = {X(t) : t ∈ T} evolving on X, with

differential generator given by

Dh =∑
i

ui(x)
d

dxi

h(x) + 1

2

∑
ij


ij (x)
d2

dxi dxj

h(x)(5)

or, in more compact notation,

D = u · ∇ + 1
2 trace(
�).

We assume that the Markov process has continuous sample paths defined for all
t ≥ 0 for any initial condition—that is, the probability of finite escape is zero.

THEOREM 2.1. Suppose that R is the resolvent kernel for the diffusion with
generator given in (5), and suppose that the generator is hypoelliptic. Then R is
strong Feller and has a smooth density

R(x, dy) = r(x, y) dy, x, y ∈ X.

Suppose moreover that there is a state x0 ∈ X that is “reachable” in the following
sense: For any x ∈ X, and any open set O whose closure contains x0,

P t(x,O) > 0 for all t ∈ T sufficiently large.

Then, the Markov process is ψ-irreducible and aperiodic with ψ(·) := R(x0, ·).

PROOF. This result together with a definition of hypoellipticity is given
as [29], Theorem 3.3. The proof is based upon results from [22] and [23] and
related results are obtained in [25, 38, 39]. �

2.2. Generators and spectra for Markov processes. The ergodic theory and
spectral theory described here are based upon the vector space setting developed
in [28], Chapter 16. Let V : X → [1,∞) be a given function and denote by LV∞ the
vector space of measurable functions h : X → C satisfying

‖h‖
V

:= sup
x∈X

|h(x)|
V (x)

< ∞.



METASTABILITY IN MARKOV PROCESSES 425

The vector space MV
1 is the set of complex-valued measures ν on B such that

‖ν‖V :=
∫

X

V (x)|ν(dx)| < ∞.

For any kernel P̂ on X × B the induced operator norm is defined by

|||P̂ |||V := sup
‖P̂ h‖

V

‖h‖
V

,

where the supremum is over h ∈ LV∞, ‖h‖V �= 0. If P̂ is a positive kernel [i.e.,
P̂ (x,A) ≥ 0, for x ∈ X, A ∈ B] and if for some c < ∞, we have P̂ V ≤ cV , then
P̂ :LV∞ → LV∞ is a bounded linear operator on LV∞ and |||P̂ |||V ≤ c.

Several positive operators play a role in ergodic theory and spectral theory. The
most important example is perhaps the bound (4), which means that the positive
operator Rβ dominates the rank-one, positive operator s ⊗ ν (“⊗” denotes the
tensor product). The linear operator [s ⊗ ν] :LV∞ → LV∞ is necessarily bounded
provided Rβ is bounded. In this case we have s ∈ LV∞ and ν ∈ MV

1 . Moreover,
when the resolvent kernel is a bounded linear operator we always have R :LV∞ →
CV , where

CV = {
g ∈ LV∞ :‖P tg − g‖V → 0, t ↓ 0

}
.

Formulations and characterizations of the spectral gap are facilitated by three
different generators:

Generators.

(i) The extended generator A: We write g = Af if the adapted stochastic
process (Mf (t),Ft ) is a local martingale, where Ft = σ(X(s); 0 ≤ s ≤ t) and

Mf (t) := f (X(t)) − f (X(0)) −
∫ t

0
g(X(s)) ds.(6)

(ii) The differential generator D : Defined on C2(X) via

Df = u · ∇f + 1
2 trace(
�f ), f ∈ C2.

(iii) The strong generator DV : For a given V : X → [1,∞], finite a.e., we write
g = DV f if f,g ∈ CV and∥∥∥∥P tf − f

t
− g

∥∥∥∥
V

→ 0, t ↓ 0.

The extended generator A is a true extension of D in the sense that Af = Df

a.e. [ψ] when f ∈ C2(X). Provided R is a bounded linear operator on LV∞, one
can check that the domain of the strong generator is simply {Rh :h ∈ CV } and
that DV Rh = Rh − h for any h ∈ CV . The extended generator and differential
generator are used in criteria for stability and to obtain bounds on the “essential
spectrum” of the associated semigroup. The strong generator is used to define a
spectral gap:
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Spectra and spectral gap. For a given V : X → [1,∞], finite a.e.:

(i) The spectrum s(DV ) is the set of � ∈ C such that the inverse [I�−DV ]−1

does not exist as a bounded linear operator on CV .
(ii) The generator admits a spectral gap if the set s(DV )∩{z ∈ C : Re(z) ≥ −ε}

is finite for sufficiently small ε > 0.
(iii) The Markov process is called V -uniformly ergodic if there is a spectral

gap, {0} = s(DV ) ∩ {z ∈ C : Re(z) = 0}, and the eigenvalue � = 0 is simple.

Theorem 5.2 of [9] provides the following consequences of V -uniform
ergodicity:

THEOREM 2.2. If X is V -uniformly ergodic then:

(i) there is an invariant probability measure π , and the semigroup converges
in norm:

|||P t − 1 ⊗ π |||V → 0 exponentially fast as t → ∞;

(ii) for any B ∈ B+, there exists B > 0 and b < ∞ such that

Px{ρB ≥ t} ≤ bV (x)e−Bt , x ∈ X, t ∈ T.(7)

The following “drift condition” characterizes V -uniform ergodicity and is
central to this paper. It is useful that we may use the extended generator and not
the strong generator in (V4).

For constants b < ∞ and  > 0, a small function s : X → [0,∞), and

a function V : X → [1,∞),

AV ≤ −V + bs.

(V4)

Assumptions similar to (V4) are used in Donsker and Varadhan’s classic papers
(see [42, 8]). It is shown in [20] that these assumptions actually imply that the
diffusion has a discrete spectrum in the V -norm for some V (see also [33]).
Condition (V4) is equivalent only to a spectral gap and consequently it is a
significantly weaker assumption.

THEOREM 2.3.

(i) Suppose that X is ψ-irreducible and aperiodic and suppose that (V4) holds
for some V : X → [1,∞). Then X is V -uniformly ergodic.

(ii) Conversely, if the Markov process X is V0-uniformly ergodic, then there
exists a solution to (V4) with V ∈ L

V0∞ .
(iii) Suppose that the conditions of (i) hold, but the function V : X → (0,∞) is

not known apriori to be bounded from below by 1. If X is also recurrent then

ε0 := inf
x∈X

V (x) > 0,

so that X is V0-uniformly ergodic with V0 := ε−1
0 V .
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PROOF. Theorem 2.3(i) and (ii) follow from Theorem 7.1 of [9].
To prove (iii) consider U = log(V ) and apply the resolvent to obtain a bound of

the form,

RU ≤ log(RV ) ≤ U − δ0 + b01C,

where δ0 > 0; C = {x : s(x) ≥ δ1} ∈ B+ for suitably small δ1 > 0 and b0 < ∞ is a
constant. We then have, via the comparison theorem of [28],

δ0Ex[TC] ≤ U(x) + b01C(x),

where TC denotes the first entrance-time to C for the discrete-time Markov chain
with transition law R. Here we have used recurrence of this Markov chain, which
follows from the assumed recurrence of X [29]. We conclude that infx∈X U(x) >

−b0 > −∞, which establishes (iii) with ε0 := e−b0 . �

2.3. Generators and spectra for nonprobabilistic semigroups. For a given
function F : X → R ∪ {∞} we consider the following positive semigroup,

P t
F (x,A) = Ex

[
1
(
X(t) ∈ A

)
exp
(
−
∫ t

0
F(X(s)) ds

)]
, A ∈ B, x ∈ X, t ∈ T.

For any given x, t the total mass λ(x, t, α) = P t−αF (x,X), α ∈ R, is equal to the
moment generating functions for the random variable St = ∫ t

0 F(X(s)) ds. This
is a starting point for many papers concerning large deviations theory and risk-
sensitive optimal control (see, e.g., [19, 2, 14, 13, 11]).

A strong generator can be defined in analogy with the probabilistic semigroup
and we define the potential kernel associated with {P t

F } via

RF (x,A) =
∫ ∞

0
P t

F (x,A)dt, x ∈ X, A ∈ B.(8)

For example, when F takes on the constant value β for some positive β ∈ R+, then
RF = Rβ . The following generalization of the resolvent equations are developed
in [27] and [30].

THEOREM 2.4. For a given F,G : X → R ∪ {∞} we have the following:

(i) if g : X → R satisfies RF |g|(x) < ∞, x ∈ X, then

[IF − A]RF g = g;(9)

(ii) if G ≥ F then the corresponding potential kernels are related by

RF = RG + RGIG−FRF ,(10)

where IG−F denotes the multiplication operator.



428 W. HUISINGA, S. MEYN AND C. SCHÜTTE

For an arbitrary positive semigroup {P̂ t} the definitions of irreducibility,
small sets and measures, and other set classifications remain the same in this
nonprobabilistic setting. For a given function V : X → [1,∞], finite a.e., the
spectral radius of {P̂ t} is given by

srV ({P̂ t}) := lim
T →∞

(∣∣∣∣∣∣P̂ T
∣∣∣∣∣∣

V

)1/T
.

Closely related is the Perron–Frobenius eigenvalue, defined for any small pair
(s, ν) with s ∈ B+, ν ∈ M+, via

pfe({P̂ t}) := lim
T →∞

(
νP̂ T s

)1/T
.(11)

The semigroup is called recurrent if∫ ∞
0

(νP̂ t s)et dt = ∞,

where  = − log(pfe({P̂ t})); otherwise, it is called transient. A straightforward
generalization of [31], Proposition 3.4, shows that these definitions are indepen-
dent of the particular small pair chosen when the process is ψ-irreducible (note
that [31] considers the convergence parameter, which is simply the reciprocal of
the Perron–Frobenius eigenvalue). When P̂ t = P t

F for some function F on X we
let srV (F ),pfe(F ) denote the corresponding spectral radius and Perron–Frobenius
eigenvalue.

Proposition 2.5(i) is a consequence of Proposition 3 of [20] and (ii) follows
from Theorem 2.4(ii) with F := G − γ .

PROPOSITION 2.5. Suppose that X is a ψ-irreducible, hypoelliptic diffusion.
Then:

(i) The functionals V (F ) := − log(srV (F )) and (F ) := − log(pfe(F )) are
each concave on the domain {F : X → R ∪ {∞} : infF(x) > −∞}.

(ii) For a given function G on X, if 0 < γ < (G) then,
∞∑

k=1

γ k−1Rk
G = RG−γ .

In analogy with V -uniform ergodicity, the semigroup {P̂ t : t ∈ N} with generator
D̂V is called V -uniform if the following conditions are satisfied:

(i) The constant � := −V (F ) is a simple eigenvalue. That is, � is an
eigenvalue and the associated eigenspace is a one-dimensional subspace of LV∞.

(ii) The generator admits spectral gap: for sufficiently small ε > 0,

� = s(D̂V ) ∩ {z ∈ C : Re(z) ≥ � − ε
}
.

We have the following analog of Theorem 2.3:
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THEOREM 2.6. Suppose that X is a ψ-irreducible, aperiodic, hypoelliptic
diffusion. Let F be a given function on X satisfying pfe(F ) < ∞, infx∈X F(x) >

−∞ and suppose that the resolvent satisfies

RFV ≤ δV + bs, RF ≥ s ⊗ ν,

where V : X → [1,∞] is finite a.e.; 0 < δ < (F )−1; s : X → [0,1]; b < ∞; and
ν is a probability measure on X. Then, the semigroup {P t

F } is V0-uniform for
some V0 ∈ LV∞.

PROOF. From Proposition 2.5(ii) we have for all γ ∈ R and all B ∈ B , x ∈ X,

∞∑
k=1

γ k−1Rk
F (x,B) = Ex

[∫ ∞
0

exp
(
−
∫ t

0
F(X(s)) ds

)
eγ t1{X(t) ∈ B}dt

]
.

The right-hand side is finite whenever γ < (F ) and the set B is small. It follows
that (F )−1 is the Perron–Frobenius eigenvalue for the discrete-time semigroup
{Rn

F :n ≥ 0}.
Let h0 denote the Perron–Frobenius eigenfunction for RF given by

h0 :=
∞∑

k=0

(F )k+1(RF − s ⊗ ν)ks.(12)

We then have RFh0 = (F )−1h0 − εs, where ε = 1 − ν(h0) ≥ 0 and ε = 0 if and
only if the semigroup {Rk

F :k ∈ N} is recurrent (see [31], Proposition 4.7).
Define the twisted kernel via

ŘF = (F )I−1
h0

[RF + ε0s ⊗ ν]Ih0,

where ε0 := ε(1 − ε)−1 ≥ 0 is chosen so that ŘF is a (probabilistic) transition
kernel. Setting š = (F )h−1

0 s and ν̌ = νIh0 , we find that this is a small pair. In
fact, ŘF ≥ (1 + ε0)š ⊗ ν̌ under our condition that RF ≥ s ⊗ ν. Moreover, one can
check that

∑∞
k=0(ν̌Řk

F š) = ∞, so that the semigroup {Řk
F :k ∈ N} is recurrent (see

[31], Theorem 3.2). Setting V̌ = h−1
0 V , we then have

ŘF V̌ = (F )h−1[RF + ε0s ⊗ ν]V ≤ h−1[δ(F )V + bs] ≤ δ̌V̌ + b̌š,

where b̌ < ∞ and δ̌ := δ(F ) < 1. Since the twisted kernel is recurrent, it then
follows from Theorem 2.3(iii) that {Řn

F } is V̌ -uniform and that V̌ is uniformly
bounded from below. This means that the inverse [Iz − (ŘF − (1 + ε0)š ⊗ ν̌)]−1

exists in V̌ -norm for all z in a neighborhood of z = 1. It immediately follows
that [Iz − (RF − s ⊗ ν)]−1 exists in V -norm for all z in a neighborhood of
z = (F )−1 and that {Rn

F } is V -uniform (similar arguments are used in [21],
Proposition 4.9). As in [9], Theorem 5.1, it then follows that the semigroup
{P t

F : t ∈ T} is V0-uniform with V0 = RF V . �
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3. Metastability and exit rates. Much of the analysis here is based on the
semigroups {P t

F } considered in Section 2.3 in the special case where F = ∞1Ac

for some A ∈ B . When F takes this form we denote the semigroup by {P t
A}, which

can be equivalently expressed,

P t
Ag(x) = Ex

[
g(X(t))1(ρAc ≥ t)

]
, g ∈ L∞, x ∈ X, t ∈ T.

The associated potential kernel (8) is denoted RA when F takes this form.
Let C denote the collection of all connected, open subsets of X. For any

A,B ∈ C we define

A ◦ B = {A ∪ B}◦.
This is an open set and if A ◦ B ∈ C, we say that A and B are neighbors.
The following assumptions will be imposed throughout this section. Theorem 2.1
provides readily verifiable conditions under which these assumptions are valid:

(i) The Markov process is an aperiodic, hypoelliptic diffusion, with
continuous sample paths. The state space X is an open,
connected subset of R

d .

(ii) For each A ∈ C the semigroup {P t
A} is ψA-irreducible, where

ψA is Lebesgue measure restricted to A, and every compact subset
of A is a small set for {P t

A}.

(13)

Eventually we will restrict to processes satisfying (V4).

3.1. Exit rates. Our goal in this section is to quantify the rate, at which
the process moves between elements of C. The motivation for the consideration
of transition rates, rather than moments, is to set the stage for Markov chain
approximations (see, e.g., Theorem 3.8).

Exit rates and metastable sets.

(i) The exit rate of A ∈ C is defined as (A) := − log(pfe(A)), where pfe(A)

denotes the Perron–Frobenius eigenvalue for the semigroup {P t
A : t ∈ T} as defined

in (11).
(ii) Given a pair of neighbors A,B ∈ C, the exit rate from A given B is

(A|B) := (A) − (A ◦ B).

(iii) A set M ∈ C is called metastable with exit rate (M) if (A|M) > 0 for all
A ⊂ M, A �= M, A ∈ C.

(iv) The V -exit rate of A ∈ B is given by V (A) := − log(srV (A)), where
srV (A) denotes the V -spectral radius of {P t

A}.
(v) For M ∈ B we say that M is V -metastable if V (M) < ∞ and

V (A) > V (M)

for any A ⊂ M satisfying A ∈ B and ψ(M/A) > 0.
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Metastability is closely related to V -uniform ergodicity. Here is one example:

THEOREM 3.1. If X is V -uniformly ergodic, then the state space X is
V -metastable with exit rate equal to zero.

PROOF. The V -norm ergodic theorem asserts that P t → 1 ⊗ π in norm as
t → ∞. This implies that V (X) = (X) = 0. For any A ∈ B(X) with B := Ac ∈
B+, the bound (7) can be equivalently expressed,

|||P t
A|||V ≤ be−Bt , t ∈ T.

From this we may conclude that V (A) ≥ B > 0. �

Since metastability is closely related to V -uniform ergodicity, it is natural
that Lyapunov functions and eigenfunctions should play an important role in our
analysis. To investigate the impact of Lyapunov functions we require the following
restriction of the extended generator: For a set A ∈ C and functions f,g :A → R

we write “g = Af on A” if {Mf (t ∧ ρAc) : t ∈ T} is a local martingale, where Mf

is given in (6).

THEOREM 3.2. Suppose that X is a diffusion satisfying (13). Then:

(i) For any set A ∈ C, if there exists 0 <  < ∞ and h :A → (0,∞], finite
almost everywhere, satisfying

Ah ≤ −h on A,

then (A) ≥ .
(ii) If A ∈ C with 0 < (A) < ∞, then there exists h : X → (0,∞], finite

almost everywhere, satisfying

Ah ≤ −(A)h on A.

(iii) Suppose that M ∈ C is V -metastable and its exit rate satisfies V (M) =
(M) < ∞. Then there exists h : M → (0,∞) satisfying

Ah = −(M)h on M.(14)

PROOF. If the conditions of (i) hold, then the stochastic process below is a
local super-martingale,

mh(t) := h(x)−1h(X(t))et1(ρAc ≥ t), t ∈ T.(15)

From Fatou’s lemma we then have,

E
[
h(X(t))1(ρAc ≥ t)

]≤ e−th(x), x ∈ A.
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Let (s, ν) be any small pair satisfying s ∈ B+, ν ∈ M+ and

s ≤ h, ν(h) < ∞, ν(Ac) = 0.

It immediately follows from the previous bound that for any  < ,∫ ∞
0

E
[
s(X(t))1(ρAc ≥ t)

]
et dt ≤ h(x)

 − 
, x ∈ A,

from which we conclude that∫ ∞
0

(νP t
As)et dt ≤ ν(h)

 − 
.

From the definitions it then follows that (A) ≥  and this proves (i) since  < 

is arbitrary.
To see (ii) we first observe that the Perron–Frobenius eigenvalue for the discrete-

time semigroup {Rn
A} is given by (A)−1 and a Perron–Frobenius eigenvector is

then given by

h0(x) =
∞∑

k=0

(A)k+1(RA − s ⊗ ν)ks(x),

where s, ν is a small pair satisfying RA ≥ s ⊗ ν (see the proof of Theorem 2.6).
The function h0 satisfies ν(h0) ≤ 1, and consequently, for some ε ≥ 0,

RAh0 = (A)−1h0 − εs ≤ (A)−1h0.

Letting h = RAh0, it then follows from Theorem 2.4 that

Ah = ARAh0 = −h0 = −(A)[h + εs] ≤ −(A)h on A.(16)

To see (iii) we construct a Lyapunov function VM satisfying the conditions of
Theorem 2.6. It then follows that the semigroup generated by the kernel RM is
recurrent, and that the constant ε in (16) is zero. Consequently, this function h

solves the desired eigenfunction equation.
Fix B ∈ C with the following properties: B ⊂ M; K := M ∩ Bc ⊂ M compact;

K ∈ B+; and supx∈K V (x) < ∞. Fix a pair (s, ν) satisfying s ∈ B+, ν ∈ M+ and
RB ≥ s ⊗ ν. Then, for any γ ≤ (B) we have the bound,

∞∑
k=0

γ k+1ν[RB − s ⊗ ν]ks ≤ 1.

Fix any such γ satisfying (M) < γ < (B). We then have, with Fγ := −γ +
∞1Bc ,

∞∑
k=1

γ k−1[RB − s ⊗ ν]kV ≤
∞∑

k=1

γ k−1Rk
BV = RFγ V,

and the right-hand side is in LV∞ since γ < (B) ≤ V (B).
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The measure µB given by

µB :=
∞∑

k=0

γ k+1ν[RB − s ⊗ ν]k

thus satisfies µB(V ) < ∞. Choose gM : M → R+ continuous, satisfying µB(gM) <

∞, and so that

Kn = {
x ∈ M :gM(x) ≤ nV (x)

}
is compact, n ≥ 1.

We then define

VM :=
∞∑

k=0

γ k+1[RB − s ⊗ ν]kgM,(17)

so that b := ν(VM) = µB(gM) < ∞ and

RBVM = [RB − s ⊗ ν]VM + [s ⊗ ν]VM ≤ γ −1VM + bs.

The following is a generalization of the resolvent equation given in (10):

RM = RB + QBIM∩BcRM,

where QB(x, dy) := Px(X(ρBc) ∈ dy). Since VM is bounded on M ∩ Bc , we then
arrive at a bound of the form,

RMVM ≤ γ −1VM + bM,

where bM < ∞ is constant.
Finally, for any δ0 satisfying (M)−1 > δ0 > γ −1 we can find b0 < ∞, n0 < ∞

satisfying,

RMVM ≤ δ0VM + b01Kn0
.

The set Kn0 is a compact subset of M and, hence, also small for RM under (13).
An application of Theorem 2.6 then shows that the semigroup {Rn

M :n ≥ 0} is
VM-uniform, and that a solution to (14) exists with h ∈ L

VM∞ . �

3.2. The twisted process. In this section we investigate the consequences
of the following “eigenfunction equation.” Theorem 3.2(iii) provides evidence
that (18) will typically hold when M is metastable, and in this case we may take
0 = (M). Recall that D is the differential generator given in (5).

For some set M ∈ C, a function h : X → R that is C2 in a neighborhood
of the set M̄, and some 0 < ∞,

h(x) > 0 and Dh(x) = −0h(x) for x ∈ M.
(18)

Under (18), for any x ∈ X the stochastic process

mh(t) := h(x)−1h(X(t))e0t , t ∈ T,
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is a positive martingale up to the stopping time T• := ρMc . Hence it may serve in
a change of measure in the following construction:

The twisted process is the Markov process X̌ with state space M whose
semigroup is defined for any g ∈ L∞(M) and any x ∈ M via

Ěx

[
g(X̌(t))

] := Ex

[
mh(t)g(X(t))1(T• > t)

]
.

(19)

The Markov process X̌ is a diffusion, evolving on X̌ := M. The associated
“twisted generator” is given in Proposition 3.4. Similar constructions are used
in many recent references (see, e.g., [10, 21]). What is unusual here is that the
likelihood function defined using h restricts the process to a proper subset of X

(see also [16]).
Proposition 3.4 expresses the differential generator for the twisted process in

terms of D . This representation is a consequence of the following lemma, whose
proof is immediate from Ito’s rule.

LEMMA 3.3. Suppose that g,h :O → R are C2 on the open set O ⊆ X. The
following identities hold on the set O:

Dgh = gDh + hDg + 〈
∇h,∇g〉,
Dh = [

DH + 1
2∇HT 
∇H

]
h,

where in the second identity we assume that h > 0 on O and let H denote its
logarithm.

PROPOSITION 3.4. Suppose that (13) and (18) hold. Then:

(i) The expectation operator Ě defines a diffusion on M, up to the exit time T•.
The differential generator is given by

Ď = Ih−1DIh + 0I = D + 〈
(∇H),∇〉,(20)

where Ih is the multiplication operator: Ihg = h · g, and H(x) = log(h(x)) for
x ∈ M.

(ii) The differential generator Ď has the same diffusion coefficients as the
original process and the generator Ď is self adjoint whenever D is (with a new
inner product weighted by h).

(iii) If X is a Smoluchowski equation on X with potential U and if 
 = σ 2I is
independent of x, then Ď is the differential generator for a Smoluchowski equation
with potential U+ = U − σ 2H .

PROOF. It is enough to establish (20), which is immediate from Lemma 3.3
and the eigenvector equation Dh = −h:

Dgh = h
(−g + Dg + 〈
(h−1∇h),∇g〉).
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Multiplying both sides by h−1 and adding g gives the required identity. �

The following two results characterize metastability in terms of geometric
ergodicity of the twisted process.

THEOREM 3.5. Assume that (13) and (18) hold. Suppose moreover that M is
V -metastable, its exit rate satisfies 0 = V (M) = (M), and that the escape-time
T• for the twisted process is infinite a.s. Then the twisted process is V̌ -uniformly

ergodic for some V̌ satisfying h−1 ∈ LV̌∞.

PROOF. The proof of Theorem 3.2 (iii) is based on VM-uniformity of the
discrete-time semigroup generated by RM [see definition (17)]. It follows that the
discrete-time Markov chain with transition kernel

ŘM := I−1
h RMIh + (M)−1

is V̌ -uniformly ergodic with V̌ = h−1VM. This transition kernel is in fact a
resolvent kernel for the twisted process defined (19). The result is then immediate
from [9], Theorem 5.1, and our assumption that the escape-time for the twisted
process is infinite a.s. �

Theorem 3.6 provides a partial converse.

THEOREM 3.6. Assume that (13) and (18) hold. Suppose, moreover, that the
escape-time for the twisted process is infinite a.s. and that the twisted process is

V̌ -uniformly ergodic for some V̌ : M → [1,∞), with h−1 ∈ LV̌∞. Then, the set M is
both metastable and V0-metastable, with common exit rate (M) = V0(M) = 0

given in (18) and with V0 = V̌ h.

PROOF. This is a consequence of the following representation: For any
stopping time τ satisfying τ ≤ T•,

Ěx

[∫ τ

0
eδth−1(X̌(t)) dt

]
= h−1(x)Ex

[∫ τ

0
e(δ+0)t dt

]
.

Let A ⊂ M satisfy ψ(Ac) > 0 and let τ = ρAc . From V̌ -uniformity of the twisted

process and the assumption that h−1 ∈ LV̌∞, there exists δ = δ(A) > 0 and b0 < ∞
such that the left-hand side is bounded by b0V̌ (x) [cf. (7)]. It follows that the
V0-exit rate from A is bounded from below by 0 + δ(A).

It remains to show that the exit rate from M is equal to 0. This follows from
the previous reasoning: Setting τ = T• gives

∞ = Ěx

[∫ ∞
0

h−1(X̌(t)) dt

]

= Ěx

[∫ T•

0
h−1(X̌(t)) dt

]
= h−1(x)Ex

[∫ T•

0
e0t dt

]
.
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Hence (M) ≤ 0, but Theorem 3.2(i) already implies the reverse inequality. �

We now provide more readily verifiable sufficient conditions under which the
conclusions of Theorem 3.6 will hold.

THEOREM 3.7. Assume that (13) and (18) hold and that (V4) is also
satisfied for a continuous function V : X → [1,∞). Suppose, moreover, that the
Lyapunov function V and the eigenfunction h satisfy the following conditions:

(a) the constant 0 in (18) satisfies 0 < 0 < ;
(b) h(x) > 0 for all x ∈ M and h(x) = 0 for x ∈ ∂M := M̄ \ M;
(c) (∇h(x))T 
(x)(∇h(x)) > 0 for all x ∈ ∂M;
(d) Kn := {x ∈ X :V (x) ≤ nh(x)} is a compact subset of X for all n ≥ 1.

Then:

(i) The escape-time from M for the twisted process is infinite a.s. for X̌(0) =
x ∈ M.

(ii) The twisted process is V̌1-uniformly ergodic with V̌1 = V/h.
(iii) The set M is both metastable and V -metastable, with exit rate (M) =

V (M) = 0, where 0 is given in (18).

PROOF. We consider the Markov process with twisted generator Ď given
in (20). For a given 0 < α < 1 write

V̌1 := h−1V, V̌2 := h−1hα and V̌ := V̌1 + V̌2.

Then from Lemma 3.3, (V4) and the eigenvector equation (18),

Ď V̌1 = [I−1
h DIh + 0I ]h−1V

= h−1[D + 0]V
≤ −( − 0)V̌1 + bh−1s,

Ď V̌2 = [I−1
h DIh + 0I ]h−1+α

= h−1[Dhα + 0h
α]

= hα−1[αDH + 1
2α2∇HT 
∇H + 0

]
= hα−1[α(h−1Dh − 1

2∇HT 
∇H
)+ 1

2α2∇HT 
∇H + 0
]

= (1 − α)hα−1[0 − 1
2α∇HT 
∇H

]
,

where the third and fourth identities follow from Lemma 3.3. Combining these
bounds/equalities gives

ĎV̌ ≤ −1
2 ( − 0)V̌

+ hα−1[(1 − α)0 + 1
2 ( − 0) + bh−αs

− 1
2 ( − 0)V h−α − 1

2h−2α(1 − α)∇hT 
∇h
]
,
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where in the last line we have used the identity ∇H = h−1∇h.
Consequently, under assumption (a) we have the following version of (V4) for

the twisted process: for sufficiently large n0,

ĎV̌ ≤ −1
2( − 0)V̌ + b01Kn0

,(21)

where b0 < ∞, and Kn0 given in (d) is compact. The drift condition (21) implies
that T• = ∞ a.s. since V̌ has compact sublevel sets in M (see [29]). This proves
(i) and (ii) is a consequence of the drift inequality (21), a form of (V4), which
implies that X̌ is V̌ -uniformly ergodic. It is also V̌1-uniformly ergodic with
V̌1 = V/h since h ∈ LV∞ by assumption.

Part (iii) then follows from the foregoing conclusions and Theorem 3.6. �

3.3. Consequences for exit times. We show here that V̌ -uniform ergodicity
of the twisted process implies strong distributional bounds on the exit time from
a metastable set M. The exit time T• := ρMc is approximately exponentially
distributed, with rate (M), provided there is a sufficient spectral gap. Related
approximations in a general setting were obtained recently in [17]. These bounds
provide a bridge between the results established here and the large deviation
theory of Wentzell and Freidlin. To make this precise we first review the standard
characterizations of exponential random variables.

If the random variable ρ is exponentially distributed with rate , then the
conditional distribution function and the conditional moment generating function
for the residual life are given by

F(s) = P[(ρ − T ) ≥ s|ρ ≥ T ] = e−s, s ≥ 0, T ≥ 0;
M(β) = E

[
exp(β(ρ − T ))|ρ ≥ T

]= 

 − β
, β ≤ .

These quantities are independent of T only for exponential random variables.
However, we show in Theorem 3.8 that these identities almost hold for the exit
time T• from a metastable set.

For the random variable T• we again define the conditional distribution function
and the conditional moment generating function for the residual life at time T by

Fx(s, T ) = Px[(T• − T ) ≥ s|T• ≥ T ], s ≥ 0, T ≥ 0;
Mx(β,T ) = Ex

[
exp(β(T• − T ))|T• ≥ T

]
, β ≤ , T ≥ 0.

(22)

Theorem 3.8 states that the rate of decay of the exit time is basically independent
of the starting point. We note that the constant δ0 > 0 describes the rate of
convergence of the distributions of the twisted process [cf. (24)] and this is
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precisely the spectral gap for the twisted process.

THEOREM 3.8. Suppose that the conditions of Theorem 3.7 hold, so that the
set M is V -metastable with exit-rate  > 0. Then there exists δ0 > 0 such that for
all s, T > 0 and all β < ,

Fx(s, T ) = e−s

[
1 + O(e−δ0sV (x)h−1(x))

1 + O(e−(T +s)δ0V (x)h−1(x))

]
,

Mx(β,T ) = 

 − β
+ O

(
e−δ0T V (x)h−1(x)

)
.

PROOF. From the definition of the twisted process we have for all s ≥ 0 and
all x ∈ M,

P̌ sh−1(x) = Ěx

[
h−1(X̌(s))1(s ≤ T•)

]
= h−1(x)Ex

[
h(X(s))h−1(X(s))es1(s ≤ T•)

]
= h−1(x)esP(s ≤ T•).

(23)

An application of Theorem 3.7 implies that the twisted process is V̌ -uniformly
ergodic for some V̌ satisfying h−1 ∈ LV̌∞. It follows that we also have the following
bound, for some δ0 > 0,

P̌ sh−1 (x) = π̌(h−1) + O
(
e−δ0sV (x)h−1(x)

)
, s ≥ 0, x ∈ X.(24)

This combined with (23) gives the bound

esPx{s ≤ T•} = (
π̌(h−1)h(x) + O

(
e−δ0sV (x)

))
and this easily proves the result. �

3.4. Implications from large deviations theory. We conclude this section with
a comparison of our conclusions with those of Wentzell and Freidlin [15].

Consider some stable equilibrium point x0 of the unperturbed ODE,

dx = − 1

γ
∇U(x)dt,(25)

and let O be a region of attraction. We assume that O is a (possibly semiinfinite)
interval O = (xa, xb) ⊂ R containing x0 and satisfying the following assumptions:

All trajectories of the deterministic ODE (25) starting at some point x ∈ Ō

converge to x0 as t → ∞. Hence, there are neither other extrema nor limit
cycles in Ō.

Let τOc(σ ) denote the exit time of O for the Smoluchowski process X defined
by (1). Futhermore, denote U0 := U(x0), Ua := U(xa), Ub := U(xb), and let

Ubar := min{Ua − U0,Ub − U0}
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FIG. 2. The two-well potential U(x). The barrier on the left Ubar = 0.81 defines a decomposition of
the state space into two metastable subsets X = (−∞,0.41)◦ (0.41,∞) with equal potential barrier
Ubar = 0.81.

denote the minimal potential barrier the process must cross to leave O when
starting at x0 ∈ O.

The following result follows from [15] and [35]. It gives a simple bound on the
exit rate from O in terms of the smallest potential barrier one has to cross when
leaving O.

THEOREM 3.9. Under the above assumption on O we have the following
bound on the exit time from O, for any initial condition x0 ∈ O,

lim
σ→0

σ 2 log Ex0[τOc(σ )] = 2γUbar.

To illustrate Theorem 3.9 we examine the double-well potential shown in
Figure 2. Denote the left local minimum of U by U(xl) = Ul , the right minimum
by U(xr) = Ur and the local maximum by U(xm) = Um. In this example we have
Ul = 0.50, Um = 1.31 and Ur = 0.10.

We wish to obtain bounds on the exit rates for the two open connected
components Oleft = {x < xm} and Oright = {x > xm}, corresponding to the left
and the right well, respectively. To fulfill the assumption that saddle-points are
excluded we reduce these sets slightly and instead take Oleft = {x < xm − ε}
and Oright = {x > xm + ε} for some arbitrary small ε > 0. An application of
Theorem 3.9 yields the following conclusions:

(i) for Oleft we have Ubar = Um − Ul = 0.81 + O(ε2) and, hence,

lim
σ→0

σ 2 log Ex

[
τOleft(σ )

]≈ 2γ 0.81;
(ii) for Oright we have Ubar = Um − Ur = 1.21 + O(ε2) and, hence,

lim
σ→0

σ 2 log Ex

[
τOright(σ )

]≈ 2γ 1.21.
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We now compare these conclusions with the results of the present paper.
Applying Theorem 3.7 to the double-well potential we find that the second
eigenfunction decomposes the state space into the two open components {a,b} ⊂
C separated by the zero z of h2. What can we say about the asymptotics of z for
vanishing σ ?

(i) A natural first guess is that z approximates the saddle point of the potential.
However, as discussed above, the Wentzell–Freidlin theory predicts that the
distribution of exit times is a function of the minimal potential barrier the
process has to cross in order to leave a given subset. Consequently, these rates
are different for the two subsets a and b when σ is small, which contradicts
the fact that (a) = (b) = 2.

We conclude that z cannot approximate the saddle point of the potential as
σ → 0.

(ii) An alternative is the point z on the the right-hand side of the saddle point
defined by the condition that the minimal potential barrier Ubar to exit from
either of the two subsets is the same (see Figure 2). An extension of the
Wentzell–Freidlin theory (see, e.g., [3, 4]) states that the asymptotic rates of
both exit times are the same, which is in agreement with Theorems 3.7 and 3.8.

In view of (ii) we modify the subsets slightly so that Ôright = {x < 0.41} and
Ôleft = {x > 0.41}. We thus obtain identical asymptotes for Ex[τÔright

(σ )] and
Ex[τÔright

(σ )] as σ → 0. Figure 3 shows that the zero of h2 does indeed approach
the value 0.41 for vanishing σ . (Note in revision. Discussion in the recent paper [5]
suggests that there is a strong relationship between saddle points of the potential

FIG. 3. At left is shown the second eigenfunction h2 for the diffusion defined by the two-well
potential for a range of values of the inverse temperature, κ = 2γ /σ 2, from κ = 1.5 (solid line)
to κ = 6.5, (dashed line). The right-hand side shows a close-up for x near the respective zeros. The
zero moves towards the value 0.41 as κ ↑ ∞. The step function shown at left with discontinuity at
x = 0.41 is a candidate limit of hκ

2 .



METASTABILITY IN MARKOV PROCESSES 441

function and structure of the eigenfunction for small κ .)

4. State space decompositions. In the previous section we considered in
some detail the structure of a diffusion restricted to a single metastable set.
In particular, Theorems 3.2, 3.6 and 3.7 provide characterizations of metastability
in terms of an eigenfunction defined on the set M. Here we obtain decompositions
of the entire state space into metastable sets by considering eigenfunctions h ∈ LV∞
for the generator D defined on all of X. Under appropriate conditions, including
V -uniform ergodicity, this provides a natural decomposition of the state space into
metastable subsets.

4.1. Decompositions using a single eigenfunction. Let h be a C2 eigenfunc-
tion satisfying Dh = �h and let {Mi} ⊂ C denote the open, connected components
of {x :h(x) �= 0}. Fix any i and assume without loss of generality that h > 0 on Mi

(otherwise, replace h by −h). It follows that the desired eigenfunction equation
holds

Dh = −h, h > 0, on Mi ,

where  = |�| > 0. Under the conditions of Theorem 3.7 we can conclude that
(Mi ) ≥  and that Mi is V -metastable.

To illustrate this decomposition consider the simplest diffusion: the one-
dimensional Gauss–Markov process with differential generator,

D = −ax
d

dx
+ 1

2
σ 2 d2

dx2 .

This is of the form (1) with potential function U(x) = 1
2ax2. We assume that a > 0,

so that the process is V -uniformly ergodic with V (x) = cosh(x), x ∈ R.
It is easily seen that {�k = −(k − 1)a :k = 1,2, . . . } belongs to the spectrum

of DV (see, e.g., [24]) with associated eigenfunctions,

h1 ≡ 1, h2(x) = x,

h3(x) = 1

2
x2 − σ 2

4a
, h4(x) = 1

3
x3 − σ 2

2a
x.

The second eigenfunction h2 decomposes the state space into the two sets
X = M1 ◦ M2 := (−∞,0) ◦ (0,∞). The conditions of Theorem 3.7 are satisfied
and consequently, each of the twisted processes on M1 or M2 is V̌ -uniformly
ergodic with V̌ = V/h2 = ex/|x|, x ∈ Mi , i = 1,2. Moreover, each of these sets is
V -metastable with exit rate (Mi) = a. The twisted differential generator for the
process on M2 is given by

Ď2 = D + σ 2H ′
2 dx

= (−ax + σ 2/x) dx + 1
2σ 2 dx2.
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This is the generator for the Smoluchowski equation with potential 1
2ax2 −

σ 2 log(x), x ∈ M2. One can check directly that this diffusion on M2 is V̌ -uniformly
ergodic.

Not all “twistings” give rise to an ergodic diffusion: applying the differential
generator to the function f (x) := exp(1

2βx2) with β = 2a/σ 2 gives

Df = −aβx2f (x) + 1
2σ 2(β + β2x2)f (x)

= {1
2σ 2β + (1

2σ 2β2 − aβ
)
x2}f (x)

= af (x).

That is, the constant a > 0 is a (generalized) eigenvalue for the differential gener-
ator D and f is the corresponding (generalized) eigenfunction. Although X is a
V -uniformly ergodic Markov process we see here that the (generalized) eigenvalue
is equal to a > (X) = 0. Nevertheless, one can perform a transformation using f

to form a new diffusion on R via (20). The twisted process is a driftless Brownian
motion on R.

This shows that care must be taken in interpreting (generalized) eigenfunction
equations for D . In general, the inequality (M) ≥  in Theorem 3.2(i) may be
strict and the twisted process may not be ergodic.

4.2. The shattered state space. If the connected components {Mi} ⊂ C of
{h2(x) �= 0} are each metastable, then Theorem 3.8 suggests that the “indicator
process” giving the current metastable set that the process resides should approxi-
mate a finite state-space Markov chain. However, the conclusions of Theorem 3.8
are not very meaningful unless the twisted process admits a significant spectral
gap. Consequently, if the semigroup has a cluster of eigenvalues near zero, then
an approximation by a finite state-space chain is not possible without perform-
ing a refined decomposition that takes into account the interaction of a cluster of
eigenvalues.

Suppose that (V4) holds, fix n ≥ 2, and suppose that {�i : 1 ≤ i ≤ n + 1} ⊂
(−,0) are the n + 1 first eigenvalues satisfying

s(DV ) ∩ {z ∈ C : Re(z) > −
}

= {�i : 1 ≤ i ≤ n + 1}.
We assume the eigenvalues are distinct, real and ordered,

 > |�n+1| > |�n| > · · · > |�1| = 0,

and that |�n+1/�n| � 1.
For simplicity we take n = 3 and we assume that each of the first four eigen-

values are simple. Hence, for each i = 1,2,3,4 there exists a one-dimensional
eigenspace spanned by an eigenfunction hi ∈ LV∞. An illustration of the assumed
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FIG. 4. At left is shown the spectrum of the generator DV and at right is shown the spectrum
of Ď, viewed as a differential operator, where the third eigenfunction and eigenvalue are used to
construct the twisted generator. The spectra shown in the right-half plane does not correspond to

eigenfunctions in LV̌∞.

eigenvalue structure is shown in Figure 4. We assume moreover that the conditions
of Theorem 3.7 hold, so that in particular,

∇hi(x) �= 0 whenever hi(x) = 0, i = 2,3,4.

For m = 2,3,4, let {Mm
j : 1 ≤ j ≤ nm} denote the open connected components

of {x ∈ Rl :hm(x) �= 0} and let T m• := min(t > 0 :hm(X(t)) = 0). The twisted
generator Ďi is defined as before by a similarity transformation and a translation:

Ďi = I−1
hi

DIhi
+ iI,

where i := |�i | for i ≥ 2.
For i = 2,3,4 we may conclude from Theorem 3.7 that the associated twisted

process on any Mi
j is V̌i-uniformly ergodic with h−1 ∈ L

V̌i∞. Consequently, each of
these sets is metastable, with exit rate equal to i , i = 2,3, and, moreover, from
the definition of the twisted process,

Ex[exp(iT
i• )] = ∞, x ∈ Mi

j , 1 ≤ j ≤ ni.

This is a dramatic statement since i := |�i | ∼ 0 for i ≤ 3. Similarly, for all
 < 4,

Ex[exp(T 4• )] < ∞, x ∈ M4
j , 1 ≤ j ≤ n4,

so that the process exits these sets relatively quickly.
It appears then that one should focus on the process with generator Ď3. If

Figure 4 is accepted as an illustration of the spectrum of this generator (ignoring
those eigenvalues in the right-half plane), it would then follow that the associated
twisted process has a relatively large spectral gap. It is in this situation that the
conclusions of Theorem 3.8 have the greatest impact.

Here we investigate a refinement of this decomposition using two eigenfunc-
tions as follows:
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State space decompositions.

(i) The shattered state space S ⊂ C is given by

S :=
{

connected components of the open set

{x ∈ X :h2(x)h3(x) �= 0}
}

.(26)

We denote by a,b, c, . . . generic elements of S and we denote the exit time from
any s ∈ S by

T• := min(T 2• , T 3• ).

(ii) Suppose that a ∈ S with h4(x) �= 0 for all x ∈ a. Then the set a is called a
transition set.

We do not know if any of the sets in S are metastable, although there are
numerous combinations M = a1 ◦ a2 ◦ · · · ◦ ak that are metastable for X. When
a subset {ai : 1 ≤ i ≤ k} ⊂ S has this property it may be viewed as a metastable
subchain of a finite state-space chain with alphabet S. Lower bounds on exit rates,
in particular the behavior of the process on a transition set, are addressed in the
following proposition.

PROPOSITION 4.1. For any a ∈ S we have (a) ≥ 3. If a is a transition set
we have (a) ≥ 4.

PROOF. The bound (a) ≥ 3 is obtained as follows: every a ∈ S is contained
in one of the sets M3

j , so we may assume that h3 is strictly positive on a.
Theorem 3.2(i) implies that (a) ≥ 3 since we also have Dh3 = −3h3 on a.

If a is a transition set, then a ⊂ M4
j for some j . Identical reasoning implies that

(a) ≥ 4. �

Our goal is to build a finite state-space Markov chain on the finite alphabet S
and view major transitions of the diffusion as simple jumps of this Markov
chain. We introduce some suggestive directions for future research here, but fall
short of proving an exact correspondence between this chain and the diffusion.
A precise approximation is possible by considering a sequence of processes whose
spectral gap approaches infinity. We illustrate this in Section 5 through results from
numerical experiments.

Given any decomposition of the state space S = {a1, . . . ,am} ⊂ C we consider
the following guidelines in the construction of a rate matrix Q = (qij ) to represent
an approximating Markov chain. Properties (R2) and (R3) ensure that Q generates
stochastic matrices etQ for all t ≥ 0.
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Conditions on rate matrix Q.

(R1) Diagonal elements given by qii = −(ai).
(R2)

∑
j qij = 0 for all j .

(R3) qij ≥ 0 for i �= j .
(R4) Q generates a unique invariant measure, that is, the eigenspace of its largest

eigenvalue 0 is one-dimensional.

For any finite decomposition a rate matrix satisfying these conditions may be
defined as follows: The diagonal elements are given by (R1) and for any two
neighbors ai,aj ∈ S we define

qi,j = pi(ai|ai ◦ aj ),(27)

where pi is the normalizing constant,

pi := (ai)
[∑{

(ai|ai ◦ ak) : ak is a neighbor of ai

}]−1
.

This is the appropriate representation in the (unrealistic) case, where

X̂(t) = (
1a1(X(t)), . . . ,1am(X(t))

)
, t ∈ T,

is a Markov chain. We next investigate how far the indicator process X̂ deviates
from a Markov chain.

4.3. Error bounds for Markov chain approximations. Suppose we are given m

disjoint sets {ak : k = 1, . . . ,m} ⊂ C and assume that these shatter the state space
in the sense that a1 ◦ · · · ◦ am = X. To construct an approximating Markov chain
we consider the coupling matrix Wt = (wt

kl)k,l=1,...,m defined by the steady-state
probabilities,

Wt
kl = Pπ [Xt ∈ al|X0 ∈ ak].(28)

We assume that the semigroup is self-adjoint and compact so that there exists an
orthonormal basis of eigenfunctions {hk} in L2

π , where the dual product is given
by

〈f,g〉π :=
∫

X

f (x)g(x)π(dx)

and π is the invariant measure of X. This additional structure is convenient in
obtaining simple bounds.

The normalized indicator functions of sets in S are given by

χk = 1ak

/√
π(ak), k = 1, . . . ,m.(29)

This allows us to rewrite the matrix {Wt} in the form

(W t)kl = M−1/2 · (〈P tχk,χl〉π )k,l=1,...,m · M1/2.
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The {χk} may be expressed in terms of the eigenfunctions through the following
expansion,

χk =
∞∑

j=1

ckl hl, with ckl = 〈χk,hl〉π,

which is convergent in L2(π). If we truncate this sum to j ≤ m we then obtain
the projection of χk onto the subspace spanned by the first m eigenfunctions. The
mean-square error is given by

ε2
k :=

∥∥∥∥∥χk −
m∑

j=1

cklhl

∥∥∥∥∥
2

π

=
∞∑

j=m+1

c2
kl .

For any t, k, l we have the representation,

〈P tχk,χl〉π =
∞∑

j=1

ckie
�j t 〈hi, cljhj 〉π =

∞∑
j=1

ckj e
�j t clj

= (
Ĉe�̂t ĈT )

kl,

with matrices Ĉ = (ckj ) ∈ Rm×∞ and �̂ = diag(�j) ∈ R∞×∞. A truncation of
this identity leads to a finite matrix with bounded error. Setting sk =∑m

j=1 ckl hl

and ek = χk − sk gives

〈P tχk,χl〉π = 〈P tsk, sl〉π + 〈P tek,χl〉π + 〈P tsk, el〉π ,

with ∣∣〈P tek,χl〉π
∣∣≤ ‖P tek‖π · ‖χl‖π ≤ e�m+1t εk,∣∣〈P tsk, el〉π
∣∣≤ ‖P tel‖π · ‖sl‖π ≤ e�m+1t εl · (1 + εk)

and hence the bound,∣∣〈P tχk,χl〉π − 〈P tsk, sl〉π
∣∣≤ e�m+1t (εk + εl + εkεl).

Using these bounds we may compare the coupling matrix {Wt } given in (28)
with the semigroup for a finite state-space Markov chain. First observe that with

C = (ckl)kl=1,...,m, D = diag(e�1, . . . , e�m) and M = diag
(√

π(ak)
)
,

the previous definitions give(〈P tsk, sl〉π )k,l=1,...,m = CDtCT .

Setting

Ŵ t
kl := (M−1/2CDtCT M1/2)kl,(30)
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we henceforth get∥∥Wt − Ŵ t
∥∥
π ≤ ∥∥(〈P tχk,χl〉π − 〈P tsk, sl〉π )k,l=1,...,m

∥∥
2

≤ me�m+1t · max
k,l

(εk + εl + εkεl)︸ ︷︷ ︸
error indicator

.(31)

In general the semigroup {Ŵ t } is not positive, though positivity is guaranteed if
the approximation above is sufficiently tight.

5. Numerical example: the three-well potential. We conclude with some
numerical results to better understand the “shattered state space,” the finite state-
space Markov chain and the exponential approximation of the exit times. We
consider the Smoluchowski equation

dX = − 1

γ
∇U(X)dt + σ

γ
dW,

where the potential U : R → R+ is smooth. The restriction to one-dimension is
simply for ease of exposition and to avoid subtleties surrounding exotic stationary
points for the potential U .

We have already remarked that this is an elliptic diffusion when σ > 0. The
diffusion X is ergodic provided the function p0(x) := exp(−κU(x)) is integrable
on R, where κ = 2γ/σ 2 is the inverse temperature. In this case the invariant
density for the stationary distribution is given by p(x) = Z−1p0(x), where Z

is a normalizing constant. Under mild additional assumptions on the potential
function U one can verify that this Markov process is V -uniformly ergodic, with
V = eεU for some ε > 0 [18, 26].

For our numerical analysis we consider in greater detail the three-well potential
introduced in the Introduction with

U(x) = 1
200(0.5x6 − 15x4 + 119x2 + 28x + 50).(32)

The required eigenvalues and eigenvectors of the generator were computed
numerically by means of finite element discretization with uniform grid in
the interval [−6,6], with piecewise linear ansatz functions and zero Dirichlet
boundary conditions at x = ±6.0. Convergence and convergence rates of this
procedure are known since the generator is self-adjoint in the Hilbert space L2

π .
The accuracy of the numerical approximations have been tested based on this
supporting theory using grid refinement.

5.1. Exit rates and the shattered state space. Discretizing the generator
corresponding to the three-well potential with parameters γ = 2.25, σ = 1.5 yields
an inverse temperature κ = 2 and the following spectrum:

�1 �2 �3 �4 �5 �6 . . .

0.0000 −0.0216 −0.0381 −0.4183 −0.6509 −0.9240 . . .
(33)
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FIG. 5. On the left is shown the metastable sets and the shattered state space corresponding to the
three-well potential for γ = 2.25 and σ = 1.5. At right is the potential U3(x) = U − log(|h3|) for
the transformed generator (solid line).

The first four eigenfunctions are shown in Figure 5 for this value of κ .
For decreasing temperature, Figure 6 shows that the second and third eigenval-

ues converge to 0, while the fourth and higher-order eigenvalues remain bounded
from below with increasing κ . Here we consider decompositions of the state space
when κ = 2 and in Section 5.2 we consider in some detail the asymptotics of the
eigensystem as κ → ∞.

We may use the third eigenfunction h3 to obtain the twisted process defined
in Section 3.2. According to Proposition 3.4(iii), the twisted process is again a
Smoluchowski equation corresponding to the potential function U3(x) = U(x) −
σ 2 log(|h3(x)|), as shown in Figure 5, and with the same values of γ and σ as
for the original Smoluchowski equation. Observe that the potential function U3

is similar to the original potential function U (dashed line), but the zeros of h3

FIG. 6. Eigenvalues for the three-well potential as a function of κ . The second and third eigenvalue
converge to zero (left), while (the magnitude of ) the fourth eigenvalue is bounded away from
zero (right).
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TABLE 1

Set s �(s) (theor.) �(s) (exp.)

a 3 = 0.038 0.036
b (b) > 4 6.166
c (c) > 3 0.049
d 3 = 0.038 0.037
M2

1 = a ◦ b 2 = 0.022 0.021

M2
2 = c ◦ d 2 = 0.022 0.021

M3
2 = b ◦ c 3 = 0.038 0.035

correspond to poles of U3. This creates barriers in the state space for the twisted
process, forming the decomposition X = M3

1 ◦ M3
2 ◦ M3

3.
The shattered state space obtained using both eigenfunctions h2 and h3 consists

of the four components S = {a,b, c,d} of the open set {x :h2(x)h3(x) �= 0}, as
shown at left in Figure 5. We have the following characterizations:

(i) The sets a and d are two components of {h3(x) �= 0} = {M3
1,M3

2,M3
3}. Due

to Theorem 3.7 they are metastable with (a) = (d) = 3.
(ii) The set b is a transition set since h4 does not vanish on b. Due to

Proposition 4.1 we have (b) > 4.
(iii) The set c is a proper subset of the metastable set M3

2 and hence (c) >

(M3
2) = 3 due to Theorem 3.7 and the definition of a metastable set on page 430.

Numerical estimates of exit rates for the sets {a,b, c,d} and their combina-
tions are shown in Figure 7 when κ = 2. These values were obtained by esti-
mating the decay of the distribution of exit times for each set as follows: Given
the initial state x0 in the corresponding set, N = 120,000 independent realiza-
tions of the diffusion process were simulated. Estimates of the exit time dis-
tribution for each set s were obtained via detection of the exit time for each
realization, from which the rate (s) is approximated by estimating the decay
rate of the exponential tail through linear regression. Table 1 summarizes the re-
sults.

A more detailed investigation of the simulation data shows exactly how the exit
time deviates from an exponential random variable. Recall that the conditional
distribution function for the residual life at time T ≥ 0 is given by

Fx(s, T ) = Px[(T• − T ) ≥ s|T• ≥ T ].
The plots shown in Figure 8 illustrate estimates of the residual life distribution
function based on data obtained in the simulations described above.

The exit-time distribution shows two time-scale behavior when the initial
condition x0 ∈ s is located near the boundary of the set s under consideration.
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FIG. 7. Exit time statistics for the sets S = {a,b, c,d} and their combinations. Based on
N = 120,000 realizations, each figure shows a logarithmic plot of the number of realizations that
have not exited up to the time specified on the horizontal axis. The decay rates of the distribution
have been estimated via linear regression of the logarithmic data; only data with sufficient sampling
information included (indicated with small circles).



METASTABILITY IN MARKOV PROCESSES 451

FIG. 8. Residual exit time distribution Fx(·, T ) for the sets S and several combinations. The
small circles indicate the estimates for the exponential decay rates of Fx(·, T ) versus T based on
N = 120,000 realizations. The solid and dotted lines indicate the average and variance of exit
rates for 60 independent samples of length N = 2000 each. The dashed line shows the theoretically
expected value.
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FIG. 9. Exit time statistics for the set M2
1. Based on N = 120,000 realizations, each figure shows

a logarithmic plot of the number of realizations that have not exited up to the time specified on the
horizontal axis. The logarithmic plot after detailed regression exhibits two different decay rates. The
tail of the distribution decays approximately due to �2 (right), while initially (small exit times) the
decay is substantially faster (left).

As shown in Figure 9, the residual life distribution possesses a high rate of decay
initially and decays more slowly for higher values of the time T .

5.2. Asymptotic behavior of eigensystem and Markov chain approximations.
We have already noted that the data shown in Figure 6 shows that the second
and third eigenvalues converge to 0 exponentially fast as κ → ∞, while the
fourth eigenvalue, and therefore all remaining eigenvalues, do not vanish with
increasing κ . If we consider decompositions of X = R using h2 or h3, then we
can predict the asymptotic values of their zeros by applying the implications from
large deviations theory and Theorem 3.8 as stated at the end of Section 3.4. The
results are illustrated in Figures 10 and 11.

We noted in Section 4.3 that an optimal representation based on an L2 projection
will give rise to an exact Markov chain model for vanishing temperature if
there is a nonvanishing spectral gap beyond the first three eigenvalues. As the
temperature decreases, the three-set representation {Wt} of the diffusion process
obtained in Section 4.3, equation (27), tends to a semigroup {Ŵ t } given by a rate
matrix defined through (30). Figure 12 shows that the upper bound of the error
indicator (31) tends to zero for vanishing temperature exponentially fast.

This is also illustrated in Figure 13. Recall that the normalized indicator
functions {χi} given in (29) may be approximated by a linear combination of
the first three eigenfunctions. As predicted in the discussion of Section 4.3, this
approximation is increasingly accurate for increasing κ .

For large sampling times t there is good agreement between {Wt} and the
semigroup {Ŵ t}, even when the error indicator is large, since the pre-factor e�m+1t
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FIG. 10. The second eigenfunction for the three-well potential. Exactly as seen for the double-well
potential, there exists a value x21 ≈ −2.42 that breaks the state space into two regions with
approximately equal exit rates. This point is asymptotically equal to the zero of the second
eigenfunction. The right-hand side shows a close-up of the eigenfunctions shown at left.

of the upper bound (31) is small when there is a significant spectral gap. Figure 6
exhibits that �m+1 = �4 is clearly bounded away from 0 for all values of κ > 0.

In conclusion, we find that a four-state Markov chain does indeed accurately
approximate the transition behavior of this diffusion, even for only moderately
low temperature. In particular, for κ = 2 the rate matrix Q = (qi,j ) with qi,j =
pi(ai|ai ◦ aj ) defined in (27) is given by

Q =


−(a) (a) 0 0

pb(b|a ◦ b) −(b) pb(b|c ◦ b) 0

0 pc(c|b ◦ c) −(c) pc(c|d ◦ c)

0 0 (d) −(d)



≈


−0.036 0.036 0 0

3.083 −6.166 3.083 0

0 0.016 −0.049 0.033

0 0 0.036 −0.036

 .

The eigenvalues of Q are given by

�1(Q) �2(Q) �3(Q) �4(Q)

0.000 −0.021 −0.074 −6.192
,

so that the second eigenvalue is nearly in agreement with �2 = −0.022 of the
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FIG. 11. The third eigenfunction, for various values of κ , together with two close-ups of the
eigenfunction near its two zeros. We observe good convergence towards the predicted values
x31 ≈ −3.11 and x32 ≈ 1.37.

diffusion [cf. (33)]. The second eigenvector of Q is v2 = (−0.870,−0.373,0.127,

0.297)T , which also mimics the structure of the second eigenfunction h2 (cf.
Figure 5).

FIG. 12. Dependence of error indicator on κ for the three-well potential.
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FIG. 13. Approximation of the normalized indicator functions χi by si = optimal linear
combinations of the first three eigenfunctions for the three-well potential. The three sets used to
construct {χi} are designed based on the asymptotic location of the zeros according to Section 3.4.
The top figure shows plots when κ = 1.5, and in the lower figure κ = 6.5. The approximation is far
more accurate for larger values of κ , which is consistent with the data shown in Figure 12.

6. Outlook. In this paper we have developed some new tools for addressing
the behavior of Markov processes restricted to a given domain and we have
applied these methods to provide new bounds on the distribution of exit times. The
numerical results suggest that these approximations are far more accurate than any
computable bounds might reveal.

We are currently considering various extensions and refinements of these
methods. In particular,

1. It may make no sense to search for eigenfunctions for high-dimensional models.
In complex models we will require softer formulations of the eigenfunction
equation (18), where 0 is replaced by a function on M. A twisted process can
still be constructed, and analyzed according to the present paper, and this again
gives bounds and statistical properties of exit times.

2. The approaches of [3] and [11] are based upon a variational representation of
certain expectations, reminiscent of the variational representation of the rate
function in large deviations theory (see [42]). We have recently shown that the
large deviations rate function admits a variational representation as entropy for
V -uniformly ergodic diffusions [20] and hope that some analogs will prove
useful in providing a bridge between our methods and those in the references.

3. We have said nothing about the impact of a cluster of complex eigenvalues. It
appears that a similar story may be told, but the constructed twisted process will
be periodic in this case since metastable sets will exhibit a form of periodicity.
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4. It is a simple matter to show that the optimal representation obtained in
Section 4.3 will approximate the diffusion by a finite state-space Markov chain
under natural assumptions. What is less obvious is the accuracy of ad-hoc
constructions such as (27). This is a topic of current research.
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