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Oscillatory Behavior of the Rate of Escape through an Unstable Limit Cycle
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Suppose a two-dimensional dynamical system has a stable attractor that is surrounded by an unstable
limit cycle. If the system is additively perturbed by white noise, the rate of escape through the limit
cycle will fall off exponentially as the noise strength tends to zero. By analyzing the associated
Fokker—Planck equation we show that in general the weak-noise escape rate is non-Arrhenius: it
includes a factor that is periodic in the logarithm of the noise strength. The presence of this slowly
oscillating factor is due to the nonequilibrium potential of the system being nondifferentiable at the
limit cycle. We point out the implications for the weak-noise limit of stochastic resonance models.
[S0031-9007(96)01854-6]

PACS numbers: 02.50.—r, 05.40.+]

A particularly interesting phenomenon is the occur-of matched asymptotic expansions, but their analysis
rence of noise-induced transitions between attractors aissumed tha¥ was differentiable at the limit cycle.
a dynamical system. Such transitions occur in chemi- In this Letter we begin an asymptotic analysis of
cal physics, where the transition is a motion across d@he rate of escape through an unstable limit cycle that
transition-state surface from a reactant region to a prodncorporates the insights of Graham and Tél, and of Day,
uct region. They also occur in statistical physics, and irand obtain a striking result. We show that generically,
other fields where stochastic modeling plays a role [1,2]. in two-dimensional models with an unstable limit cycle
If the noise is white, or has a short correlation time andenclosing an attractor, the rate of esc#®é& given by a
may be approximated as white, then the probability dennon-Arrhenius formula of the form
sity of the system will satisfy a Fokker-Planck equation R ~ constx €’G(|Ine|)e 2W/e 1)
(FPE). This equation governs the way in which noise- weak-noise  — 0) limit. Here b is model de-
induced transitions occur. At least in finite-dimensional :

X o endent, and the facta@ (| In €|) is a model-dependent
systems, the rate at which any such transition takes plaé)e iodic f . fll Th f sucHowl
should fall off exponentially as, the noise strength, tends periodic unction .Ol nel. € presence ot sucslowly
t0 zero. (In thermal a Iicatio,nswould be bro or'EionaI oscillating factorsin the expressions for noise-dependent
to kT.) . In fact, each tgelsition should be ck?ar;fcterized btransition rates has not previously been suspected. It

e . e . Nndicates that even in bistable dynamical systems with
an activation energA W, with the transition rate falling . . . . )
. AW e . ~ effective dimensionality as low as two, relaxation phe-
off to leading order ag . Computing the preexpo

X . : nomena may be more complicated than is commonly be-
nential factor requires a careful analysis of the FPE [2—5]Iieveol Our analysis applies whenever the system s truly
Most work has focused on the case when the competmgNO di;nensional i.e., is nonseparable

attractors of the dynamical system are separated by a Models—We consider models with dynamics that are

separatrix (i.e., a ‘ridge”) containing a s_ad_dle pOInt'those of a Brownian particle moving in a drift field, i.e.,
However, models where the separatrix is instead an

2
unstable limit cycle arise in the context of chemical i i 1/2 i
reactions constrained to occur far from equilibrium [6]. * wix) + e Z‘ 7o) alt). @
Also, transitions across an unstable limit cycle separatingarey —
steady states of periodic vibration occur in models ofgq1q , =
stochastic resonance in bistable continuous systems [7,
A full analysis of noise-driven escape through an unStablgatisfying (Na($)1p(1)) = 8ap8(s — 1). & = (0l,) is

limit cycle accordingly seems called for. a so-called noise matrix that is allowed to be state

'Previous work on r_10ise-driv_en transitions in mOdeISdependent (a “zweibein” field). The probability density
with an unstable I|mJt cycle is found in Refs. [2,9— p = p(x,1) of such a system satisfies the FPE
13]. Graham and Tél [9,10], and Day [11-13], have .

noted that the nonequilibrium potenti#, as a function 7 — —Lip =(€/2)9;0,[D(x)p] = dilu'x)p], (3)
on the state space of the system being modeled, willvhere the diffusion tensab = (D) = oo’. The op-
be nondifferentiable (“wild”) near the limit cycle if erator L is the (forward) Fokker-Planck operator. We
the system fails to satisfy a form of detailed balanceconsider here the case when there is a point attractor
Naeh et al. [2] began an analysis of the Fokker-Planckthe (x',x?) plane, with domain of attractiof), and the
equations associated with such models, by a methodoundaryd() is an unstable limit cycle.

a=1
(x',x?) is a pair of state variables, and the drift
(u', u?) specifies the dynamics in the absence
f noise. (n1,72) is a pair of white noise processes,
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This framework is sufficiently general that it can so thatAW, the falloff rate of the escape rate, is the value
accommodate two-dimensional models with overdampedf W attained on the unstable limit cycle.
dynamics, or one-dimensional models with underdamped Substituting (7) intoL/po, = 0 and separating out the
dynamics. In the latter case one of the state variabies ( O (¢ ') terms yields the eikonal equation
say) would be a position, and the other a velocity. Our

simulations below are of a model of this sort, namely, H@', ow/ox') =0, (8)
. where
i=v, (@) | . |
H(x',p;) = 3DY(x)pip; + u'(x)p; 9)
v=—x+ @ = Dv + €. (5)

is a so-called Wentzell-Freidlin Hamiltonian [15]. Equa-
This is a time-reversed van der Pol oscillator, the asymption (8) has the form of a Hamilton-Jacobi equation, with
totic analysis of which was begun by Day [13]. Here W a classical action at zero energy. To compUtéx)
(x!, x2) = (x,v), S = (0,0), and D = diag (0, 1) is de- one may simply use Hamilton’s equations of motion to
generate. The unstable limit cycle is shown in Fig. 1.  generate the zero-energy classical trajectory ftHmo x.
Analysis—To estimate the rate of escape through,  The quantityW(x) will necessarily equalf p - dx, the
we use the Kramers flux-over-the-barrier technique [14]line integral being taken fror§ to x along the trajectory.
Suppose that escaping Brownian particles are reinjected &e stress thap = VW here is not a physical momen-
the attractorS, and a steady state has been reached. Thm: it is a mathematical artifact. Hamilton’s equation
probability density in this state, which we dengtg will ' = Dp; + u' reveals thatp measures the extent to
satisfy L po = 0. When the noise strength is small,  which the classical trajectories move against the drift
po Will be tightly peaked neaf. py(x), at pointsx on  Deterministic (no-noise) trajectories hape= 0.
the limit cycle 9 and outside it, will be suppressed by a By separating out th& (¢°) terms in L po = 0 one
factor ~e~2"/¢ relative topy(S). Since the FPE has the can show that the prefactdf(x) satisfies [2,5]
form of a continuity equation, with current density{p |

; i K = —(V - W ..
equalling pu' — (e/2)a,[DYp], the escape rat® may K (V- u + DYW,;/2K, (10)
be computed as the flux of probability througfy, i.e., the time derivative being a derivative with respect to tran-
sit time along the zero-energy classical trajectory. Here
R ~j Jlpo] - nd{i/f pod’x. (6) W, =aW/ox'ax/. By differentiating the Hamilton-
3 Q Jacobi equation one can show that the mati;) satis-
Heren denotes the outward normal @if). fies a Riccati equation along the trajectory,
To derive the oscillating formula of Eq. (1) from Voo opnkwow. ok wr
Eq. (6), we introduce a WKB approximation to the Wij DEWaWaj = i W,
steady-state densify, in the weak-noise limit [2-5], i.e. — b Wy — uiipr (11)
po(x) ~ K(x)exd—W(x)/€]. (7)  This facilitates the computation &f.

The zero-energy classical trajectories emanating from
the attractor, sometimes calledptimal trajectories,
have a direct physical interpretation: they are the most
probable fluctuational trajectories. If a noise-induced
{Iuctuation fromS to x occurs, in the limit of weak noise it
should occur with increasing likelihood along an optimal
trajectory terminating at. Such trajectories have been
seen experimentally [16]. In the weak-noise limit the

Here W(x) is an “activation energy” controlling noise-
induced fluctuations from the attractor to the vicinityxof
Though (7) resembles a Maxwell-Boltzmann distribution,
W is anonequilibriumpotential, since the steady state is
not necessarily an equilibrium state, in that it does no
necessarily satisfy detailed balance. We BHfS) = 0,

3 most probable escape path (MPEP) will be the least-action

ol optimal trajectory extending frorfi to the limit cycled().
Normally this trajectory will spiral intod(}, rather than

1 crossingd () in finite time, for the following reason. If the

> ol MPEP crossed the limit cycle, the crossing point would

be a “hot spot” through which escape would preferentially

-1 occur. The tangential derivativig W (i.e., the tangential

2l momentum p,) would necessarily be zero there. But
the normal drift velocityu” equals zero ord{). So the

-3_3 second term in Eqg. (9) would vanish at the hot spot. If

X D is npndfegenerate, Eqs. (8) and (9) imply tipat= 0
FIG. 1. The unstable limit cycle() of the van der Pol model, there, i.e.x = u. Thatis, the ostensible MPEP would

and the MPEP, which emerges from the attract0) and be a deterministic_traje_ctory, which is im_pqssible. The
spirals into it. The trajectories exiting frofd are optimal MPEP normally spirals into the unstable limit cycle even

trajectories that are small perturbations of the MPEP. whenD is degenerate, as shown in Fig. 1.
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Multivaluedness—Dykman, Millonas, and Smelyan- valued near the unstable limit cycle is much the same as
skiy [17] and the present authors [4] have stressed thassuming that optimal trajectories that are perturbations of
W and K may be multivalued functions of the system the MPEP, as well as the MPEP itself, spiral into the limit
statex, since any given point may be the end point of cycle. What actually happens neaf) is revealed by a
more than one optimal trajectory. This normally happendoincaré section. Suppose we choose some poiathn
in models with an unstable limit cycle, as Fig. 1 shows.and plot the pain(n, p,,), i.e., normal displacement and
Optimal trajectories that are perturbations of the MPERormal momentum, for each optimal trajectory that passes
do not spiral into the limit cycle. Rather, they approachnearby. If W were quadratic ina, i.e., p, = dW/on
it, and wind around the regiof2 a number of times, all were linear inn, the points(n, p,,) would lie on a line
the while deviating farther from the MPEP. They even-with slope W,,, passing through0,0). What happens
tually exit from Q (if the perturbation is in the outward instead is shown in Fig. 2. The MPEP generates points
direction) or move back toward the attractor (if the pertur-that tend to(0,0) geometrically, and lie along the dashed
bation is inward). As a consequence, any paimear the line p, = W ,,n. But perturbations of it generate points
unstable limit cycle is the end point of any of arfinite, that lie along the horizontal solid lines.
discrete set of optimal trajectories, which differ from each Figure 2 can be interpreted in terms of a “return map”
other in their winding numbef. W and K areinfinite  that update$n, p,,) whenever an optimal trajectory winds
valued,and the WKB approximation (7) generalizesto  once around}. This map will have(0,0) as the fixed

0 R point. For the MPEP to spiral inté{) and yield points
po®) ~ D KV (x) exp(—w " (x)/e). (12)  along the ideal line, the linearized return map(@40)

! must have(l,W,,) as an eigenvector, with eigenvalue
less than 1. And since deterministip & 0) trajectories
that “peel off” from Q) do so geometrically(1,0) must
also be an eigenvector, with eigenvalue greater than 1. By
altiouville’s theorem these eigenvalues must be reciprocals,
so we denote themz™! and c. With each turn, the
MPEP decreases its distance fra) by a factorc, and
deterministic trajectories that diverge froaf) increase
their distance from it by a factar.

Figure 2 can now be explained. Suppose the MPEP
intersects then, p,) plane ata(1,W,,). Optimal tra-
jectories that are small perturbations of the MPEP will
intersect it ata(1, W,,,) + Av, whereA is the perturba-
tion strength andr is model dependent. We write =
as(1,W,,) + «,(1,0), wherea,, @, # 0in general. By
o ) ; iterating the return map, we see that after windingore

Ri _ W N _l|) (z’"")_l_h_ fz_",nlwﬂn’ _ (11()1? times, the trajectories intersect the p,,) plane at
a Riccati equation along(}. e final term in as _
dropped out, ag = VW is zero ondQ if W behaves ac™! (1, W) + Aayc'(1,0). (14)
guadratically there.W,,, as a function of position along The «; term has been dropped here, since it becomes
Q) may be computed from (13) by integration [2]. negligible with respect to they, term as/ — «. It is

A problem with this approach was pointed out bythe second term in (14) that gives rise to the horizontal
Graham and Tél [9,10]. Assuming thaV is single solid lines of Fig. 2, as\ is varied away from zero.

On the MPEP, the nonequilibrium potentidl behaves
Pn quadratically neap(). In particular, atn = ac™!, W =
00 n AW + W,,(ac™)?/2. 1t follows that the /th value
- W(n) of the infinite-valued functio (n), which arises
from trajectories that wind times around(}, is

\ W) =~ Wiac™) + (aW/an) (n — ac™")
‘\\\/pn=W,nnn = AW + W (ac /2 + ac™'W,(n — ac™")
; = AW + Wonlac™'n — a®c™%)2). (15)

In thee — 0 limit, this sum is dominated by the term with
minimum W®(x). That is, fluctuations to any pointin

Q, in the limit of weak noise, proceed preferentially along
the physicaloptimal trajectory from the attractor ta the
least-action one. Subdominant trajectories contribute
larger noise strengths, however.

We shall use (12) to compute the flux of Brownian
particles over the barrier(). We first approximatev )
and K near 9Q) by extending the results of Naeh
etal.[2]. As a first attempt, suppose th#lf is single
valued and (to leading order) quadratic né&r, so that
it can be approximated a8W + W,,n%/2. Heren is
the distance in fromd(}, in the normal direction, and the
second normal derivativéV,,, = dp,/dn < 0 depends
on the position along(}. The matrix equation (11) yields

Eachw®, as a function of the normal distanee is to
leading order linear, not quadratic. This has been noticed

FIG. 2. A Poincaré section. This sketch shows the point . -
(n, p») generated by the optimal trajectories passing by SOmi)y Graham and Tél [9,10], who also noted that if one plots

specified point orpQ}. The dots are generated by the MPEP, the physical (i.e., minimum) value d¥(n), one obtains
spiralling intoa€). Cf. Figs. 1-3 of Graham and Tél [10]. a piecewise linear approximation to the ideal parabola
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AW + W,,n?/2. The physicaW is nondifferentiable at The slowly oscillating factorG(|Ine|) is related to
a sequence of points convergingrio= 0. a phenomenon discussed elsewhere [3]. If the noise
Oscillatory asymptotics—To apply the Kramers strengthe is small, escape across a quadratic barrier
method, we need the prefactakd”, as well asw”. At  follows the formally most probable escape path (the
any x, K is computed by integrating Eq. (10) along MPEP) only until it gets within an® (e!/2) distance of
an optimal trajectory that winds times around(2, and the barrier. Thereafter escape occurs diffusively, rather
terminates atx. We must distinguish here between than ballistically. Since the MPEP spirals geometrically
the “ideal” W,,, which is a mathematical abstraction into the barriera(}, the point at which it gets within
[the periodic solution of the Riccati equation (13)], andan O (e'/?) distance will cycle around) as e — 0,
the actual second derivative8W")/axaox/. It is the periodically in|Ine|. (Cf. Day [12,13].) In fact, the
latter that appear in (10). In both (15) and Fig. 2, whichperiod will be 2In¢. If the effective diffusivity varies
were computed on the basis of the linearized return mapyith position alongd(2, one would expect the escape rate
2w®/an? = 0, and hence’?W®/axiax/ = 0, for ev- R to be periodically modulated. That is what we have
ery [. Keeping higher-order terms would keep the seconghown to occur.
derivatives 9w /axi9x/ from being identically zero, We expect the phenomenon of slow oscillations is
but they would still fall to zero ag() is approached. relevant to stochastic resonance in multistable continuous
It follows that when computingk near (), we systems. Hu Gangt al.[18] have recently considered
may replace (10) byk = —(V - u)K. In the limit such systems, with the addition of time-periodic forcing
of large winding number/, which involves integration and external noise. Steady states are then periodic
along a trajectory that spirals ever closer a6}, this  attractors, separated by unstable limit cycles. In the weak-
yields KD /KD ~ exd — §(V - u) dt], the integral be- noise limit, the rate of noise-induced transitions should
ing taken once around(}. By examination, this limiting therefore include an oscillatory factor.
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