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We consider two-dimensional overdamped double-well systems perturbed by 
white noise. In the weak-noise limit the most probable fluctuational path lead- 
ing from either point attractor to the separatrix (the most probable escape path, 
or MPEP} must terminate on the saddle between the two wells. However, as the 
parameters of a symmetric double-well system are varied, a unique MPEP may 
bifurcate into two equally likely MPEPs. At the bifurcation point in parameter 
space, the activation kinetics of the system become non-Arrhenius. We quantify 
the non-Arrhenius behavior of a system at the bifurcation point, by using the 
Maslov-WKB method to construct an approximation to the quasistationary 
probability distribution of the system that is valid in a boundary layer near 
the separatrix. The approximation is a formal asymptotic solution of the 
Smoluchowski equation. Our construction relies on a new scaling theory, which 
yields "critical exponents" describing weak-noise behavior at the bifurcation 
point, near the saddle. 
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its appearance in the overdamped limit of two-dimensional double-well 
systems with nongradient dynamics. In this context, the new phenomenon 
is a bifurcation of the most probable transition path (in the limit of weak 
noise) between the two wells as a system parameter is varied. 

In many ways, the behavior of a system whose most probable transi- 
tion path is just beginning to bifurcate resembles that of a system under- 
going a phase transition. In particular, double-well systems that are "at 
criticality" in the bifurcation sense will exhibit non-Arrhenius behavior. 
This means that the growth of the mean time between interwell fluctua- 
tions, i.e., the growth of the mean time needed for the system to hop from 
one well to the other, will not be pure exponential in the weak-noise limit. 
In double-well systems at criticality, relaxation due to activation will 
proceed (in the limit of weak noise) at an anomalous, in fact anomalously 
large, rate. 

To treat the previously unnoticed phenomenon of bifurcation, we need 
to develop a new approach for treating transitions induced by weak noise, 
when a "soft mode" appears in the dynamics of transverse fluctuations 
around the most probable transition path. Since this is analogous to a 
phase transition, we introduce a sealing theory. In the context of double- 
well systems, our scaling theory is a theory of behavior near the saddle 
point between the two wells, since the saddle is where the most probable 
interwell transition path begins to bifurcate. We shall demonstrate that the 
theory explains the weak-noise behavior, at criticality, of a large univer- 
sality class of double-well systems. 

The scaling theory will reveal a striking feature of the bifurcation 
phenomenon, which is that in any "critical" double-well system there 
appears (in the weak-noise limit) a nongeneric singularity in the stationary 
probability distribution, located at the saddle point. As Berry ~4~ discusses, 
a singularity is nongeneric if it arises, in an appropriate WKB sense, from 
a catastrophe of unusual type; i.e., one of #finite codimension. The sta- 
tionary distribution near the saddle point is described, in the limit of weak 
noise, by an unusual (noncanonical) diffraction function. The familiar 
special functions of WKB theory (Airy functions, Pearcey functions, etc.) 
do not suffice. The singularity at the saddle, and the diffraction function 
with which it is "clothed," can be viewed as the mathematical source of the 
non-Arrhenius weak-noise asymptotics. 

We begin with three largely qualitative sections. In Section 2 we 
review the physical relevance of overdamped models with nongradient 
dynamics, and in Section 3 explain how the weak-noise behavior of any 
double-well model of this type is determined by its flow field of #Tstanton 
trajectories (most probable fluctuational paths). In Section 4 we sketch the 
gross features of the bifurcation phenomenon, including features such as 
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further bifurcations and universality. In Section 5, our treatment becomes 
more quantitative. We first review the matched asymptotic approximations 
technique we have employed elsewhere t2s-3~ and begin extending it to 
handle models with singularities. In Section 5.3 we explain why the bifurca- 
tion transition deserves to be called a phase transition. In particular, we 
explain how behavior near criticality is described by critical exponents,  
which characterize the rate of divergence of measurable quantities (e.g., the 
preexponential factor in the weak-noise asymptotics of the mean interwell 
fluctuation time). In Section 5.4 we explain how to determine whether any 
given double-well model is "critical." The transverse Jacobi operator is the 
differential operator appearing in the second variation of the Onsager- 
Machlup action functional when one varies about the most probable inter- 
well transition path. The onset of bifurcation occurs when this operator 
acquires a zero eigenvalue. 

In Section 6 we explain the use we shall make of Maslov's geometric 
theory of wave asymptotics. (4" 25. 321 In Section 7 we introduce the concept 
of a scaling theory, by developing a scaling theory of weak-noise behavior 
near generic (cusp) singularities. We show how the scaling theory justifies 
the Ginzburg-Landau approximation used in this context by Dykman 
et al. ~ 12) In Section 8 we develop an analogous scaling theory for the non- 
generic singularity associated with the onset of bifurcation. We compare our 
theory with numerical data and examine its predictions for non-Arrhenius 
behavior and the stationary distribution near the saddle point. 

In Section 9 we discuss our results. The reader may wish to glance 
ahead at Fig. 12, which is an Arrhenius plot of the interwell hopping rate 
of any double-well system at criticality. The non-Arrhenius behavior shown 
there, in particular the "logarithmic bend," is the key result of this paper. 

2. PRELIMINARIES 

Statistical physics and chemical physics include many examples of 
stochastically perturbed dynamical systems. It is often the case that the 
state of such a system is modeled as a particle moving in an n-dimensional 
force field F(x) and subject to additional random perturbations ("noise"). 
Since our interest is in the modeling of nonequilibrium systems, we shall 
not assume (as is usually done) that this force field is conservative. 

If the motion of the particle is isotropically damped, with damping 
constant y, in the absence of noise the particle position x would obey the 
deterministic equation 

m~ + ym~ = F(x) (2.1) 
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Adding a random force Frandom(t) yields the Langevin equation 

m~ + ymx = F(x) + Fra,dom(t) (2.2) 

In physical problems Frandom(t) is often modeled as Gaussian white noise 
with amplitude (2ymksT) 1/2 where T is the ambient temperature. In this 
case the associated partial differential equation, which describes the time 
evolution of the probability density of x and its velocity, is known as the 
(forward) Fokker-Planck equation. 

A case particularly important in applications is the overdamped or 
inertialess case, when 7 >> to 1 , for to the physical time scale. In this case the 
m~ term in (2.2) can be dropped, and the Langevin equation becomes first 
order in time. If time is rescaled by a factor 7m (i.e., t ,---7mt), it can be 
written in the normalized form 

= u(x) + elP-Cv(t) (2.3) 

Here w(t) is a standard n-dimensional Gaussian white noise [the derivative 
of w(t), a standard n-dimensional Wiener process], the "drift field" u equals 
F, and e equals 2ks T. The corresponding scalar advection-diffusion equa- 
tion for the probability density p =p(x ,  t) of x, 

# = (e/2) V2p - V. (pu) (2.4) 

is known as the (forward)Smoluchowski equation. It can be written as 
# = - ~ * p ,  where 

~ * -  -(e/2)  V2 + u .  V + V .u  (2.5) 

It is often necessary to generalize the equation to include the effects of 
anisotropic damping t21~ or state-dependent noise/23~ However, in this 
paper we consider only overdamped systems whose Langevin equation is of 
the form (2.3). Since we do not require the deterministic forces to be con- 
servative, we do not require u to be a gradient field. This means that even 
in stationarity, the system may not display detailed balance. Equivalently, 
the stationary probability distribution for the system may not be (in the 
traditional sense) in thermal equilibrium. 

Attractors of the drift field u, in particular point attractors, correspond 
to "metastable states": they are stable states of the underlying deterministic 
dynamics, but the thermal noise may induce transitions between them. Of 
great physical interest is the time needed for this to occur. For example, 
how long does it take for the noise in (2.3) to overcome the drift toward 
a specified stable point S and drive the system state x beyond the domain 
of attraction of S toward another attractor? The study of such noise- 
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activated transitions is known as the stochastic exit problem or the escape 
problem. For  general stochastic models only numerical results can be 
obtained (see, e.g., ref. 7). The Smoluchowski equation is particularly 
difficult to handle in the e ~  0 limit. This is the weak-noise, or low- 
temperature limit, in which the mean first passage time (MFPT)  ( r )  from 
S to the boundary of its domain of attraction grows exponentially. In this 
limit a single escape path  (the most probable escape path, or MPEP)  
usually dominates. Our  approach to the weak-noise limit, which does not 
rely on a numerical simulation of the Smoluchowski equation, will exploit 
this asymptotic determinism quite heavily. 

3. S Y M M E T R I C  D O U B L E - W E L L  M O D E L S  

As in two of our earlier papers on the stochastic exit problem, ~28" 29~ we 
shall focus on two-dimensional "double-well" systems with smooth drift 
field u = (ux, Uy) of the symmetric form shown in Fig. 1. I f  x = (x, y) is the 
two-dimensional state variable, ux(x, y) is taken to be odd in x and even 
in y, while for Uy(X, y) the reverse is true. There is assumed to be a linearly 
stable point at tractor S =  (xs, 0) whose domain of attraction is the entire 
open right-half plane. By symmetry, its reflection S ' =  ( - x s ,  0) attracts the 
open left-half plane. There is also assumed to be a single saddle, or hyper- 
bolic point, on the y-axis separatrix between the two domains of attraction. 
It must be at the origin, by symmetry. Nongradient drift fields with this 
topology arise in statistical and chemical physics, and also in theoretical 
biology, e.g., in stochastic competition models of population dynamics. ~3~ 

y 

-x~ 0 x s 

Fig. 1. The streamlines of a typical symmetric double-well drift field, indicating the path 
taken by the particle in the absence of noise. There are point attractors at S= (x s, O) and 
S' = ( -xs,  O) and a saddle point at (0, 0). 
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One expects that as e ~ 0, exit from either of the two domains of 
attraction will occur preferentially over the saddle. The drift field u is 
assumed to have a nondegenerate linearization at the saddle. So 2, .= 
Ou.,./Ox(O, 0 ) >  0, and 2,, =au.,,/Oy(O, 0 ) < 0 .  We shall see that the character 
of the above-mentioned bifurcation phenomenon depends strongly on the 
quotient p = 12:, l/2,-. 

A typical (and not necessarily gradient) symmetric double-well drift 
field, which we have used elsewhere for purposes of illustration and shall 
examine further below, is 

uAx, y ) = x  - x  3 -~.x3, ~ 

uy(x, y ) =  -p(1  + x  2) y 
(3.1) 

in which it appears as a parameter. We shall call this drift field the 
"standard" double-well model. For  any choice of It > 0, its structure is that 
of Fig. 1, with S =  (x,., 0) = (1, 0). It is not a gradient field unless the 
parameter ~ equals p. If ~ > 0, it has a very significant additional property, 
which we shall require of all our double-well models. This is the property 
that 02u.,./Sy2(x, 0), which by symmetry is an odd function of x, is strictly 
negative for all x between 0 and x.,.. If this is the case, the drift from the 
saddle toward S "softens" as one moves away from the x axis. The off-axis 
softening, for the standard model, increases as 0c is increased. 

We remind the reader of our approach to the weak-noise limit of 
stochastically perturbed dynamical systems. (We review the mathematical 
aspects in Sections 5.1 and 5.2.) Suppose that such a system has a unique 
stationary probability density Po, which satisfies the time-independent 
Smoluchowski equation s =0.  Typically, as the noise strength e ~ 0, 
P0 takes on an asymptotic WKB form. In fact 

po(x) ~ K ( x )  exp[ - W ( x ) ~ ] ,  e ~ 0  (3.2) 

for certain functions W and K whose smoothness properties we shall leave 
unspecified; K, in particular, may have singularities. In any double-well 
model, by convention W =  0 and K =  1 at x = S and S'. Moreover, W > 0 
at all points x other than S and S'. We call W the nonequilibrium potential 
of the modelJ~6~ If the drift u equalled the negative gradient of a potential 
q~, then W would equal 2q~, K would reduce to a constant, and the WKB 
form (3.2) would reduce to a Maxwell-Boltzmann distribution. For 
systems with nongradient dynamics, the computation of W and K is more 
complicated. 

We interpret W(x) as the rate at which fluctuations to the neighborhood 
of x are suppressed exponentially as e ~ 0. In general W has an alternative 
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interpretation as a classical action function. As we review in Section 5.1, 
this is because the WKB approximation (3.2) is determined by a flow field 
of "classical" trajectories, or WKB characteristics, emanating from the 
attractors of the deterministic dynamics (e.g., S and S'). These classical 
trajectories (sometimes called instanton trajectories ~6"28~ or optimal trajec- 
tories ~ ~-') have a physical interpretation as most probable fluctuational paths. 
In the double-well case, the exponentially rare fluctuations from S (resp. 
S') to any point x in its domain of attraction become increasingly concen- 
trated around the classical trajectory extending from S (resp. S') to x. 
Equivalently, the most probable "prehistory" of any fluctuation passing 
through x extends back toward S or S' along this trajectory/t~ ~ The trajec- 
tories are determined by a classical Lagrangian (the Onsager-Machlup 
Lagrangian), and W(x) is obtained by integrating this Lagrangian along 
the classical trajectory terminating at x. 

In symmetric double-well models the stationary density P0 (and hence 
I40 must be even in x. In the e ---, 0 limit the phenomenon of noise-activated 
hopping between the two wells is governed by the closely related 
quasistationary density p j, which is odd rather than even. The quasista- 
tionary density is the next lowest lying (i.e., slowest decaying) eigenmode 
of the Smoluchowski operator ~ * .  For any choice of initial conditions the 
probability density p- -p(x ,  t) necessarily satisfies 

p(x, t )~po(x)+Cpdx)exp(-21t) ,  t--*oo (3.3) 

for some constant C, where 2~ is the eigenvalue of p~. The exponential 
decay of the quasistationary eigenmode is interpreted as describing the 
equilibration of probability between the two wells due to noise-activated 
hopping, or the absorption of probability on the separatrix. ~7~ Of course Pt 
satisfies Dirichlet (absorbing) boundary conditions on the separatrix. Its 
eigenvalue 2~ =).~(e) normally falls to zero exponentially as e ~ 0 .  The 
exponentially small splitting between the ground-state eigenvalue 2 o - 0  
and the eigenvalue 2, is analogous to the exponentially small splitting (as 
h ~  0) between the ground state and first excited state of a quantum 
mechanical Hamiltonian with double-well potential. Both are WKB 
phenomena. In the e--* 0 limit, 2~ is interpreted as the rate at which noise- 
activated hopping takes place. Equivalently, it is a reciprocal MFPT. 

The techniques reviewed in Sections 5.1 and 5.2 permit a computation 
of the e ~ 0 asymptotics of the eigenvalue 2,, and hence of the MFPT (~) ,  
in most symmetric double-well models. Our basic approach is similar to 
that of Kramers. ~22~ In the limit of weak noise we approximate pdx, y) by 
po(x, y) sgn(x) except in a "boundary layer" of width O(e ~/-') near the x = 0 
separatrix and compute ,;t~ as the rate at which probability is absorbed on 
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the separatrix. Performing this computation requires the construction of a 
boundary layer approximation to p j valid near the saddle and matching to 
the "outer" approximations on either side. ~8~ Normally, we find ( r )  
A exp[ + W(0, 0)/e], where A oc K(0, 0) -~. So the asymptotic MFPT 
growth rate in the limit of weak noise is simply A W =  W(O, O) - W(S) = 
W(0, 0), the height of the "action barrier," or activation barrier, between 
the two wells. The MFPT generally displays a pure exponential 
(Arrhenius) growth, with an explicitly computable (e-independent) prefac- 
tor. We shall see, however, that the bifurcation phenomenon may induce 
more complicated (non-Arrhenius) weak-noise asymptotics for the MFPT. 

4. THE BIFURCATION PHENOMENON:  
QUALITATIVE FEATURES 

We pointed out in ref. 28 that a bifurcation phenomenon may occur 
in double-well models as their parameters are varied. Figure 2 displays the 
flow of instanton trajectories (i.e., most probable weak-noise fluctuational 
paths) emanating from the stable point S=(1 ,  0) in the standard model 
(3.1) with ~ = 1, at several values of the parameter 0c. When 0 < ~ < 4 the 
general picture resembles Fig. 2a: the line segment from (1, 0) to the saddle 
(0,0) is the only instanton trajectory from S to the saddle. This line seg- 
ment is interpreted as the most probable escape path (MPEP). In the 
weak-noise limit, the (exponentially rare) fluctuations from the right-half 
plane to the left-half plane proceed preferentially along it. To leading order, 
activation kinetics reduces to instanton dynamics. 

As 0~ is increased, there is a qualitative change, akin to a phase transi- 
tion, in the behavior of the instanton trajectories. This takes place at the 
critical value 0c = 4, as shown in Fig. 2b. When ~ > 4 as in Fig. 2c, they 
focus at a point (xf, 0) on the x axis, with xf>  0. The focus location xf 
converges to zero as ~ ~ 4 § so one may speak of the focal point "being 
born" at criticality, and "emerging from the saddle" as 0~ is increased above 
its critical value. In geometrical optics the focal point would be called a 
cusp. From it there extends a fold, or caustic [an envelope of crossing 
trajectories, with Ay oc ( Ax)3/2]. 

Each point in the sharp-tipped region within the fold is reachable from 
S via three instanton trajectories. Of these three trajectories, only the 
one(s) with minimum action are "physical," and can be interpreted as most 
probable fluctuational paths. For example, on-axis points (x,O) with 
0 <~x<x I are reachable via an on-axis (straight) trajectory, and via two 
additional symmetrically placed off-axis (curved) trajectories. Computation 
shows that the off-axis trajectories have lesser action and are dominant. 
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Fig. 2. The flow field of outgoing instanton trajectories (i.e., most probable fluctuational 
paths, in the weak-noise limit) emanating from the stable point S= (I, 0) of the standard 
double-well model (3.1). Here It = 1; (a-d) ~ = 1, 4, 5, 10. The a =4 model is "critical" in the 
bifurcation sense. Increasing ~ above 4 cause the instanton trajectories to focus and the 
MPEP to bifurcate. 

The true ("least act ion") M P E P s  in Fig. 2c are accordingly the symmetri-  
cally placed pair  of  off-axis trajectories, one above and one below the x 
axis, that  terminate on the saddle point  at (0, 0). Note  that  beyond the 
cusp (i.e., at x <x.c), the physical act ion W is no longer differentiable 
th rough  the x axis. This nondifferentiability arises from different dominan t  
off-axis trajectories being selected as y ~ 0 § and y ~ 0 - .  

The transit ion at e = 4  can be interpreted as a bifurcation of the 
MPEP, corresponding to a sort of  symmetry  breaking. At larger values of  
e, the drift field u and the Langevin equat ion (2.3) remain symmetric about  
the x axis, but  each of  the two M P E P s  is not. The line segment from S to 
the saddle, formerly the (unique) M P E P ,  in no way contributes to the 
leading weak-noise asymptot ics  for escape. (It remains an extremum of the 
O n s a g e r - M a c h l u p  action functional, but  is no longer the minimum.)  

The occurrence of  a bifurcation in the s tandard model  at sufficiently 
high ~ (when p = 1, at 0~ = 4) is due to the fact that  by increasing ~, one 
softens the resistance to mot ion  toward  the separatrix in the vicinity of  the 
x axis ( though not  on the x axis itself). This enhances the probabil i ty of  
escape trajectories that  deviate f rom the axis. Of  course it is only in the 
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limit as e --, 0 that well-defined MPEPs  appear. The existence of a sharp, 
well-defined transition when cc equals some critical value cg. is not at all 
obvious! 

When e is increased beyond cg., further bifurcations of the on-axis 
instanton trajectory will occur. In Section 5.4 we explain how the critical 
values of cr are determined by a Jacobi equation, with a classical mechanical 
interpretation. It turns out that in the standard model with/~ = 1 the j th  
bifurcation occurs at ~=o~(,/)= ( j +  1)2. Figure 2d shows the situation at 
ct= 10, when a second focus (x.~. -'), 0) has emerged, with its own caustic. 
Beyond the first focus (.x~r, 0) each point on the x axis is reached from S by 
three instanton trajectories; beyond the second focus, each such point is 
reached by five. The MPEPs  in Fig. 2d, however, remain the symmetrically 
placed pair of off-axis trajectories that terminate on the saddle. Computa-  
tion shows that the oscillatory trajectories from S to the saddle arising 
from the second, third ..... bifurcations have higher actions, and are accord- 
ingly not physical. 

That  caustics can occur in the flow pattern of the most probable fluc- 
tuational paths has been known for some time, t9' )9~ but ref. 28 was the first 
to consider the effects on exit phenomena. We shall see that what occurs 
at the first critical value of e has much in common with a critical point 
characterizing a phase transition in a condensed matter  system. This is 
suggested by Fig. 3, which plots the activation barrier zl W =  W(0, 0), as 
determined by the true M P E P  or MPEPs,  as a function of ct for the 
standard model with l t= 1. [Recall that A W =  W(0, 0) is the exponential 
growth rate of the M F P T  as the noise strength tends to zero.] W(0, 0) 
decreases above ct = e,. = 4 as the bifurcating MPEPs  move away from the 
x axis. The WKB prefactor K(0, 0) turns out to be singular at the bifurca- 
tion transition; in Section 5.3 we show that it diverges as ~--, ct,7. As a con- 
sequence, in the standard model at least, the weak-noise MFPT asymptotics 
at criticality cannot be of  a pure Arrhenius form. 

There is in fact a set of critical exponents describing the behavior of 
the e ~ 0 asymptotics of the standard model as ~ tends to its (it-dependent) 
first critical value cg. = cd,, ~) and as x ~ 0, y ---, 0. It is a reasonable conjecture 
that behavior near criticality is universal in the sense that it does not 
depend on the details of the stochastic model exhibiting the bifurcation 
phenomenon. To analyze the critical behavior and demonstrate univer- 
sality, in Sections 7 and 8 we shall begin the construction of a scaling 
theory of the bifurcation phenomenon. Our  treatment will extend from the 
standard model (3.1) to any symmetric double-well model with a similar 
"off-axis softening parameter"  ct and a first critical value cg.. We shall first 
identify the singular behavior, for any double-well model at criticality, of 
the action W and the WKB prefactor K at the saddle point. We shall then 
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Fig. 3. The  ac t iva t ion  bar r ie r  zl W =  W(0, 0) - W(S) = W(0, 0) between the two wells of the 

s t andard  double-wel l  model  (3.1) as a function of the off-axis sof tening pa rame te r  cc Here  

It = 1. The lower ing  of the ac t iva t ion  bar r ie r  beyond  0t = tx,. = 4 is due to the bi furcat ion of the 
M P E P  a long  which the act ion difference A W is computed .  

show that at criticality, the stationary density P0 and the quasistationary 
density Pl may be approximated on an appropriate (e-dependent) length 
scale near the saddle point by certain "diffraction functions," which have 
explicit integral representations. The technique for constructing these 
representations is due to Maslov and Fedoriuk 132~ and ultimately to 
Keller/2~ It was Maslov who first worked out, in the context of wave 
fields, the diffraction functions that "clothe" generic singularities other than 
cusps and folds. 

A very important discovery, from a mathematical point of view, will be 
that when ~ equals the critical value ~,. where the MPEP begins to bifurcate, 
the saddle point (0,0) acquires a certain nonzero singularity index. What this 
means is best understood by comparing the singularity at the saddle (when 
ct=ec) with the cusp and fold singularities present when ~>ct  c. The 
terminology of geometrical optics ~4~ is appropriate. The cusp at (~vc, 0) is a 
structurally stable singularity (or catastrophe, in the language of Thom) with 
codimension 2. The fold extending from it, though not "physical" in the 
above least-action sense, is a catastrophe of codimension 1. For points x in 
the vicinity of the cusp, the WKB approximation (3.2) for the value of the 
stationary density p o(X) breaks down. The proper treatment of points near the 
cusp and the fold is similar to the short-wavelength treatment of wave fields 
near caustics, ca' 121 The cusp is said to have singularity index 1/4, and points on 
the fold would (if it were physical) have singularity index 1/6. This means that 
at these singular points the prefactor in the WKB approximation to P0, which 
formally diverges, if properly constructed would acquire a factor e-~/4 (resp. 
e-  I/6). There is a non-WKB (but uniformly valid) approximation to p o(X) in the 
vicinity of each such singular point, in terms of canonical diffraction functions. 
We shall rederive these facts in Section 7 in terms of scaling functions. 
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We shall show in Section 8 that the singularity index of the point 
singularity appearing at the saddle in critical models depends in a universal 
way on p, i.e., on the ratio of the eigenvalues of the linearization of the drift 
, at the saddle. It turns out to be equal to ( p +  1)/6. Moreover, the 
approximations to Po and p~ near the saddle are given by noneanonical dif- 
fraction functions. By using the noncanonical approximation to p~ to com- 
pute the rate at which probability is absorbed on the separatrix, we shall 
quantify the universal non-Arrhenius behavior of the weak-noise MFPT 
asymptotics. We shall show that in symmetric double-well models at criti- 
cality, 

( r )  ~constxe '~exp(  +AW/e) ,  e-~O (4.1) 

where s = s(p) = (p + 1 )/6 is the index of the singularity at the saddle. We 
shall also derive scaling corrections, in the weak-noise limit, to the normal 
distribution of exit location points near the saddle. The preceding results 
will hold for all p satisfying 3 / 4 < p  <3;  the weak-noise asymptotics of 
models with p ~< 3/4 and p >/3 are still under investigation. 

The point singularity appearing in critical models at the saddle point, 
which may be termed a nascent cusp, is nongeneric. It is not a member of 
the well-known family of singularities that includes folds, cusps, swallow- 
tails, etc. This becomes clear if one plots the flow field of the instanton tra- 
jectories emanating from both S and S' in the standard model at criticality 
(lt varying and 0c set equal to its p-dependent first critical value). At least 
when 3/4 < p  < 3/2, one finds that at criticality a two-sided caustic extends 
transversally from the saddle point itself. I ]2) Figure 4, which is an extended 
version of Fig. 2b, shows the flow field when p = 1 and ~ = 0c,. = 4. The 
caustic is clearly visible. It is not "physical," since it is formed by high- 
action instanton trajectories that have crossed the separatrix. But the 
"nascent" cusp is clearly a cusp in its own right, of an unusual sort. 
Numerically one finds that the two-sided caustic extending from it is 
located at 

Ixl <const  x [yl ~3/2-u)-t, y--*0 (4.2) 

A conventional (generic) caustic would have an exponent of 3/2. The con- 
tinuously varying exponent ( 3 / 2 - p ) - ' ,  which turns out to be universal 
and which we shall derive in Section 8 from our scaling theory, signals that 
the two-sided caustic is nongeneric. The nascent cusp from which it extends 
is itself nongeneric in the sense of singularity theory. 

As Berry 14) has emphasized, nongeneric singularities arise from 
catastrophes of  il~nite codimension. It is remarkable that a singularity of 
such complexity is a universal feature of singly parametrized symmetric 
double-well models with nongradient dynamics. 
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Fig. 4. The flow field of the instanton trajectories emanating from the two stable fixed points 
S and S' in a critical version of the standard double-well model (3.1). This figure reveals that 
at criticality, a two-sided caustic extends sideways from the saddle point. Although a universal 
phenomenon, this caustic is nongeneric in the sense of singularity theory. Here p = 1, and the 
parameter ~t is set equal to the corresponding first critical value ~,. = 4, as in Fig. 2b. 

5. Q U A N T I T A T I V E  S E M I C L A S S I C A L  A S Y M P T O T I C S  

We now begin a quantitative treatment of  the weak-noise asymptot ics  
for escape. We first recast our  earlier results in a form that  facilitates the 
analysis of  singularities. In Section 5.1 we discuss geometric aspects of  the 
W K B  approximat ion,  and in Section 5.2 we discuss our  matched 
asymptot ic  approximat ions  technique for comput ing  M F P T  asymptotics.  
In Section 5.3 we use the s tandard model  (3.1) to illustrate the nature of  
the nascent cusp appearing at the saddle at criticality and the ways in 
which bifurcation can be viewed as a phase transition. In Section 5.4 we 
explore the bifurcation phenomenon  from a classical mechanical  point  of  
view and relate it to the appearance of  a transverse soft mode. We explain 
how its appearance is governed by a Jacobi equat ion and how this equa- 
tion determines whether or  not  a given double-well model is at criticality. 

5.1. The W K B  Approx imat ion  and Classical Mechanics  

The t ime-independent forward Smoluchowski  equat ion ~ * P o  = 0 may  
be written as 

H(x,  - e V )  p 0 = 0  (5.1) 

where 

H(x,  p) = p2/2 + u(x) "p (5.2) 
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is the so-called Wentzell-Freidlin Hamiltonian, ~4~ whose dual is the 
Onsager-Machlup Lagrangian t34~ 

L(x, ~ ) =  I x -  u(x)12/2 (5.3) 

In Eq. (5.1) we have adopted an operator ordering convention according 
to which the action of V precedes that of x. 

In the weak-noise ( e ~ 0 )  limit the stationary density P0 and the 
quasistationary density P l are given in the interior of each well by a WKB, 
or semiclassical form. A full WKB expansion for Po would be of the form 

po(X)~ [Kml(x)+eK~l~(x)+ ... ] e x p [ -  W(x)/e], e--*0 (5.4) 

as in geometrical optics. By substituting this formal series into (5.1) and 
examining the coefficients of each power of e, one obtains equations for W 
and the K c''~. That is what we shall do, though we shall work only to lead- 
ing order: our WKB Ansatz will be p o ( x ) ~ K ( x ) e x p [ -  W(x)/e]. Notice 
that since the eigenvalue 21= )~l(~) of p~ is exponentially small as e ~ 0, the 
asymptotic expansions (in powers of e) for p~ and Po will be the same. To 
see the difference between them, which is significant only near the 
separatrix between the two wells, one would have to go "beyond all orders" 
in the WKB expansion. 

The eikonal equation for W is the time-independent Hamilton-Jacobi 
equation 

H(x, V W ) = 0  (5.5) 

so that W is a classical action at zero energy. For any point x in either well, 
it may be computed by integrating the Lagrangian along the zero-energy 
classical trajectory extending from S (resp. S') to x. Each such trajectory, 
which necessarily satisfies the Euler-Lagrange equations, is interpreted as 
a most probable fluctuational path in the e ~ 0 limit. These trajectories are 
the "instanton trajectories" of the last section; the term is justified, by 
analogy with the semiclassical limit in quantum mechanics and quantum 
field theory. TM In the language of GutzwillerJ ~8~ the points at which the 
instanton trajectories focus would be called zero-energy conjugate po#Tts. 

It is convenient to work in the Hamiltonian picture, according to 
which the classical trajectories of interest lie on a zero-energy surface in a 
nonphysical phase space coordinatized by position x and momentum p. 
The flow in this phase space (2n-dimensional, if configuration space is 
n-dimensional) is determined by Hamilton's equations and the 
Wentzell-Freidlin Hamiltonian. From this point of view the instanton 
trajectories of Figs. 2 and 4 are mere images of phase-space trajectories 
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projected "down" to configuration space by the map (x, p) ~-~ x. The phase- 
space trajectories emanate from (S, 0) [resp. (S', 0)]. In WKB theory the 
projected trajectories are traditionally called characteristics, and the phase- 
space trajectories bicharacteristics. Characteristics may intersect, as in Figs. 
2c and 2d, but bicharacteristics may not. 

It is easy to verify, using Hamilton's equations, that (S, 0) and (S', 0) 
are hyperbolic fixed points of the Hamiltonian flow. The unstable manifold 
of (S, 0), for example, comprises all points (x, p) that lie on one of the 
bicharacteristics emanating from (S, 0). The unstable manifolds of (S, 0) 
and (S', 0) are Lagrangian: ~25J they are invariant under the Hamiltonian 
flow. By the term "Lagrangian manifold" we shall refer to either of these 
two unstable manifolds or their union. We denote by .J/g this union, i.e., the 
set of all points (x, p) that lie on a bicharacteristic emanating from either 
(S, 0) or (S', 0). If configuration space is n-dimensional, J /  will be an 
n-dimensional manifold. 

Each point p = (x, p) on ./# has a value for the zero-energy action W 
associated with it, computed by 

W(p) = f p" dx (5.6) 

the line integral being taken along the bicharacteristic terminating at p. If 
due to intersecting characteristics or the crossing of characteristics from 
one well to the other there are several manifold points p; = (x, p~) "above" 
some point x, then W(x) and its gradient p = p(x) will in a mathematical 
sense be multivalued. As a function of x, W may in fact have branch points, 
branch lines (cuts), etc. But the physical action W(x) appearing in the 
WKB approximation will be single-valued: it will equal the minimum of 
the values W(p;) at the manifold points above x. This "least action" com- 
putation determines which instanton trajectories are physical. 

The WKB prefactor K satisfies an easily derived transport equationY 381 
If one uses the fact that i = p + u ( x )  (which is one of Hamilton's equa- 
tions), the transport equation takes on the comparatively simple form 

/ ( =  - [ V . u + V 2 W / 2 ]  K (5.7) 

the time derivative referring to instanton transit time, i.e., to motion along 
a characteristic or bicharacteristic. Similarly to W, K may be regarded as a 
function on Jr rather than on configuration space. Integration of Eq. (5.7) 
requires knowledge of the second spatial derivatives of W along the charac- 
teristic. But (0 2 W/Oxi O,x~])(x) equals (0pi/0.x))( x ), which is a measure of the 
"slope" of the manifold above the point x. By differentiating Hamilton's 
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equations it is easy to  show that the Hessian matrix Z = (Zo.) whose 
elements are the partial slopes Opi/Oxj satisfies the matrix Riccati equation 

Z = - Z  2 - ZB - BtZ --  E Pt  Ytl) (5.8) 
/ 

along any characteristic/26) Here B = (Oui/axj) and y t l ) =  (auJaxi &xj) are 
auxiliary matrices. Since V 2 W =  trZ, the computation of K by numerical 
integration is straightforward. 

It is interesting to compare these results with those of Littlejohn t25) on 
the WKB prefactor for the solutions of the Schr6dinger equation in the 
semiclassical ( h ~  0) limit. He introduces a Lagrangian manifold, and a 
similar integration along characteristics. But because he analyzes the 
time-dependent Schr6dinger equation, he finds that the transport equation 
for his analog of K can be integrated explicitly, yielding a Van Vleck deter- 
minant. Matters are not so simple in the time-independent case, for the 
Schr6dinger equation as well as for the Smoluchowski equation. Our WKB 
analysis of the weak-noise limit of the stationary density actually has more 
in common with the work of Gutzwiller on the semiclassical approximation 
of fixed-energy quantum mechanical Green's functions ~17' ~8.36) than it does 
with the semiclassical approximation of time-dependent quantum mechani- 
cal propagators. The prefactor K is analogous to the prefactor of a semi- 
classical Green's function (at fixed energy). It can in fact be related to the 
density of  bicharacteristics on the Lagrangian manifold. This resembles 
Gutzwiller's interpretation of the prefactor of a semiclassical Green's func- 
tion in terms of the density of classical trajectories on an energy surface. 118) 

5.2. Matched Asymptotic Approximations and the MFPT 

We now specialize to two-dimensional double-well models with the 
structure of Fig. 1. On account of symmetry and smoothness we may 
expand the drift u = (u.,., Uy) thus: 

u,.(x, y) = Vo(X) + v2(x) y2 + .. .  
(5.9) 

Uy(X, y) = ul(x) y + u3(x) y3 + ... 

By assumption vo(x)>0 for all x between 0 and x s, and ul(x)<0 for all 
x between 0 and x s inclusive. If the symmetry through the axis is unbroken, 
W and K (both of them computed by integration along instanton trajec- 
tories emanating from S) will have similar expansions 

W(x, y) = Wo(X) + w2(x) y2/2! + ... (5.10) 

K(x, y)=k0(x)+k2(x)  y2/2! + ... (5.11) 
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Here w2,,(x ) -- 02"' W/OyZ"'( x, 0) and k2,,,(x) -02"'K/OyZ"'(x, 0). Since Wcan 
be viewed as a classical action, the functions w2,, can be expressed in terms 
of the momentum p = p ( x )  of the instanton trajectories passing through 
near-axis points x. For  example, W'o(X) = px(x, 0) and Wz(X) = Opy/Oy(x, 0). 
Substituting the WKB Ansatz into the Smoluchowski equation s = 0  
and examining the coefficients of each power of e and y will yield equations 
for the various coefficient functions in (5.10) and (5.11). One finds in par- 
ticular that w~ = p.,_ = -2Vo, or 

;? w0(x) = 2 vo(x') dx' (5.12) 

Therefore the Hamilton equation 2=p.,. + Vo(X), which follows from the 
Wentzell-Freidlin Hamiltonian (5.2), implies that 2 must equal -Vo(X) at 
all points between S and the saddle. The instanton trajectory on the x axis 
moves with a speed equal to the local value of the drift speed, but in the 
direction opposite to the drift. 

Examining coefficients also yields the two equations 

/Co = -- Jut + w2/2] k0 (5.13) 

~'02 = - w~ - 2u] w2 + 4Vo vz (5.14) 

where we have changed the independent variable from x to t by writing/~ 
for -vok'o, and ~4'2 for -VOW'. Equations (5.13) and (5.14) could equally 
well be deduced from (5.7) and (5.8). For  later reference we note that 

~ / : 4  = - V o w~ 

= --4(W2+U1) W4--3 [(W~)2+4V2W~+8U3W2] +48V0V 4 (5.15) 

is the equation satisfied by the fourth derivative w4 =04W/Oy4=O3pv/Oy3 
on the x axis. 

The physical interpretation of the functions k o and w 2 is 
straightforward. The WKB Ansatz implies that 

y2 ex.{ } , 16, 
So when e is small, w2 governs the small transverse fluctuations about the 
x axis. At any time when the system state x has fluctuated leftward from 
Xs to x, the distribution of the transverse component y will [ provided that 
w_,(x) > 0] be approximately Gaussian, with variance ~e/w,(x). Of course 
such fluctuations are exponentially rare, on account of the e x p [ -  w0(x)/e] 
factor. 

822/83/3-4-2 
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The Riccati equation (5.14) therefore gives the position dependence of the 
width of the "WKB tube" of probability density surrounding the MP EP  when 
this MP EP  is in fact the line segment between S and the saddle. Moreover, this 
equation captures the essence of the bifurcation phenomenon, as we shall see 
in Section 5.4. For  the moment we note only that it may readily be integrated 
from t = - o o  (when the instanton trajectory formally emerges from S) to 
t = + oo [when the trajectory, obeying ,~i" = -Vo(X), reaches the saddle]. Since 
Vo(X(t)) ~ 0 as t ~ _ ~ ,  we see from (5.14) that w2 must converge as t ---, + ov 
(resp. t --* - c ~  ) to one of the two zeros of the quadratic polynomial 

w ] - 2 u l w ,  _( _ - 2  lull) (5.17) 

where ul signifies u~(0) [resp. udx~.)]. On physical grounds one expects 
that usually ("generically") the WKB tube will have a finite variance at 
both endpoints, i.e., as t --* - ~ and x ~ xs, and as t ~ + ov and x ~ 0. So 
w2(x,) should equal 2 lul(x,)l, and w2(0) should equal 2 lu~(0)l. 

If these endpoint ("turning point") conditions hold, it is easy to match 
the tube approximation (5.16) to auxiliary, non-WKB approximations 
valid near the endpoints: the stable points and the saddle. On physical 
grounds, P0 and p~ may be approximated on the O(e ~/'-) length scale near 
S by a Gaussian function of the system state x. Let us write v,. and Vy for 
3u,./3x(S) and 3Uy/3y(S), the two (negative) eigenvalues of the lineariza- 
tion of the drift u at S. Then 

p0(x, y)~cons t •  exp(-Iv: , l  yR/e), e ~ 0  (5.18) 

near S, the same being true of pl.  Since Vy = u~(x.,.), this will match to the 
tube approximation if wdx., .)=2 lu,(x.,.)l. Similarly, on the O(e ~/2) length 
scale near the saddle, Po may be approximated by the inverted Gaussian 

po(X, y ) ~ c o n s t x e x p (  + 2.,-x'-/e)exp(-12yl y'-/e), e ~ 0  (5.19) 

Since 2y= u,(0), the tube approximation will match to (5.19) if w2(0)= 
2 lu~(0)l and k0(0) is finite and nonzero. It is easy to verify that the 
approximations (5.18) and (5.19) satisfy the time-independent Smoluchowski 
equation on the O(e ~/2) length scale near their respective turning points. 

The appropriate (generic) approximation to the quasistationary den- 
sity p~ near the saddle is slightly more complicated; it is an error function 
approximation of the sort first used by Kramers/"-2~ We have I-'9~ 

,OI(X, y ) ~ c o n s t  x e -1/2 exp[--(xp.,.+p~./42_,.)/e] dp.,. 
odd 

x exp( -I~.:,1 y2/e) (5.20) 

= const x erf(2~/Rx/e 1/'-) exp(+2,.x'-/e) exp( -I,~:,1 y'-/~) (5.21) 
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on the O(e 1/2) length scale. Here [. ]odd denotes odd parts, under the reflection 
x ~ - x .  This "boundary layer" approximation agrees with the inverted 
Gaussian approximation (5.19) in the far field, i.e., as x/e 1/2 ~ + ~ .  So under 
the same conditions, the tube approximation (5.16) will match to it. 

We have now approximated p~(x) at all points x in the vicinity of the 
line segment joining S and the saddle. We emphasize that the validity of 
this procedure depends on two assumptions: 

�9 That the physical values of W(x) and K(x) at all points x along the 
axis arise from integration along the on-axis instanton trajectory 
extending from S to x. 

�9 That the WKB tube surrounding the axis is well behaved as the 
saddle is approached, so that the error function approximation to 
the quasistationary density is valid near the saddle. This requires 
that w2 ~ 2 lUl(0)], and that k0 tend to a finite, nonzero limit. 

The first assumption breaks down when the MPEP has bifurcated, and we 
shall see that the second assumption breaks down at the onset of bifurca- 
tion. But if both assumptions hold, it is easy to compute the weak-noise 
asymptotics of the quasistationary eigenvalue 21 and its asymptotic 
reciprocal, the MFPT ( r ) .  The time-dependent equation/~ = - . ~ * p  may 
be written as 

I~ + V.  [ -- (e/2) Vp + p u ]  = 0 (5.22) 

Equation (5.22) is a continuity equation, and j = - ( E / 2 )  Vp +pu can be 
viewed as a probability current density. Since 2, is the decay rate of the 
eigenmode p~, it may be computed as the rate at which probability is 
absorbed on the separatrixJ 22"33~ Necessarily 

2, = [ --jx(0, y)]  dy p,(x, y) dy dx (5.23) 

where j = (j,,.,j.,,) is computed from p~. The numerator (an absorption rate) 
is computed from (5.21), and the normalization factor in the denominator 
from the Gaussian approximation (5.18). If the constant prefactors of these 
two approximations are chosen to ensure consistency with the intermediate 
WKB tube approximation (5.16), the quotient will acquire a factor 
k0(0) exp[ -wo(O)/e], i.e., K(0, 0) exp[ - W(0, 0)/e]. 

This computation, if carried through, yields a so-called Eyring formula 
for the weak-noise asymptotics of the quasistationary eigenvalue, i.e., the 
weak-noise asymptotics of the rate of noise-activated hopping: Is" ~5) 

2 , ( e ) -  K(0, 0)(2"lv"l) ' /2( lVyl/12"l) ' /2exp(-AW~, e - -*O (5.24) 
;r k e / 
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Here the presence of the "frequency factor" K(0, 0) is attributable to the 
nongradient dynamics; it will equal unity if the drift u is a gradient. The 
formula is otherwise familiar. Since ( 3 ) ~ 2 i  -~ as e ~ 0 ,  this formula 
predicts a pure Arrhenius growth of the MFPT in the weak-noise limit. 
But as we noted, this conclusion depends crucially ou the validity of the 
Kramers-type error function approximation to the quasistationary density 
near the saddle. This approximation will prove not to be valid in double- 
well models undergoing a bifurcation. 

5.3. Indications of a Phase Transit ion 

We now explain how the bifurcation transition displays characteristic 
features of a phase transition, such as power-law divergences governed by 
critical exponents. We begin by using the standard double-well model (3.1) 
and the transport equations of the last section to reveal the nature of the 
"nascent cusp" singularity appearing at the saddle point at criticality. 

For the standard model, the stable point S is located at x = x,. = 1 and 
the coefficient functions (drift velocity derivatives) in the transport equa- 
tions are of the form 

Vo(X) = u,.(x, O) = x -  x 3 (5.25) 

2vz( x ) = O2u.,./Oy2( x,  O) = -2oc,  c (5.26) 

u~(x) = Ou:,/Oy(x, O) = - /~ (1  + Z )  (5.27) 

These may be substituted into the Riccati equation (5.8) for the transverse 
second derivative w2(x)=O'-W/Oy'-(x ,O) and the equation numerically 
integrated. As noted, the appropriate initial condition is w2(x=x.,.)= 
2 [ul(x~)l, i.e., w z ( x = l ) = 4 / c  Consider the case i t = l  (the subject of 
Fig. 2), in particular. One finds for all e in the range 0 < e < 4  that w2 is 
positive on the line segment between x = xs and the saddle at x = 0. Since 
the WKB tube centered on the axis, which is formed by small transverse 
fluctuations about the MPEP, has variance ~ e / w , ( x ) ,  this positivity 
implies that the tube is everywhere well defined. One also finds that w2 --, 2, 
i.e., w2 ~ 2 lu~(0)l, as the saddle is approached. Moreover, by integrating 
the transport equation (5.13) one finds that k o ( x ) = K ( x , O )  tends to a 
finite, nonzero limit as x ~ 0. As we explained in Section 5.2, these two 
conditions are precisely what is needed to ensure Arrhenius weak-noise 
asymptotic with an MFPT prefactor proportional to K(0, 0)-~. 
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Fig. 5. A plot of K(0, 0), to which the weak-noise activation rate prefactor is proportional, 
as a function of the off-axis soRening parameter ~. As shown, K(0, 0) diverges as ~ ~ ~,-. This 
is for the standard double-well model (3.1) witll It = l, for which ~,.=4. 

The bifurcation transition prescnt in the It = l standard model at 0c -- 4 

is reflected in the behavior of w2 and k o as x ~ 0. When ~ = 0c,. = 4, Eqs. 

(5.8) and (5.13) can be solved exactly; one finds 

W2(X ) = 0 2 W/Oy2(x,  0) = 4X 2 (5.28) 

ko(x) = K(x, O) = 1/x (5.29) 

We know from the Eyring formula that the activation rate prefactor in the 
limit of weak noise is proportional to K(0, 0). The fact that k o ( x = 0 ) =  
K(0, 0) is infinite here strongly suggests that at criticality the activation 
rate, i.e., the rate at which the quasistationary density is absorbed on the 
separatrix, is anomalously large. Equivalently, it suggests that at criticality 
the weak-noise behavior of the MFPT (which is asymptotically equal to 
2i -~) is non-Arrhenius, with a preexponential factor that tends to zero as 
e--* 0. There is an even stronger piece of evidence that this is the case. It 
is not difficult to show, by analyzing the transport equation (5.13), that 
K(0, 0 )=k0(x  = 0) ~ (c~,.-~)- ,/2 as =--* ~,7. Figure 5 shows the result of a 
numerical computation when/t  = 1. The activation rate prefactor diverges as 
c~--* ~,7. Equivalently, the MFPT prefactor tends to zero. The natural 
deduction is that at criticality the activation rate prefactor and its recipro- 
cal the MFPT prefactor become e-dependent. This blends nicely with the 
behavior above the transition, since (as shown in Fig. 3) the exponential 
growth rate o,f the MFPT [the action barrier AW, i.e., W(0, 0)] begins to 
decrease as e increases beyond e,.. An e-dependent activation rate prefactor 
at criticality containing a negative power of e would unify the exit behavior 
both below and above criticality. 

We shall show in Section 8 that in critical double-well models (e.g., in 
the standard model with cc =c%), the weak-noise activation rate 21 =,~l(e) 
indeed has asymptotics 

2 1 ( e ) ~ c o n s t x e - "  exp[- -AW/e] ,  e-+O (5.30) 
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where s > 0 is the singularity index mentioned in Section 4. The computa- 
tion of the singularity index is nontrivial. Since the M F P T  ( r )  satisfies 
( r )  ~ 2 i  -~, the e -s prefactor in 21 gives rise to an e s M F P T  prefactor. In 
critical double-well models, in the weak-noise limit the growth of the 
M F P T  is slower than pure exponential. 

At criticality, the action W also displays unusual behavior at the 
saddle. We shall see that the behavior of (5.28), i.e., that w 2 tends to zero 
quadratically as x ~ 0, is universal. Since the WKB tube has variance 
~e/w2(x), this implies that the tube splays out as the saddle is approached. 
To leading order, it splays out to infinite width. This is an indication that 
the transverse fluctuations around the MPEP,  on the O(e ~/2) length scale, 
at criticality become very strong near the saddle. In fact, that w~(x = O) = 0 
causes some difficulty in the interpretation, near the saddle, of the WKB 
approximation to Po and p~. One might expect that even though 
w2(x = 0 ) =  0, the quartic tube approximation 

2 y4 
e--* 0 (5.31) 

would suffice for an understanding of the behavior of the WKB approxima- 
tion near the saddle. If w2(x = 0) were zero but w4(x = 0) were finite and 
nonzero, transverse fluctuations around the saddle would be, by (5.31), of 
magnitude O(e 1/4) rather than O(e~/2). However, explicit solution of Eq. 
(5.15), the transport equation for w4=O4W/Oy4=O3py/Oy 3, shows that in 
the it = 1 standard model at ~ = ~,. = 4, 

w4(x) " . ( 4 / 5 ) x - 4 + ( 1 6 / 5 ) x - 2 + 8 +  . . . ,  x---~O + (5.32) 

The fact that w4(x = 0 )  is #finite, coupled with the fact that wz (x=0)  is 
zero, suggests that at criticality, the transverse fluctuations near the saddle 
have no natural scale. In any event, at criticality the standard matched 
asymptotic approximations technique of the last section breaks down. We 
shall need to construct an approximation to the quasistationary density p~ 
near the saddle which (i) is valid at criticality and (ii) matches to the WKB 
approximation (5.31 ), despite its singular character. 

Critical e,xponents, as we define them, describe the weak-noise 
behavior of a parametrized double-well model with a singularity at some 
point Xo as x---, x o and as the parameters of the model tend to the values 
for which the singularity appears at Xo. In particular, they characterize the 
behavior at and near the bifurcation transition, and at and near the saddle 
point, of the functions W and K appearing in the WKB approximation to 
Po and p~. At criticality, the divergence rates of the WKB prefactor K as 
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x ~ 0 and y ~ 0 supply two such exponents; the scaling form which we 
shall use to approximate W near a nascent cusp (which involves fractional 
powers) will supply others. There are also critical exponents describing 
what happens as one moves off criticality. As a is increased above ac (i.e., 
above 4 in the/~ = 1 standard model), the M P E P  bifurcates. There is a 
critical exponent describing the separation rate of the two resulting 
MPEPs,  as Fig. 3 makes clear. There is also a critical exponent describing 
the divergence rate of K(0, 0) as a ~ 0c~-, which as we have already noted 
equals 1/2. The singularity index s can be regarded as a critical exponent, 
too, though of a different kind; to compute it, one must go beyond the 
WKB approximation. 

The "nascent cusp," as a singularity, is located in a space parametrized 
by x, y, and the parameter(s) of the drift field u. But if one restricts oneself 
to a single double-well model, the only parameters are x and y. In this case 
there is a natural analogy between the Lagrangian manifold J / i n  phase 
space, formed by bicharacteristics emanating from (S, 0) and (S', 0), and a 
thermod)mamic surface. The action W, as a function on the manifold, 
corresponds to a thermodynamic potential, in fact a Gibbs free energy. The 
equation p = p ( x ) =  O W/Ox corresponds to a relation between conjugate 
state variables, such as pressure and volume. The singularities (points of 
nondifferentiability) of the physical action W(x) therefore correspond to 
phase transitions. The order of such a phase transition, in the traditional 
sense, is the lowest order of spatial derivative (of W) which fails to be con- 
tinuous. In Section 8 we shall compute the order of the nascent cusp. 

5.4. The  B i furca t ion  Trans i t ion  and Classical M e c h a n i c s  

We now explain how the equations of Section 5.2 allow the bifurcation 
transition to be interpreted in terms of classical mechanics, and how one 
can predict whether or not any given double-well model is at criticality. We 
begin by considering models in which the M P E P  has already bifurcated, 
and the instanton trajectories emanating from the stable point S focus 
along the axis, as in Figs. 2c and 2d. 

Empirically, focusing occurs in models with a sufficiently large "off- 
axis softening" parameter ~. In such models, the action W in a mathemati- 
cal sense becomes multivalued near a portion of the axis. Points (x, 0) 
beyond the first focus are reached by multiple off-axis instanton trajectories 
emanating from the stable point S, and in general these trajectories will 
have different actions. They will also have different momenta p = V W at the 
time they reach (x, 0). 

This multivaluedness has a geometric interpretation, in terms of the 
shape of the two-dimensional Lagrangian manifold (in the four-dimensional 
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phase space) formed by the bicharacterist ics emana t ing  f rom the point  
(x, p ) = ( S ,  0). As x decreases f rom %. toward  zero, the m a p  y~--~py in the 
vicinity of  y = 0 is at first single-valued; the value py = 0 ,  and no other,  
corresponds  to y = 0 .  Beyond the first focus (x} tl, 0), i.e., when x < x ( f  1), the 
m a p  y~--~py becomes three-valued. At the second focus (x} 2), 0) it becomes  
five-valued, etc. The  generic evolut ion is shown in Figs. 6a-6f. U p  to the 
first focus y=y(p_,,) near  p:,=O m a y  be modeled as a linear function; 
beyond  the focus, as a cubic. Beyond the second focus the global descript ion 
becomes  more  complicated,  as is clear f rom the whorl  in Fig. 6f. A cubic 
app rox ima t ion  is still appropr ia te  in the immedia te  vicinity of  ( y , p , , ) =  
(0, 0), however.  

Since the locus of  all points  (y, p,,) at cons tant  x is obta ined by inter- 

(a) psuby (b) psuby 

(C) psuby (d) psuby 

(e) psuby (f) psuby 

Fig. 6. Cross sections through the Lagrangian manifold .#, revealing the "whorling" that 
takes place as one passes through any on-axis focug. These sketches show the map y ~--,p.,. at 
successively decreasing values of x as one moves from S = (x s, 0), past two foci (x~) ~, 0) and 
(x~ 2), 0), toward the saddle point (0, 0). Shown are the cases (a) xs>x>x~r ]1 and x near xs, 
(b) x , ,>x>xf  andxnea rx r  ,(c) x = x  r ,(d) x r >x>x~2 ~,(e) x=xcTi>x>0. 
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secting the Lagrangian manifold with the hyperplane x = c o n s t ,  the 
manifold itself becomes increasingly "whorled" with each passage through 
a focus. The formation of convolutions in Lagrangian manifolds was first 
considered by Berry and Balazs Is) (in a time-dependent context), and the 
progression in Fig. 6 resembles the figures in their paper. Geometrically, 
the linear-to-cubic transition at each successive focus corresponds to the 
creation of a fold. c''-) One can fit the shape of the manifold near the lth 
focus, i.e., near (x, y, py )=  (x} n, 0, 0), by the phenomenological formula 

y = y(x, p,,) = ~..)_3 ...)~.. xu)~ --"o P.,,--"1 ~"--':Y JP_,, (5.33) 

") and a~l/I where a o are certain positive constants. So each successive focus 
resembles a Ginzburg-Landau second-order phase transition (x corre- 
sponding to temperature, the focus location x~/) to a critical temperature, 
- y  to a magnetic field, and p.,, to a magnetization). We shall say more 
about the "equation of state" (5.33) (which we stress is not applicable near 
the 'nascent cusp" appearing at the saddle point of critical models) in 
Sections 7 and 8. 

For  on-axis (i.e., y = 0 ,  p., ,=0) trajectories, the derivative w2(x)= 
Op.,./Oy(x, y = 0 )  satisfies the Riccati equation (5.14). So the appearance 
of a focus, and of multiple foci, can be investigated analytically. It is clear 
from Figs. 6c and 6e that passage through a focus is signaled by the tangent 
plane to the manifold (at y = 0, py = 0 )  "turning vertical"; equivalently, by 
ay/Opy passing through zero, or its reciprocal w2 (a negative magnetic 
susceptibility, in this co.ntext) passing through - o o .  To study this, recall 
that the Riccati equation 

~.~,_ = - w~ - 2u~ w,_ + 4VoV2 (5.34) 

involves a derivative with respect to instanton transit time, and that the on- 
axis instanton trajectory (directed antiparallel to the drift toward S) 
satisfies .'~ = -vo(x) .  Solutions w_, can be regarded either as a function of 
t, for - o o  < t < 0% or of x, for x.,. > x > 0. We see from the form of the 
Riccati equation that w_, can indeed be driven to - o o  in finite time, i.e., at 
some point x ~ . r r  > 0 to the right of the saddle. In fact one sees, if tc is the 

X + time when this occurs (the focus time), that as t ~ t i , i.e., x - - * . f  , 

w=(x) = O2WlOy'-(x, O) - ( t r -  t ) - '  

~ const x [ - (x-.x~r) - l  ] (5.35) 

Here the constant multiplier equals 1/Vo(.~r), the reciprocal speed of the on- 
axis instanton trajectory when it passes through the focus (x r, 0). We note 
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in passing that by the transport equation (5.13), this blowup will induce a 
blowup of the on-axis WKB prefactor ko. One finds 

ko(x) = K(x, 0) ~ const • (t s -  t) -I/2 

~ const x (x - X r) - i12 (5.36) 

Equations (5.35)-(5.36) contrast markedly with Eqs. (5.28)-(5.29), which 
apply to the/1 = 1 standard model at criticality (where, in a formal sense, 
X.r= 0, since there is a nascent focus at the saddle). Equations (5.35)-(5.36) 
are not restricted to the standard model; they hold in greater generality. 
But they apply only when a bona fide focus is present at some X.r> 0 (i.e., 
before the saddle is reached) and the M P E P  has already bifurcated. 

By examining the Riccati equation (5.34), we see that w2 will be driven 
to - o o ,  and a focus will be present, only if the inhomogeneous term 4Vo v2 
on the right-hand side of (5.34) is sufficiently negative. (This is because 
ul < 0, by assumption.) But 2v_, =OZUx/Oy2(x, y =0) ,  which we are taking 
to be negative when 0 < x  <x~, measures the extent to which the drift 
toward S softens as one moves off-axis. So our empirical observation is 
confirmed analytically: a sufficiently strong off-axis softening will create a 
focus, and a bifurcation of the MPEP!  

It is best to think of w2=Op;,/Oy(y=O) as a slope, as in Fig. 6. As 
such, it may rotate repeatedly through the point at infinity as t increases, 
i.e., as x decreases. Each such rotation results in increased whorling of the 
Lagrangian manifold, and also corresponds to a passage through a focus. So 
by counting the number of singularities of the solution curve w2 = w2(t), one 
may determine the number of foci present in any given double-well model. 

The standard model (3.1) will serve as an example. For  the reasons 
discussed in Section 5.2 w 2 ( t = - o o ) ,  i.e., w2=(x=x.,.), in the standard 
model always equals 2 [u~(x,.)[ = 2  [u~(1)[ =4p .  Suppose that i t =  1. We 
noted in the last section that if 0 < ~ < 4, w2 is well-behaved and positive at 
all times t between - ~ and ov inclusive, i.e., at all x satisfying 0 ~< x ~< 1. 
We also explained what happens at ~ =  c~,. =4 ,  when the nascent cusp 
appears at the saddle and the MPEP  begins to bifurcate. At criticality, 
w2-~O as t ~ o o ,  i.e., as x ~ 0  +. l f 4 < 0 ~ < 9 ,  w2 is driven negative (as t 
increases toward oo), and passes through - o o  before returning (through 
+ oo) to finite, positive values. The change in behavior is shown in Fig. 7. 
When ct is raised above 0c,., we say that the graph of w2 acquires unit 
winding number, since it winds once through the point at infinity. A second 
transition occurs at 0t = ~1,.'-I = 9. If 9 < ~ < 16, w 2 passes through - oo twice, 
and its graph has winding number equal to 2. Except at the critical values 
o~=o~,/l=(j+l)'-,w2 in this model converges to the generic value 
2 lul(0)l = 2  12.,,I = 2  as t--, oo, i.e., as x ~ 0  +. 
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0 - -  

-2  

i i i i i 
4 0  0 .2  0 . 4  0 .6  0 .8  I x 

Fig. 7. The transverse action derivative w2(x) ==-02W/Oya(x, 0) in the ll = 1 variant of the 
standard double-well model (3.1), in the vicinity of the bifurcation transition. The three curves, 
from top to bottom, obtain when a = 3.9, 4.0 (the critical value ~t,.), and 4.1. When �9 < ~,., then 
w, ~ 2 I,ty 1, i.e., 2, as x--, 0 +. When e > e,., then w2 is driven negative as x decreases, and 
passes through -co.  The focal point x=.x~r where this occurs in the model with ~=4.1 is 
indicated by a dashed line. 

Since each passage of  w2 th rough  - o r  gives rise to a focus, the 
sequence of  near-axis  ins tan ton  flow fields in the /1  = 1 s t anda rd  mode l  as 

is increased displays  a progress ively  larger  number  of  foci. In  fact the 
progress ion  is precisely as d i sp layed  in Figs. 2a-2d .  It is wor th  no t ing  that  
in models  with one or  more  foci, the W K B  tube centered on the axis 
becomes  il l-defined when WE goes negative,  which takes  place at a loca t ion  
on the axis somewha t  before the first focus is reached.  (See Fig. 7.) 

In Section 8 we shall  de te rmine  exact ly  wha t  happens  at  the bifurca-  
t ion t rans i t ion  of  any  singly pa r ame t r i z ed  symmetr ic  double-wel l  model .  
But we can now pose the quest ion:  Wha t ,  physical ly,  causes the above  
values for cc to be crit ical? If  in general  the odd  funct ion 2v,_(x)= 
O'-u.,./Oy2(x, 0) is negat ive between x = 0 and  x = x,. and  is p r o p o r t i o n a l  to 
a p a r a m e t e r  a, is there a classical mechanica l  technique of  pred ic t ing  the 
values  of  0~ at which the on-axis  ins tan ton  t ra jec tory  will bifurcate? The 
answer  to this ques t ion is "yes." O u r  technique  relies on a linear stability 
analysis of the" on-axis  ins tan ton  t ra jec tory  and identifies the cri t ical  values 
of  e as the values for which a t ransverse  soft mode is present  in the zero-  
energy H a m i l t o n i a n  dynamics .  This  is reminiscent  of  Langer ' s  analysis  of  
metas tab i l i ty  in one-d imens iona l  mode l s )  "-4"36) But because  we shall  con-  
sider  t ransverse,  ra ther  than  longi tudinal ,  f luctuat ions  a r o u n d  the ins tan ton  
t ra jectory ,  our  s tabi l i ty  analysis  will be cons ide rab ly  simplified. 

Let x = x * ( t ) = ( x * ( t ) ,  0) be the on-axis  in s t an ton  t ra jectory ,  where 
x=x*( t )  is the so lu t ion  of  2 = - V o ( X ) .  Near -ax i s  ins tan ton  trajectories ,  
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i.e., near-axis zero-energy classical trajectories emanating from S, may to 
leading order be written as 

x = x(t) = (x(t), y(t)) ~ (x*(t), O) + 3(0, Y(t)) (5.37) 

where 6,~ 1, and where Y= Y(t) is some model-dependent function satis- 
fying Y(t = - m ) = 0. Here Y(t), - m < t < oo, is a normalized transverse 
deviation. Similarly, near-axis trajectories have momenta 

p=p(t)=(p.,.(t),p:,(t))~(p*(t),o)+~(o,p,,(t)) (5.38) 

for some unknown function P.,, =P:,(t) satisfying P.,,(t = - o o )  = 0. Here 
p =  p*( t )= (p.*(t), 0) is the momentum of the on-axis instanton trajectory 
at instanton transit time t. We noted before Eq. (5.12) that as a function 
of x, p.* equals - 2 v  o. So p.*(t) equals -2Vo(X*(t)). We necessarily have 

w 2(t) = P.,.( t)/Y( t ) (5.39) 

on account of w2 equaling Op.,,/Oy(y =0).  
Substituting Eqs. (5.37) and (5.38) into the Hamilton equations 

derived from the Wentzell-Freidlin Hamiltonian H and separating terms 
proportional to ~ yields the pair of equations 

02H OZH i'=Op.,,Oy(X*(O,p*(t)) Y+ ~ / x * ( t ) ,  p*(t)) e.,, (5.40) 

O2H O~-H , 
P.,,- a-~(x*(t) ,  p*(t)) Y - ~ ( x  (t), p*(t)l P:, (5.41) 

Due to the special form of the Hamiltonian (5.2) and the expansions (5.9), 
this pair becomes 

~'=ul(x*(t)) Y+P:, 

P,.=4Vo(X*(t)) v2(x*(t)) Y--ul(x*(t)) P.,. 

(5.42) 

( 5.43 ) 

So w 2 = W2(t ) can be represented as the quotient of two functions of instan- 
ton transit time, which satisfy a pair of coupled linear differential equations. 
We note in passing that an analogous representation is possible for solu- 
tions Z =  Z(t) of the matrix Riccati equation (5.8). The existence of such 
quotient representations is well known in the theory of Riccati equations, 
and has a geometric interpretation. 137~ 
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Equations (5.40)-(5.41) and (5.42)-(5.43) may be viewed as Hamilton's 
equations for the effective (i.e., time-dependent) transverse Wentzell-Freidlin 
Hamiltonian 

1 02H 2 0 2 H  1 O2H y., 
r, P,,, ,) = 07 . e,. + T 

=P~/2+ul(x*(t)) YPy--2Vo(X*(t))v2(x*(t)) y2 (5.44) 

To save space we have suppressed the arguments (x*(t), p*(t)) of the par- 
tial derivatives. This quadratic Hamiltonian governs the small transverse 
fluctuations about the on-axis instanton trajectory. Its Legendre transform 
];'P;,- H~rc, namely 

1 02L ~ + 02L ~ 02L y2 
Lob(r, 7 o-}-b5 r r +  o--7 

= I~'-ul(x*(t)) YI2/2 + 2Vo(X*(t)) v2(x*(t)) y2 (5.45) 

is an effective transverse Onsager-Machlup Lagrangian. Here L is the 
Onsager-Machlup Lagrangian (5.3), and we have suppressed the 
arguments (x*(t),x*(t)) of the partial derivatives. The corresponding 
Euler-Lagrange equation for the normalized transverse deviation Y, i.e., 

f'+ - ~ [uK(x*(t))] -u~(x*(t))-4vo(x*(t)) v2(x*(t)) Y=O (5.46) 

is a (transverse) Jacobi equationJ 36~ It may be written as an equation for 
Y= Y(x), O<~x<.Nx,, by changing the independent variable from t to x. 
One gets 

d [ ~Tx~ E u;(x) 4v2(x)] Y=O (5.47) YY=-~x v~ + u'l(x) Vo(X ) 

together with the boundary condition Y(x = xs)= 0. This Jacobi equation, 
which is in Sturm-Liouville form, governs the behavior of the instanton 
trajectories near the on-axis trajectory (the MPEP, if it has not bifurcated). 
So it is responsible for the various behaviors shown in Fig. 2. It is clear 
from our derivation that the Jacobi operator 2r considered as a quadratic 
form, defines the transverse second variation of the Onsager-Machlup 
action functional about the on-axis trajectory. 

Foci are by definition the points (x, 0) where the off-axis instanton tra- 
jectories converge (to leading order). Equivalently, (x, 0) is a focus only if 
Y(x)=O. But since w2=P.,,/Y, this implies that [unless P.,,(x)=O also] 
w.,(x) is infinite. This is precisely the necessary condition for a focus that 
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we derived earlier. If Y passes through zero more than once, then w2 will 
pass through the point at infinity more than once. This is the mechanism 
by which, e.g., the two-focus flow field of Fig. 2d engenders the increasingly 
"whorled" Lagrangian manifold of Figs. 6a-6f. 

We can now give a simple criterion for determining whether or not a 
given double-well model is at criticality. Suppose that the most probable 
escape path (MPEP)  extends along the axis from S to the saddle, so that 
the symmetry is as yet unbroken. We know by the discussion in Section 4 
that criticality is signaled by the appearance of a nascent cusp at the saddle. 
The nascent cusp itself is not a focus, as Fig. 2b makes clear. But if the off- 
axis softening is increased, the nascent cusp becomes a genuine cusp (i.e., 
focus); it moves inward along the axis from the saddle toward S. This pic- 
ture is consistent with the interpretation of the near-axis instanton flow 
field in terms of the function Y(x), 0 <<, x <~ x.,., only if the nascent cusp, like 
a conventional on-axis focus, is a zero of Y. 

So the signal for criticality is Y equaling zero at x - -0 .  We can 
rephrase this as follows. Critical double-well models are those models with 
unbroken symmetry for which the Jaeobi equation J Y =  0 for the transverse 
deviation function Y, equipped with boundary condition Y ( x = x . , ) = 0  and 
also with Y(x = O)= O, has a nontrivial (i.e., nonzero) solution. The nonzero 
solution Y= Y,(x),  0 <~x <<, xs, when it exists, can be interpreted as a trans- 
verse soft mode of the zero-energy Hamiltonian dynamics. If the off-axis 
softening is increased, the on-axis M P E P  will bifurcate. Just beyond criti- 
cality, there will be two symmetrically placed off-axis MPEPs from S to the 
saddle. They will be of the form (x*(t), +6Y~(x*( t ) ) )  for some small 6. 
This "motion in the direction of a soft mode" is a standard bifurcation 
effect. At criticality, the transverse soft mode Y~ describes the n,ay in which 
the two MPEPs  separate. 

Suppose that the double-well model is parametrized by an off-axis 
softening parameter ~, i.e., that v_, = 0~, for some odd function t3z, and that 
Vo and v~ are independent of ~. Then by rewriting the Jacobi equation, one 
sees that the model will be at a bifurcation point if and only if the Sturm- 
Liouville equation 

1 d vo(x ) + u',(x) Y = ~ Y  (5.48) 
) Y -  402(x~ dx ~ Vo(X)J 

equipped with Dirichlet boundary conditions Y(x = O)= Y(x = x , . ) =  0 has 
a nonzero solution. The Sturm-Liouville operator ) may be called a nor- 
realized Jacobi operator. 

We see that the set of critical values of ~ is precisely the spectrum of 
the normalized Jacobi operator! Only the first critical value (i.e., lowest 



Bifurcations in Symmetric Weak-Noise Escape 321 

eigenvalue) a,. = a(c~) will yield an actual bifurcation of  the MPE P .  To each 
higher critical value o~(,/),j=2, 3 ..... there corresponds a transverse eigen- 
mode  Yj. But after the first bifurcation, the on-axis instanton trajectory is 
no longer the physical MPEP .  The higher eigenmodes Y s , j =  2, 3 ..... which 
are oscillatory, govern the further bifurcations of  the on-axis instanton tra- 
jec tory rather  than the further bifurcations (if any)  of  the physical MPEPs ,  
which have already moved off-axis. 

The case of  the s tandard model  (3.1) is instructive. Substituting from 
(5.25)-(5.27), one finds as normalized Jacobi opera tor  

1 d 3 d l i t  lt2(lnt-x2) 2] 
, ~ =  4 x d x ( X - X ) d - - ~ x  + ~ + 4 x 2 ( l _ x 2 )  j (5.49) 

It is easily verified that on the interval from x = 0 to x = x,. = 1, this opera tor  
(when equipped with Dirichlet boundary  condit ions)  has spectrum 

~l:/, = j 2  + (3/t -- 1 ) j  + (2/t-' --It), j = 1, 2, 3 .... (5.50) 

So in the s tandard model,  the bifurcation of the physical M P E P  occurs at 
~x,. = o:~,. ~1 = 2lt(lt + 1 ). Also, the s tandard model  with It = 1 has a~/i = ( j  + I )2, 
so the on-axis instanton trajectory bifurcates at a = 4 ,  9, 16 ..... We have 
several times ment ioned this curious progression of  squares. The eigenfunc- 
tions Yj corresponding to the eigenvalues _,.~,~J~, i.e., the transverse soft 

- c t  I j) turn out to be of  the form modes appearing at ~ -  ,. , 

Yj(x) = (x - x3) '' qj(x) (5.51) 

where qj is an even polynomial  of degree 2 j -  2. Substituting into the trans- 
verse Hamil ton equat ion (5.42) yields the analogous transverse momen tum 
deviations (P.,. b- One gets 

(P.,.)./(x) = -- t'o(X) Fj(.x) -- u , (x)  Yj(x) 

=(X- -X3)  ~' [4 l t x2q j ( x j - - (X - -X  3) q~-(X}] (5.52) 

SO that  in the s tandard model at ~ = ~,/), 

w2(x) = (P,,b (x ) /Y j (x )  =41ix 2 - ( x - x  3) qj(x) /qi(x)  (5.53) 

I f j  = 1, then qj reduces to a constant ,  and the second term is absent. So at 
the physical bifurcation point  [i.e., at o~=o~,.=2lt(la+ 1)], w2(x) equals 
4ltx'-. Moreover ,  Yi ( x ) =  ( x -  x 3)*'. This transverse soft mode  is seen clearly 
in Figs. 2c and 2d, which show the behavior  of the It = 1 s tandard model 
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beyond the bifurcation point. In those figures the off-axis MPEPs are 
roughly proportional to +__ ( x - x 3 ) ,  i.e., to +_ Y,.  As o~ is increased above 
ct C, the M P E P s  move #l the direction o f  the transverse soft mode. 

Recall that the profile of the WKB tube of probability density centered 
on the x axis is asymptotically Gaussian, and that at specified x this 
Gaussian has variance ~e/w2(x). But in the standard model, at the first 
(and only physical) critical value ~=o~,.=2p(~t+ 1), wz(x) equals 41~x z. 
That w 2 --* 0 as x--* 0 implies that at criticality, the WKB tube splays out 
as the saddle is approached. We have already seen the p = 1 case of this in 
Section 5.3. The splayout is what one would expect from our picture of the 
bifurcation of the MPEP,  which begins at the saddle, as a phase transition. 
It simply says that on the O(e 1/2) transverse length scale, the Gaussian fluc- 
tuations about the M P E P  grow without bound as the nascent cusp is 
approached. 

It is easy to see that this behavior is universal: it occurs in any critical 
double-well model with a bifurcating MPEP.  If the (diagonal) linearization 
of the drift field u at the saddle has eigenvalues (2.,, 2.,,) and p is defined as 
usual to equal 12.,. I/2.,., then examination of the Jacobi equation shows that 
the soft mode Y~ has asymptotics Yl(X)~ Cx ~', x ~  0 § for some nonzero 
constant C. We have mentioned this "approach path" property else- 
where. 128~ Also, examination of the Hamilton equation for (Py)l shows that 
( P , , ) j ( x ) ~ C ' x  ~'§ for some nonzero C'. So at criticality, the quotient 
w,_(x) satisfies (for any p) 

w,_(x) = 02W/Of (x ,  O) --~ const • x 2 (5.54) 

as x ~ 0 +, and the tube splayout always occurs. Incidentally, it follows by 
integrating the transport equation (5.13) that 

ko(x) = K(x, O) ~ const x x-~' (5.55) 

as x--* 0 +. Equations (5.54)-(5.55) summarize the universal behavior of the 
WKB tube near the saddle in any critical double-well model. They are the 
extension to arbitrary critical models of Eqs. (5.28)-(5.29), which applied 
only to the critical variant ( ~ = % = 4 )  of the p = 1 standard model. 

We stressed in Section 5.2 that a Kramers-type error function 
approximation to the quasistationary density p~ near the saddle is 
appropriate only if w,_---,2 [Ul(0)l as the saddle is approached. At criti- 
cality, since wz---' 0 instead, in order to apply the method of matched 
asymptotic approximations we shall need to construct a different boundary 
layer approximation. This will give rise to the universal non-Arrhenius 
M F P T  asymptotics for models at criticality. 
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6. M A S L O V - W K B  ASYMPTOTICS 

By building on the previous sections, we can analyze the weak-noise 
behavior of double-well models with singularities. We have seen that 
singularities may appear in the WKB approximation K(x) exp[ - W(x)/e] 
for the stationary density Po and quasistationary density P l. The possible 
singular behaviors are summed up in Eqs. (5.35)-(5.36), which apply to 
models in which the MPEP has already bifurcated, and Eqs. (5.54)-(5.55), 
which apply to models which are critical in the bifurcation sense. Models 
in which the MPEP has already bifurcated have the property that the 
instanton trajectories emerging from S focus at a point (x I, 0) on the axis, 
with x.r> 0. The prefactor K of the WKB approximation will diverge there. 
In critical models, there is no actual on-axis focusing. But the prefactor will 
nonetheless diverge at the saddle point (0, 0). 

There is a standard procedure for extending the WKB approximation 
to such singular points, by "gluing in" auxiliary, non-WKB approxima- 
tions. It originated with the work of Keller on short-wave asymptotics ~2~ 
and has been most extensively developed by Maslov and Fedoriuk. ~ For 
a mathematically rigorous treatment, see Duistermaat. ~~ See also 
Eckmann and S6n~or (t3~ for a partly pedagogical one-dimensional treatment. 
The procedure may be applied to the (formal) asymptotic solutions of any 
partial differential equation of the form H ( x , - e V ) p = 0 ,  where H is a 
specified Hamiltonian. Here we discuss its application to the Smoluchowski 
equation in arbitrary dimensionality n. 

We know from Section 5.1 that mathematically the WKB approxima- 
tion to Po and p~ is determined by (i) a Lagrangian manifold J /  in the 
2n-dimensional phase space formed by the bicharacteristics emanating from 
(S, 0) and (S', 0), and (ii) functions W and K defined on this manifold and 
computable by integration along the bicharacteristics. Of the points 
p"~= (x, p"~) "over" any point x, only the one with least action is physical. 
The values there of W and K are the values W(x) and K(x) appearing in 
the WKB approximation. 

This geometric interpretation motivates the introduction of a new, 
"diffraction integral" way of formulating the WKB approximation. At any 
point p = (x, p).on the Lagrangian manifold J#, we have 

W ( p ) = ~ p . d x  (6.1) 

the line integral being taken along the bicharacteristic terminating at p. We 
can define a Legendre transform g/satisfying IY= x ' p -  W by 

I,V(p) = f x.  dp (6.2) 

822/83/3-4-3 
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It is natural to think of I,V as a function of momentum p, by projecting 
"sideways" onto momentum space. Of course IYr'(p) is potentially multi- 
valued, like W(x). For W, it is the least of the possible values that is physi- 
cal; for 17/, it is the most. But if one ignores the multivaluedness of g,'(p), 
one can write 

K(x) exp [ - W(x)/e] 

~ j ...I R(p)exp{[ - x . p +  ff'(p)]/e} dp, ... dp,, (6.3) 

where K(x) and g:(p) are related by 

K(x) oc R(p) /{det  [ 

=K(p)  {det [ 

0"- g," (p)] },/2 
Op, Op; 

} 'p- 
(6.4) 

the correspondence between p and x being given by p(x)=OW/Ox, or 
x(p) =0W/Op. The asymptotic equality in (6.3) as e--* 0 is justified by the 
method of steepest descent. (It may be necessary to cut off the integral at 
large momentum to ensure convergence.) The method of steepest descent 
automatically picks out the point p = (x, p) "over" x with the least action 
W(t~). We shall call (6.3) a diffraction &tegral representation, since (if e is 
pure imaginary) it resembles the diffraction integrals used in physical 
optics/41 

We have assumed that the Hessian matrix 02W/Ox~O.x)=Op~/&xij, 
whose inverse is the matrix Ozff'/Op~Opi=Ox~/Opj, is negative definite. 
Actually it is often possible to make sense of the above formulas even when 
this is not the case, by analytic continuation. It is also possible to avoid the 
problem of positive eigenvalues by taking the Legendre transform with 
respect to a partial (incomplete) set of variables. In n = 2 dimensions, this 
means with respect to a single variable only. For example, one could use 
the alternative integral representation 

K(x, y) exp[ - W(x, y)/e] 

~ e - ' / 2  1 /s y) exp{[ -xp . , .+  ff/c,-)(p.,., y)]/e} dp.,. (6.5) 

where /~"~ = xp.~- Wis regarded as a function ofp.,, and y, and K a n d  R r 
are related by 
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K(x, y) oc R~-"J(p.,., y) Op2.,. (px, y) 

=KC")(p.,., y ) [  - 0.--~5-_, (x,02W .I,)] 1/2 (6.6) 

Here the correspondence between (x, y) and (Px, Y) is given by 
p,(x, y)= O W/Ox, or equivalently x(px, y)= 0 ffg~"l/Opx. 

It is clear that the transformed prefactor K (resp. ~x~, etc.) in these 
integral representations, like W, K, and /$" (resp. ~r etc.), can be thought 
of as a function on the Lagrangian manifold ./#. Also, the momentum 
integration can be viewed as an integration over J#. So introducing 
integral representations of this sort is really a way of replacing the position- 
space WKB approximation K ( x ) e x p [ -  W(x)] to p(x) by a smeared-out 
equivalent one, or ones, involving integration over the manifold. As 
derived, these "momentum space" approximations are accurate only to 
leading order as e ~ 0, since subdominant terms in e arising from the 
method of steepest descent have been neglected. But such terms could be 
incorporated, if desired, by adding e-dependent corrections to the trans- 
formed prefactor. 

If the new formulations of the WKB approximation are equivalent to 
the old, why have we introduced them? The reason is that the equivalence 
holds only at points x at which K is finite. At singularities of K, the new 
formulations provide a means of computing the true e--* 0 asymptotics of 
p. Moreover, they reveal how at least some singularities of K can be 
explained as artifacts, arising from the way in which K is computed from 
K. It follows from (6.4) that if the determinant of the Hessian matrix 
0 2 W/Oxi Oxj = Opd/Ox j diverges at some point x, then x will be a singularity 
of K whenever K is nonzero at the corresponding momentum p = p(x). In 
other words, singularities of K may be more apparent than real: they can 
arise from points (x, p) on the manifold where g" does not actually diverge. 
A similar effect can arise from the representation (6.5), or from any other 
diffraction integral representation. 

The matrix OpflO.x) is a matrix of partial slopes, which specifies (to first 
order) the shape of the manifold in the vicinity of the point (x, p ) =  
(x, p(x)). Its determinant becomes infinite only when at least one of its 
elements is infinite. Such a blowup occurs only at locations on the manifold 
where the (n-dimensional) tangent hyperplane to the manifold "turns verti- 
cal," i.e., points along a momentum direction in the 2n-dimensional phase 
space. This is precisely the behavior one sees at a fold, as in Figs. 2c, 2d, 
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and 6. The folding over of the Lagrangian manifold can create singularities 
of K. This is clearly the cause of the singular behavior of K at the on-axis 
foci occurring in models with a bifurcated MPEP,  though not of the 
singular behavior at the nascent cusp occurring at criticality (which cannot 
be transformed away). 

Whether or not a singularity of the prefactor K occurring at some 
point x = x* is an artifact of this sort, by employing an appropriate diffrac- 
tion integral representation one may compute the true weak-noise 
asymptotics of p(x*). One usually finds leading-order behavior of the form 
const x e - "  e x p [ -  W(x*/e)], where a is by definition the singularity index 
of x*. In fact the e-dependent prefactor e -~ should appear at all points x 
within some e-dependent distance of x*, which shrinks to zero as e---, 0. 
Within this local region an asymptotically exact formula for p, derived 
from the integral representation, will be uniformly valid. This asymptotic 
approximation (non-WKB, at least in the traditional sense) will match in 
the far field to the WKB approximation K(x) exp[ - W(x)/e]. 

In Sections 7 and 8 we shall see how this "gluing in" procedure works, 
both in models with a bifurcated MPEP  and in models at criticality. For  
the moment we note only that the construction of a local approximation 
to p near the singular point x* depends crucially on the determination of 
the behavior of W and g7 near the corresponding point p* in momentum 
space. The case when K is well behaved ("slowly varying") in a 
neighborhood of p* and the singularity at x---x* is an artifact is the sim- 
plest. Suppose that I~=  17r can be expanded in a power series around 
p = p*. The matrix 0 2 lTV/Opi Op: must have a zero eigenvalue at p = p*, since 
otherwise the determinant of its inverse 0 2 W/Oxi Oxj would not tend to 
infinity as x -*  x*, the Lagrangian manifold would not turn vertical there, 
and the singularity in K would not appear. The term catastrophe is used to 
describe what happens to the manifold at x = x*. It is a standard result, 
due largely to Arnol'd, ~'-) that if the manifold is smooth near (x*, p*), the 
catastrophic behavior at x = x *  can be captured by approximating 
g / =  gZ(p) by one of a handful of polynomial functions. These are the 
"structurally stable" elementary catastrophes. 

A single example, illustrating the similarity to the Ginzburg-Landau 
theory of phase transitions, will suffice. In n dimensions, suppose that a 
singularity at x = x *  arises as an artifact in the above sense and that 
p * =  0 W/Ox(x*). In appropriate (linearly transformed) coordinates, write 

z = ( z  I , . . . ,  z , , )  = x - x *  (6.7) 

g =  (gl ..... g,,) = p - - p *  (6.8) 



Bifurcations in Symmetric Weak-Noise Escape 327 

A particularly common sort of catastrophe (a "cuspoid") would be 
described locally by a single-variable Legendre transform of the form 

~V~"l(z, ..... z, ,_ i, g,,) 

aog',: +2 a l ~ l g  ,, 
�9 .. a " - l z " - l g " - I - R ( z l , . . . , z , , _ l )  (6.9) 

n + 2 n 2 

where a o ..... a,,_ 1 are constants and R(z~ ..... z,,_ l) is a quadratic poly- 
nomial. Since z, = 0 Vl~"~/Og,,, this expression implies 

z , ,=z , , ( z  I ..... z , _ l , g , , ) =  --aog' ,  +l - -a l z lg~ ,  - l  . . . . .  a , _ l z , , _ l g ,  (6.10) 

The presence of a catastrophe at (z~ ..... z,,_ 1, g,,) = (0 ..... 0, 0) is signaled by 
the fact that 02W/Og~, = Oz,,/Og,, equals zero there. 

We have already seen the n = 2 version of Eq. (6.10) in Section 5.4, as 
a phenomenological description of the shape of the manifold ~ near an 
on-axis focus. Recall that we interpreted Eq. (5.33), which is the 1l = 2 ver- 
sion, in thermodynamic terms: as the equation of state of a substance 
undergoing a Ginzburg-Landau second-order phase transition�9 (E.g., z 1 is 
T -  T c, z 2 is a negative magnetic field, and g2 is magnetization.) Equation 
(6.10) is in fact a normal  f o r m  for the shape of a Lagrangian manifold near 
a cuspoid singularity. When n = 2, the cuspoid is a cusp. If n = 1, only the 
first term on the right-hand side of (6�9 is present, and the cuspoid 
reduces to a quadratic fold. 

In general, to each possible polynomial expression (normal form) 
for the Legendre-transformed action there corresponds a non-WKB 
approximation to p in a local region near x = x * ,  computed from the 
appropriate diffraction integral. These integrals serve to define the canoni- 
cal diffraction func t ions  first explored by Maslov. The canonical diffraction 
functions include the classical Airy and Pearcey functions, which arise from 
folds and cusps, respectivelyJ 41 We shall study the cusp case further in the 
next section, as a warmup for the study of the nascent cusp appearing at 
criticality. The normal form for the action near a nascent cusp will turn out 
to be nonpolynomial, but the Maslov-WKB technique will still apply�9 

We close this section by noting that diffraction integral representations 
are also useful for incorporating symmetry constraints and boundary con- 
ditions. As an example of this, consider behavior near the saddle point of 
a double-well model. We emphasized in Section 5.1 that if no bifurcation 
of the M P E P  has occurred, the WKB tube of probability density centered 
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on the axis will be well behaved as the saddle is approached. In particular, 
W2(X)=O2W/Oy2(x, O) will tend to 2 lul(O)l as x - , O  +. Since 

c~2W 
O--~x~_ (0, O) = (0 ,  O) = -2vD(O) (6.11) 

and v0(x)= u,.(x, O) is assumed to be smooth, in the absence of bifurcations 
W will to leading order be locally quadratic at the saddle. If 
u(x, y) ~ (2.,.x, -12yly)  is the linearization of the drift at the saddle, we 
have u~(0)= -12y] and v;(0)= 2.,.. So, near (x, y ) =  (0, 0), 

W(x, y) ~ W(0, 0) - 2,.x 2 + 12:, I y2 (6.12) 

and 

l~(px, py).~ -W(O, O)-p]./42,. +p~./4 G,I (6.13) 

l~"~(px, y) ~ -W(O, O) -p.~./42,. -11:.I y2 (6.14) 

will be the leading-order approximations to the Legendre-transformed 
actions. 

Since the Hessian matrix O2ITV/Opi3& is not negative definite, an 
integral representation of the type (6.3) is not appropriate. But a represen- 
tation of the type (6.5) may be used. In the absence of bifurcations, K and 
R are well behaved near the saddle, so substituting (6.14) into (6.5) yields 

p(x, y)~constx {e-UZ f exp[-(xp.,.+p~./42x)/e] dp.,.} 

x exp( -I,l;,1 y2/e) (6.15) 

Ifpx here is integrated from - o o  to oo, this approximation will be even in 
x. It will therefore serve as an approximation to the stationary density 
po(x, y) near the saddle. The integral may be evaluated explicitly, and the 
approximation reduces to the standard inverted Gaussian approximation 

po(x, y) ~ const x exp(+2,.x2/e) exp( -I,t,,I y'-/e) (6.16) 

But when approximating the quasistationary density p~(x, y) near the saddle, 
one needs an approximate solution of the Smoluchowski equation that is 
odd rather than even. Such an approximate solution may be obtained by 
integrating Px from 0 to oo, and antisymmetrizing under the reflection 
x--* - x .  If this is in fact done, Eq. (6.15) reduces to (5.20), the standard 
Kramers-type error function approximation to the quasistationary density! 

Although error function approximations originated (with Kramers) in 
an entirely different context, they fit naturally into the Maslov-WKB 
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framework. This has not previously been realized. We conclude that 
diffraction integral representations can be modified to incorporate the 
effects of symmetry constraints. In Section 8.3 we shall use a similar half- 
range integration in our integral representation for the quasistationary 
density near a nascent cusp. 

7. SCALING BEHAVIOR NEAR A CUSP 

We can apply the Maslov-WKB method of the last section to sym- 
metric double-well models in which the MPEP has bifurcated and the 
instanton trajectories emerging from S =  (xs, 0) focus at a point (x:, 0), 
with O<x:<x.,. .  As we shall see, behavior near the focal point (x i, 0) is 
best described in the language of critical phenomena. 

The Maslov-WKB method was first applied to focusing (cusp) 
singularities in two-dimensional models by Dykman et al. tl21 Their 
analysis, which does not assume any sort of symmetry, specializes in the case 
of symmetry about the x axis to the following. Assume that the Legendre- 
transformed action I~ :'~ = y p : , -  W, regarded as a function of x and py, 
may be asymptotically approximated near (x, py )=  (x:, O) by the cuspoid 
(codimension n = 2) normal form 

ao 4 a l  , 9 
I'~'l J')(x, py) ~ ---~ p:, - -~ tx  - xf) p~ - Wo(X) (7.1) 

Here a0 and a~ are positive constants and Wo(X) is simply W(x, 0), i.e., 
- ffc~-")(x, 0). Since y(x, p:,)=Ol7~Y~/Op.,,(x, py), this assumption is equiv- 
alent to 

y(x, p , , )~  3 �9 - a o p , , - a l ( x - x i )  p:, (7.2) 

which is the phenomenological (Ginzburg-Landau) equation of state (5.33) 
discussed at length in Section 5.4. One can view ff/~:')= I~J'l(x, py) as a 
Helmholtz free energy, just as W-- W(x, y) can be viewed as a Gibbs free 
energy. 

The cuspoid form for ff,'~Y~ is consistent with the folding of the 
Lagrangian n~anifold ./#, as seen (in projection) in Figs. 2c and 2d. It is 
also consistent with the quantitative asymptotics of Section 5.4. Since 
py = 0 corresponds to y =y(x ,  py) = O, (7.2) implies 

]' 
w2(x) = 0 - 7  (x, O) = ' (x, O) = (x, O) 

~ - a ? l ( x - x r )  -I,  x ~ x  7 (7.3) 
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This is precisely the near-focus blowup behavior of Eqs. (5.35)-(5.36), 
which we derived analytically from the Riccati equation (5.34). By com- 
paring (7.3) with (5.34), we see that the constant a~ must equal 1/Vo(X = xf), 
the reciprocal speed of the on-axis instanton trajectory as it passes through 
the focus. Since x - x f  is analogous to T - T , .  and w2 to a (negative) 
magnetic susceptibility, the blowup of (7.3) is analogous to the critical 
exponent y of the focus, in thermodynamic language, equaling unity. 

Dykman et aL use a one-dimensional diffraction integral representa- 
tion, resembling (6.5) but with x and y interchanged, to approximate the 
stationary probability density Po near x = (x:, 0). A crucial assumption is 
that the transformed prefactor ~(y l=  ~2~:,)(x, py), which has no direct ther- 
modynamic interpretation, is well behaved (locally constant, or "slowly 
varying") near (x, py)=(xf,  O). If this is the case, and it may be 
approximated by a constant, the Maslov-WKB approximation will be of 
the form 

K(x, y) exp[ - W(x, y)/e] 

e -1/2 K(Y)(x, p.,,) exp{ [ --ypy+ Ve'~v)(x, p:,)]/e} dpy 

[ ~e-I/2KCYl(xf, 0) exp e 

 oo4 Ol , ]/} - [ - ~ p : , + ~ ( x - x i )  p~+yp., e dp,, (7.4) 

In terms of "stretched" variables X=-(x -x i ) / e : -  and y=y/~3/4 this 
becomes 

e- l/4~2~-"l(x:, O) exp[ -W(x.r,  O)/e] 

x exp{ - [XW'(x i, O)/e '/'- + (X-'/2) W"(.x)-, 0)] 

x ~3(alaol/2X, aoi/4Y) (7.5) 

where the primes denote derivatives with respect to x. Here the canonical 
diffraction function 

f 
O'3 

~(u, v)-- exp{--[�88 lut2+vt]} dt (7.6) 

is a modified (real) Pearcey function. 135) 
The expression (7.5) is an asymptotically (e--* 0) valid approximation 

to the stationary density Po and quasistationary density p] on the x - x f =  
O(E]/2), y =  O(e 3/4) length scale near the cusp (-Yr, 0). It supplements the 
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WKB approximation, which is singular there. One sees that on this length 
scale, the preexponential factor in Po and Pl is actually of magnitude 
O(e- u4). The singularity index of the cusp equals 1/4, as in physical optics. 

The absence of an i from the exponent gives rise to unusual asymptotic 
behavior of the diffraction function. The familiar Pearcey fringes of physical 
optics are replaced by an exponential slope, which becomes increasingly 
steep as e ~ 0 .  Beyond the cusp (i.e., at x<x.r, which is analogous to 
T <  To), the WKB approximation K(x, y) exp[ - W(x, y)/e] is again valid, 
but W is no longer differentiable through the x axis. t'-8~ This is reflected in 
the far-field asymptotics of the Pearcey function ~. One can show that in 
the far field, i.e., as X= ( x -  ,yr)/e 1/2~ _ oo, the expression (7.5) matches to 
a WKB approximation displaying this nondifferentiability. One can also 
show that the fold caustic emanating from (x s, 0), as in Fig. 2c, is nonphysi- 
cal It arises from subdominant saddle points of the Pearcey integral, and 
does not contribute to the leading weak-noise asymptotics for P0 
and P l. This is closely related to the fact that "optimal paths [i.e., physical 
instanton trajectories] do not encounter caustics," as Dykman et al. ~2~ 
put it. 

Now the preceding Maslov-WKB treatment is satisfactory so far as it 
goes. But it leaves unresolved the issue of the validity of the Ginzburg- 
Landau approximation. The quartic normal form (7.1) for I7,~:'~= 
ITl~-"~(x, p,,), and the cubic equation of state (7.2) for its first derivative 
y=y(x ,  p,,), model a second-order phase transition with mean-fieM (i.e., 
classical) critical exponents. Equivalently, they model the critical behavior 
of a system which, though it has a phase transition, has a smooth ther- 
modynamic surface. In the present context, assuming the local validity of 
the Ginzburg-Landau approximation amounts to assuming that the 
Lagrangian manifold J// is smooth through the point (x, p.,,)= (xl, 0). Of 
course the surface turns vertical there, causing Op:./Oy to diverge. The 
assumption is that the singularity can be transformed away by using x and 
py rather than x and y as independent variables. 

This assumption requires proof. One could presumably justify it by 
analyzing the smoothness (and blowup) properties of solutions of the 
Hamilton-Jacobi equation. But we shall give a different, more physical 
justification. First, we shall model the local behavior of W and I~ yl by a 
scaling law, as in the modern theory of critical phenomena. Our treatment 
will serve as a warmup for Section 8, where we shall analyze the much 
more complicated (nonclassical) singularity appearing in models where the 
MPEP is beginning to bifurcate. 

To see that a scaling law is appropriate in models with a bifurcated 
MPEP, consider the behavior of the on-axis transverse derivatives 
W,_,,=O'-mw/OXZ"'(x,O) as x---,x~. We know by (5.35)-(5.36) that w,_ 
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diverges as ( x - . v r ) -  l The Riccati equation satisfied by w 2 is only the first 
of a hierarchy of ordinary differential equation describing the evolution of 
the functions w2,, as one moves along the on-axis instanton trajectory from 
S (where x=x.~ and t = - o o )  to the saddle (where x = 0  and t =  + m ) .  
For example, w4 satisfies the ODE (5.15). WE appears in each of the higher 
equations, and its blowup, will induce a blowup of w4, w6 ..... It is not 
difficult to show that 

0 2m W 
n , 2 , , , ( x ) = ~ ( x ,  O)~cons tx(x- -x f )  -13''-2), x---~.v~ (7.7) 

for 2m = 2, 4, 6 ..... These blowup rates motivate the scaling Ansatz 

for the behavior of W near the cusp (.x~, 0). Here the exponents 2 and 3/2 
are determined uniquely by the m dependence of the blowup rates, and the 
functions h + ( - )  of the scaling variable z-y/Ix-~,(rl  3/2 are not yet deter- 
mined (though they must be even). This Ansatz is assumed to be accurate 
to O( (x -xy)  2) when y =  O(Ix-xr{3/2). We could equally well posit 

W(x, z I x - x . r l  3/'-) ~ W(x  s, 0) + (x-.~r) W'(xr, O) 

(x -'~r)2 2 W"(xf'O)+(X-Xr)2h+(z) (7.9) 

.+  as x ~ x.?-, since we are assuming the accuracy of the scaling Ansatz only 
up to O((x-,vr)z). The first three terms in this asymptotic approximation 
are "regular"; the scaling behavior appears only in the final, singular term. 

The exponents 2 and 3/2 are typical of a mean-field theory. One can 
show that the scaling functions h_+ are also those of a mean-field theory. 
They may be computed by substituting the scaling Ansatz (7.9) into the 
Hamilton-Jacobi equation H(x, V W) = 0. For this, one needs to rewrite the 
Hamilton-Jacobi equation in terms of the independent variables x and z. 
Using the formula (5.2) for H and the expansions (5.9), one finds 

?: . .  
H(x, p) = ~- -e 2 + u,.(x, y) p.,. + ur(x, y) py 

= + +[Vo(X)+V2(x)y2-t - . . . ]px - t - [u i ( x ) y+u3y3+- . . ]py  

p2 p2 
~ x ~ 
~ ' 2  + 2 + [v~176 I x - x I I ]  P" (7.10) 
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to O(Ix-x . r[  ~) accuracy, since y = z l x - - x y ]  3/z. It follows from the up 
scaling form (7.8) that up to O(Ix-xfl  1) accuracy, 

p.,.(x, y ) = - ~ ( x ,  y ) ~  -2Vo(X)+ [ 2 h + ( z ) - ~  zh'+(z)] Ix-.~rl 

--21- Vo(xl) +__ v~l(x/) Ix- xsl] 

+[2h+_(z)-~zh'+_(z)} lx -x l l  (7.11) 

OW p,,(x, y)=-~-y (x, y)~ Ix-xil  i/z h'+_(z) (7.12) 

where we have used the fact (see Section 5.2) that W'(x, 0 ) =  
W'o(X) = -2Vo(X). Substituting (7.11 )-(7.12) into (7.10) and setting the coef- 
ficient of Ix- .~rl  t equal to zero yields the ODE 

(h'+)z = -I- Vo(.~r)[4h + - 3zh'+ ] (7.13) 

It is easier to solve for z as a function of h'+ than for h+ as a function of 
z. One finds 

z = z(h'+_ ) = - C(h'~ )3 -T- Vo(Xf) -1 h'+ (7.14) 

where C is undetermined. But z = y / l x - x i l  3/2, and by (7.12), 
h'+ ~ p y / l x - x i l  1/2. Rewriting z in terms o f y  and I x - . y r  I, and h' in terms 
Ofpy and I x - x s I ,  yields 

y =y(x ,  p,,) ~ 3 - -Cp.,, + Vo(Xf) -~ l x -  xrl P,, 
3 . -I  (7.15) = - C p y -  Vo(Xf) ( x -  xf) p:. 

If one identifies the model-dependent constant C with ao, this is precisely 
Eq. (7.2), the mean-field (Ginzburg-Landau) equation of state! It is valid 
on both sides of the on-axis focus, i.e., both when x - x . f > 0  and when 
x - .,(r < O. 

This derivation illustrates how one may go from the pattern of blowup 
rates of the "transverse derivatives w2,,(x)=Oz"W/Oy2"(x,  0) as (Xr, 0) is 
approached, to a scaling form for W, to an equation of state. The singular 
behavior of the WKB prefactor K can be analyzed similarly (we only sum- 
marize the analysis). We know by (5.36) that K(x,O) diverges as 
(x--.~r) -112 when x--+ x + A scaling form 

K(x, y ) ~ c o n s t x  Ix-.~rl-112 q + .ix_~rl31, - , x 
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modeled after the scaling form (7.8) for W, may be used to approximate K 
away from the x axis. This approximation should be accurate to 
O(ix_xr I-,/2) a s  x--,xf when y =  O([x-xf[3/2). By substituting the two 
scaling forms (7.8) and (7.16) into the transport equation (5.7) for K and 
working to leading order near (x I, 0), one can determine the scaling func- 
tions q_+ =qe(Z).  It is easily verified that collecting the O([x-xf1-3/2) 
terms in the transport equation yields the ODE 

[2h'~ ___ 3Vo(Xf} 2] q'+__ + [h" e +_ Vo(Xf)] q �9 = 0 (7.17) 

which qe = q e ( z )  must satisfy. Using elementary calculuses and the fact 
that h e = h e ( z )  satisfies the ODE (7.13), one can show that Eq. (7.17) has 
solution 

q+.(z) = const x [ -h"_+(z)] 1/2 (7.18) 

But since z = y / I x - x s l  3/2, we know by (7.12) that 

h'~(z) ~ l x -  xfl ~ (x, y =  z I x -  xf[ 3/2) (7.19) 
u y  

Substituting (7.18) and (7.19) into the scaling form (7.16) for K reduces it to 

K(x, y) ~ const x - ~ (x, y) (7.20) 

This asymptotic approximation is very simple, and has a profound conse- 
quence. We know that the transformed prefactor R(:'l(x, py) can be 
obtained from K(x, y) by dividing by a "Van VIeck factor," as in (6.6). We 
therefore have that 

~ const (7.22) 

since O2W/Oy'-=Opy/Oy. This constant asymptotic approximation is 
accurate to leading order as x ~ xf when y = O( Ix - x1[ 3/2). 

We have just deduced that on the appropriate length scale near the 
focus, i.e., x-:~r=o(1) and y=O([x-xr[3/2),  the transformed WKB 
prefactor I~ y) does not diverge. ~o,I, unlike the prefactor K itself, is 
asymptotically constant near the focus. This was the crucial assumption 
made by Dykman et al., and we see that like the Ginzburg-Landau normal 
form for the Legendre-transformed action, it is justified by our scaling 
theory of local behavior. 
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We conclude that at least in the case of a generic (cusp) singularity, 
by investigating the blowup rates of the transverse action derivatives as the 
singularity is approached, one can derive scaling relations for W and K, 
and ultimately construct a Maslov-WKB approximation to the stationary 
probability density near the singularity. This technique is not restricted to 
singularities of the classical Ginzburg-Landau type. 

8. SCALING BEHAVIOR NEAR A NASCENT CUSP 

Finally, we can construct a scaling theory of weak-noise behavior near 
the "nascent cusp" singularity appearing at the saddle point of any sym- 
metric double-well model, at the onset of bifurcation. The construction will 
closely parallel the construction of the last section. But several novel 
features will appear. We shall find that Legendre-transformed versions of 
the action are approximated, in the vicinity of a nascent cusp, by non- 
polynomial normal forms. Equivalently, the nascent cusp singularity, unlike 
an on-axis focus, will prove to have nonclassical critical exponents. The 
exponents will depend continuously on the parameter It = I2,,I/L,, which 
characterizes the linearized drift field at the saddle. 

The universal presence at criticality of a nongeneric two-sided caustic 
(which, as shown in Fig. 4, extends sideways from the saddle point) will 
follow from the nonpolynomial normal forms for the Legendre-transformed 
actions. Indeed, one of the normal forms will supply a nonpolynomial 
unfolding of the nongeneric caustic. Moreover, the fact that the critical 
exponents of the nascent cusp are model-dependent and continuously vary- 
ing will induce a continuously varying singularity index and a continuously 
varying prefactor exponent in the non-Arrhenius weak-noise MFPT 
asymptotics. To see this, we shall have to go beyond the WKB approxima- 
tion, by applying the Maslov-WKB method. In Section 8.1 we analyze the 
scaling properties of the action and the WKB prefactor, and in Section 8.2, 
we compare our scaling formulas with numerical data. In Section 8.3 we 
apply the Maslov-WKB method and construct weak-noise approximations 
to the stationary and quasistationary probability densities near the saddle. 

8.1. Scaling in the WKB Approximation 

Our scaling treatment of the nascent cusp begins with an investigation 
of the blowup rates of the transverse action derivatives w2,,,(x)= 
O'-"'W/Oy'-"(x,O) as x--,0 +. Up to now we have written down only the 
ODEs satisfied by w 2 [i.e., the Riccati equation (5.14)] and w4 [i.e., 
Eq. (5.15)]. The full hierarchy of ODEs may be derived by substituting the 
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Taylor series ~'~n~ for W(x, y) into the Hamilton- 
Jacobi equation H ( x , V W ) = 0  and separating out the coefficients of each 
power of y. One finds 

~v2., = - - V 0  w~_., 

k = l \ 2 k - - 1  [ w 2 J 2 + ~ _ ] ] w _ ,  .... 2~+,_ 

.... ' ( 2 m ~  , 
- ~. [w2j/2+~2j ] w',,, 2j+2~o~ .... (8.1) 

j=, k, 2 j J  - - - -  - 

where t72j+] = ( 2 j +  1)! uzj+] and vz j -  (2j)! v2j, and u2j+] and % are the 
drift velocity derivatives defined in (5.9). As usual, the time derivative here 
is with respect to transit time of the on-axis instanton trajectory, which 
satisfies . '~=-Vo(X) as it moves from S=(x., . ,0) to the saddle. Since 
vo(x) =ux(x ,  0), this trajectory t~-+x*(t) moves antiparallel to the drift. 
And since u(x, y) ~(2,.x,  - 2 ; , l y )  near (0, 0), x*(t) is approximated (as 
t o  + m )  by const xexp( -2 , . t ) .  

We showed in Section 5.4, by analyzing the Jacobi equation satisfied 
by the transverse soft mode, that 

wz(x) ~ const x x 2 , x ~ 0  + (8.2) 

in any double well model at the onset of bifurcation [see Eqs. (5.54)-(5.55) 
and Fig. 7]. If the fact that w2--*0 as x ~ 0  + (i.e., as t ~  + m )  is sub- 
stituted into the general ODE (8.1), it is easy to show, by integrating 
forward in time toward t = + ~ ,  that 

Wzm(X)~Cons t •  -~4m-4)/', x - * O  + (8.3) 

for 2 m = 4 , 6 , 8  ..... This pattern of blowup rates as the saddle is 
approached motivates the scaling Ansatz [cf. (7.8)] 

W(x, y)  ~ W(x,  0) + Ixla"h(y/Ixl z,,), x ~ 0 (8.4) 

Here h(-)  is some (even) scaling function, as yet undetermined, and the 
exponents 4/t and 2/t are determined uniquely by the m dependence of the 
blowup rates of (8.3). This Ansatz is assumed to be accurate to O( Ixl 4") as 
x--*0 when y=O(Ixl2~').  We could equally well posit a finite-length 
asymptotic expansion for W(x,  zlxl-~q, namely 

W(x, z l x l 2 " ) -  0--~-k (0, 0) ~.  +lx l4"h ( - ) ,  x - ~ O  (8.5) 
k = 0  " 
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Fig. 8. A sketch of the near-axis Region N defined by lY[/Ixl2"~<const. The choice of con- 
stant is immaterial, so long as it is positive. Most of our expansions for the action W and its 
Legendre transforms in double-well models at criticality are valid as (x, y)--* (0, 0) from 
within Region N. The region could equally well be defined by I Py I/Ix12"<~ const, l Yl/IPx 12"<~ 
const, or IP:,I/[Px 1-~ ~<const. To leading order near (0, 0), the four definitions are equivalent. 

Here z = y/Ixl 2,, is the scaling variable. Only  even powers of  x appear  in the 
summat ion,  and by convention,  here and below, L4p_I denotes the greatest 
even integer less than or  equal to 4/z. The expansion (8.5) is assumed to be 
accurate to O(Ixl  4") at any fixed value of  z. It can be thought  of  as an 
asymptot ic  development  of  W(x) as x ~ 0 from within the near-axis region 
defined by the condit ion Izl ~< const. This condit ion defines a notch-shaped 
region, which we call Region N. (See Fig. 8.) 

It follows by differentiating (8.4) twice with respect to y that  
w 2 ( x ) ~ h " ( 0 )  as x ~ O .  For  consistency with the "splayout"  behavior  
w2(x) ~ const x .x "2 of  (8.2), we must  have h " ( 0 ) = 0 .  Notice the slight dis- 
crepancy: the falloff rate of  w2 is not  fully captured by the scaling Ansatz. 
Actually, this is unsurprising. A term propor t ional  to xZy 2 in IV, such as 
would arise f rom the O(x 2) falloff of  w 2 as x ~ 0, would (in terms of  x and 
- = y / l x l  2,) be propor t iona l  to Ixl 4~' § 2z2. It would therefore be negligible in 
compar ison  to the scaling term Ixl4~'h(z) as x ~ 0. The scaling term cap- 
tures the b lowup as x ~ 0 of  w 4, w 6, w 8,..., but  captur ing the precise falloff 
rate of  w2 would require a more  refined analysis. We shall not  a t tempt  to 
include in our  Ansatz the "subscaling" terms that  such an analysis would 
require. 

The scaling function h( .  ) may  be computed  by the technique used in 
Section 7. By substituting the expression (8.5) into the Hami l ton - Jacob i  
equat ion H(x,  V W ) = 0 ,  rewriting the Hami l ton - Jacob i  equat ion in terms 
of  the independent  variables x and z, and setting the coefficient of  Ixl 4'' 
equal to zero] one obtains an O D E  for h = h(z). This O D E  turns out  to be 
[cf. (7.13)] 

(h') 2 = 2 IXy l[4h - zh'] (8.6) 

As in Section 7, it is easier to solve for z as a function of  h' than for h as 
a function of  z. One finds [cf. (7.14)] 

z = z(h')  =h'/2  I;%1 + c(h') I/3 (8.7) 
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where c is undetermined. But z=y/ lx l  2~' and p v=OW/Oy~lxl2ph'(z). 
Rewriting z in terms of x and y, and h' in terms of x and p.,,, yields an 
asymptotically accurate equation of state [ cf. (7.1 5) ] 

y = y ( x ,  p . , ) ~ p  ./2 I),.,, I + c:,:x.,.,. Ixl4~'/3pj,/~ (8.8) 

where cy;x,p,.= c. In practice the model-dependent constant c would be 
computed numerically, by fitting (8.8) to the flow field of instanton trajec- 
tories in the vicinity of the saddle. We must have c > 0, since the map 
p,. ~ y is necessarily monotone increasing near the saddle. This is because 
"whorling," as in Fig. 6, occurs only in models with a bifurcated MPEP.  
Whorling is absent at criticality, i.e., at the onset of bifurcation. 

The equation of state (8.8) is certainly not of the classical Ginzburg-  
Landau form. By antidifferentiating it, we can obtain an equally unusual 
approximation to the Legendre-transformed action FV ~:'~ =yp.~,- W, where 
p.,, = 0 W/Oy. Since y = 0 I~-~')/0p;., we necessarily have 

W~."l(x, p,.) ~ - W(x, 

L4.u J 

,) 

P~, p413 O) + ~ + C.,.,p.. Ixl 4''/3 (8.9) 

OkW 0 x~'~ (8.1o) 

where C,.. p~= 3c/4. This asymptotic approximation should be accurate to 
O([x[4~'), when p,,=O(Ix[ 21') [i.e., when y=O(lx[2~'), or when x - - , 0  from 
within Region N].  

The formula (8.10) can be called a nonpolynomial normal form for the 
transformed action /~:'~ near the nascent cusp. Notice that as x - ,  0, the 

, ' - ,  I 41t/3 4/3  final, nonpolynomial term ~x.p.lXl P,, is significant in a relative sense 
only within Region N. In the far field of the p:, = O( Ix[ 2t') length scale, as 
x ~ 0 it is increasingly dominated by the p~ term, and the normal form 
reduces to a polynomial, The Cx.p,.[x[41'/3p~/3 term plays a much more 
important role in the near field. One can think of (8.10) as providing an 
hTterpolation between the nonpolynomial asymptotic development that is 
valid as x --* 0 from within Region N and the polynomial development that 
is valid as x --, 0 from within its far field. The scalh~g behavior is visible only 
within Region N. 

It is worth noting that despite its asymptotic validity, the non- 
polynomial normal form (8.10) does not fully capture the p,.--, 0 behavior 
of gVX."~(x, p;,) at fixed, nonzero x. If the nonanalytic p4/3 falioff were exact, 
it would follow by differentiating twice with respect to  p.,, that 02 gV~y~/Op,_.v, 
i.e., Oy/Op:,, would diverge as p_,,--* O. This would imply that w, = Op,,/Oy 
( y = 0 )  would be identically zero at any nonzero x. But we know that 
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9 w2(x)  ~ const x x-, x ~ 0. The discrepancy is due to the fact that the non- 
zero w2 near x = 0  arises from "subscaling" behavior that we are not 
attempting to model. It is not difficult to see that at fixed nonzero x, the 
apparent nonanalyticity at p:, = 0  must be "rounded" at a length scale 
py=O(lx[21 '+3) ,  or equivalently at y=O(lx[ ' - ' l '+ l ) ,  to yield consistency 
with the w2(x)  ~ const x x 2 asymptotics. However, on the py = O(Ixl-~') 
length scale the rounding becomes invisible as x ~ 0. 

With its continuously varying (in general, irrational) exponent 4p/3,  
the normal form for ~Y} in Region N looks quite different from the nor- 
mal forms of catastrophe theory. ~2"4~ Its most striking feature is the non- 
analyticity at (x, py) = (0, 0), which can be interpreted thermodynamically. 
Recall that /~-"~ (like ~ " ) ,  IY, and W) can be viewed as a thermodynamic  
potent ia l  on the thermodynamic surface (i.e., Lagrangian manifold) J//. In 
fact, through its derivatives it determines the shape of Jr So at 
(x, p y ) =  (0, 0), or equivalently at (x, y ) =  (0, 0), the surface .//-/will itself be 
nonanalytic. However, as p increases, VI/~.'~ becomes increasingly differ- 
entiable (with respect to x, at least) at x = 0 .  The order of the "phase 
transition" appearing at the saddle at criticality is therefore an increasing 
function of p. 

We can Legendre-transform the normal form for I~ :'J to obtain a nor- 
mal form for the double Legendre transform IT/= x .  p - W =  xp.,. + VI ~y~ as 
a function of p.,. and py. A further Legendre transform will yield a normal 
form for the remaining thermodynamic potentials ~ " ) .  We sketch only the 
first of these two computations. Differentiating (8.9)-(8.10) with respect to 
x and using p_,. = c3 W/Ox = - a ~ - '~  yields 

p.,.=p.,.(x, py )~p . , . ( x ,O)+cp , . . , . py[[x[  4~'/3-1 sgnx]  p4/3 (8.11) 

~ ( - 22xx + -.. + const x x L4~'j- ~) 

+ Cp.~: .,. p.,.[ Ix[ 4~'/3- t sgn x]  p4/3 (8.12) 

where Cpx;.x_py ~-. -(4///3)C~..p=--pc. Here we have used the fact that 
W(x,  0 ) = - 2 v 0 ( x ) ,  so that W " ( 0 , 0 ) = - 2 2 , . ,  etc. This approximation is 
accurate to O( [xl 4~' - t ) as x ~ 0 when py = O( [xl 2~,) [ i.e., when x ~ 0 from 
within Region N] .  If /x> 1/2, it is easy to invert the series (8.12) to 
approximate x = x ( p . , . ,  p,,). The - 2 2 , . x  term is dominant, and inversion 
yields 

x : x ( p x ,  p y ) ~ x ( p . , . ,  O)]-Cx;p.,.,p.l.[[p,:[ 4"/3-1  sgnpx ] p4/3 (8.13) 

( --px/22.,. + . . .  + const xp~. 4~'j- 1) 

..~ Cx;px,py [ 1p.,.14~,/3 - i sgn px] p4/3 (8.14) 

822/83/3-4-4 
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where 

cx:p.~.p,. = - ( 2 ; t , . ) - 4 , / 3  Cp.,.: x.e,, = (22, .)  - 4 , / 3 / t c  

Since x(p.,., p:,)=Og:/Op.~(p.,., py), w e  must  have  

9 n 4,u/3 n4 /3  (8.15) lYV(p.,., p:,) ,.~ ff:(p.,., O) +p;,/4 I~ ,I + c:,,:, ....... .:, 

( - W(0, 0) -p.~./4,;t x + . . .  + const  xp~. 4/'J) 

+ p~/4 I:-yl + c,,x.p, [p.,.ta,/3 p4/3 (8.16) 

0) -p_ , . /42 . , .  +p-y~4 lay[ + Cp..p.,, Ip.,.[4/'/3p 4/3 (8 .17)  

where Cp.,.p.,. = (3/4p) c,.:p.,.,p~. = (3c/4)(22., .)-4,/3. The m o m e n t u m - s p a c e  nor-  
mal  forms (8.15) and (8.16) should  be accurate to O(]p.,.] 4") as p.,.--->0 
when  py = O(IpxlZ"). This  is s imply a m o m e n t u m - s p a c e  vers ion o f  the con-  
dit ion that x ~ 0 from within Region N. 

It is useful to compare  the truncated normal  form (8.17) with (6.13), 
the quadratic approximat ion  to W that is valid near the saddle point  in the 
absence of  focusing. We see that the fact that a double-wel l  mode l  is 

Table I. Normal Forms for the Thermodynamic Potentials (the Legendre 
Transforms of the Action W, and W Itself) in the Vicinity of a Nascent Cusp ~ 

ff ' (Px,  Py) ~ 

l'~'c")(p, v, y)  

IrV~ p :,) 

W(x, y )  ~ 

ft'(p,. O) +pT./4 [2.,] + Cp t, 4/,/3 4/3 ? ...... IP.,-I P ,  

( - W(O, O) -p2.,./42x + ... + c o n s t  x p  L4/'J) 

+ p~/4 J2,.J + C.,~.p,. Ip.,.14:"/3 p~/3 

ff"")(p.~, 0) - 12.,,I y'- + Cp,..,. Ip.~l 4"/3 y4/3 

( -  W(0, 0 ) - p ~ / 4 2 x  + -- .  + c o n s t  xpL. 4"J) 

--I,t:.1 y 2 +  Cp,.~. Ip.,.I 4j'/3 y4/3 

ff'4:')(x, O) + p~14 JR,.J + C.,. p,. I.vl4"/a p 4/-~ 

( - W(0, 0) + ),.,.x'- + --- + c o n s t  x x L4/'J) 

+p~/4 12,.I + C.,-.r. Ixl 4"n pan 

Wfx, O) + Ix] 4/' h(y/Ixl 2") 

( W{0, 0) - ) ,xx 2 + . . .  + const x x L4"J) 

+ Ixl 4. h(y/Ixl 2.) 

" I n  terms of the model-dependent constant c, Cp~.r, .= (3c/4)(22.,.) -4~'/3, Cl,~,y= 
(3c/4)(22.,.)-4J':3(2 12yl) 4/3, and  C.,..p,.=3c/4. These asymptotic expansions are valid in 
Region N in critical double-well models with p > 1/2. 
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"critical" modifies the double Legendre transform I,V near the saddle in a 
very simple way: it adds the final, nonpolynomial term. In a sense, the coef- 
ficient Cp.,. p,. measures the strength of the nascent cusp singularity at the 
saddle. 

The computation of the remaining thermodynamic potential, I,~ x), is 
left to the reader. In Table I we list the normal forms for IT', ff~x), and I,} "Iy) 
as well as the scaling form for W. The expressions listed there are accurate 
to O(Ixl2"), i.e., to O(Ip.,.I-'/'), as the nascent cusp is approached from 
within Region N. In Table II we list the four possible equations of state for 
x and y. They are accurate to O(Ixl2"- J), i.e., to O(Ip:,.12"-~), in the same 
limit. 

We emphasize that the normal form (8.16) for I,V, the normal form for 
l~  x), and the equations of state that follow from them are valid only for 
critical models with p > 1/2. The reason is that when/1 ~< 1/2, the final term 
in (8.12), which when py = O(Ixl 2.) is of magnitude O(x 4"-~), is at least as 
large as the - 2 2 , . x  term as x--+0. In fact when p < l / 2 ,  in Region N 
(except on the x axis) the leading asymptotics of px=p.,.(x, p:,) are not 
linear in x. This makes difficult the computation of asymptotic approxima- 
tions to x = x(p.,., py) and I~=  l~(p.,., py). For  this reason we shall assume 
It > 1/2 henceforth. 

It is a reasonable conjecture that in critical models where the sym- 
metrical approximation (8.17) to I~=  14"(p.,., py) is valid, it is valid not 
merely near the p.,. axis (i.e., in Region N), but uniformly as p ~ 0. One 
would like to substitute it into the Maslov-WKB diffraction integral (6.3) 

Table II. Normal Forms for the Equations of State (Which Describe the Shape 
of the Lagrangian Manifold JW) in the Vicinity of a Nascent Cusp a 

x(p.~, y) ~ x(p.,., O) + cx:p~..,.[ IP.~ 14/'/3- ~ sgn Px] y4/3 

( --p.J22x + .. .  + const  xp~  4/'-1-1) 

+ c~:p,..,.[ [Px 14/̀ /3 - s sgn p.~] y4/3 

x( p.,., p:.) ~ x (p  .~, O) + cx: p,. p,.[ I P.~ 14"/3 - ~ sgn p.,. ] p4/3 

( -p., . /22,.  + - . .  + const  xp~  4~'j- i) 

+ c , : p ,  p.,[ [p.~ [4,/3-t sgn Px] p4/3 

y(x,  p y ) ~ p y / 2  [2y[ + cy: .~.p, ]x141'/3 p~,/3 

4/*/3 I13 Y(Px, P.,.)~p.,./2 I,t.,. I + r p,. ,,,. Ip.,. I Py 

" I t  follows by differentiating the normal  forms listed in Table I that  c~:t .s=(4p/3)Ct ,  j 
and C v : l . j = ( 4 / 3 ) C I .  J, So r 4p/3, Cx :p , , y=f l c (2  12yl)4/3/(2)~x) 41'/3, c).;px, py = 
c/(22xi 4/'/3, and cy;.,.,p,=c. These asymptot ic  expansions are valid in Region N in critical 
double-well models  with it > 1/2. 
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so as to obtain boundary layer approximations to the stationary and 
quasistationary probability densities near the saddle point (0,0). The 
approximation to the quasistationary density would be a replacement for 
the usual Kramers-type error function approximation (5.21). From it, one 
could derive an Eyring formula for the MFPT asymptotics as in Section 
5.2. Unfortunately there is a problem. If Cpx.py=O and (8.17) becomes 
quadratic, the Hessian matrix 02ffV/Opi Opj is clearly not negative definite. 
As we noted in Section 6, this precludes the use of the two-dimensional dif- 
fraction integral (6.3). The situation does not improve much if Cp.,.p,. is 
positive, so it is preferable to use an alternative integral representation. The 
asymptotic approximation to the Legendre transform ffI<-,~ = x p . , . - W =  
-yp,, + ITV as a function ofp.,, and y is listed in Table I. A truncated version 
of it would be 

I~"~(p.,., y) ~ -W(O,O)-p~./4)~x-12yly2WCy.p.~ [pxl41'/3y 4/3 (8.18) 

which is a nonpolynomial modification of the Gaussian approximation 
(6.14). This approximation is precisely what is needed in the one-dimen- 
sional diffraction integral (6.5), which is what we shall use instead of (6.3). 

The reader may wonder about the domain of validity of the 
approximation (8.18) to ~ " 1 =  IYg~"l(p.,., y). Is it valid outside Region N? 
In Section 8.2 we present numerical evidence that it is, in fact, a useful 
asymptotic approximation near the y axis, even at fixed, nonzero y. Indeed, 
it explains the mysterious "sideways" caustic of Fig. 4! To see this, differen- 
tiate (8.18) with respect to p_,. to get 

x=x(px ,  y) ,~ --p.,./22,.+c,.;p,.,y4/3[lp.,.[ ~4t'/3~-1 sgnpx] (8.19) 

which is a truncated version of the asymptotic expansion of x = x(p.,., y) 
listed in Table II. If/t < 3/2, the formula (8.19) predicts that at any nonzero 
y, the map p.,. ~ x will not be monotone. This is because the coefficient 
c,.;p.,+ y is positive. By examination, if 

Ixl < const x [yl ~3/~--~'~-', y ~  0 (8.20) 

then the inverse map p.,. =p.,.(x, y) [and hence W =  W(x, y)-] will be multi- 
valued. This inequality defines a two-sided nongeneric caustic, which 
emanates from (0, 0) along the positive and negative y axes. 

In the language of catastrophe theory, the formula (8.19) is a (non- 
smooth) unfoMing of the nongeneric caustic emanating from the nascent 
cusp. It also resembles a thermodynamic equation of state in the vicinity of 
a phase transition. However, the thermodynamic interpretation of the 
variables differs from the case of an on-axis focus, as analyzed in the last 
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section. Here [yl is analogous to 7",.- T. for example. By examination, the 
thermodynamic critical exponent ), is nonzero whenever/ t  < 3/2; it equals 
( 3 / 2 - / z )  -J. In any event, the critical exponents of the nascent cusp are 
clearly nonclassical: they depend continuously on the parameter p. 

We caution the reader that in arbitrary double-well models at criti- 
cality, the nonpolynomial approximation (8.18) and the nonclassical equa- 
tion of state (8.19) may not necessarily describe the p.,. ---, 0 behavior of 
x=x(p. , . ,  y) at fixed, nonzero y. I f / t  <3/4,  the y4/3[lpxlt4t'/31-1 sgn p.,.] 
term in (8.19) would cause x = x ( p x ,  y) to diverge as p.,. --* 0 at any non- 
zero y or P.v- Such a divergence would greatly distort the shape of the 
Lagrangian manifold J//. So we shall assume y > 3/4 hencefortfi. In Sec- 
tion 8.2 we present numerical evidence of the need for t he / t  > 3/4 restric- 
tion, and also verify that the nongeneric caustic is present if and only if 
It < 3/2. Incidentally, our numerical results indicate that at fixed nonzero y, 
the apparent nonanalyticity at p.,. = 0 is "rounded" at a sufficiently small 
([yl-dependent) length scale as p.,. ~ 0 .  This is analogous to the above- 
mentioned rounding of l~: 'l(x, py) and its derivative y =y(x ,  py) as py ---, 0 
at fixed nonzero .x'. 

There is also a problem with the nonpolynomial approximation (8.18) 
and the nonclassical equation of state (8.19) when it ~> 3. To see this, note 
that a more complete asymptotic expansion of x = x ( p  x, y) near p.,.= 0 
would presumably be of the form 

x = x(p.,., y) ~ ( -p.,./22,. + -.- + const xp~. 4~'d- I ) 

_.}_ Cx;p.,.,y y4/3 r ip.,. 14.t,/3 --I sgn p.,.] (8.21) 

Such an asymptotic expansion is listed in Table II, and is certainly valid as 
x ~ 0 from within Region N. If a similar expansion is valid near the y axis, 
we see that there will be a crossover a It = 3 between two regimes. When 
It = 3, the nonpolynomial c.,.; p.,..,, y4/3 [ i p.,. 141,/3 -- 1 sgn p.,.] term in (8.21 ) 

I' ) : 4 / 3  ~ 3 becomes c,.p .... t,,.. This is increasingly dominated by the p3. term in 
(8.21) as y ~ 0. In fact when it is raised above 3, at small lY[ the leading 
corrections to the naive x ~ -p.,./22.,. behavior are no longer given by the 
nonpolynomial term, but rather by the p.3. term. For  this reason we shall 
assume for the remainder of our analysis that p < 3 as well as it > 3/4. 

To use the one-dimensional Maslov-WKB diffraction integral (6.5) as 
promised, we need to approximate in the vicinity of the nascent cusp at 
(p.,., y) = (0, 0) not only the Legendre-transformed action l~")(p.,., y), but 
also the transformed prefactor Rc.,-~(p.,., y). It may be approximated in a 
very similar way, which we only summarize. By (5.54)-(5.55), K(x, O) 
diverges in any critical model as Ixl-~' when x ~ 0. A scaling form 

K(x, y ) ~  Ixl-" q(y/Ixl 2") (8.22) 
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modeled after (7.16) and (8.4) may be used to approximate K away from 
the x axis. The approximation (8.22) should be accurate to O(Ixl-") as 
x ~ 0  when y=O(Ixl 2~) [i.e., as x---,0 from within Region N].  By sub- 
stituting (8.22) and the scaling form (8.4) for W into the amplitude trans- 
port equation (5.7) and working to leading order near (x, y) = (0, 0), one 
can determine the scaling function q=q(z). The procedure closely resem- 
bles the procedure used in Section 7. It is easily verified that collecting the 
O(Ixl-") terms in the transport equation yields the ODE 

2[h'+ I,~yl z] q'+h"q=O (8.23) 

which q=q(z) must satisfy. [Cf. (7.17).] Here h=h(z) is the scaling func- 
tion for W, which satisfies the ODE (8.6). Using elementary calculus, one 
can show that Eq. (8.23) has solution 

q(z) = const x Ih'(z)1-1/3 [ - h " ( z ) ]  1/2 (8.24) 

[Cf. (7.18).] But since py = OW/Oy ~ Ixl2"h ', one may write Ix1-2.py for h' 
and apy/Oy for h". Substituting (8.24) into the scaling form (8.22) and per- 
forming the indicated rewriting yields 

K(x, y)~constxlxl_,,/3 lpyl_,/3[ Op v ]~/2 - ~ (x, y) (8.25) 

[Cf. (7.20).] This asymptotic approximation is exact to leading order as 
x ~ 0 from within Region N. 

The formula (8.25) facilitates the computation of the transformed 
prefactor ~YI=g(Y)(x, py). It  may be computed from K as in (7.21), by 
dividing by the appropriate "Van Vleck factor." We immediately find 

-.~ const x Ix[ -,/3 [py I -1/3 (8.27) 

since 02 W/Oy'- -= Opy/Oy. [ Cf. (7.21)-(7.22). ] The uncomplicated asymptotic 
approximation (8.27) should be accurate to O(Ixl -~) as x- - ,0  when 
py= O(Ixl'-"). It simply says that KlY)(x, alxl'-") ~cons t  x lal-t/3lx[ - "  as 
x---, 0 for any nonzero a. 

The two remaining transformed prefactors, g7 and .~"), may be com- 
puted from .K(Y) by dividing (or multiplying) by the appropriate Van Vleck 
factors. [Cf. (6.4) and (6.6).] For example, 

02g,  , p,.)] (8.28) R(p.,., py) oc R~Y)(x, py) [ - ~ (P.,- J I/2 
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The details are left to the reader. One finds 

R(p.,., p>,) ~ const x I Px [ -~/3 [py [ - 1/3 (8.29) 

R~X)(px, y ) ~  const x Ipxl-,,/3 [yl-i/3 (8.30) 

The transformed prefactor R tx) is the one we need for the Maslov-WKB 
diffraction integral. In Section 8.2, we examine the numerical evidence for 
the validity of this asymptotic approximation to ,~x)=~X)(p.,., y) when 
Px ~ 0 at fixed nonzero y. 

Remarkably, the formula (8.30) predicts that R(")(p.,., y) diverges at 
the location (Px, Y) = (0, 0) of the nascent cusp. This is different from the 
case of a generic (cusp) singularity, treated in Section 7. It is also different 
from the geometrical optics limit of physical optics, where the transformed 
amplitude function near a singularity is normally a "slowly varying" (i.e., 
nonsingular) function. (4) The fact that the transformed prefactor ~(x) 
diverges at the nascent cusp is at least as important to the weak-noise 
behavior of critical double-well models as the fact that the normal form for 
the transformed action 1,~ x) is nonpolynomial. 

8.2. Comparison with Numerics 

We now summarize the numerical evidence for the validity, in double-well 
models at criticality, of our nonpolynomial normal form for the Legendre- 
transformed action lye') = l~X)(px, y) and our approximation to the trans- 
formed WKB prefactor ~ ' ) =  K(")(p.,., y). We shall see that both are valid 
approximations near the x-axis separatrix; in particular, near the saddle point. 
This justifies their use in the Maslov-WKB method, which we shall employ in 
Section 8.3 to construct boundary layer approximations to the stationary and 
quasistationary probability distributions of double-well models at criticality. 

We begin by examining the evidence for the nonpolynomial normal 
form (8.18) for I7~")= ffc"")(p.,., y). Actually, we shall study the related 
nonpolynomial approximation (8.19) to its first derivative x = x(p:,, y), i.e., 
the equation of state 

x=x(p., . ,  y) ,~ -px/2,~x+Cx:p.~.yy4/3[[px[ (4~/3)-1 sgn p.,.] (8.31) 

As explained in Section 8.1, we expect on theoretical grounds that this 
approximation is generically valid near the saddle point in critical models 
in which the quotient/z = 12yl/2x satisfies 3/4 <It < 3. The formula (8.31) 
predicts that at nonzero y, the correspondence Px ~ x  is monotone if 
p/> 3/2, but nonmonotone at nonzero y i f / t  < 3/2. When p < 3/2, the 
correspondence p.,. ~ x is analogous to the correspondence m ~ - I )  in a 
ferromagnet between magnetization and (negative) magnetic field. 
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It is easily checked that when 

Ixl < const x lyl t3/2-~1-', y ~ 0  (8.32) 

the inverse map x ~-~p.,. is three-valued rather than single-valued. In this 
region the three possible values for Px are, by examination, of the same 
magnitude as x, i.e., 

px=O(lyll3/2-")-'), y--*O (8.33) 

We interpret the inequality (8.32) as defining a two-sided nongeneric 
caustic centered on the y axis, in the interior of which the action W and its 
gradient p = V W are three-valued. Recall that the Lagrangian manifold Jr 
which is traced out by WKB bicharacteristics, comprises all points in phase 
space of the form (x, p(x)). The three-valuedness of W and p within the 
caustic accordingly implies that there are three points on ~ / " a b o v e "  any 
point x in the interior of the caustic. We have already seen in Fig. 4 that 
a nongeneric caustic qualitatively agreeing with this prediction does indeed 
appear in the p = 1 standard double-well model (3.1) at criticality. 

Figures 9a-9d show the flow field of instanton trajectories, i.e., pro- 
jected bicharacteristics, in several more critical variants of the standard 
double-well model. [At criticality ~=o~,.=2p(/t+l), by Eq.(5.50).] 
Figures 9b and 9c, with/z =0.85 and/~ = 1.15, illustrate the fact that the 
two-sided caustic of Fig. 4 appears at criticality in any double-well model 
whose parameter p = ]2:,1/2x satisfies 3/4 <It  < 3/2. The caustic disappears, 
as expected, in critical models with Ft >/3/2. Figure 9d shows what happens. 
As /z in the standard model is raised above 3/2 [with e set equal to 
ec=ec(/z)],  the two-sided caustic separates into two one-sided generic 
caustics, whose cusps move out along the positive and negative y axes 
away from the saddle. In any critical model with it > 3/2, there is a portion 
of the separatrix near the saddle that is not crossed by any instanton 
trajectory. 

Figure 9a illustrates the bizarre behavior that occurs in critical models 
with p ~< 3/4. At first glance it seems that the now familiar two-sided caustic 
is present, but closer study reveals that points in its interior are reached by 
only two instanton trajectories, rather than three. Apparently, in the 
/z ~< 3/4 regime the approximation (8.31) breaks down near the separatrix. 
Empirically, when g ~< 3/4 the IP~-1(4~/3)- i factor in (8.31) must be replaced 
by unity. The it ~< 3/4 regime is still under investigation, and we shall not 
consider it further in this paper. 

We can now compare the predictions of our scaling theory with 
numerical data. Figure 10a is a section through the caustic of Fig. 9b, i.e., 
a cross section through the corresponding Lagrangian manifold. It shows 
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Fig. 9. The flow field of instanton trajectories emanating from the two stable fixed points S 
and S' in critical versions of the standard double-well model (3.1). (a-d) Models with 
lt=0.725, 0.85, 1.15, and 1.6. In all cases the parameter e is set equal to the critical value 
% = 2lt(tt +1), at which the MPEP bifurcates. The two-sided nongeneric caustic of Fig. 4 is 
visible in parts (b) and (c), but it has separated into two generic caustics in part (d). 

the correspondence Px ~ x at y = 0.05 in the It = 0.85 s tandard model at 
criticality. The qualitative shape of  the curve certainly resembles the predic- 
tion of  the equat ion of  state (8.31). But before making a quantitative 
comparison,  we need to discuss the interpretat ion of  (8.31). It was derived 
from an asymptot ic  development  of  the action about  the saddle point. To 
what  extent does it describe the small-lp.,.I asymptotics  of  x =x(p.,. ,  y)  at 
f ixed, nonzerd y? That  is what  is plotted in Fig. 10. 

F r o m  a r igorous point  of  view, when / 1 < 3 / 2  the formula (8.31) 
provides a two-term asymptot ic  expansion of  x = x ( p x ,  y)  as y ~ 0 on the 
pz,. = O(ly[ ~3/'--~-') length scale on which the nongeneric caustic is visible. 
This is strongly reminiscent of  the "Region N"  constraint  of  the last section. 
There we began by approximat ing W =  W(x, y)  in the notch-shaped region 
of  Fig. 8. Here we are approximat ing  x=x(p . , . ,  y), and by extension its 
antiderivative I/~") = I,~")(p.,_, y), in a region that  is similarly notch-shaped,  
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Fig. 10. A section through the nongeneric caustic appearing at criticality in the /~ = 0.85 
standard double-well model, as shown in Fig. 9b. This section is taken at y = 0.05. (a) A linear 
and (b) a logarithmic plot of x = x(px, y = 0.05). The scaling behavior (x oc I P., I (4u/3)-j) and 
the subscaling behavior (x oc Px) are both visible. Crossover between the two regimes occurs 
at Px = O(lylCS/3)t3/2-/':'), i.e., at p. , . -  10 -s. 

but is centered on the y axis rather than the x axis. We shall not attempt 
to expand x and I,~ '~ systematically, but the basic procedure is plain. If we 
define a new scaling variable 

~- =Pxlt Yl (3/2-/,)-, (8.34) 

then formula (8.31) can be interpreted as comprising the first two terms in 
an asymptotic development of x(~[y] (3/2-/'}- , y) as y--*0. The develop- 
ment should be valid at any fixed ~. 

Though this restatement is a bit pedantic, it suggests that on smaller 
length scales than Px = O([y[t3/2-")-~), the formula (8.31) might be invalid. 
Actually there are strong reasons for believing that the nonanalytic 
[px[ c4"/3)-1 sgn p.,. behavior as Px'-* 0 does not appear at fixed, nonzero y. 
If it did, Ox/Opx(px = 0) would diverge at criticality, at y 50 ,  in any model 
with 3/4 </2 < 3/2. Equivalently, Opx/Ox(x = 0), i.e., 02W/OxZ(x = 0), would 
be identically zero, irrespective of the choice of nonzero y. But this predic- 
tion is too simple: it ignores the presence of "subscaling" terms. We noted 
in the last section that at criticality, W =  W(x, y) should contain an x2y 2 
term, for consistency with the subscaling w2(x)~ const x x 2 behavior. In 
other words, 02W/Ox2(x=O) near the saddle should be nonzero and 
proportional to y2. For consistency with this prediction, the nonanalytic 
Ip.,.I t4"/3~-1 sgnp.,, behavior of x=x(px,  y) must be "rounded" at suf- 
ficiently small IP.,-I. It is easy to check that p x =  O([y[ ~5/2~3/2-/')-') is the 
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correct  length scale. On  that  length scale, one should find W(x, y),~ 
2 "J - - ~  const  x x y- ,  i.e., p~. ~ const  x xy 2, or x ~ const  • y -Px. 

W h a t  we conclude f rom this discussion is tha t  at fixed, nonzero  y, the 
nonpo lynomia l  equat ion  of  state (8.31) should be valid on the "caustic 
length scale" p x =  O([y[~3/z-/')-'), but  that  it will b reak  down when Px is 
decreased to O( [ y[ (s/z)~3/2-,)-,). On  that  smaller  length scale, one expects 
a crossover  to a linear regime where x is p ropor t iona l  to Px. We can now 
proceed to our  compar i son  with numerics.  In Fig. 10b we plot  the corre- 
spondence Px ~ x(px, y = 0.05) of  Fig. 10a on a logar i thmic scale. We also 
fit two trendlines to it: x oc [px[ (4~'/3)- i and x oc p.,.. As the two trendlines 
reveal, our  theoretical  analysis is perfectly confirmed. There  is indeed 
a crossover  to a linear, subscaling regime when Px is decreased to 
O([y[(5/z)(3/z-~')-'). But at larger length scales, e.g., Px = O([y[(3/2-/*)-J), the 
fractional power  [Px [(4~,/3)-1sg n Px of  the scaling formula  (8.31) is clearly 
visible. Similar crossover  plots can be obta ined  for other  critical double-  
well models  whose pa ramete r s  It = [2y [/2x lies in the range 3/4 < I t  < 3/2. 

O u r  asympto t i c  app rox ima t ion  R(-")(px, y)  ~ const  x [Px [ -/,/3 [y[ - 1/3 
to the t ransformed prefactor  R(x) at criticality, derived in Section 8.1, can 
also be numerical ly  tested. The  approx ima t ion  should be valid in the 
vicinity of  the y axis separatrix,  i.e., as p.,. ~ 0 at  fixed, nonzero  y. There are 
two separa te  cases: 3/4 < i t  < 3/2, when a caustic is present,  and  It >1 3/2, 
when one is not. Fo r  simplicity we consider only the latter. When  It/> 3/2, 
it follows f rom (8.31) that  x(p.,., y)~-p., . /22x as px~O; the non-  
po lynomia l  te rm is subdominant .  So our  asympto t ic  app rox ima t ion  to R(x) 
implies that  [cf. (6.6)] 

[ 02W ] ,/z 
K(x, y) ~ R(")(px,  y)  - ~ (p.,., y)  (8.35) 

= R'X)(px, y) [ - OP"~-x (p.,., y)l m (8.36) 

const  x Ix[ -/,/3 [y[ -i/3 (8.37) 

as x --+ 0 a t  fixed, nonzero  y. This compara t ive ly  slow power- law divergence 
as the sepa ra~ ix  is approached  at  (small)  nonzero  y is to be contras ted  
with the K(x, 0 ) ~ c o n s t  x [x[- / '  divergence that  occurs when the saddle 
point  is app roached  a long the x axis. [See (5.55).] It  is susceptible to 
numerical  test. 

In Fig. 11 we g raph  K = K(x, y) as a function of  x at y = 0.05 for the 
critical version of  the s tandard  double-well  model  with It = 1.6. (This is the 
same model  whose ins tanton trajectories are shown in Fig. 9d.) The curve 
is fitted to high accuracy by a power- law const  x x-~ i.e., const x x -/'/3. 
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Fig. 11. Behavior of the WKB prefactor near the y-axis separatrix in a critical version of the 
ll= 1.6 standard double-well model. K=K(x, y=0.05) is plotted on a logarithmic scale, 
revealing the scaling behavior (K oc. x-1'/3 at nonzero y). 

This confirms the prediction of our scaling theory. No subscaling regime is 
evident at small [x]. Similar plots can be obtained for the near-separatrix 
behavior of K in critical models with other values of/t. 

We conclude that the asymptotic approximations to g:") = I~-")(p.,., y) 
and .~" )=  K(")(p.,., y) derived from our scaling theory have a wide domain 
of validity and may be employed in the Maslov-WKB method. 

8.3. Scaling Beyond the WKB Approx imat ion  

We can now compute the Maslov-WKB boundary layer approxima- 
tions to the stationary density P0 and the quasistationary density p, near 
the nascent cusp at the saddle point, where the conventional WKB 
approximation breaks down. The boundary layer approximations are 
determined by (8.18) and (8.30), the asymptotic approximations to the 
Legendre-transformed action lYV ~') and the transformed prefactor K("), 
respectively. As discussed above, these approximations should be valid 
when the eigenvalue ratio i t -  [2>. I/2.,. satisfies 3/4 <:l  < 3. 

Substituting (8.18) and (8.30) into the one-dimensional diffraction 
integral (6.5) yields the rather complicated expression 

K(x, y) exp[ - W(x, y)/e] 

e-,/2 f/~(.,-)(p.,., y) exp{ [ -xp., .  + H:'')(p.,., y)]/e} dp.,. 

~ const x e -m{exp[  - W(0, 0)/e] } lyl-,/3 e x p ( -  12yl y2/e) 

]/} x I [p.,.l-/,/3 exp _ P~,- _Ce.,.  > y4/3 [p.,.i4,/3 + xp.,. e dp.,. (8.38) 
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which requires a bit of explanation. The first problem to be resolved is the 
length scale near (x, y) = (0, 0) on which this diffraction integral defines a 
valid Maslov-WKB approximation. The p2,. and xp.,. terms in the argument 
of exp(.  ) are O(1) when p.]. and .,cp.,. are O(e); i.e., when x and p.,. are 
O(81/2). The term Cp.,...,. y4/a[p x 141t/3/8 is 0(  1 ) when also y = 0(8 3/4 -/,/2). This 
is the case when It < 3/2, at least. If it >~3/2, then the Cp.,.yy 4/3 1p.,.14~'/3/8 
term is negligible whenever y = o(1). We conclude that in the weak-noise 
(8 --, 0) limit of models with # < 3/2, the diffraction integral (8.38) defines 
a valid Maslov-WKB approximation on the x=0(81/2) ,  y = O ( 8  3/4-I'/2) 
length scale near the saddle point. This is precisely the caustic length scale 
x = O([Y113/2-~,~-'), i.e., p.,. = O( 1Y1(3/2  - / , I  - I  ), of the last section. I f / t  ~> 3/2, 
so that no caustic is present, then y =  O(83/4-~'/2) must be replaced by 
y = o( 1 ). On the appropriate length scale, the diffraction integral defines a 
noncanonical diffraction function. 

The diffraction integral, being one-dimensional, cannot resolve the 
singularity at y = 0. This is because it does not include an integration over 
py. So one cannot expect the Maslov-WKB approximation to be valid at 
arbitrarily small y. The stationary and quasistationary densities in critical 
models are expected to be tightly concentrated on the y = 0(8 I/2) transverse 
length scale near the saddle point, as we saw in (5.19)-(5.21) (which apply 
in the absence of focusing). At most, the Maslov-WKB approximation will 
be valid in the far f ield of the y = 0(81/2) length scale, where the factor 
e x p ( -  12.,, l y2/e) is exponentially small. So it will not be directly comparable 
to (5.19)-(5.21). But it proves to be very useful nonetheless. Define 
"stretched" variables X = - x/8 ~/2 and Y=-y/e~/2; also, change the integration 
variable to P.,. =p.,./8 ~/~-. The approximation becomes 

const • 8 -I~' + l ) / 6 e  - rv�91 o)/~ ] YI - 1 /3e  - IZ: .  I r- '  

x f [P , .  I -i,/3 e-xe.'e-~/4~..,, dP,. (8.39) 

since when p.,., y = O(81/2), the term Cm." ;, y4/3 I p.,-14"/3/8 negligible. 
At this point we must explain how to interpret the integration over 

P,., or p.,.. The stationary density po(X, y) = po(X81/2, Y8 i/2) must be even in 
X, and the quaeistationary density pl(x,  y) =pI (X8  ~/2, Y8 ~/2) must be odd. 
To get approximations with these symmetry properties, we may integrate 
P.,. from 0 to oo, and symmetrize and antisymmetrize under the reflection 
X ~ - X. We remarked at the end of Section 6 that performing a half-range 
integration is one way of incorporating an antisymmetry constraint, and 
that is the technique we shall use. 

As summarized in Abramowitz and Stegun (ref. 1, w definite 
integrals resembling (8.39) define parabolic cylinder functions. Evaluating 
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the integral (8.39), and symmetrizing and antisymmetrizing, yields the 
Maslov-WKB approximations 

po( x, Y ) ~  const xe  -tj '+ l)16 Fo( )~l12 x/el/2 ) e +~-~-'-'/" [ y/el/2[ -1/3 e-I~,,i ,;/, (8.40) 

pt(x ,  y)  ~ const x e -(~'+ l)/6Fl(21/2x/el/2 ) e +~.~-'/~ [y/el/z[-1/3 e-ta.i y'-/~ (8.41) 

to the stationary and quasistationary probability densities on the O(e I/z) 
length scale near the saddle point. Here the so-called boundary layer func- 
tions F; = Fi(Z), where 7 = ,~ i/2 y _  ,~ 1/2 y / .  1/2 _ _,. _ - _ , . . . , ~  , are defined by 

F i ( Z ) - y i +  l ( 1 / 2 - / t / 3 ,  21/2Z) e -z ' /2 (8.42) 

in the notation of Abramowitz and Stegun. Here y1(1/2-1~/3,  o) and 
Y2( 1/2- /a /3 ,  o) are even and odd parabolic cylinder functions, respectively. 
We could equally well define the boundary layer functions F~ in terms of 
a Hermite function o f  non integer index, by 

_Z2 
F o ( Z ) - [ H t ~ , / 3 ) - I ( Z ) e - Z ' ] ~  . . . .  F l ( Z  - - [ H t i , / 3 ) - i ( Z ) e  ]odd (8.43) 

Here [ �9 ] . . . .  and [ - ] odd signify even and odd parts under the reflection 
Z~--~-Z.  The definitions (8.43) are meaningful whenever the index 
n -  ( l t / 3 ) -  1 is not an integer, so that the Hermite function H,,(Z)  is not 
a conventional Hermite polynomial, and is neither even nor odd. But since 
we are assuming 3/4</z  <3 ,  this is always the case. Irrespective of the 
choice of definitions, 

Fo(Z)  ,,~ const x IZl -~,/3 
(8.44) 

Ft(Z)  ,-, const • IZI -~,/3 sgn Z 

as Z ~  + ~  (ref. 1, w 
We stress that the Maslov-WKB approximations to Po and Pl are 

strictly valid only in the transverse f a r f i eM,  i.e., as Y = y / e l / 2 ~  +_ ~ .  But 
they make very clear how critical double-well models differ from noncritical 
double-well models. By comparing (8.40)-(8.41) with (5.19)-(5.21), we see 
that at criticality the boundary layer functions Fo( - ) and F1( �9 ) replace the 
boundary layer functions 1 and erf(. ) respectively. The approximations 
(8.40)-(8.41) are guaranteed to match to the standard WKB approximation 
K(x) e x p [ -  W(x)] as one moves in a transverse direction away from the 
saddle point. For example, the IZl-"/~ falloff of Eqs. (8.44) will match to the 
Ixl-,/3 prefactor falloff of Eqs. (8.25) and (8.27), which is seen, e.g., in Fig. 11. 

The Maslov-WKB approximations to Po and P l, and the nonpoly- 
nomial normal form for the Legendre-transformed action that engendered 
them, have several striking consequences for double well models at criticality. 
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�9 A nongeneric caustic, emerging sideways from the nascent cusp at 
the saddle. In Section 8.1 we predicted from the nonpolynomial normal 
form for l~ that when 3/4</1 <3/2,  a caustic is located at Ixl <const  x 
ly113/2-~'1-~. Our prediction was confirmed by Fig. 9. This caustic has an 
unusual (continuously varying) exponent. It is nongeneric, in the sense of 
singularity theory. 

�9 An unusual (continuously varying) singularity index. As e ~  0, the 
falloff of the stationary density P0 at the saddle point (0, 0) is not pure 
exponential, on account of the e -1"+1)/6 prefactor in the Maslov-WKB 
approximation (8.40). This is interpreted as a statement that the nascent 
cusp has singularity index s (p )=  (lt + 1)/6, as mentioned in Section 4. It, 
too, is nongenetic in the sense of singularity theory. 

�9 Non-Arrhenius MFPT asymptotics. If one computes the rate at 
which the quasistationary density P l is absorbed on the separatrix near the 
saddle, the e -~+1)/6 prefactor in the Maslov-WKB approximation (8.41) 
will appear in the e --* 0 asymptotics. Equivalently, the exponentially decay- 
ing eigenvalue 21 =21(e) of the Smoluchowski operator will have an 
asymptotic e -~'+ iv6 prefactor, as well as the usual Arrhenius factor [i.e., 
exp( -AW/e ) ] .  And the MFPT will be asymptotic to cons txe  +~'+1v6 
exp( +A W/e) as e--, 0. At criticality, the weak-noise growth of the MFPT 
is slower than pure exponential. 

�9 A non-Gaussian limiting exit location distribution. In the absence of 
MPEP bifurcation, for a symmetric double-well model the location of the 
point of exit from either of the two wells would have an asymptotic 
Gaussian distribution on the transverse O(e 1/2) length scale near the 
saddle. In fact, its density would fall off as e x p ( -  [2:, l y2/e). We see from 
the Maslov-WKB approximation to P l that at criticality, the exit location 
density on the separatrix includes scaling corrections. In the transverse far 
field it falls off as ly1-1/3 e x p ( -  12yl yZ/e) rather than e x p ( -  12yl y2/e). It 
has a non-Gaussian tail, 

These phenomena look natural from the point of view of the theory of 
critical phenomena, though the stochastic escape problem has not pre- 
viously been considered from that point of view. 

9. D I S C U S S I O N  

We can now step back and review our results. We began with a WKB 
treatment of the weak-noise asymptotics of stationary (and quasista- 
tionary) solutions of the Smoluchowski equation. The WKB analysis led 
to instanton trajectories, which have a physical interpretation as most 
probable weak-noise fluctuational paths. The instanton trajectories turned 
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out to be zero-energy trajectories of an associated Hamiltonian dynamical 
system. That is because the phase-space versions of the instanton trajec- 
tories (i.e., WKB bicharacteristics) trace out a Lagrangian manifold in 
phase space. In double-well models the onset of bifurcation is associated 
with the fleeting appearance of an unusual singularity (a nascent cusp) in 
the shape of this manifold as the parameters of the model are varied. 

There is a formal analogy between the Lagrangian manifold of a 
dynamical system perturbed by weak noise and the thermodynamic surface 
of a condensed matter system. This analogy led us to construct a scaling 
theory of the shape of the Lagrangian manifold near the nascent cusp. To 
date, most work on Lagrangian manifolds has assumed that they are 
smooth, and that any apparent singularities in their shape can be trans- 
formed away by a change of coordinates. This is analogous to assuming 
that thermodynamic surfaces are real analytic, and that nonanalyticities in 
thermodynamic behavior (i.e., phase transitions) can be transformed away 
by working in terms of the appropriate thermodynamic potential. Equiva- 
lently, it is analogous to assuming that all phase transitions have classical 
critical exponents. Our scaling theory makes it clear that the nascent cusp 
singularity is a genuine point of nonsmoothness of the Lagrangian manifold. 
In thermodynamic terms, it has nonclassical, indeed continuously varying, 
critical exponents. 

Applying the Maslov-WKB method to the nascent cusp yielded 
several interesting predictions, which we summed up in the four bulleted 
items at the end of the last section. One normally expects that in a double- 
well system perturbed by weak noise of strength e, the rate of interwell 
hopping 21=t~(e) will be asymptotic to a constant multiple of the 
Arrhenius factor exp(-AW/e), where A W is an effective barrier height. 
Also, one expects that on the separatrix between the two wells, the density 
of exit locations (from either well) will asymptotically become a Gaussian 
of O(e 1/-') standard deviation centered on the saddle point. The Maslov- 
WKB method predicts that at criticality both these phenomena are 
strongly altered. In particular, the factor exp(-A W/e) must be replaced by 
e-" exp( - A  W/e), where s = (p + 1 )/6 is the singularity index of the nascent 
cusp. (As we noted in Section 5.3, the singularity index is a sort of critical 
exponent.) In Fig. 12 we sketch an Arrhenius plot, showing this anomalous 
(non-Arrhenius) behavior. 

In mathematical terms, the nascent cusp appearing at the onset of 
bifurcation is a nongeneric singularity, i.e., a singularity different from any 
of the now classical singularities of catastrophe theory. As shown in Fig. 4, 
in many double-well models it induces an unusual caustic in the flow field 
of instanton trajectories. This caustic is itself nongeneric, in that its expo- 
nent is not equal to 3/2. As we have seen (see, e.g., Fig. 10), its presence 
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log ~, 

l/e ~ 

Fig. 12. A sketch, on a logarithmic scale, of the rate of noise-activated interwell hopping 2] 
as a function of the reciprocal noise strength l/e. Off criticality (solid curve), 2~ displays a 
pure exponential falloff as e--* 0, i.e., 21 ~cons t  x e x p ( - ~ W / e ) .  At the onset of bifurcation 
(dashed curve), 21 ~ const x e -~ exp( - ~  W/e) instead, where s is the singularity index of the 
nascent cusp appearing at the saddle point. 

quantitatively confirms the validity of our scaling theory. It is remarkable 
that such nongeneric phenomena are a generic feature of singly 
parametrized symmetric double-well models. 

At least as developed in this paper, our scaling theory is a scaling 
theory of weak-noise behavior near the nascent cusp, precisely at criticality. 
It would be useful to treat as well models that are nearly critical, but not 
exactly so. Such models should display a crossover from non-Arrhenius 
behavior to Arrhenius behavior at sufficiently weak noise strength. By 
developing a joint scaling theory, one of the variables in which measures the 
distance from criticality, it should be possible to analyze this phenomenon. 
We expect that it is possible to derive a "Ginzburg criterion ''~27) expressing 
how close to criticality any given double-well model should be for the non- 
Arrhenius behavior of Fig. 12 to be visible. Work on this is underway. 

We briefly mention two geometric features of models "off criticality" 
that cry out for a theoretical explanation. A nongeneric caustic appears 
near the separatrix not only at criticality, but in many noncritical models 
as well. t12) Also, as criticality is approached [e.g., as 0c~ct~- in the 
standard model of (3.1)], it frequently happens that the nascent cusp is 
formed by a collision of two generic cusps, which move along the 
separatrix toward the saddle point. These phenomena can presumably be 
explained by an appropriate joint unfolding, but that is for the future. 

We close by mentioning a possible extension of a more theoretical 
sort. In this paper we have focused exclusively on the asymptotic solutions 
of the time-independent weak-noise Smoluchowski equation. There is 
reason to believe that nongeneric singularities resembling the nascent cusp 

822/8313-4-5 
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can occur, and are perhaps even widespread, in the asymptotic solutions of 
other singularly perturbed elliptic partial differential equations. Most WKB 
treatments of singularly perturbed elliptic PDEs (see, e.g., Duistermaat c1~ 
assume that each WKB characteristic (i.e., instanton trajectory) eventually 
leaves any bounded region of space. This assumption is violated in the 
Smoluchowski equation for any double-well model, since the MPEP(s) ter- 
minate on the saddle point, rather than extending to infinity. We expect 
that when it is violated in other PDEs, analogous nongeneric singularities 
in formal asymptotic solutions can occur. The nongeneric singular 
phenomena that we have seen in this paper may simply be representatives 
of a larger class. 
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