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Abstract

Freidlin-Wentzell theory of large deviations for the description of the effect of

small random perturbations on dynamical systems is exploited as a numerical

tool. Specifically, a numerical algorithm is proposed to compute the quasi-

potential in the theory, which is the key object to quantify the dynamics on

long time scales when the effect of the noise becomes ubiquitous: the equilib-

rium distribution of the system, the pathways of transition between metastable

states and their rate, etc., can all be expressed in terms of the quasi-potential.

We propose an algorithm to compute these quantities called the geometric mini-

mum action method (gMAM), which is a blend of the original minimum action

method (MAM) and the string method. It is based on a reformulation of the

large deviations action functional on the space of curves that allows one to easily

perform the double minimization of the original action required to compute the

quasi-potential. The theoretical background of the gMAM in the context of large

deviations theory is discussed in detail, as well as the algorithmic aspects of the

method. The gMAM is then illustrated on several examples: a finite-dimensional

system displaying bistability and modeled by a nongradient stochastic ordinary

differential equation, an infinite-dimensional analogue of this system modeled

by a stochastic partial differential equation, and an example of a bistable genetic

switch modeled by a Markov jump process. c� 2007 Wiley Periodicals, Inc.
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1 Introduction and Main Results

Dynamical systems are often subject to random perturbations. Even when these

perturbations have small amplitude, they have a profound impact on the dynamics

on the appropriate time scale. For instance, perturbations result in transitions be-

tween regions around the stable equilibrium points of the deterministic dynamical

system that would otherwise be impossible. Such transitions are responsible for

metastable phenomena observed in many systems: regime changes in climate, nu-

cleation events during phase transitions, conformation changes of biomolecules,

and bistable behavior in genetic switches are just a few examples among many

others.

When the amplitude of the random perturbations is small, the Freidlin-Wentzell

theory of large deviations provides the right framework to understand their effects

on the dynamics [6, 17, 19]. In a nutshell, the theory builds on the property that

events with very little likelihood, when they occur, do so with high probability by

following the pathway that is least unlikely. This makes rare events predictable,

in a way that Freidlin-Wentzell theory of large deviations quantifies. The central

object in the theory is an action functional whose minimum (subject to appropri-

ate constraints) gives an estimate of the probability and the rate of occurrence of

the rare event and whose minimizer gives the pathway of maximum likelihood by

which this event occurs. A key practical question then becomes how to compute

the minimum and minimizer of the Freidlin-Wentzell action functional. This ques-

tion is the main topic of this paper. As we will see, it will lead us to reformulate the

action minimization problem in a form that is convenient for numerical purposes

but will also shed light on some interesting analytical properties of the minimizer.

Before going there, however, we begin with a brief summary of the main results

of the Freidlin-Wentzell theory of large deviations that we will use. For simplicity

of exposition, we focus here on the finite-dimensional case, but the theory can be

extended to infinite dimensions (e.g., to situations where (1.3) below is replaced

by a stochastic partial differential equation defining a stochastic process X" with

values in some suitable Hilbert space [2]; situations of this type are considered in

Section 4.2).

1.1 Freidlin-Wentzell Theory of Large Deviations
As mentioned above, the central object in the theory is an action functional: if

the state space of the dynamical system is embedded in Rn and if C.0; T / denotes
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the space of all continuous functions mapping from Œ0; T � into Rn, this action can

be written as

(1.1) ST . / D

8̂<
:̂

R T
0 L. ;

P /dt if  2 C.0; T / is absolutely continuous
and the integral converges,

C1 otherwise,

where the Lagrangian L.x; y/ is given by

(1.2) L.x; y/ D sup
�2Rn

.hy; �i �H.x; �//:

Here h � ; � i denotes the Euclidean scalar product in Rn and H.x; �/ is the Hamil-

tonian whose specific form depends on the dynamical system at hand.

There are two important classes we shall consider here. The first consists of

stochastic differential equations (SDEs) on Rn with drift vector b and diffusion

tensor a D ��T , i.e.,

(1.3) dX".t/ D b.X".t//dt C p
" �.X".t//dW.t/:

Their Hamiltonian H and Lagrangian L are given by

(1.4)
H.x; �/ D hb.x/; �i C 1

2
h�; a.x/�i;

L.x; y/ D ˝
y � b.x/; a�1.x/.y � b.x//˛:

Additional restrictions are required on b and � in order that large deviations theory

applies, but these are usually mild—for instance, it suffices that a and b be bounded

and uniformly continuous, and that a be uniformly elliptic, i.e., 9m > 0 8� 2 Rn W
h�; a.x/�i � mj�j2; see [6, chap. 5.3].

The second class consists of continuous-time Markov jump processes on "Zn

with a generator Q defined for every test function f W Rn ! R by

(1.5) .Qf /.x/ D "�1
NX
jD1

�j .x/
�
f .x C "ej / � f .x/�;

where �j W Rn ! .0;1/, j D 1; : : : ; N , are the rates (or propensities) and ej 2
Zn, j D 1; : : : ; N , are the change (or stoichiometric) vectors. The Hamiltonian

H for this type of dynamics is given by

(1.6) H.x; �/ D
NX
jD1

�j .x/.e
h�;ej i � 1/;

and L must be obtained via (1.2)—in this case, no closed-form expression for L is

available in general. Here, too, some mild restrictions are necessary in order that

large deviations theory applies, e.g., that �j be uniformly bounded away from 0

and C1 [17].

Large-deviations theory gives a rough estimate for the probability that the tra-

jectory X".t/, t 2 Œ0; T �, T < 1, of the random dynamical system—be it the
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SDE (1.3), the Markov chain with generator (1.5), or any other system whose ac-

tion functional can be expressed as (1.1)—lies in a small neighborhood around a

given path  2 C.0; T /. The theory asserts that, for ı and " sufficiently small,

(1.7) Px
˚

sup
0�t�T

jX".t/ �  .t/j � ı
� � exp.�"�1ST . //;

where Px denotes the probability conditional on X".0/ D x and we assumed that

 .0/ D x. Estimate (1.7) can be made precise in terms of lower and upper bounds

on the probability [6, 17, 19], but for our purpose here it suffices to say that it

implies that the probability of various events can be evaluated by constrained min-

imization. For instance, if B is a Borel subset of Rn, we have

(1.8) Px fX".T / 2 Bg � exp.�"�1 inf
 
ST . //

where f ."/ � g."/ if and only if logf ."/= logg."/ ! 1 as " ! 0, and the

infimum is taken over all paths  such that  .0/ D x and  .T / 2 B . The

minimizer of ST . / in (1.8) is then the path of maximum likelihood by which the

process X" ends in B at time T starting from x.

1.2 The Role of the Quasi-Potential
In (1.8), T is finite, but large deviations theory can be generalized to make

predictions on long-time intervals Œ0; T ."/�, with T ."/ � exp."�1C/ and C >

0. On these time scales, the effects of the noise become ubiquitous in the sense

that events are likely to occur that are otherwise prohibited by the deterministic

dynamics. For this reason these are often the natural time scales over which to

analyze the dynamics, and these are the time scales on which we shall mostly

focus in this paper. To understand what happens then, the relevant object is the

quasi-potential

(1.9) V.x1; x2/ D inf
T>0

inf
 2 NCx2

x1
.0;T /

ST . /;

where NC x2
x1
.0; T / denotes the space of all absolutely continuous functions f W

Œ0; T � ! Rn such that f .0/ D x1 and f .T / D x2.

A detailed exposition of the significance of the quasi-potential is beyond the

scope of this paper and can be found in [6, chap. 6]. Let us simply say that the

quasi-potential roughly measures the difficulty to go from point x1 to point x2, as

made apparent by the following alternative definition (see [6, p. 161]):

(1.10) V.x1; x2/ D lim
T!1 lim

ı!0
lim
"!0

.�" log Px1
f�ı;x2

.X"/ � T g/
where

(1.11) �ı;x2
.X"/ WD infft > 0 j X".t/ 2 Bı.x2/g

denotes the first time at which the process X" starting from x1 enters the ball

Bı.x2/ of radius ı around x2.
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The quasi-potential allows one to understand the limiting dynamics over ex-

ponentially long intervals of time. For instance, suppose that the deterministic

systems associated with (1.3) and (1.5), that is,

(1.12) PX.t/ D b.X.t//

and, according to Kurtz’s theorem [17],

(1.13) PX.t/ D
NX
jD1

�j .X.t//ej ;

respectively, possess exactly two stable equilibrium points x1 and x2, the basins of

attraction of which form a complete partition of Rn. Then on large time intervals

the dynamics can be reduced to that of a continuous-time Markov chain on the state

space fx1; x2g with rates

(1.14) k1;2 � exp.�"�1V.x1; x2//; k2;1 � exp.�"�1V.x2; x1//:

These are reminiscent of the Arrhenius law. Similar reductions are possible

when (1.12) and (1.13) possess more than two stable equilibrium points or even

other stable equilibrium structures such as limit cycles [6]. The quasi-potential

V.x1; x2/ is also the key object to characterize the equilibrium distribution of the

process in the limit as " ! 0. For instance, if x1 is the only stable equilibrium

point of (1.12) or (1.13) and it is globally attracting, then

(1.15) �".B/ � exp.�"�1 inf
x22B V.x1; x2//

whereB is any Borel set in Rn and�" is the equilibrium distribution of the process.

(1.15) is reminiscent of the Gibbs distribution associated with a potential. Similar

statements can again be made in more general situations [6].

1.3 Geometric Reformulation
One of the main theoretical results of this paper is to show that the variational

problem (1.9) that defines the quasi-potential admits a geometric reformulation.

This reformulation will prove quite useful for numerical purposes. Since it is actu-

ally quite simple to understand in the context of SDEs, let us outline the argument

in this case (a similar argument is given in [18] in the different context of quan-

tum tunneling, and it is also at the core of [6, lemma 3.1, p. 120]). For an SDE

like (1.3), (1.9) reduces to (using (1.1) and (1.4))

(1.16) V.x1; x2/ D 1

2
inf
T>0

inf
 2 NCx2

x1
.0;T /

Z T

0

j P .t/ � b. .t//j2a. / dt;

where, for any u; v; x 2 Rn, hu; via.x/ D hu; a�1.x/vi is the inner product that

is associated with the diffusion tensor a D ��T and juja.x/ D hu; ui1=2
a.x/

is the
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associated norm. Clearly, expanding the square under the integral in (1.16) and

using juj2
a.x/

C jvj2
a.x/

� 2juja.x/jvja.x/, we deduce that

V.x1; x2/

� inf
T; 

Z T

0

�j P .t/ja. / jb. .t//ja. / � h P .t/; b. .t//ia. /
�
dt

D 2 inf
T; 

Z T

0

j P .t/ja. / jb. .t//ja. / sin2
1

2
�.t/dt;

(1.17)

where �.t/ is the angle between P .t/ and b. .t// in the metric that is induced by

h � ; � ia. .t//. On the other hand, there is a matching upper bound since equality

between the integrals at the right-hand sides of (1.16) and (1.17) is achieved in

the special case when  is constrained so that j P .t/j D jb. .t//j. Thus, the

inequality sign in (1.17) can be replaced by an equality sign (this conclusion is

proven rigorously in Section 2).

Now, the key observation is that the integral in (1.17) has become independent

of the particular way in which  is parametrized by time. In other words, (1.17)

offers a geometric expression for the quasi-potential as

(1.18) V.x1; x2/ D 2 inf
�

Z
�

jbja sin2
1

2
� ds;

where the integral at the right-hand side is the line integral along the curve 	 (ds

being the arc length element along this curve), � is the angle between 	 and b at

location s along the curve, and the infimum is taken over all curves 	 connecting

x1 to x2.

As shown below, (1.18) can be generalized to dynamical systems with action

functional (1.1) that are not SDEs (such as Markov jump processes with genera-

tor (1.5)). In these cases, too, the key idea is to reformulate (1.9) geometrically

in terms of curves 	 D f'.˛/ j ˛ 2 Œ0; 1�g, where ' W Œ0; 1� ! Rn is an arbi-

trary parametrization of the curve 	 . Our main result in this direction is that the

quasi-potential (1.9) can be expressed as

(1.19) V.x1; x2/ D inf
'2 NCx2

x1
.0;1/

OS.'/ with OS.'/ D sup
#WŒ0;1�!Rn

H.';#/�0

Z 1

0

h'0; #id˛

(see Proposition 2.1 below for a precise statement and other representations of
OS.'/).

The action OS.'/ in (1.19) is parametrization free; i.e., it is left invariant un-

der reparametrization of ', so it can be interpreted as an action on the space of
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curves. Compared to (1.9), the minimizer of (1.19) over all ' exists in more gen-

eral circumstances (for reasons to be explained later), and this makes (1.19) also

more suitable for computations, as explained next. The curve 	? associated with

the minimizer '? of (1.19) can then be interpreted as the curve of maximum like-

lihood by which transitions from x1 to x2 occur (see Proposition 2.3).

1.4 Numerical Aspects
One of our main points of focus in this paper is the numerical counterpart to

Freidlin-Wentzell theory; i.e., how can one efficiently compute the quasi-potential

V.x1; x2/ in (1.19) and the corresponding minimizer '? (the maximum likelihood

transition curve)?

The Shooting Method
Perhaps the simplest way to minimize the Freidlin-Wentzel action is to use a

shooting method (see, e.g., [10]) to solve as an initial value problem the boundary

value problem for the Hamilton equation associated with the minimization problem

in (1.8) or (1.9). Working with the Hamiltonian is an advantage since it is typically

known explicitly. On the other hand, in practice this approach quickly becomes

inefficient when the dimension of the system increases, and it can be inapplicable

in infinite dimension. In addition, the shooting method may lead to additional

difficulties when T is optimized upon as well.

The Original MAM and the String Method
In [4], a numerical technique, termed minimum action method (MAM), was

introduced for situations where the minimization of ST . / is sought over a fixed

time interval of length T . The MAM is a relaxation method and is a generalization

of previous techniques, such as the one used in [15]. The MAM, however, is not

very well suited for the double minimization problem over  and T required to

compute the quasi-potential V.x1; x2/ defined in (1.9). The main reason is that

the functional may have no minimizer because the infimum is only “achieved”

when T ! 1. (In fact, this will always happen in the typical case in which the

prescribed start and end points x1 and x2 are critical points of the deterministic

dynamics (1.12) or (1.13); see Lemma 2.8(ii) below.)

In the special case of an SDE (1.3) in which b is minus the gradient of some

potential, b D �rU , and � is the identity, the string method (introduced in [3] and

generalizing the nudged elastic band method introduced in [9]) circumvents this

problem by taking advantage of the fact that for such systems transition paths are

always parallel to the drift b D �rU . This allows for a geometric reformulation

of the problem and leads to a numerical algorithm in which a discretized curve

(or string) is evolved by iterating over the following two-step procedure: in the

first step the discretization points along the curve are evolved independently in the

direction of the flow b D �rU ; in the second step the curve is reparametrized by

redistributing the discretization points at equally spaced positions along the curve
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(an idea which we will borrow in our approach). Unfortunately, for a generic

SDE, transition paths are generally not parallel to the drift, and therefore the string

method is not applicable.

The gMAM
The geometric minimum action method (gMAM) that is presented in this pa-

per merges and further develops ideas from both the original MAM and the string

method. It also has the advantage that it is formulated in terms of the Hamilton-

ianH.x; �/. The gMAM resolves the problem of infinite T analytically, leading to

the equivalent minimization problem (1.19), which can then be performed in vari-

ous ways. Here we will use what is, in essence, a preconditioned steepest-descent

algorithm (that is, it is based on a semi-implicit spatiotemporal discretization of the

Euler-Lagrange equation for (1.19)). The only nonstandard aspects of the proce-

dure are that (i) it requires performing first the maximization over # , which we do

in an inner loop using a quadratically convergent version of a Newton-Raphson-

like algorithm, and (ii) it requires controlling the parametrization of the curve '

since the latter is nonunique. Here we opt for parametrizing ' by normalized arc

length (as it was done in the string method), meaning that ' satisfies j'0j D cst

a.e. on Œ0; 1�.

The gMAM can be applied to generic SDEs, continuous-time Markov chains,

and other types of dynamics whose Hamiltonians are known analytically and fulfill

Assumptions 1–3 below. The gMAM can also be applied to SPDEs, as illustrated

here, and the underlying strategy may even apply to the minimization of integrals

whose integrand is not the Legendre transform of a Hamiltonian (see Remark 2.6).

1.5 Organization, Notation, and Assumptions
The remainder of this paper, which is also the core of the thesis [8], is orga-

nized as follows. In Section 2 we first establish and discuss the theoretical results

mentioned above, and we also show how to recover the optimal time parametriza-

tion once the minimizing curve 	? is found. In Section 3, we propose and discuss

the gMAM algorithm for computing V.x1; x2/ and the maximum-likelihood tran-

sition curve 	?. In Section 4 we illustrate these algorithms on several examples. In

Section 4.1 we consider an example with bistable behavior first analyzed in [12] in

the context of an SDE; in Section 4.2 we consider an SPDE generalization of this

example; and in Section 4.3 we consider a Markov chain used in [1, 16] that arises

in the context of the genetic toggle switch. Finally, we draw some conclusions in

Section 5.

For the reader’s convenience, our most technical calculations and proofs are

deferred to several appendices, which we recommend skipping on first reading.

We do, however, recommend reading the proof of Proposition 2.1 in Section 2.3,

since it provides valuable insights into the workings of our method. Note also that

the appendices are sorted by their order of dependence and should thus be read in

order.
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Notation and Assumptions
Throughout this paper we make the following assumptions on the Hamiltonian

H.x; �/ W D � Rn ! R in (1.2), where the domain D is an open connected subset

of Rn (in the introduction we used D D Rn for simplicity):

ASSUMPTION 1 For every x 2 D we have H.x; 0/ � 0.

ASSUMPTION 2 H. � ; � / is twice continuously differentiable.

ASSUMPTION 3 H�� .x; � / is uniformly elliptic on compact sets; i.e., there exists
a function m.x/ such that for 8�; � 2 Rn W h�;H�� .x; �/�i � m.x/j�j2, and for
every compact set K 	 D we have mK WD infx2K m.x/ > 0.

REMARK 1.1 Equivalently, one can rephrase these assumptions in terms of the

Lagrangian L.x; y/ defined in (1.2) by requiring thatL.x; y/ � 0 for every x 2 D
and y 2 Rn, and that Assumptions 2 and 3 hold with H replaced by L.

For every T > 0 we denote by C.0; T / the space of all continuous functions

f W Œ0; T � ! D equipped with the supremum norm jf jŒ0;T � WD supt2Œ0;T � jf .t/j,
and by NC.0; T / the subspace of all such functions that are absolutely continuous.

For every x1; x2 2 D we further define the subspaces

NCx1
.0; T / D ff 2 NC.0; T / j f .0/ D x1g;

NC x2
x1
.0; T / D ff 2 NC.0; T / j f .0/ D x1; f .T / D x2g:

For every function f 2 NC.0; T / we denote its graph as

	.f / WD ff .t/ j t 2 Œ0; T �g:
We say that two functions f1 2 NC.0; T1/ and f2 2 NC.0; T2/ traverse the same

curve and write

	.f1/ D 	.f2/

if there exists a (necessarily unique) curve ' 2 NC.0; 1/ with j'0j 
 cst a.e. and

two absolutely continuous rescalings ˛1 W Œ0; T1� ! Œ0; 1� and ˛2 W Œ0; T2� ! Œ0; 1�

with ˛0
1; ˛

0
2 � 0 a.e. such that

'.˛1.t// D f1.t/ for every t 2 Œ0; T1�;
'.˛2.t// D f2.t/ for every t 2 Œ0; T2�:

We denote the space of all functions g traversing the curve of a given function

f 2 NC.0; Tf / within a fixed time T by

NCf .0; T / WD fg 2 NC.0; T / j 	.g/ D 	.f /g:
To express the distance between two functions f1 2 NC.0; T1/ and f2 2 NC.0; T2/,
we either use the pointwise distance jf1 � f2jŒ0;T1� (if T1 D T2), or for more

geometrical statements we use the Fréchet distance defined as

(1.20) 
.f1; f2/ D inf
t1WŒ0;1�!Œ0;T1�
t2WŒ0;1�!Œ0;T2�

ˇ̌
f1 ı t1 � f2 ı t2

ˇ̌
Œ0;1�

;
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where the infimum is taken over all weakly increasing, continuous, surjective re-

parametrizations t1 and t2 only. (One can quickly check that 
.f1; f2/ D 0 if

	.f1/ D 	.f2/.)

We use subscripts to denote differentiation, i.e., H� .x; �/ D @H
@�

, etc., and

regard all vectors (including gradients) as column vectors.

We introduce the following notation for the Lagrangian:

L.x; y/ D sup
�2Rn

�hy; �i �H.x; �/�(1.21)

D hy; ��.x; y/i �H.x; ��.x; y//;(1.22)

where the maximizer ��.x; y/ is implicitly (and due to Assumption 3 uniquely)

defined by

(1.23) H� .x; �
�.x; y// D y:

Finally, we call a point x 2 D a critical point if

(1.24) H.x; 0/ D 0 and H� .x; 0/ D 0:

REMARK 1.2 Note that in the examples treated in this paper, i.e., for the Hamil-

tonians (1.4) and (1.6), we actually have equality in Assumption 1 so that the re-

quirementH.x; 0/ D 0 in (1.24) is redundant. However, the weaker Assumption 1

allows for a broader class of applications, as we will show in the conclusions of

this paper (Section 5). In fact, in the example in Section 5, it is the first condition

in (1.24) that is the decisive one, whereas the second one is fulfilled by every point

x 2 D. Our motivation to define critical points in the general case via (1.24) will

become clear later in Lemmas 2.2 and 2.8 (see Remark 2.9).

2 Theoretical Background

2.1 A Large-Deviations Action on the Space of Curves
We collect our main theoretical results regarding the quasi-potential V.x1; x2/

defined in (1.9), with ST given by (1.1), in the following proposition, whose proof

will be carried out in Section 2.3.

PROPOSITION 2.1

(i) Under Assumptions 1–3 the following two representations of the quasi-
potential are equivalent:

V.x1; x2/ D inf
T>0

inf
 2 NCx2

x1
.0;T /

ST . /;(2.1)

V.x1; x2/ D inf
'2 NCx2

x1
.0;1/

OS.'/;(2.2)
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where for every ' 2 NC.0; 1/ the action OS.'/ is given by any of the following four
equivalent expressions:

OS.'/ D inf
T>0

inf
 2 NC'.0;T /

ST . /;(2.3)

OS.'/ D sup
#WŒ0;1�!Rn

H.';#/�0

Z 1

0

h'0; #id˛;(2.4)

OS.'/ D
Z 1

0

h'0; O#.'; '0/id˛;(2.5)

OS.'/ D
Z 1

0

L.'; �'0/
�

d˛; � D �.'; '0/:(2.6)

Here L.x; y/ is the Lagrangian associated with the Hamiltonian H.x; �/ through
(1.21), and the functions O#.x; y/ and �.x; y/ are implicitly defined for all x 2 D

and y 2 Rn n f0g as the unique solution . O#; �/ 2 Rn � Œ0;1/ of the system

(2.7) H.x; O#/ D 0; H� .x; O#/ D �y; � � 0:

When '0 D 0 or �.'; '0/ D 0, the integrands in (2.5) and (2.6) are interpreted
as 0.

(ii) The functional OS.'/ is invariant under reparametrization of ' in the sense
that OS.'1/ D OS.'2/ if 	.'1/ D 	.'2/. Thus the infimum in (2.2) may be taken
subject to some additional constraint on the parametrization of ', e.g., that j'0j D
cst almost everywhere.

(iii) Assume that the sequence ..Tk;  k//k2N, Tk > 0,  k 2 NC x2
x1
.0; Tk/ for

every k 2 N, is a minimizing sequence of (2.1) and that the lengths of the curves
of  k are uniformly bounded, i.e.,

(2.8) lim
k!1

STk
. k/ D V.x1; x2/ and sup

k2N

Z Tk

0

j P kjdt < 1:

Then the infimum in (2.2) has a minimizer '?, and for some subsequence . kl
/l2N

we have that

(2.9) lim
l!1


. kl
; '?/ D 0;

where 
 denotes the Fréchet distance. If '? is unique up to reparametrization (i.e.,
if 	. Q'/ D 	.'?/ for every minimizer Q' of OS/, then the full sequence . k/k2N

converges to '? in the Fréchet distance.

At the end of this section we specialize the results in this proposition to the

case of diffusions and derive expression (1.18). The probabilistic interpretation of

Proposition 2.1 is discussed in Section 2.2.
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FIGURE 2.1. Illustration of the system of equations (2.7) for fixed x

and y, with h.�/ WD H.x; �/: O# is the extremal point of f� 2 Rn j
h.�/ � 0g in direction y; � is then the value such that h� . O#/ D �y.

We comment on the meaning of the various quantities entering Proposition 2.1,

starting with the action OS.'/. The function OS.'/ can be viewed as the rate func-

tion on the space of curves (constructed in a way reminiscent of the contraction

principle of large deviations theory; see (2.3)). Indeed, OS.'/ is invariant under

reparametrization of ' (this is part (ii) of Proposition 2.1, which is a consequence

of (2.3)), and one should think of the integrals (2.4)–(2.6) as line integrals such as

(2.10) OS.'/ D
Z
�.'/

h O#.´; O�´/; d´i D
Z
�.'/

L.´; O�´�/
�

ds; � D �.´; O�´/;

where O�´ denotes the unit tangent vector along the curve. Note that this invariance

also means that in order to make the minimizer '? (as opposed to 	.'?/) unique,

one has to decide for a constraint on its parametrization, such as j'0j D cst almost

everywhere.

Consider now the other two important quantities in Proposition 2.1, O#.x; y/ and

�.x; y/. The meaning of the system of equations (2.7) that defines the functions
O#.x; y/ and �.x; y/ can be understood as follows: O#.x; y/ is the extremal point

of the set f� 2 Rn j H.x; �/ � 0g in the direction y (see the illustration in

Figure 2.1); therefore H� .x; O#/ is parallel to y, and �.x; y/ is the factor such that

H� .x; O#/ D �y. One can quickly check the properties

(2.11) O#.x; cy/ D O#.x; y/ and c�.x; cy/ D �.x; y/ for 8c > 0;
which are used to show that the representations (2.5) and (2.6) of OS are invariant

under reparametrization of ' (Proposition 2.1(ii); see also Lemma A.1 in Appen-

dix A).

Two further interpretations of � are: (i) �.x; y/y is the optimal speed for mov-

ing in a given direction y starting from point x (this will become clear in the proof
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of Proposition 2.1), and (ii) � is the Lagrange multiplier used to enforce the con-

straint in (2.4). � can also be used as an indicator that tells us where the curve

passes a critical point, as part (i) of the following lemma shows.

LEMMA 2.2

(i) Let y ¤ 0. Then x is a critical point if and only if �.x; y/ D 0.
(ii) If x is a critical point and y ¤ 0, then O#.x; y/ D 0.

(iii) If x is a critical point, then for 8y 2 Rn W lim�!0C L.x; �y/=� D 0:

(iv) Thus the local action of OS , given by any of the integrands in (2.4)–(2.6) (in
(2.4) including the pointwise supremum over #), vanishes as ' passes a
critical point.

The proof of Lemma 2.2 is carried out in Appendix B. Note also that parts (i)

and (iii) explain why we have to interpret the integrand in (2.6) as 0 if � D 0.

The Case of Diffusion Processes
L.x; y/ is available explicitly (see (1.4)) if we specialize to diffusion processes

whose dynamics is given by (1.3), and this allows us to give a closed-form formula

also for OS.'/. A quick calculation shows that in this case

O#.x; y/ D a�1.x/
� jb.x/ja

jyja y � b.x/
�
;(2.12)

�.x; y/ D jb.x/ja
jyja :(2.13)

As a result, OS.'/ as given by (2.5), and (2.6) reduces to

(2.14) OS.'/ D
Z 1

0

.j'0jajb.'/ja � h'0; b.'/ia/d˛ (SDE);

consistent with (1.18).

2.2 Probabilistic Interpretation
The minimizing curve 	.'?/ in Proposition 2.1(iii) also has a probabilistic in-

terpretation: Let f.X"t /t�0; " > 0g be a family of processes that for every fixed

T > 0 in the limit " ! 0 satisfy a large deviations principle with respect to the met-

ric induced by j � jŒ0;T �, and let the associated rate function ST be of the form (1.1),

where the Hamiltonian H fulfills Assumptions 1–3. Then the statement in Propo-

sition 2.3 holds.

Put simply, Proposition 2.3 says the following (under certain technical assump-

tions): Given that a transition from x1 to a small ball around x2 occurs before some

finite time T close to some T ? D T ?.'?/, the probability that the process follows

	.'?/ throughout this transition goes to 1 as " ! 0. (T ? can be interpreted as the

“maximum likelihood transition time,” and we will show later that T ? D 1 if x1
or x2 is a critical point; see Section 2.4.)

The precise statement is as follows:
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PROPOSITION 2.3 Assume that the action OS has a minimizer '? among all curves
leading from x1 2 D to x2 2 D, and that this minimizer is unique up to repar-
ametrization. Define T ? WD R 1

0 1=�.'
?; '?

0
/d˛ 2 .0;1�, and for any ı > 0 and

any path  W Œ0; T � ! D, T > 0, let �ı. / denote the first time the path  hits
the closed ball Bı.x2/.

Further, assume that for all ı; T > 0 sufficiently close to 0 and T ?, respectively,
there exists a unique path  ı;T 2 NCx1

.0; T / such that

ST . ı;T / D inf
 2 NCx1

.0;T /

�ı. /�T
ST . /;

and such that the length and the endpoint of this path fulfill

(2.15) lim sup
ı!0C

T!T ?

Z T

0

j P ı;T jdt < 1 and lim
ı!0C

T!T ?

 ı;T .T / D x2:

Then for every � > 0 we have

(2.16) lim
ı!0C

T!T ?

lim inf
"!0

P
�


�
X"jŒ0;�ı.X"/�; '

?
� � �

ˇ̌
�ı.X

"/ � T
� D 1;

where 
 is the Fréchet distance. Equation (2.16) remains true if X"jŒ0;�ı.X"/� is
replaced by X"jŒ0;T �.
REMARK 2.4

(i) The form of equation (2.16) was chosen to resemble formula (1.10). We

actually prove a stronger statement, namely, that for ı and T fixed and sufficiently

close to 0 and T ?, respectively, the lim inf in (2.16) as " ! 0 is equal to 1.

(ii) The second condition in (2.15) can be shown to hold whenever x1 is a

critical point, or under other technical assumptions (such as bounded lengths of the

paths  ı;T in phase space if T ? is finite). We decided not to go any further here in

order to keep the length of the proof within reasonable limits.

SKETCH OF PROOF: The proof of this proposition relies on three rather techni-

cal statements (Steps 1–3 below) whose proofs can be found in Appendix D. Note

that the proof of Step 2 requires techniques that we will only develop in the proof

of Proposition 2.1 in Section 2.3.

First we would like to estimate the probability in (2.16) below by the same ex-

pression with X"jŒ0;�ı.X"/� replaced by X"jŒ0;T � (and then show that the resulting

expression still converges to 1). Since replacing X"jŒ0;�ı.X"/� by X"jŒ0;T � can po-

tentially decrease the Fréchet distance and thus increase the probability, we have

to decrease � at the same time. This is done as follows:

Step 1. There exists an Q� > 0 such that for small enough ı

(2.17) 
.X"jŒ0;T �; '?/ � Q� and �ı.X
"/ � T ) 
.X"jŒ0;�ı.X"/�; '

?/ � �:
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We then want to replace '? by  ı;T since we expect X" to be close to  ı;T (even

pointwise). This can be achieved by showing

Step 2. lim.T;ı/!.T ?;0C/ 
. ı;T ; '
?/ D 0.

Putting both steps together, we find that if ı is small enough so that (2.17) is

true, and if ı and T are also close enough to 0 and T ? so that 
. ı;T ; '
?/ � 1

2
Q�,

then we have

1 � P
�

.X"jŒ0;�ı.X"/�; '

?/ � � j �ı.X"/ � T
�

� P
�

.X"jŒ0;T �; '?/ � Q� j �ı.X"/ � T

�
� P

�

.X"jŒ0;T �;  ı;T / � 1

2
Q� j �ı.X"/ � T

�
� P

�jX" �  ı;T jŒ0;T � � 1
2

Q� j �ı.X"/ � T
�
:(2.18)

Now it suffices to show

Step 3. For all T; ı > 0 the set of paths f 2 NCx1
.0; T / j �ı. / � T g is

regular with respect to ST (i.e., the minimal action on the closure of that set is

the same as the one on its interior; see [6, p. 85]). Then, since  ı;T is the unique

minimizer of the action ST on the set of paths f 2 NCx1
.0; T / j �ı. / � T g, by

[6, p. 86, theorem 3.4] the lower bound in (2.18) converges to 1 as " ! 0, thus

terminating the proof. �

2.3 Lower Semicontinuity of OS and Proof of Proposition 2.1
The proof of part (iii) of Proposition 2.1 relies on parts (ii) and (iii) of the fol-

lowing lemma, which states some important technical properties of the action OS.'/.
The proof of this lemma will be carried out in Appendix C.

LEMMA 2.5

(i) For every M > 0 and every compact set X 	 D, the set

(2.19) CX;M WD f' 2 NC.0; 1/ j '.0/ 2 X; j'0j � M a.e.g
is a compact subset of C.0; 1/.

(ii) For every x1; x2 2 D and every M > 0, the set

(2.20) C
x1;x2

M WD f' 2 NC x2
x1
.0; 1/ j j'0j � M a.e.g

is a compact subset of C.0; 1/.

(iii) For every M > 0 and every compact X 	 D, the functional OS W CX;M !
R defined by (2.3)–(2.6) is lower-semicontinuous with respect to uniform conver-
gence.

(iv) OS attains its infimum on every nonempty closed subset of CX;M . Specifi-
cally, it attains its infimum on the sets C x1;x2

M .

We can now begin with the proof of Proposition 2.1, which generalizes the

heuristic argument given in Section 1.3 for the case of diffusions.
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PROOF OF PROPOSITION 2.1:

(i) and (ii): The main idea of the proof is to rewrite the quasi-potential as

V.x1; x2/ D inf
T>0

inf
 2 NCx2

x1
.0;T /

ST . /

D inf
T>0

inf
'2 NCx2

x1
.0;1/

inf
 2 NC'.0;T /

ST . /

D inf
'2 NCx2

x1
.0;1/

�
inf
T>0

inf
 2 NC'.0;T /

ST . /
�

DW inf
'2 NCx2

x1
.0;1/

OS.'/;(2.21)

where OS.'/ is defined by (2.3). Note that it is clear from definition (2.3) that
OS.'/ actually depends only on the curve that ' traverses and not on the specific

parametrization of ' (which already proves part (ii)). Therefore, to prove that
OS.'/ as defined in (2.3) can also be written in the forms (2.4)–(2.6), it is enough to

restrict ourselves to all those functions ' 2 NC x2
x1
.0; 1/ with the additional property

that j'0j 
 cst almost everywhere, and then to show that the representations (2.4)–

(2.6) are invariant under reparametrization as well.

To do so, let ' 2 NC x2
x1
.0; 1/ be given with j'0j 
 cst almost everywhere. To get

a lower bound for OS.'/, we estimate, for any T > 0 and any path  2 NC'.0; T /,

ST . / D
Z T

0

L. ; P /dt D
Z T

0

sup
�2Rn

.h P ; �i �H. ; �//dt

�
Z T

0

sup
�2Rn

H. ;�/D0
.h P ; �i �H. ; �//dt

D
Z T

0

sup
�2Rn

H. ;�/D0
h P ; �idt D

Z 1

0

sup
�2Rn

H.';�/D0
h'0; �id˛;

where in the last step we applied Lemma A.1 in Appendix A, with `.x; y/ WD
sup�2Rn;H.x;�/D0hy; �i. Since the last expression depends only on ', this shows

that the representations (2.4) and (2.5) are lower bounds for OS.'/:

OS.'/ D inf
T>0

inf
 2 NC'.0;T /

ST . /

�
Z 1

0

sup
�2Rn

H.';�/D0
h'0; �id˛ �

Z 1

0

h'0; O#.'; '0/id˛;(2.22)
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where we used the first equation in (2.7). To obtain an upper bound on OS.'/, define

a minimizing sequence ..Tk;  k//k2N as follows: For every k 2 N let

�k.˛/ WD max

�
�.'.˛/; '0.˛//; 1

k

�
; ˛ 2 Œ0; 1�;

Gk.˛/ WD
Z ˛

0

1

�k
da; ˛ 2 Œ0; 1�;

Tk WD Gk.1/;

 k.t/ WD '.G�1
k .t//; t 2 Œ0; Tk�:(2.23)

Since for the rescaling ˛.t/ WD G�1
k
.t/ we have ˛0.t/ D �k.˛.t// and thus 1=k �

˛0.t/ � j�kj1 < 1 for every t 2 Œ0; Tk� (see Lemma A.3 in Appendix A), ˛.t/

is absolutely continuous. Therefore we see from (2.23) that 	. k/ D 	.'/, i.e.,

 k 2 NC'.0; Tk/.
To compute STk

. k/, we perform the change of variables t D t .˛/ D Gk.˛/

so that dt D d˛=�k , '.˛/ D  k.Gk.˛//, and

'0.˛/ D P k.t/G0
k.˛/ D P k.t/=�k.˛/;

and we find that

(2.24) STk
. k/ D

Z Tk

0

L. k; P k/dt D
Z 1

0

L.'; '0�k/
�k

d˛:

Since the integrand on the right-hand side is uniformly bounded in k (see again

Lemma A.3), to compute the limit of (2.24) as k ! 1, we can exchange limit and

integral and obtain the upper bound

OS.'/ D inf
T>0

inf
 2 NC'.0;T /

ST . /

� lim
k!1

STk
. k/ D

Z 1

0

L.'; '0�/
�

d˛; � D �.'; '0/;(2.25)

which is representation (2.6), where we interpret L.'; '0�/=� D 0 if � D 0, due

to Lemma 2.2(i) and (iii).

To show that the integrands of the lower bound in (2.22) and the upper bound

in (2.25) are the same, consider first the case � > 0. The maximizing � in the

expression

L.'; '0�/
�

D sup
�2Rn

�
h'0; �i � H.'; �/

�

�
has to fulfill the first- and second-order conditions that

'0 � H� .'; �/

�
D 0 and � H�� .'; �/

�
is negative definite.
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By Assumption 3 and the second equation in (2.7), both conditions are fulfilled by

� D O#.'; '0/, so that in fact

(2.26)
L.'; '0�/

�
D h'0; O#i � H.'; O#/

�
D h'0; O#i; O# D O#.'; '0/;

by also using the first relation in (2.7). When � D 0, equation (2.26) holds as

well because then O# D 0 due to Lemma 2.2(i) and (ii) and since we agreed on

interpreting the left-hand side of (2.26) as 0 if � D 0.

Therefore the lower bound in (2.22) and the upper bound in (2.25) are the same,

and thus all four representations (2.3)–(2.6) of OS.'/ are equal if j'0j 
 cst almost

everywhere.

To end the proof of part (i), it now remains only to show that the expressions

(2.4)–(2.6) are invariant under reparametrization; i.e., for OS given by any of the

representations (2.4)–(2.6) and for any Q' 2 NC'.0; 1/, we have OS. Q'/ D OS.'/.
But this is a direct consequence of Lemma A.1, the observations (2.11), and our

agreement in the statement of Proposition 2.1 to interpret the integrands in (2.5)

and (2.6) as 0 if '0 D 0.

(iii): The proof of part (iii) of Proposition 2.1 follows a standard argument

based on the lower-semicontinuity of the functional OS and the compactness of an

appropriate set of functions, both of which were established in parts (ii) and (iii) of

Lemma 2.5.

Let a sequence ..Tk;  k// be given with the properties stated in Proposi-

tion 2.1(iii), and define the functions 'k 2 NC k
.0; 1/ such that they traverse the

curves 	. k/ at normalized unit speed, i.e., j'0
k
j 
 Lk a.e., where Lk is the length

of the curve  k , as follows:

Let ˛k W Œ0; Tk� ! Œ0; 1� be defined as ˛k.t/ WD .1=Lk/
R t
0 j P k.�/jd� , where

Lk D R Tk

0 j P k.�/jd� . Define its “inverse” as ˛�1
k
.˛/ WD infft 2 Œ0; 1� j ˛k.t/ �

˛g, and set 'k WD  k ı ˛�1
k

. Then we have 'k.˛k.t// D  k.t/ for all t 2 Œ0; Tk�,
and both ˛k and 'k are absolutely continuous, with ˛0

k
D j P kj=Lk and j'0j D

.j P kj=˛0
k
/ı˛�1

k

 Lk . Therefore we have 	.'k/ D 	. k/, i.e.,  k 2 NC'k

.0; Tk/.

Using (2.3), this gives us the estimate

inf
'2 NCx2

x1
.0;1/

OS.'/ � OS.'k/ D inf
T>0

inf
 2 NC'k

.0;T /

ST . / � STk
. k/

for every k 2 N. In the limit as k ! 1, the right-hand side converges to the

left-hand side, and it follows that

(2.27) lim
k!1

OS.'k/ D inf
'2 NCx2

x1
.0;1/

OS.'/:

SinceM WD supk j'0
k
j D supk Lk < 1, the sequence .'k/k2N lies in the compact

set C
x1;x2

M defined in Lemma 2.5(ii), and thus there exists a subsequence .'kl
/ that
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converges uniformly to some limiting function '? 2 C x1;x2

M . Now since C
x1;x2

M 	
Cfx1g;M , by Lemma 2.5(iii) and equation (2.27), we have

OS.'?/ � lim inf
l!1

OS.'kl
/ D inf

'2 NCx2
x1
.0;1/

OS.'/;

and thus OS.'?/ D inf' OS.'/; i.e., '? is a minimizer of OS .

Since the functions 'kl
are time-rescaled versions of the functions  kl

and

converge uniformly to '?, this implies that


. kl
; '?/ D 
.'kl

; '?/ � j'kl
� '?jŒ0;1� ! 0 as l ! 1;

which proves the first statement of part (iii).

To prove the second statement, assume now that the minimizer of OS is unique

up to reparametrization, let '? be the limit of some converging subsequence of

. k/ from the first part of the proof, and suppose that 
. k; '
?/ ¹ 0 as k ! 1.

Then we could construct a subsequence . kl
/ such that

(2.28) inf
l2N


. kl
; '?/ > 0:

But by the same arguments as above, this subsequence would have a subsubse-

quence . klm
/ that converges in the Fréchet metric to some limit Q' that is a min-

imizer of OS . Now the uniqueness of the minimizer implies that 	. Q'/ D 	.'?/,

and thus we have 
. klm
; '?/ D 
. klm

; Q'/ ! 0 as m ! 1, contradicting

(2.28). �

REMARK 2.6 The formulas for OS , O# , and � can also be derived as follows: Every

 2 NC x2
x1
.0; T / can be written as  D ' ı G�1, where ' 2 NC x2

x1
.0; 1/ follows the

path of  at constant speed, and G W Œ0; 1� ! Œ0; T � is an appropriately chosen

time rescaling. Minimizing over all  and T is therefore equivalent to minimizing

over all functions ' and G. But after a change of variables we see that

ST . / D
Z T

0

L. ; P /dt D
Z 1

0

L.'; '0=g/g d˛;

where g D G0 W Œ0; 1� ! .0;1/. The second expression can now easily be

minimized over all g (and thus over allG) by setting the derivative of the integrand

equal to 0, which leads us directly to representations (2.5) and (2.6) and equations

(2.7) for O# and � WD 1=g.

This trick may also be useful for problems that do not directly fit into the frame-

work of this paper.

2.4 Recovering the Time Parametrization
Since OS.'/ is parametrization free, its minimizer '? only gives us information

about the graph of the minimizer  ? of the original action ST . / over both  

and T (assuming that  ? exists), but not its parametrization by time. However, if

the minimizing T ? is finite, we can recover T ? and the path  ? parametrized by
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physical time afterwards by defining G.˛/ WD R ˛
0 1=�.'

?; '?
0
/d˛ for ˛ 2 Œ0; 1�,

T ? WD G.1/, and setting  ?.t/ WD '?.G�1.t// for t 2 Œ0; T ?�, since then we have

ST ?. ?/ D
Z T ?

0

L. ?;  ?
0
/dt D

Z 1

0

L.'?; '?
0
�/

�
d˛

D OS.'?/ D inf
'2 NCx2

x1
.0;1/

OS.'/ D inf
T>0

inf
 2 NCx2

x1
.0;T /

ST . /;

where we performed the change of variables t D G.˛/ and used (2.1) and (2.2).

If T ? D R 1
0 1=�.'

?; '?
0
/d˛ D 1 (i.e., if “the minimizing T ? is infinite”),

then no minimizer .T ?;  ?/ of the original action ST . / exists, but we can still

extract information from �.'?; '?
0
/ by splitting the curve into pieces on which �

is nonzero (i.e., into pieces that do not contain any critical points): The following

proposition says that if we recover the parametrization on any such piece as above,

then the resulting path will give us the optimal way to move from the starting point

to the end point of that piece.

PROPOSITION 2.7 Let '? be a minimizer of the functional OS.'/ defined by (2.3)–
(2.6), parametrized such that j'?0j 
 cst almost everywhere. Let ˛1; ˛2 2 Œ0; 1�

be such that there is no critical point on 	.'?/ between Qx1 WD '?.˛1/ and Qx2 WD
'?.˛2/.

Define the rescaling G.˛/ WD R ˛
˛1
1=�.'?; '?

0
/da, ˛ 2 Œ˛1; ˛2�, and then set

Q ?.t/ WD '?.G�1.t// for t 2 Œ0; QT ?�, QT ? WD G.˛2/. Then we have

(2.29) V. Qx1; Qx2/ D inf
T>0

inf
 2 NC Qx2

Qx1
.0;T /

ST . / D S QT ?. Q ?/:

Proposition 2.7, which is proven at the end of this section, is relevant because

T ? D R 1
0 1=�.'

?; '?
0
/d˛ is infinite in most cases of interest, e.g., if at least one

end point of the path is a critical point or if the path has to pass a critical point to

connect the two given states: Part (ii) in the following lemma, which is a slightly

stronger statement than Lemma 2.2(i), tells us that the minimizing path needs infi-

nite time to leave, pass through, or reach any critical point of the system:

LEMMA 2.8 Suppose that ' is parametrized such that j'0j 
 cst a.e., and let
˛c 2 Œ0; 1� be such that '.˛c/ is a critical point. Then

(i) � D �.'; '0/ is Lipschitz-continuous at ˛c in the sense that there exists a
constant C > 0 such that for a.e. ˛ 2 Œ0; 1�, we have �

�
'.˛/; '0.˛/

� �
C j˛ � ˛cj.

(ii) 1=� is not locally integrable at ˛c . In particular, if the curve 	.'/ contains
a critical point, then T ? D R 1

0 1=� d˛ D 1.

The proof of this lemma is technical and is carried out in Appendix B.
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REMARK 2.9 Recall in this context that for SDEs and continuous-time Markov

chains, critical points are those points x with vanishing drift, H� .x; 0/ D 0. For

other Hamiltonians (see, e.g., Section 5), this may not be enough: In general, the

point x also needs to fulfill H.x; 0/ D 0 to be a critical point, and then it takes

infinite time to pass x. If, however, the point x fulfills H.x; 0/ < 0, then by

Lemma 2.2 we have �.x; y/ ¤ 0 for any direction y ¤ 0, and therefore the point

x is passed in finite time. This finally justifies our definition of critical points via

(1.24): A point fulfills the properties (1.24) if and only if it is passed in infinite

time.

PROOF OF PROPOSITION 2.7: First, note that since �.x; y/ is continuous (even

differentiable; see Lemma E.1 in Appendix E), we have

ess inf
˛1�˛�˛2

�.'?; '?
0
/ > 0;

and thus G is well-defined.

Now assume that (2.29) does not hold. Then there exist OT > 0 and O 2
NC Qx2

Qx1
.0; OT / such that S OT . O / < S QT ?. Q ?/, i.e., � WD S QT ?. Q ?/ � S OT . O / > 0.

Observe that

S QT ?. Q ?/ D
Z QT ?

0

L. Q ?; Q ?0/dt

D
Z ˛2

˛1

L.'?; '?
0
�/

�
d˛; � D �.'?; '?

0
/

D
Z

�.'?jŒ˛1;˛2�/

L.´; O�´�/
�

ds; � D �.´; O�´/

D inf
T>0

inf
 2 NC'?jŒ˛1;˛2�

.0;T /

ST . /:

We will now use the path O to construct a contradiction to the minimizing prop-

erty of '?. To do so, define the sequence .. k; Tk// with  k 2 NC'?.0; Tk/ for all

k 2 N and with limk!1 STk
. k/ D OS.'?/, as in the proof of Proposition 2.1(i).

Now let T k1 and T k2 be such that  k.T
k
1 / D Qx1 and  k.T

k
1 C T k2 / D Qx2, set

T k3 WD Tk � T k1 � T k2 , and define the pieces  k1 ,  k2 , and  k3 by

 k1 .t/ D  k.t/; t 2 Œ0; T k1 �;
 k2 .t/ D  k.T

k
1 C t/; t 2 Œ0; T k2 �;

 k3 .t/ D  k.T
k
1 C T k2 C t /; t 2 Œ0; T k3 �:
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Finally, define the sequence . NTk; N k/ by replacing the piece of  k between Qx1 and

Qx2 by O in order to reduce its action; i.e., let

N k.t/ WD

8̂<
:̂
 k1 .t/; t 2 Œ0; T k1 �;O .t � T k1 /; t 2 ŒT k1 ; T k1 C OT �;
 k3 .t � T k1 � OT /; t 2 ŒT k1 C OT ; T k1 C OT C T k3 �;

and NTk WD T k1 C OT C T k3 . For this path we have

S NTk
. N k/ D ST k

1
. k1 /C S OT . O /C ST k

3
. k3 /

D ST k
1
. k1 /C S QT ?. Q ?/ � �C ST k

3
. k3 /

D ST k
1
. k1 /C inf

T>0
inf

 2 NC'?jŒ˛1;˛2�
.0;T /

ST . / � �C ST k
3
. k3 /

� ST k
1
. k1 /C ST k

2
. k2 / � �C ST k

3
. k3 /

D STk
. k/ � �

! OS.'?/ � � D inf
'2 NCx2

x1
.0;1/

OS.'/ � �

D inf
T>0

inf
 2 NCx2

x1
.0;T /

ST . / � �

as k ! 1. But this means that for sufficiently large k we have

S NTk
. N k/ < inf

T>0
inf

 2 NCx2
x1
.0;T /

ST . /;

and since N k 2 NC x2
x1
.0; Tk/ for every k 2 N, we have a contradiction. �

3 Numerical Algorithms

The main objective of this section is to design a numerical algorithm to compute

the quasi-potential V.x1; x2/ via minimization of OS.'/ and identify the minimizer

'? such that

(3.1) V.x1; x2/ D inf
'2 NCx2

x1
.0;1/

OS.'/ D OS.'?/;

where OS.'/ is the action functional given by (2.3)–(2.6). We are primarily inter-

ested in cases where x1 and x2 in (3.1) are stable equilibrium points of the deter-

ministic dynamics, PX.t/ D H� .X.t/; 0/, although the algorithm presented below

can also be applied to situations where x1 and/or x2 are not critical points.

Several strategies can be used for the minimization problem in (3.1). Here, we

will proceed as follows: In Section 3.1, starting from the representation (2.5) we
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will derive the Euler-Lagrange equation associated with the minimization of OS.'/,
assuming that O#.'; '0/ is known. In Section 3.2 we will then design a (precondi-

tioned) steepest-descent algorithm for the solution of the Euler-Lagrange equation.

If no explicit formula for O#.x; y/ is available, this algorithm will compute O#.x; y/
in an inner loop, using an efficient quadratically convergent routine that is derived

in Section 3.4. The steepest-descent algorithm is based on a proper discretization

of the Euler-Lagrange equation and uses an interpolation-reparametrization step,

similar to the one used in the string method [3], to enforce exactly a constraint on

the parametrization of ', such as j'0j D cst . (As we mentioned in Section 2.1,

such a constraint is necessary to make the minimizer '? of OS unique.)

We note that the strategy above may not be the most efficient one: for instance,

the nonlinear minimization problem in (2.2) could be tackled by discretizing the

action OS.'/ first, then using techniques other than steepest descent (like, e.g., a

quasi-Newton method such as BFGS or conjugate gradient, or a multigrid method;

cf. [14]). However, the approach that we take here has the advantage that it gives

some insight into the nature of the action OS.'/. It was also sufficient for our pur-

pose: even the problem considered in Section 4.2, which involves a stochastic par-

tial differential equation (in which case the path ' is not defined in Rn but rather

in some Hilbert space), can be handled by our algorithm in a few minutes using

Matlab on a standard workstation.

3.1 The Euler-Lagrange Equation and the Steepest-Descent Flow
We have the following result, whose proof is carried out in Appendix E:

PROPOSITION 3.1 The Euler-Lagrange equation associated with the minimization
problem in (2.2) can be written in the following two ways:

(3.2)

8̂<
:̂
0 D P'0.��2'00 C �H�x'

0 �H��Hx/
D ��2'00 C �H�x'

0 �H��Hx � ��0'0;
'.0/ D x1; '.1/ D x2;

where � D hH� ; '0i
j'0j2 and P'0 D I � '0 ˝H�1

��
'0

h'0;H�1
��
'0i ;

and where Hx , H�x , and H�� are evaluated at .'; O#.'; '0//.

The right-hand side in (3.2) is in fact �H��D OS.'/, where D OS.'/ is the gradi-

ent of OS.'/ with respect to the L2 inner product. Note that by taking the Euclidean

inner product of (3.2) with ��1H�1
��
'0, one can see that hD OS.'/; '0i D 0 for all

˛; i.e., the variation D OS.'/ is everywhere perpendicular to the path with respect

to the Euclidean metric. This is a simple consequence of the fact that OS.'/ is
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parametrization free: if id denotes the identity mapping on Œ0; 1�, then for any test

function � 2 C1
c .0; 1/ and sufficiently small h > 0 we have

0 D h�1� OS.' ı .id C h�// � OS.'/	
D h�1� OS.' C h�'0 C o.h// � OS.'/	
! hD OS.'/; �'0iL2.Œ0;1�I Rn/ D ˝hD OS.'/; '0i; �˛

L2.Œ0;1�I R/ as h ! 0.

The algorithm presented in Section 3.2 finds the solution of (3.2) using a relaxation

method based on a discretized version of the equation:

(3.3)

8̂̂<
ˆ̂:

P' D P'0

�
�2'00 � �H�x'0 CH��Hx

� C �'0

D �2'00 � �H�x'0 CH��Hx C ��0'0 C �'0;

'.�; 0/ D x1; '.�; 1/ D x2; '.0; ˛/ D '0.˛/;

for ˛ 2 Œ0; 1� and � � 0. Here ' D '.�; ˛/ where � is the artificial relaxation time,

P' D @'=@� , '0 D @'=@˛, '00 D @2'=@˛2, and �'0 is a Lagrange multiplier term

added to enforce some constraint on the parametrization of ', e.g., by normalized

arc length (in which case j'0.�; � /j D cst.�/ and the initial condition '.0; ˛/ D
'0.˛/ must be consistent with this constraint). Adding the term �'0 has no effect

on the graph 	.'/ of the solution since OS.'/ is parametrization free.

The simple form of (3.3) is a result of us building the flow on �H��D OS.'/
rather thanD OS.'/ alone, which is legitimate sinceH�� is a positive definite matrix

by Assumption 1 and � � 0. As we shall show in Section 4 where we analyze

examples, this choice allows us to design an algorithm that achieves a good balance

among speed, stability, and accuracy.

To further understand the properties of this flow, let us note that (3.3) can also

be derived independently of the theory developed in Section 2:

REMARK 3.2 Another interpretation of the right-hand side of (3.3) is the follow-

ing. Suppose that  is a minimizer of the original action ST . / for fixed T ; i.e., it

satisfies the Hamiltonian system of ODEs, P D H� . ; �/, P� D �Hx. ; �/, sub-

ject to some boundary conditions. Let '.˛/ D  .G.˛// and differentiate it twice

in ˛ to get

�'0 D P ıG and �2'00 C ��0'0 D R ıG;
where � WD 1=G0. Now use the Hamilton equations for  to obtain the following

second-order ODE for ':

R D H�x P CH�� P�
D H�x P �H��Hx(3.4)

, �2'00 C ��0'0 D H�x�'
0 �H��Hx

, �2'00 � �H�x'0 CH��Hx C ��0'0 D 0:(3.5)
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The derivatives ofH have to be evaluated at .'; �/, which has to fulfillH.'; �/ D
cst and H� .'; �/ D P D �'0.

This shows the following property of the steady state solutions of (3.3):

LEMMA 3.3 The flow in (3.3) has reached steady state if and only if

(i) � 
 0 and
(ii) the functions  corresponding to .'; �/ in the sense of Proposition 2.7

(i.e., defined by pieces of .'; �/ on which � ¤ 0/ solve the second-order
Hamiltonian ODE given by H on the energy level H D 0I i.e., they ful-
fill (3.4) and H 
 0, where H and all its derivatives are evaluated at
. ; ��. ; P //.

PROOF: Looking at the first representation of the flow in (3.3), we multiply

the equation by P'0 and by I � P'0 to conclude that at steady state we must have

�'0 
 0 (and thus � 
 0) and

P'0.�2'00 � �H�x'0 CH��Hx/ D 0:

But as shown in Proposition 3.1, this equation is the same as (3.5), which by Re-

mark 3.2 is equivalent to the second-order Hamiltonian ODE (3.4) for  .t/ D
'.G�1.t//, where G0 D 1=� with

� D h'0;H� .'; O#.'; '0//i
j'0j2 D h'0; �.'; '0/'0i

j'0j2 D �.'; '0/;

as in the construction of Proposition 2.7. The energy level is 0 because we have

H. ; ��. ; P // ıG D H.'; ��.'; '0�// D H.'; O#.'; '0// 
 0:

�

The fact that at steady state we have� 
 0 also eliminates possible inaccuracies

in the result of an algorithm based on discretizing (3.3), and it opens the door to

methods for achieving second-order accuracy in ˛ or higher even if the curve passes

through critical points; see Section 3.3.

Also note that one could have designed the algorithm without the discussion

in Section 2, solely on the basis of the observation in Remark 3.2. Within that

approach, however, to show that (3.3) converges we would then have to look for a

corresponding Lyapunov function for this equation, which is in fact given by OS.'/.
3.2 The Outer Loop

To solve (3.3) in practice, we discretize first '.�; ˛/ both in � and ˛; i.e., we

define 'ki D '.k4�; i4˛/, k 2 N0, i D 0; : : : ; N , where 4� is the time step and

4˛ D 1=N if we discretize the curve into N C 1 points. Then we discretize the

initial condition '.0; ˛/ to obtain f'0i giD0;:::;N and, for k � 0, use the following

two-step method to update these points:
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(1) Given 'ki , compute '0k
i D .'kiC1 � 'ki�1/=.2=N /, O#ki D O#.'ki ; '0k

i /, and

�ki D hH� .'ki ; O#ki /; '0k
i i=j'0k

i j2 for i D 1; : : : ; N � 1, and set �k0 D
3�k1 � 3�k2 C �k3 and �kN D 3�kN�1 � 3�kN�2 C �kN�3. Finally, compute

�0k
i D .�kiC1 � �ki�1/=.2=N / for i D 1; : : : ; N � 1.

(2) Let f Q'igiD0;:::;N be the solution of the linear system

(3.6)

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

Q'i � 'ki
4� D .�ki /

2 Q'iC1 � 2 Q'i C Q'i�1
1=N 2

� �ki H�x'0k
i

CH��Hx C �ki �
0k
i '

0k
i ; i D 1; : : : ; N � 1;

Q'0 D x1;

Q'N D x2;

where H�x , H�� , and Hx are evaluated at .'ki ;
O#ki /.

(3) Interpolate a curve across f Q'igiD0;:::;N and discretize this curve to find

f'kC1
i giD0;:::;N so that the prescribed constraint on the parametrization

of ' is satisfied.

(4) Repeat until some stopping criterion is fulfilled.

Step 1 requires the computation of O#.'; '0/. In the case of a diffusion, O#.'; '0/
is given by (2.12). If O#.'; '0/ is not available explicitly, it is computed using the

algorithm given in Section 3.4 in an inner loop. Note that if x1 or x2 are criti-

cal points, then the calculations can be simplified by using that the corresponding

values of O#k0;N and �k0;N are 0.

Step 2 uses semi-implicit updating for stability: as will be shown via the ex-

amples in Section 4, proceeding this way makes the time step 4� required for

stability independent of 4˛ D 1=N (in contrast, an explicit step would require

4� D O.4˛2/). As a result, it accelerates the convergence rate (see the discus-

sion in Section 3.3) and, in effect, amounts to preconditioning appropriately the

steepest-descent scheme [13, 14]. In practice, it turns out that it is not necessary

to treat the term ��0'0 (which, when written out, contains the term '00 as well)

implicitly, since changes of the curve ' in the direction of '0 do not carry any in-

formation. Notice also that Step 2 is computationally straightforward since �ki is

scalar: hence the linear system can be solved component by component using, e.g.,

Thomas algorithm [13]. Finally, notice that a simple modification of (3.6) in Step 2

can be used to have the two end points of the curve fall into the nearest stable state

by setting

(3.7)
Q'i � 'ki

4� D H� .'
k
i ; 0/; i D 0;N:

Step 3 is the interpolation-reparametrization step used to enforce the constraint

on the parametrization of the curve 	.'/. For instance, if we parametrize the curve

by normalized arc length so that j'0j D cst , this step amounts to redistributing the

images along the interpolated curve in such a way that the points 'ki , i D 0; : : : ; N ,
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be equidistant. Consistent with the order of accuracy at which we discretize the

derivatives '0, '00, etc., Step 3 can be done using linear interpolation that is second-

order accurate if ' 2 C 1.0; 1/ (see the discussion about accuracy in Section 3.3).

Finally, the stopping criterion in Step 4 can be based on a slowdown in the

movement of ' or in the decay of the action OS.'/. Plotting the function ˛ 7!
�.'.˛/; '0.˛// at each iteration can further help to determine whether the algo-

rithm has already converged: if one knows that the curve that one is looking for

has to pass a saddle point, then � must have a root in .0; 1/ by Lemma 2.2(i) (see

also Figure 4.3 in Section 4.1).

All in all, this algorithm is a blend between the original MAM [4] and the string

method [3].

3.3 Recovering the Parametrization and Evaluating the Action
Other quantities of interest include the actual value of the action, the optimal

transition time T ?, and the path  ? parametrized by physical time. To compute

those, one can then add the following steps:

(5) Given f'ki giD0;:::;N , compute '0k
i , O#ki , and �ki as in Step 1 for every i D

0; : : : ; N .

(6) Return the action

OS D 1

N

�
3

2
h'0k
1 ;

O#k1 i C
N�2X
iD2

h'0k
i ;

O#ki i C 3

2
h'0k
N�1; O#kN�1i

�
:

(7) Set t0 D 0 and

ti D 1

2�k0
C 1

�k1
C � � � C 1

�ki�1
C 1

2�ki

for i D 1; : : : ; N .

(8) Return the transition time T ? D tN .

(9) To addDC1 points at equidistant times to the graph of ' (if T ? < 1), in-

terpolate the function G�1.t/ given by the points .t; G�1.t// D .ti ; i=N /,

i D 0; : : : ; N , at the values Qtd D .d=D/T ?, d D 0; : : : ;D, to obtain

values ˛d D G�1.Qtd /, and then discretize the curve interpolated from

f'ki giD0;:::;N at those values ˛d .

If T ? is infinite or very large (i.e., if �ki � 0 for some index i), Step 9 can be

performed on trimmed values Q�ki WD maxf�ki ; �g (for some small � > 0): Proposi-

tion 2.7 shows that this will still lead to representative dots away from the critical

points (where � � �); only close to the critical points (where � < �) will this

simply lead to dots that are equidistant in space.
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Accuracy and Efficiency of the Outer Loop
A rigorous discussion of the accuracy and efficiency of the gMAM is beyond

the scope of the present paper. However, we find it useful to make a few heuristic

comments.

The discussion is complicated by the fact that the minimum action path (i.e.,

the steady state solution '? of (3.3) that is also the minimizer of OS.'/) will, in

general, go through critical points, and the path may not be smooth at these points.

We first discuss the case when this does not happen, i.e., when '? is smooth, and

then explain what to do if that is not the case.

If '? is smooth, we expect the algorithm to identify '? and OS.'?/with second-

order accuracy in 4˛ D 1=N . This is because the derivatives of ' and � are

computed with second-order accuracy, and the linear interpolation in Step 3 and

the formula for OS in Step 6 are second-order accurate as well. This was confirmed

in the example below. As long as we achieve stability (which requires taking a

small enough value for 4� , but one that is independent of N ), we observe that the

error on the curve can be made O.4˛2/ D O.1=N 2/, in the sense that

(3.8) 
.'interp; '
?/ � CN�2

for some constant C > 0, where 'interp is the curve linearly interpolated from

f'ki giD0;:::;N after convergence. Assuming linear convergence in time, the number

of steps until convergence is then O.logN/, which gives a total cost, measured in

the number of operations until convergence, scaling as

(3.9) cost D O.N logN/:

Notice that this estimate takes into account that the interpolation step requires

O.N/ operations if there are N C 1 discretization points along the curve. The

estimate (3.9) was confirmed in our numerical examples; see Section 4.

Consider now what happens if the steady state solution of (3.3) (i.e., the solution

of (3.2)) goes through one or more critical points and is not smooth at these points.

Notice first that this leads to no problem with (3.2). Indeed, by Lemma 2.2(i), if

the point '.˛c/ is a critical point for some ˛c 2 Œ0; 1�, then � ! 0 as ˛ ! ˛c .

All the terms in (3.2) involving '0, '00, and �0 are multiplied by � or �2, and

so these products tend to 0 as ˛ ! ˛c . Furthermore, because of the Lipschitz

continuity of �, their discretizations still approximate the correct value 0 at the

critical point. However, they will do so only up to first-order accuracy, O.4˛/ D
O.1=N/, unless one makes sure that one discretization point of the curve falls onto

the critical point (in which case we obtain the exact value 0).

In the algorithm, this problem is also aggravated by the interpolation-reparam-

etrization Step 3. The nondifferentiability of the curve will reduce the order of

accuracy of the linear interpolation procedure to first-order as well unless we take

some extra care of how we handle the critical points on the curve.

One possible way to solve these problems and restore the second-order accuracy

is to identify the location(s) of the critical point(s) along the curve and treat the
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pieces on each side separately by the same basic algorithm as above. This can be

done on the fly using the following procedure: Specify a small threshold value for

�, say �0 > 0, such that if � < �0 there is likely to be a critical point in the

vicinity. Then let the curve evolve as above, but as soon as � < �0 at some point,

say 'ki? , split the curve into the two pieces at the left and right of 'ki? . Continue

the algorithm with modified Steps 2 and 3: in Step 2 replace the equation for 'ki?
in (3.6) by

(3.10)
Q'i? � 'ki?

4� D �Hx�H� �HHx
� D �1

2
rx.jH� j2 CH 2/

�
;

with all functions on the right evaluated at .'ki? ; 0/, so that 'ki? is attracted by the

critical point where H� .x; 0/ and H.x; 0/ vanish; in Step 3 redistribute the points

on both parts of the curve separately, without changing Q'i? (i.e., 'kC1
i? D Q'i?).

Observe that in the cases of an SDE or an SPDE with unit noise, the modification

(3.10) can be achieved by setting �ki? D 0 after completion of Step 1 (to see this,

set � D 0 in (4.3) and (4.10) below).

This procedure, which we found to work well on all examples treated in Sec-

tion 4 and which is further discussed in Section 4.1, restores the second-order ac-

curacy in 4˛ D 1=N even if there are critical points along the curve. Note that

there is no a priori difficulty in designing more accurate schemes by using a higher-

order stencil for the derivatives, choosing a higher-order interpolation method, and

taking care of the critical points along the curve as explained above.

3.4 The Inner Loop (Computing O#.'; '0/)
In order to compute O#.'; '0/ from (2.7) we must solve the following problem:

Given the strictly convex and twice-differentiable function h. � / D H.'; � / with

h.0/ � 0, and given a direction '0, we want to find the unique point O# with

(3.11) h. O#/ D 0 and h� . O#/ D �'0 for some � � 0:

This problem has a simple geometric interpretation, as was illustrated before in

Figure 2.1 (with y D '0): it amounts to finding the point of the convex zero-level

set of h where the outer normal to that level set is parallel to and points in the same

direction as '0.
Since the region f� 2 Rn j h.�/ � 0g can potentially be very thin and long,

one must make use of the underlying geometry of the problem. One very efficient

strategy for finding a smart update for an initial guess O#0 is a procedure simi-

lar in spirit to a higher-order version of the standard Newton-Raphson algorithm.

However, while the Newton-Raphson method typically computes in each iteration

the exact solution of the first-order approximation of the problem, we must use a

second-order approximation since the solution of our problem is only well-defined

for strictly convex functions h.

The procedure is thus as follows. For p � 0:
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(1) Compute h. O#p/, h� . O#p/, and h�� . O#p/.
(2) Find the unique quadratic function f .�/ such that

f . O#p/ D h. O#p/; f� . O#p/ D h� . O#p/; and f�� . O#p/ D h�� . O#p/:
(3) If the region f� 2 Rn j f .�/ < 0g is nonempty, let O#pC1 be the solution

of

f . O#/ D 0 and f� . O#/ D �'0 for some � � 0;

i.e., of (3.11) with h replaced by its approximation f . Otherwise, let
O#pC1 WD argmin� f .�/.

(4) Repeat until convergence.

Steps 1–3 in this procedure can be done analytically, and so it provides us with

a closed-form update formula. The computation is carried out in Appendix F and

gives

(3.12) O#pC1 WD O#p C h�1
��

� Q�. O#p/'0 � h�
�

with Q�. O#p/ WD
�hh� ; h�1

��
h� i � 2h

h'0; h�1
��
'0i

�1=2
C
;

where w
1=2
C D p

w if w � 0 and w
1=2
C D 0 otherwise, and where h, h� , and h��

are evaluated at O#p . Note also that by definition of the algorithm, if h is quadratic

to begin with, then the algorithm converges after only one iteration (since then

f D h). This will happen if the underlying process is a diffusion process.

Once O# has been determined, the value of � in (3.11) can then be computed as

a simple function of O# via

(3.13) � D hh� . O#/; '0i
j'0j2 D hH� .'; O#/; '0i

j'0j2 :

Next we show that the sequence generated by (3.12) has O# as its unique fixed point

and is quadratically convergent if h is smooth enough. The latter is not surprising

since the standard Newton-Raphson algorithm has the same rate of convergence.

LEMMA 3.4 (Uniqueness of Fixed Point O#) We have O#pC1 D O#p if and only if
O#p D O# , i.e., if O#p is the solution of system (3.11). In that case, the value of � in
(3.11) is given by Q�. O#p/.

PROOF:

“(”: If h. O#p/ D 0 and h� . O#p/ D �'0 for some � � 0, then

Q�. O#p/'0 D
�hh� ; h�1

��
h� i � 2h

h'0; h�1
��
'0i

�1=2
C
'0

D
�hh� ; h�1

��
h� i

h'0; h�1
��
'0i

�1=2
C
'0 D �'0 D h� . O#p/;
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so that O#pC1 D O#p.

“)”: Now let O#pC1 D O#p . Then h� . O#p/ D Q�. O#p/'0 and clearly Q�. O#p/ � 0,

so it remains to show that h. O#p/ D 0. If ˇ WD hh� ; h�1
��
h� i � 2h � 0 (where here

and in the next line h, h� , and h�� are evaluated at O#p), then we can compute that

hh� ; h�1
�� h� i D Q�. O#p/2h'0; h�1

�� '
0i D hh� ; h�1

�� h� i � 2h ) h. O#p/ D 0:

If ˇ � 0, then Q�. O#p/ D 0 and thus h� . O#p/ D 0; i.e., O#p is the minimum of

h. Since we know that h.0/ � 0, this implies h. O#p/ � 0. On the other hand,

0 � ˇ D �2h. O#p/, so h. O#p/ must be 0. �

LEMMA 3.5 (Quadratic Convergence) If h 2 C 4.Rn/, then there exists a neigh-
borhood U�. O#/ of the solution O# and a constant c > 0 such that for 8 O#p 2 U�. O#/
we have

j O#pC1 � O#j � cj O#p � O#j2:

PROOF: Starting from (3.12), we write

(3.14)
ˇ̌
h�� . O#p/. O#pC1 � O#/ˇ̌ D ˇ̌

h�� . O#p/. O#p � O#/ C Q�. O#p/'0 � h� . O#p/ˇ̌:
We approximate the expression Q�. O#p/'0 � h� . O#p/ by its first-order Taylor expan-

sion around O# and estimate the remainder involving its second derivative (and thus

the fourth derivative of h) by O.j O#p � O#j2/. Since the zeroth-order term van-

ishes, i.e., Q�. O#/'0 � h� . O#/ D 0 (this was shown in the first part of the proof of

Lemma 3.4), the right-hand side of (3.14) is equal to

ˇ̌
h�� . O#p/. O#p � O#/C .'0 ˝ r Q�. O#/ � h�� . O#//. O#p � O#/ˇ̌ CO.j O#p � O#j2/:

We show below that r Q�. O#/ D 0, so that

ˇ̌
h�� . O#p/. O#pC1 � O#/ˇ̌ D ˇ̌

.h�� . O#p/ � h�� . O#//. O#p � O#/ˇ̌ CO.j O#p � O#j2/
D O.j O#p � O#j2/:

Since j O#pC1 � O#j � jh�1
��
. O#p/j jh�� . O#p/. O#pC1 � O#/j, we are done.
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To show that r Q�. O#/ D 0, consider first the case � > 0. Pick any i 2 f1; : : : ; ng
and use that at � D O# we have h D 0 and h� D �'0:

@�i

�hh� ; h�1
��
h� i � 2h

h'0; h�1
��
'0i

�1=2 ˇ̌̌ˇ
�D O#

D
�

1

2.: : : /1=2
@�i

hh� ; h�1
��
h� i � 2h

h'0; h�1
��
'0i

�ˇ̌̌
ˇ
�D O#

D 1

2�
h'0; h�1

�� '
0i�2h


hh� ; .@�i
h�1
�� /h� i C 2hT� h

�1
�� h��i

� 2h�i„ ƒ‚ …
D0

�
h'0; h�1

�� '
0i

�


hh� ; h�1

�� h� i � 2h„ƒ‚…
D0

�
h'0; .@�i

h�1
�� /'

0i
iˇ̌̌
�D O#

D 1

2�
h'0; h�1

�� '
0i�2hhh� ; .@�i

h�1
�� /h� ih'0; h�1

�� '
0i

� hh� ; h�1
�� h� ih'0; .@�i

h�1
�� /'

0i
iˇ̌̌
�D O#

D 0:

The case � D 0 can be treated by checking that the function hh� ; h�1
��
h� i � 2h as

well as its first two derivatives vanish at � D O# , so that its square root is of order

o.j O#p � O#j/. �

4 Examples

4.1 SDE: The Maier-Stein Model
As a first test for our method, we use the following example of a diffusion

process (SDE) first proposed by Maier and Stein [12]:

(4.1)

(
du D .u � u3 � ˇuv2/dt C p

" dWu.t/

dv D �.1C u2/v dt C p
" dWv.t/

where Wu and Wv are independent Wiener processes and ˇ > 0 is a parameter.

(In [12], Maier and Stein use two parameters: �, which we set to 1 in this treat-

ment, and ˛, which we call ˇ in order to avoid confusion with the variable used to

parametrize the path '.˛/.)

For all values of ˇ > 0, the SDE (4.1) has two stable equilibrium points at

.u; v/ D .˙1; 0/ and an unstable equilibrium point at .u; v/ D .0; 0/ (see Fig-

ure 4.1). The drift vector field

(4.2) b.u; v/ D
�
u � u3 � ˇuv2

�.1C u2/v

�
is the gradient of a potential if and only if ˇ D 1.
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FIGURE 4.1. The minimum action paths from .u; v/ D .�1; 0/ to

.u; v/ D .1; 0/ for the Maier-Stein model (4.1) shown on the top of

the flow lines of the deterministic velocity field (gray lines). The param-

eters are ˇ D 1 (left panel) and ˇ D 10 (right panel). When ˇ D 1, the

minimum action path is simply the heteroclinic orbit joining .˙1; 0/ via

.0; 0/; when ˇ D 10, nongradient effects take over, and the minimum

action path is different from the heteroclinic orbit.

When the noise amplitude " is small, (4.1) displays bistability. Any initial con-

dition with u < 0 is rapidly attracted toward a small neighborhood of .u; v/ D
.�1; 0/, whereas any initial condition with u > 0 is rapidly attracted toward a

small neighborhood of .u; v/ D .1; 0/. As a result, the equilibrium distribution

of the process defined by (4.1) is concentrated in small neighborhoods around

.˙1; 0/ and the process switches between these two regions only rarely. When

it does so, large deviations theory tells us that, with probability 1 in the limit as

" ! 0, the trajectory remains in an arbitrarily small tube around the miminizer '?

of OS.'/ connecting .u; v/ D .�1; 0/ to .u; v/ D .1; 0/ or the other way around—

in other words, the minimum action curve '? is the maximum-likelihood pathway

of switching (see Section 2.2). In addition, large deviations theory tells us that the

frequency of these hopping events is roughly exp.�"�1 OS.'?//.
Maier and Stein studied (4.1) for various values of ˇ. They noted that the

minimum action path from .u; v/ D .�1; 0/ to .u; v/ D .1; 0/ is the heteroclinic

orbit joining these two points via .u; v/ D .0; 0/ when ˇ � ˇcrit D 4 (this is

consistent with the system not being too far from the gradient regime in these

cases). However, when ˇ > ˇcrit D 4, the piece of the minimum action path in the

region u < 0 (i.e., in the basin of attraction of .u; v/ D .�1; 0/ by the deterministic

dynamics) stops being the heteroclinic orbit. Some intuition for why this change

of behavior occurs can be gained by looking at the deterministic flow lines shown

in Figure 4.1. Here we confirm these results using our method to find the minimum

action path, as shown in Figure 4.1.
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Before discussing the accuracy, stability, and efficiency of our method in the

context of the Maier-Stein model in detail, let us note that when applying our tech-

nique to a diffusion process such as (4.1) where the diffusion tensor is the identity,

we can use the following explicit formulas for O# and �:

O# D �'0 � b.'/; � D jb.'/j
j'0j :

Since H.x; �/ D hb.x/; �i C 1
2
j� j2, at .x; �/ D .x; O#/ we also have

H�x D rb; H�� D I; Hx D .rb/T O# D .rb/T .�'0 � b/;
and so equation (3.3) can be written explicitly as

(4.3) P' D �2'00 � �.rb � .rb/T /'0 � .rb/T b C ��0'0 C �'0:
Equation (4.3) can be integrated using a straightforward modification of the algo-

rithm presented in Section 3.2. If b is a gradient field, b D �rU , then rb �
.rb/T D 0 and the right-hand side simplifies further:

(4.4) P' D �2'00 � rrU rU C ��0'0 C �'0:
The steady state of this equation is the minimum energy path, i.e., the path such

that rU? D 0 along it. Using gMAM to integrate (4.4) may represent a useful

alternative to the string method [3].

Stability, Accuracy, and Efficiency
We discuss the case ˇ D 10 when the minimum action path is nontrivial. To

obtain a benchmark solution, we first ran the algorithm with N D 105 discretiza-

tion points at decreased step size to obtain a curve that we regarded as the true

solution connecting .�1; 0/ and .1; 0/ (to get this benchmark, we actually ran the

code between .�1; 0/ and .0; 0/ and then extended the path by the straight line

between .0; 0/ and .1; 0/ since we know that piece exactly).

Next we ran the code for 300 iterations forN D 100, 200, . . . , 900, 1000, 2000,

. . . , 10 000 at a fixed time step 4� D 0:1, to find both the minimum action path

connecting .�1; 0/ to .0; 0/ and the one connecting .�1; 0/ to .1; 0/ via the critical

point .0; 0/. For the initial condition, we used a semicircle in the upper half-plane

connecting the critical points .�1; 0/ and .0; 0/ in the first case or .�1; 0/ and

.1; 0/ in the second case. The error was estimated by computing the maximum

distance of each of the curves interpolated between the points to the benchmark

curve obtained before. (Note that we took as many as 300 iterations because we

are interested in measuring the accuracy of the algorithm here, but convergence is

already achieved up to an error of 10�6 in the action after less than 20 iterations;

see Figure 4.4.)

Since the left part of the path is smooth (there is no critical point along the path),

we expect that the unmodified algorithm of Section 3.2 to be second-order accurate

in N if we seek for the minimum action path connecting .�1; 0/ to .0; 0/: this is
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FIGURE 4.2. The accuracy measurements for the Maier-Stein model

on a double-logarithmic scale, for the left path (a) and the whole path

(b), which uses the modified and the unmodified algorithm. The fit-

ted straight lines have slope �1 (upper curve in (b)) and �2, indicating

accuracies of order O.1=N/ and O.1=N 2/, respectively. The noise in

the measurements of the unmodified algorithm on the whole path (upper

curve in (b)) is due to the fact that the error strongly depends on whether

a grid point happens to lie close to the unstable equilibrium point; how-

ever, modifying the algorithm as explained in Section 3.3 restores the

second-order accuracy.

confirmed by results shown in Figure 4.2(a). On the other hand, since the path

connecting .�1; 0/ to .1; 0/ has to pass the critical point .0; 0/ and is not differen-

tiable at that point, we expect the unmodified algorithm of Section 3.2 to be only

first-order accurate for these runs, and this is confirmed by the upper curve in Fig-

ure 4.2(b). However, when we modified the algorithm as proposed in Section 3.3

and ran it for an additional 300 steps with the reparametrization step treating the

right and the left side separately, second-order accuracy was restored, as shown by

the lower curve in Figure 4.2(b).

To check convergence of the curve between .�1; 0/ and .1; 0/, we also plotted

�.'.˛/; '0.˛//; see Figure 4.3. As expected, after convergence it has one root in

the interval .0; 1/, corresponding to the critical point on the curve '. The plot also

confirms Lemma 2.8(i), which says that � is Lipschitz-continuous at that point.

Furthermore, we observed that with the unmodified algorithm the value of � at

that point only reaches O.N�1/ (since the points of the discretized curve ' only

approximate the critical point to that order), whereas our method to achieve second-

order accuracy brings it all the way down to 0 (up to machine precision).

The time step to achieve stability in all the runs was found to be largely inde-

pendent of the choice of N . For the grid sizes N as above, the maximum value for

4� before visible oscillations occurred stayed constant at about 0:3.
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FIGURE 4.3. The function �.'.˛/; '0.˛//. The root in the middle cor-

responds to the value ˛ where '.˛/ is a critical point.
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k

FIGURE 4.4. The error in the action plotted in function of the number

of iterations on semilogarithmic scale, for various values of N between

100 and 10 000. The black curve corresponds to N D 10 000. These

graphs indicate linear convergence, with a rate that is independent of N

since the time step 4� is independent of N .

The required number of iterations at 4� D 0:2 until the change of the action

per iteration became less than 10�7 varied insignificantly between 31 and 33 for

the grid sizes N as above. For fixed N , the action decreases exponentially to its

limiting value, as can be seen in Figure 4.4, which shows the decay for the various

values of N in a semilogarithmic plot. The runtime for 100 iterations for various

grid sizes is plotted in Figure 4.5. It shows linear dependency onN , which is due to

the fact that all of our operations have a cost of order O.N/, including solving the

linear system in Step 2 and the linear interpolation in Step 3. These observations

are consistent with estimate (3.9) for the cost.
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FIGURE 4.5. The runtime for 100 iterations at various grid sizes (using

MATLAB 6.5 running under Windows XP on a 1.5-GHz Pentium 4),

showing linear dependency in N .

4.2 SPDE: An Infinite-Dimensional Generalization of the Maier-Stein
Model

As a natural generalization of the SDE (4.1), we consider the following infinite-

dimensional analogue of this equation (here written as a standard PDE for the sake

of clarity):

(4.5)

(
ut D �uxx C u � u3 � ˇuv2 C p

" �u.x; t/;

vt D �vxx � .1C u2/v C p
" �v.x; t/:

Here x 2 Œ0; 1� and we assume periodic boundary conditions. � > 0 is an addi-

tional parameter, and �u.x; t/ and �v.x; t/ are spatiotemporal white noises (i.e.,

the space-time derivatives of Brownian sheets, Wu.x; t/ and Wv.x; t/, defined on

.x; t/ 2 Œ0; 1� � Œ0;1/). System (4.5) is formal, but it can be shown (see [5])

by rewriting it in integral form that its solutions are well-defined and Hölder-

continuous and define a Markov process adapted to the filtrations of Wu.t; x/ and

Wv.t; x/. In addition, it was shown in [5] that (4.5) satisfies a large deviations

principle with action functional

(4.6)
ST .u; v/ D 1

2

Z T

0

Z 1

0

�
.ut � �uxx � uC u3 C ˇuv2/2

C �
vt � �vxx C .1C u2/v

�2�
dx dt:

Thus, like its finite-dimensional analogue (4.1), (4.5) will display bistability in

the limit as " ! 0 in the sense that the invariant measure of the process defined

by (4.5) is concentrated in a small neighborhood around the two stable equilibrium

solutions of the deterministic equation obtained by setting " D 0 in (4.5): these are

.u˙.x/; v˙.x// 
 .˙1; 0/. Here we are interested in analyzing the pathways of
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transition between these points which, with probability 1 as " ! 0, are located in

a small tube around the minimizer of the action (4.6) over both .u.t; x/; v.t; x//

and T .

By analogy with what happens in the finite-dimensional system, we expect that

when the system is not too far from gradient, i.e., when ˇ is small enough, the min-

imum action path will follow the graph of a heteroclinic orbit connecting .u�; v�/
and .uC; vC/. The only difference with the finite-dimensional situation is then

that, if the coefficient � in (4.5) is small enough, � < �crit D 1=.42/ � 0:0253,

there are many such orbits because (4.5) has many unstable equilibrium points. As

a result there will be several minimum action paths (one global minimizer and sev-

eral local minimizers). How to identify these unstable critical points as a way to

benchmark the results from the minimum action method is explained below.

On the other hand, if the system is far from gradient, i.e., if ˇ is large enough,

then we expect that the piece of the minimum action path connecting the stable

equilibrium point .u�; v�/ to an unstable equilibrium point will be different from

the heteroclinic orbit connecting these points. Our results below confirm this intu-

ition.

It is worth pointing out that traditional shooting methods to solve the Hamil-

ton equations associated with the minimization of (4.6) are inapplicable here. The

reason is that, unlike their finite-dimensional analogue, these equations are only

well-posed as a boundary value problem in time, which prohibits the use of the

shooting method. Hence, the technique used by Maier and Stein in [12] in the

context of the finite-dimensional diffusion (4.1) cannot be used to obtain the min-

imizers of (4.6). Next we show that the gMAM is the right alternative to do this

minimization.

The gMAM in Infinite Dimensions
We want to apply our algorithm to find the minimum action path connecting

the stable states .u�; v�/ and .uC; vC/. In order to do so, we first recast our theo-

retical results to the present infinite-dimensional setting. Basically, this amounts to

changing the finite-dimensional inner product h � ; � ia by its analogue in function

space, and the only result we actually need is the equivalent of (2.2) and (2.14),

which we state without proof:

(4.7) V..u�; v�/; .uC; vC// D inf
'

OS.'/
where the infimum is taken over all spatially periodic functions '.x; ˛/ W Œ0; 1� �
Œ0; 1� ! R2 subject to '. � ; 0/ 
 .�1; 0/ and '. � ; 1/ 
 .1; 0/, and where

(4.8) OS.'/ D
Z 1

0

�k'0kL2 kB.'/kL2 � h'0; B.'/iL2

�
d˛:

Here

(4.9) B.'/ WD b.'/C �'xx;
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where b is given by (4.2).

The steepest-descent flow associated with (4.7) is the analogue of (4.3). It can

be written in compact form as

(4.10) P' D �2'00 � �.@B � .@B/�/'0 � .@B/�B C ��0'0 C �'0;
where � D kB.'/kL2=k'0kL2 , @B is the operator

(4.11) @B D rb.'/C �@2x;

and .@B/� is its adjoint. Explicitly, (4.10) is

(4.12)

P' D �2'00 � �.rb � .rb/T /'0 � .rb/T b � �.rb C .rb/T /'xx
� �2'xxxx � �

�h'x;rrb1 'xi
h'x;rrb2 'xi

�
C ��0'0 C �'0:

(4.12) can be solved by discretizing '.x; ˛; �/ in x, ˛, and � and using a general-

ization of the algorithm in Section 3.2. There is, however, an additional difficulty

caused by the presence of the spatial derivatives such as 'xxxx . To stabilize the

code with respect to those, we may use an FFT-based pseudospectral code in x and

Duhamel’s principle to solve P' C �2'xxxx D (remaining terms) explicitly. How-

ever, having tried this approach, we found that a slightly more efficient alternative

was to not go pseudospectral but rather split each iteration step into two, the first

one being the equivalent of the semi-implicit Step 2 (evaluating '00 at the new time

step) in which the term �2'xxxx at the right-hand side of (4.12) was excluded,

and the second one being an implicit step with that term only. In this approach all

spatial derivatives of ' were estimated by finite differences.

To apply the gMAM, we initialized the transition path as the linear interpolation

between .u�; v�/ and .uC; vC/ and added a bump to break the degeneracy due to

the periodicity in x; i.e., we set

'.� D 0; x; ˛/ WD ��1C 2˛ C 2 sin2.˛/ sin2.x/; 0
�
:

We chose the grid sizes 4x D 1=128 and 4˛ D 1=100, and set the step size to

4� D 0:1. We then started the algorithm with the model parameters ˇ D 1 and

� D 0:01, and after 40 seconds and about 120 iterations we obtained an approxi-

mate solution. Using a continuation method, we decreased � to � D 0:003 and then

to � D 0:001, each time running the algorithm starting from the previous solution.

The whole sequence of operations took about two minutes using MATLAB 6.5

running under Windows XP on a 1.5-GHz Pentium 4. Then we started the process

over again, this time increasing � until it reached � D 0:026 > �crit.

Results
Figure 4.6 shows plots for ˇ D 1 and various values of �. Each of them shows

the first components of the functions '. � ; ˛/ for equidistant values of ˛ as blue

lines. To check our results, we added in each figure the lowest-energy saddle point

of the system as a red line, determined independently using the method explained

below. One can see that the transition paths found by our algorithm indeed pass
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FIGURE 4.6. Snapshots along the minimum action path from .u�; v�/
to .uC; vC/ for the SPDE generalization of the Maier-Stein model. The

parameters are ˇ D 1 and � D 0:001; 0:01; 0:024; 0:026. The high-

lighted lines are the unstable equilibrium points.

through these saddle points to very satisfying accuracy. Figure 4.7 shows a three-

dimensional representation of the solution for � D 0:01.

We then added a little bump to the v-field (the second component of '), set

ˇ D 10, and restarted the algorithm. For this value of ˇ, by analogy with what

happens in the finite-dimensional Maier-Stein model, we expected that the field v

would assist in the transition during the uphill path. The gMAM confirmed this

intuition, as shown in Figure 4.8. Now as u makes a transition similar to the pre-

vious one, v also increases around x D 1
2

but vanishes again as the saddle point is

reached.

Figure 4.9 shows the plot for � D 0:001. As we can see, smaller values for

� lead to steeper domain walls. Finally, Figure 4.10 shows an example for a two-

periodic local minimizer, obtained by starting from a two-periodic initial curve.

Notice that the minimum action paths in this example are degenerate due to the

spatial periodicity (i.e., if '.�; x; ˛/ is a minimizer of the action, so is '.�; xCc; ˛/
for any c 2 R). This degeneracy, however, was broken by our choice of initial

condition and does not appear to affect the convergence of the algorithm.
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FIGURE 4.7. The minimum action path from .u�; v�/ to .uC; vC/ for

� D 0:01 and ˇ D 1. The two surfaces represent the two components u

and v of the minimizer '?, the pink line shows the saddle point, and the

red dots at the side mark points at equidistant times.
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FIGURE 4.8. Same as in Figure 4.7, for � D 0:01 and ˇ D 10. For

those parameters the field v assists in the transition.

Finding Saddle Points
Since we know that the minimum action paths must go through critical points

(such as saddle points), to check our results we computed these critical points using

the following strategy. Any critical point of the form .u.x/; 0/ must fulfill the

equation

(4.13) 0 D B1..u; 0// D b1..u; 0//C �uxx D u � u3 C �uxx :
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FIGURE 4.9. Same as in Figure 4.7, for ˇ D 10 and � D 0:001. Com-

pared with Figure 4.8 we observe that smaller values for � lead to steeper

domain walls.
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FIGURE 4.10. A local minimizer with period 1
2

for ˇ D 10 and � D 0:001.

This equation has three constant solutions uk.x/ 
 .k; 0/ for k D �1; 0;C1. The

functions .u˙1; 0/ can be shown to be stable states, whereas .u0; 0/ is an unstable

critical point. To find nonconstant solutions of (4.13), multiply this equation by ux
and integrate to obtain

�1
4
.1 � u2/2 C 1

2
�u2x D cst DW �1

4
E2;
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E 2 Œ0; 1�, or equivalently

jux.u/j D ��1=2
r
1

2
.1 � u2/2 � 1

2
E2:

Additional solutions can thus be obtained by inverting the function

(4.14) x.u/ D
Z u

u�

1

ux.u0/ du
0; u� � u � uC;

where u˙ are the locations at which ux D 0, i.e., u˙ D ˙p
1 �E, and then

setting u.x/ WD u.2x.uC/ � x/ for x.uC/ � x � 2x.uC/. For every choice of

E this leads to a solution with period p.E/ D 2x.uC/, but we are only interested

in those values for which 1=p.E/ 2 N since u.x/ must be periodic on the original

domain x 2 Œ0; 1�. These values of E can be found from (4.14):

p.E/ D 2

Z uC

u�

1

ux.u/
du D 2

p
�

Z 1

0

u�1=2fE .u/du;

where

fE .u/ D
�
1 � 1

2
u

��1=2��
1

2
.1 �E/uC 2E

��1=2

C
�
.1 �E/

�
1 � 1

2
u

�
C 2E

��1=2�
:

We can compute the integral for p.E/ numerically for several values of E 2 Œ0; 1�
and then determine for which E0 we have p.E0/ D 1. Finally, we can invert the

solution x.u/ for E D E0 to find the corresponding uE0
.x/.

As a final remark, note that p.E/ can be shown to take its minimum at E D 1,

and its value there is

p.1/ D 2
p
2�

Z 1

0

u�1=2
�
1 � u

2

��1=2
du

D 4
p
�

Z 1=2

0

u�1=2.1 � u/�1=2 du

D 2
p
�

Z 1

0

u�1=2.1 � u/�1=2 du D 2
p
�:

Therefore, if � > �crit WD 1=.42/, then for every E 2 Œ0; 1� we have p.E/ �
p.1/ D 2

p
� > 1, i.e., 1=p.E/ … N, and there is no nonconstant critical point

(with v D 0).

4.3 Continuous-Time Markov Chain: The Genetic Switch
As a last example, we apply our technique to a birth-death process with a posi-

tive feedback loop that results in two stable states. The model was first defined by

Roma et al. [16] (see also [7, 20]) and describes a mechanism in molecular biology

called the genetic switch, illustrated in Figure 4.11.
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FIGURE 4.11. The mechanism of the genetic switch.

A bacterial cell contains plasmids with two gene sites a and b that can be tran-

scribed and translated into proteins A and B. Those in turn can form polymers that

bind to the operator site of the respective other gene, preventing further production

of the corresponding protein. Other reactions are to reverse polymer formation or

protein binding, and the degradation of proteins.

This setup leads to bistable behavior: If the cell is in a state with many pro-

teins A and only few proteins B, then there are likely also many polymers Am, the

operator site of gene b will be blocked most of the time, and thus only few new

proteins B will be produced. Since there are only few proteins B, it is unlikely that

a polymer Bn will bind to the operator site of gene a, and the production rate of

new proteins A will stay high. Therefore there will be a stable state with many

proteins A and few proteins B, and by symmetry of the mechanism there is another

stable state with few proteins A and many proteins B. Bistability arises because the

fluctuations leading to a switch from one stable state to the other are rare events.

A simplifying description of this process keeps track only of the numbers of the

proteins of the two types, .Xa; Xb/, and models polymer formation and binding

to the DNA only by defining the production rate as a function of the number of

proteins of the respective other type, the precise form of which is motivated by the

Hill equation [21]. It thus consists of only four reactions, as listed in Table 4.1.

Here, ˝ is the system size parameter (such as the total number of proteins in

the cell), .xa; xb/ WD .Xa=˝;Xb=˝/ is the protein density, a1 and a2 are rate

Reaction Type Rate State Change of .Xa; Xb/

protein production ˝a1.1C xn
b
/�1 .1; 0/

˝a2.1C xma /
�1 .0; 1/

protein degradation ˝�1xa .�1; 0/
˝�2xb .0;�1/

TABLE 4.1. The reactions of the genetic switch model by Roma et al. [16].
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parameters that combine the rates for transcription into RNA and their translation

into proteins, andm and n are the cooperativity parameters that represent the num-

bers of proteins per polymer. In the simulations below, we use the same model

parameters as Roma et al. [16], namely, a1 D 156, a2 D 30, �1 D �2 D 1,

m D 1, n D 3.

Under this kind of scaling the stochastic system for x WD .xa; xb/ satisfies a

large deviations principle as " D 1=˝ ! 0, with Hamiltonian

(4.15)

H.x; �/ D a1

1C xn
b

.e�a � 1/C �1xa.e
��a � 1/

C a2

1C xma
.e�b � 1/C �2xb.e

��b � 1/

(see [17]), which we used in the gMAM algorithm presented in Section 3.

Figure 4.12 shows the transition path obtained with gMAM, for the full path and

only for the uphill path. They match those found in [16] using a shooting method

based on the Hamilton equations associated with the Hamiltonian (4.15). While

in general for continuous-time Markov chains no explicit expression for O#.x; y/
exists, for the simple Hamiltonian (4.15) we could indeed find one. Comparing the

curve obtained from gMAM using the explicit formula for O#.x; y/ with the one

using the algorithm from Section 3.4 in an inner loop, we found that both curves

matched exactly. When we applied the technique to obtain second-order accuracy

as described in Section 3.3, the corner of the path at the saddle point was sharp,

and � at that point vanished up to machine precision.

Table 4.2 shows the results of our performance tests on this model. For various

grid sizesN it lists the optimal step size 4� , the number of steps necessary until the

change in the action OS.'/ per iteration drops below 10�7, and the corresponding

runtime. We observe again that the maximum step size 4� is roughly independent

of the grid size N , and that the runtime is close to linear in N .

Grid Size n Step Size 4� # Iterations Runtime

100 0.22 20 0.5 sec

300 0.27 15 0.6 sec

1,000 0.26 18 1.3 sec

3,000 0.26 18 3.1 sec

10,000 0.27 19 11.6 sec

TABLE 4.2. Algorithm performance for the Roma model.
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FIGURE 4.12. The minimum action path for the Roma model. The x-

and y-axes denote the densities of the proteins of type A and B , respec-

tively. The left panel shows the full path from the right stable state to the

left stable state; the right panel shows the piece of the path from the right

stable state to the saddle point.

5 Conclusions

Summarizing, we have proposed a variant of the MAM, the geometric mini-

mum action method (gMAM), which is tailored to the double minimization prob-

lem required to compute the quasi-potential V.x1; x2/ in the Freidlin-Wentzell the-

ory of large deviations. The key idea behind the gMAM is to reformulate the

Freidlin-Wentzell action functional on the space of curves. With this reformula-

tion, we guarantee that the new action will have minimizers (that is, curves) in a

broader class of situations, in particular when the points x1 and x2 in V.x1; x2/

are stable equilibrium points of the deterministic dynamics (in contrast, the orig-

inal action minimized over both the paths and their length in time fails to have a

minimizer in this case). The corresponding minimizer of the action is the curve

of maximum likelihood by which the transitions between these stable equilibrium

points occur due to the presence of the small noise.

The gMAM is an algorithm to evolve curves with arbitrary parametrization in

order to find the minimizer of the reformulated Freidlin-Wentzell action functional.

Here the algorithm was tested on several examples: a finite-dimensional diffusion

(SDE) with a nongradient drift, an infinite-dimensional generalization of this SDE

(i.e., an SPDE for which traditional methods based on a shooting algorithm are

inapplicable) and a Markov jump process. However, the potential range of appli-

cability of the gMAM is broader than these illustrative examples.

In particular, Proposition 2.1 relies only on Assumptions 1–3 for the Hamil-

tonian H.x; �/. This makes the results in this paper applicable to a wider class

of problems than those arising in the context of large deviations theory. One such

problem is the determination of the instanton by which quantum tunneling arises
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(for background on this problem, see, e.g., [11, 18]). The relevant action in this

case is

(5.1) V.x1; x2/ D inf
T>0

inf
 2 NCx2

x1
.0;T /

Z T

0

�
1

2
j P .t/j2 C U. .t//

�
dt:

Here x1 and x2 are minima of the potential U � 0, and it is assumed that U.x1/ D
U.x2/ D 0. Hence x1 and x2 are critical points according to our definition (1.24).

It is well-known [18] that this minimization problem can be recast into a ge-

odesic problem in terms of the Agmon distance; i.e., V.x1; x2/ can be expressed

as

(5.2) V.x1; x2/ D inf
'2 NCx2

x1
.0;1/

Z 1

0

p
2U.'.˛// j'0.˛/jd˛:

The instanton is the minimizer of this action. The new MAM can be straightfor-

wardly applied to (5.2) since the corresponding Hamiltonian H.x; �/ D 1
2
j� j2 �

U.x/ fulfills Assumptions 1–3 of our paper. The gMAM can also be applied to

similar problems involving finding geodesics in high-dimensional space with the

Riemannian metric.

Appendix A: Three Technical Lemmas

The goal in this appendix is to prove Lemmas A.1 and A.3, which are needed

in the proof of Proposition 2.1(i).

LEMMA A.1 Let  1 2 NC.0; T1/ and  2 2 NC.0; T2/ with 	. 1/ D 	. 2/, and
let the local action ` W D � Rn ! Œ0;1/ have the property that for all x 2 D,
y 2 Rn, and c � 0, we have `.x; cy/ D c`.x; y/. ThenZ T1

0

`. 1;  
0
1/dt D

Z T2

0

`. 2;  
0
2/dt:

PROOF: Let  1.t/ D '.˛.t// for all t 2 Œ0; T1�, some ' 2 NC.0; 1/ with j'0j 

cst a.e., and for some absolutely continuous rescaling ˛ W Œ0; 1� ! Œ0; T1� with

˛0 � 0 almost everywhere. Then for all t 2 Œ0; T1�we have P 1.t/ D '0.˛.t//˛0.t/,
and we can computeZ T1

0

`. 1; P 1/dt D
Z T1

0

`
�
'.˛.t//; '0.˛.t//˛0.t/

�
dt

D
Z T1

0

`
�
'.˛.t//; '0.˛.t//

�
˛0.t/dt

D
Z 1

0

`
�
'.˛/; '0.˛/

�
d˛:

Since the same calculation can be made for  2, we are done. �
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To prepare for the proof of Lemma A.3, we need to show some technical prop-

erties of H and �� first.

LEMMA A.2

(i) The following equalities hold:

Ly.x; y/ D ��.x; y/;(A.1)

��
y .x; y/ D H�1

�� .x; �
�.x; y// D Lyy.x; y/:(A.2)

(ii) Assumption 3 implies the limits

lim
�!1

H.x; �/ D 1;(A.3)

lim
y!1 ��.x; y/ D 1;(A.4)

uniformly in x on compact sets.

PROOF:

(i) By differentiating (1.22) with respect to y and using (1.23), we obtain

Ly.x; y/ D ��.x; y/C �
��
y .x; y//

T .y �H� .x; ��.x; y//
� D ��.x; y/:

Differentiating (1.23) with respect to y leads us to

H�� .x; �
�.x; y//��

y .x; y/ D I

and thus

H�1
�� .x; �

�.x; y// D ��
y .x; y/ D Lyy.x; y/:

(ii) Denoting Oe� WD �=j� j, for any compact set K 	 D Assumption 3 implies

that

hH� .x; �/; Oe� i D
Z j� j

0

h Oe� ;H�� .x; � Oe� / Oe� id� C hH� .x; 0/; Oe� i
� m.x/j� j � sup

x2K
jH� .x; 0/j � mK j� j � CK :(A.5)

Performing one more integration, we find

H.x; �/ D
Z j� j

0

hH� .x; � Oe� /; Oe� id� CH.x; 0/

�
Z j� j

0

.mK� � CK/d� � C 0
K D 1

2
mK j� j2 � CK j� j � C 0

K ;

proving (A.3).

To prove (A.4), assume that it is not true. Then there exists a sequence .yk/

with yk ! 1 and a bounded sequence .xk/ such that the sequence .��.xk; yk// is

bounded. But continuity of H� . � ; � / then implies that yk D H� .xk; �
�.xk; yk//

stays bounded, and we have a contradiction. �
Now we are ready to prove Lemma A.3.
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LEMMA A.3 For the functions �k defined in the proof of Proposition 2.1, we have
j�kj1 < 1 and

(A.6) sup
k2N

ˇ̌̌
ˇL.'; '0�k/

�k

ˇ̌̌
ˇ1 < 1;

where j � j1 denotes the L1 norm on Œ0; 1�.

PROOF: First let us show that M WD j�.'; '0/j1 < 1. To do so, sup-

pose M D 1. Then for every l 2 N the set f˛ 2 Œ0; 1� j �.'; '0/ > lg
would have nonzero measure, and we could construct a sequence .˛l/ such that

liml!1 �.'.˛l/; '
0.˛l// D 1 and j'0.˛l/j D L' for every l 2 N, whereL' > 0

is the constant such that j'0j 
 L' almost everywhere. Now comparing (1.23) with

(2.7), we see that O#.'; '0/ D ��.'; '0�/, so that

0 
 H.'; O#.'; '0//
ˇ̌
˛D˛l

D H.'; ��.'; '0�//
ˇ̌
˛D˛l

! 1 as l ! 1
by Lemma A.2(ii), and we would have a contradiction. This shows that M < 1,

and thus also that j�kj1 � maxfM; 1=kg < 1.

Now we can begin our estimate by showing that

jH.'; ��.'; '0�k//j � jH.'; ��.'; '0�//j C
Z �k

�

j@�H.'; ��.'; �'0//jd�

D 0C
Z �k

�

ˇ̌˝
H�

�
'; ��.'; �'0/

�
; ��
y .'; �'

0/'0˛ˇ̌d�
D

Z �k

�

�
ˇ̌˝
'0;H�1

�� .'; �
�.'; �'0//'0˛ˇ̌d�

� L2'

mK

Z �k

�

� d� D L2'

2mK
.�2k � �2/ � L2'�

2
k

2mK
;

where in the third and fourth step we have used (1.23), (A.2), and Assumption 3

with K WD 	.'/ and � D H
�1=2
��

'0. Thusˇ̌̌
ˇH.'; ��.'; '0�k//

�k

ˇ̌̌
ˇ � L2'�k

2mK
� L2' maxf1;M g

2mK
DW C < 1;

and we obtain the boundˇ̌̌
ˇL.'; '0�k/

�k

ˇ̌̌
ˇ � jh��.'; '0�k/; '0ij C

ˇ̌̌
ˇH.'; ��.'; '0�k//

�k

ˇ̌̌
ˇ

� L' max
˚j��.x; y/j j x 2 	.'/; jyj � L' maxf1;M g� C C

< 1:

�
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Appendix B: Proofs of Lemmas 2.2 and 2.8

PROOF OF LEMMA 2.2:

(i) and (ii) If �.x; y/ D 0, then the second equation in (2.7) tells us that O#.x; y/
is a minimizer of H.x; � / (which by Assumption 3 is unique). Because of the first

equation in (2.7), we thus have inf�2Rn H.x; �/ D 0, and together with Assump-

tion 1 this implies that H.x; 0/ D 0. But this means that 0 minimizes H.x; � /,
so we must have O#.x; y/ D 0. Now the second equation in (2.7) finally says that

H� .x; 0/ D 0, and x must be a critical point.

To show the reverse direction, observe that if x is a critical point, then .�; O#/ D
.0; 0/ solves (2.7).

(iii) Let x 2 D be a critical point. By Definition (1.23) of ��, H� .x; 0/ D
0 tells us that ��.x; 0/ D 0. Therefore x fulfills L.x; 0/ D h��.x; 0/; 0i �
H.x; ��.x; 0// D 0 � H.x; 0/ D 0, and we can apply l’Hospital’s rule and use

(A.1) to find the limit

lim
�!0C

L.x; �y/

�
D hy;Ly.x; 0/i D hy; ��.x; 0/i D 0:

(iv) For the representation (2.5) this follows from part (ii); for the representa-

tion (2.6), it follows from parts (i) and (iii) combined. For the representation (2.4),

observe that if ' is a critical point, then # D 0 is the minimum of H.'; � /, and

thus we have H.'; #/ D 0 only for # D 0. �

PROOF OF LEMMA 2.8:

(i) Let L' be the constant such that j'0j 
 L' a.e., and let ˛ 2 Œ0; 1� such

that j'0.˛/j D L' . Denote ' WD '.˛/, '0 WD '0.˛/, O# WD O#.'; '0/, � WD �.'; '0/,
and finally 'c WD '.˛c/.

Since 'c is a critical point, we have H� .'c; 0/ D 0 and H.'c; 0/ D 0, and the

latter equality together with Assumption 1 tells us that also Hx.'c; 0/ D 0. Thus

if we expand H.'; O#/, which is 0 by definition of O# , around the point .x; �/ D
.'c; 0/, the zeroth- and first-order terms vanish, and we obtain

0 D H.'; O#/
D 1

2
h' � 'c ;Hxx. Qx; Q�/.' � 'c/i C h O#;H�x. Qx; Q�/.' � 'c/i

C 1

2
h O#;H�� . Qx; Q�/ O#i

for some point . Qx; Q�/ on the straight line between .'c; 0/ and .'; O#/. Note that

' is in the compact set 	.'/, and so equation (A.3) of Lemma A.2 and the first

equation in (2.7) tell us that O# must also lie within some compact set independent

of ˛. Since j Qx � 'cj � j' � 'cj and j Q� j � j O#j, this means that . Qx; Q�/ is also within
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some compact set K �K 0 	 D � Rn independent of ˛. Applying Assumptions 2

and 3 we find

1

2
mK j O#j2 � 1

2
h O#;H�� . Qx; Q�/ O#i

D �1
2

h' � 'c;Hxx. Qx; Q�/.' � 'c/i � h O#;H�x. Qx; Q�/.' � 'c/i

� C.j' � 'cj2 C j' � 'cj j O#j/

� C

�
j' � 'cj2 C C

mK
j' � 'cj2 C mK

4C
j O#j2

�
by Cauchy’s inequality. Therefore we have j O#j � C 0j' � 'cj for some constant

C 0 > 0, and expanding around .'c ; 0/ again we conclude that

� D 1

L'
j�'0j D 1

L'
jH� .'; O#/j

D 1

L'

ˇ̌
H� .'c; 0/„ ƒ‚ …

D0
CH�x. Qx0; Q� 0/.' � 'c/CH�� . Qx0; Q� 0/ O# ˇ̌

� C 00.j' � 'cj C j O#j/

� C 00.1C C 0/j' � 'cj � C 00.1C C 0/L' j˛ � ˛cj:
(ii) This is now a direct consequence of (i) since � � C j˛ � ˛cj implies for

arbitrarily small � > 0 thatZ
j˛�˛c j��

d˛

�
� 1

C

Z
j˛�˛c j��

d˛

j˛ � ˛cj D 1:

�

Appendix C: Proof of Lemma 2.5

PROOF OF LEMMA 2.5:

(i) In order to apply the Arzèla-Ascoli theorem, we quickly check that the set

CX;M is uniformly bounded and uniformly equicontinuous: For all ' 2 CX;M and

all ˛ 2 Œ0; 1� we have

j'.˛/j D
ˇ̌̌
ˇ'.0/C

Z ˛

0

'0.a/da
ˇ̌̌
ˇ � j'.0/j C

Z ˛

0

j'0.a/jda � sup
x2X

jxj CM

and

j'.˛ C h/ � '.˛/j D
ˇ̌̌
ˇ
Z ˛Ch

˛

'0.a/da
ˇ̌̌
ˇ �

Z ˛Ch

˛

j'0.a/jda � Mh:
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This proves precompactness of the set CX;M . To prove that CX;M is also closed,

take any sequence .'n/ in CX;M that converges uniformly to some ' 2 C.0; 1/.

We have to show that ' 2 CX;M . Clearly, '.0/ 2 X . Furthermore, for every

a; b 2 Œ0; 1�, a < b, we have

sup
a�˛0<���<˛N �b

NX
iD1

j'.˛i / � '.˛i�1/j

D sup
a�˛0<���<˛N �b

lim
n!1

NX
iD1

j'n.˛i / � 'n.˛i�1/j

� lim inf
n!1 sup

a�˛0<���<˛N �b

NX
iD1

j'n.˛i / � 'n.˛i�1/j

D lim inf
n!1

Z b

a

j'0
n.˛/jd˛ � M.b � a/ < 1:

This shows that ' is absolutely continuous and that j'0j � M almost everywhere.

Therefore CX;M is closed, and since it is also precompact, it must be compact.

(ii) This now follows directly from (i) by observing thatC
x;y
M is a closed subset

of CX;M , for X WD fxg.

(iii) We want to show that for any sequence .'n/ in CX;M converging to some

' 2 CX;M we have OS.'/ � lim infn!1 OS.'n/. We can follow exactly the lines

of the proof of [17, lemma 5.42], applied to convergence in j � jŒ0;1� (which in [17]

is denoted by dc), except for two modifications: First, since we do not have the

equivalent of [17, lemmas 5.17 and 5.18] (the integrand of OS increases only linearly

in j'0j), we have to restrict OS to CX;M , which guarantees uniform equicontinuity of

the sequence .'n/, as shown in part (i). Second, we have to adjust the definition of

the lower bound `ı.x; y/ for the local action `.x; y/ to our case and show that our

function `ı still fulfills the required properties, i.e., weak convexity in y and lower

semicontinuity in the limit .x; y; ı/ ! .x0; y0; 0
C/, although the technique in [17,

lemma 5.40] to prove the latter fails in our case (since our equivalent of gı.x; �/ is

not continuous).

For every x 2 D, y 2 Rn, and ı > 0 we define

`ı.x; y/ WD supfhy; �i j � 2 Rn s.t. 8´ 2 D W j´ � xj � ı ) H.´; �/ � 0g:
Then for every Nx 2 D with j Nx � xj � ı we have

(C.1) `ı.x; y/ � sup
�2Rn

H. Nx;�/�0
hy; �i D sup

�2Rn

H. Nx;�/D0
hy; �i DW `. Nx; y/;

where ` is our local action from representation (2.4).

Clearly, `ı.x; y/ is convex in y as the supremum of linear functions. To show

lower semicontinuity of `ı.x; y/, consider first the cases when either x0 is a critical
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point or when y0 D 0. If x0 is a critical point, then the local action ` vanishes at

.x0; y0/ by Lemma 2.2; if y0 D 0 then the local action ` vanishes by its definition

in (C.1). Thus by Assumption 1 we have

`ı.x; y/ � hy; 0i D 0 D `.x0; y0/ 8x; y; ı;
so that

(C.2) lim inf
.x;y;ı/!.x0;y0;0C/

`ı.x; y/ � `.x0; y0/:

In all other cases (i.e., x0 is not a critical point and y0 ¤ 0) we have H� .x0; O#/ D
�.x0; y0/y0 ¤ 0 (for O# WD O#.x0; y0/) by Lemma 2.2(i). Since by definition of O#
we have H.x0; O#/ D 0, for every " > 0 there exists a Q� 2 Rn with j Q� � O#j < "

such that H.x0; Q�/ < 0. By continuity of H. � ; Q�/, there exists an � > 0 such that

for all ´ 2 D with j´� x0j � � we haveH.´; Q�/ � 0. Let ıC jx�x0j � �. Since

j´ � xj � ı ) j´ � x0j � ı C jx � x0j � �;

we then have

`ı.x; y/ � supfhy; �i j � 2 Rn s.t. 8´ 2 D W j´ � x0j � � ) H.´; �/ � 0g
� hy; Q�i
D hy0; O#i C hy � y0; O#i C hy; Q� � O#i
� `.x0; y0/ � jy � y0jj O#j � jyj";

where in the last step we used representation (2.5) of the local action `.x0; y0/.

Taking the lim inf as .x; y; ı/ ! .x0; y0; 0
C/ and then letting " ! 0, we see that

(C.2) holds also in this case, terminating the proof of part (iii).

(iv) LetK be a nonempty closed subset of CX;M , and let .'n/ be a sequence in

K such that limn!1 OS.'n/ D inf'2K OS.'/. Since CX;M is compact, K is com-

pact as well, and thus there exists a subsequence .'nk
/ that converges uniformly to

some '? 2 K as k ! 1. Because of the lower semicontinuity of OS , we have

OS.'?/ � lim inf
k!1

OS.'nk
/ D inf

'2K
OS.'/

and thus OS.'?/ D inf'2K OS.'/. �

Appendix D: Proof of Proposition 2.3

In this appendix we will prove the technical details of Steps 1–3 that we omitted

in the proof of Proposition 2.3 in Section 2.2. Let us begin with

Step 1. There exists an Q� > 0 such that for small enough ı

(D.1) 
.X"jŒ0;T �; '?/ � Q� and �ı.X
"/ � T ) 
.X"jŒ0;�ı.X"/�; '

?/ � �:
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PROOF: Without loss of generality we may assume that j'?0j 
 cst a.e. on

Œ0; 1�. Let ˛0 2 .0; 1/ be large enough so that
R 1
˛0

j'?0jd˛ � 1
2
�, and let

0 < Q� WD 1

4
inf

0�˛�˛0

j'?.˛/ � x2j

� 1

4
j'?.˛0/ � x2j D 1

4

ˇ̌̌
ˇ
Z 1

˛0

'?
0
d˛

ˇ̌̌
ˇ � 1

4

Z 1

˛0

j'?0jd˛ � �

8
:(D.2)

Let ı � Q�. From the definition of the Fréchet distance, there are two weakly in-

creasing, surjective, continuous functions t .s/ W Œ0; 1� ! Œ0; T � and ˛.s/ W Œ0; 1� !
Œ0; 1� such that

(D.3) jX".t.s// � '?.˛.s//jŒ0;1� � 2 Q�:
Let s0 2 Œ0; 1� be such that t .s0/ D �ı WD �ı.X

"/, and define Qt .s/ WD t.s/ ^ �ı .

(We write a_b and a^b to denote the maximum and the minimum of two numbers

a and b, respectively.) Then


.X"jŒ0;�ı�; '
?/ � jX".Qt.s// � '?.˛.s//jŒ0;1�

D jX".Qt.s// � '?.˛.s//jŒ0;s0� _ jX".Qt .s// � '?.˛.s//jŒs0;1�
D jX".t.s// � '?.˛.s//jŒ0;s0� _ jX".�ı/ � '?.˛.s//jŒs0;1�
� 2 Q� _ .jX".�ı/ � x2j C j'?.˛.s// � x2jŒs0;1�/:(D.4)

To estimate the second norm in the last expression, observe that (using t.s0/ D
�ı and (D.3)) we have

j'?.˛.s0// � x2j � jX".t.s0// � x2j C jX".t.s0// � '?.˛.s0//j
� ı C 2 Q� � 3 Q� < 4 Q� D inf

0�˛�˛0

j'?.˛/ � x2j;
so that ˛.s0/ > ˛0 necessarily. Therefore by monotonicity of ˛. � /, for all s 2
Œs0; 1� we have ˛.s/ � ˛.s0/ > ˛0 and thus

j'?.˛.s// � x2j D
ˇ̌̌
ˇ
Z 1

˛.s/

'?
0
d˛

ˇ̌̌
ˇ �

Z 1

˛0

j'?0jd˛ � �

2
:

We can now continue our estimate (D.4) and conclude that


.X"jŒ0;�ı�; '
?/ � 2 Q� _

�
ı C �

2

�
� 2 Q� _

�
Q�C �

2

�
� �

4
_

�
�

8
C �

2

�
< �

by (D.2), proving Step 1. �

Step 2. lim.T;ı/!.T ?;0C/ 
. ı;T ; '
?/ D 0.

PROOF: It suffices to show that any sequence . k/k2N WD . ık ;Tk
/k2N, in

which ık ! 0C and Tk ! T ?, has a subsequence . kl
/l2N such that

lim
l!1


. kl
; '?/ D 0:
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To show this, let . k/ be such a sequence, and let us denote by 'k the repa-

rametrization of  k (i.e., 	.'k/ D 	. k/) such that j'0
k
.˛/j 
 cstk for almost

every ˛ 2 Œ0; 1�. The curve 	.'k/ starts from x1, and by the assumption of Propo-

sition 2.3 it has bounded length in the limit,

M WD lim sup
k!1

Z 1

0

j'0
kjd˛ � lim sup

.T;ı/!.T ?;0C/

Z T

0

j P ı;T jdt < 1;

so 'k is in the compact set Cfx1g;2M defined in Lemma 2.5(i) if k is sufficiently

large. Thus there exists a subsequence .'kl
/l2N that converges uniformly to some

limit Q'? 2 Cfx1g;2M . In particular, we have


. kl
; Q'?/ D 
.'kl

; Q'?/ � j'kl
� Q'?jŒ0;1� ! 0 as l ! 1:

In the remaining part of the proof we will show that 	. Q'?/ D 	.'?/ so that


. kl
; '?/ D 
. kl

; Q'?/ ! 0 as l ! 1. By lower semicontinuity of OS we have

(D.5) OS. Q'?/ � lim inf
l!1

OS.'kl
/ D lim inf

l!1
inf
T>0

inf
 2 NC'kl

.0;T /

ST . /

� lim inf
l!1

STkl
. kl

/ D lim inf
l!1

inf
 2 NCx1

.0;Tkl
/

�ıkl
. /�Tkl

STkl
. /:

We want to show that the right-hand side is less than or equal to OS.'?/. Con-

sider first the case when Tkl
< T ? for all l . Let . QTr ; Q r/r2.0;1/ be the approximat-

ing sequence defined in the proof of Proposition 2.1(i) (only here with r 2 .0;1/),

i.e., such that 8r > 0 W 	. Q r/ D 	.'?/, limr!1 S QTr
. Q r/ D OS.'?/, and

limr!1 QTr D T ?. Using the notation � D �.'?; '?
0
/ and letting �r D � _ 1=r ,

we find that for 8r1; r2 > 0:

j QTr1
� QTr2

j �
Z 1

0

ˇ̌̌
ˇ 1�r1

� 1

�r2

ˇ̌̌
ˇd˛ �

ˇ̌̌
ˇ 1�r1

� 1

�r2

ˇ̌̌
ˇ
Œ0;1�

D
ˇ̌̌
ˇ
�
1

�
^ r1

�
�

�
1

�
^ r2

�ˇ̌̌
ˇ
Œ0;1�

� jr1 � r2j:

As a result, the function r 7! QTr is continuous, and we can choose a sequence .rl/

such that QTrl
D Tkl

for 8l 2 N. Now since Q rl
. QTrl

/ D '?.1/ D x2 2 Bık
.x2/,

we can complete estimate (D.5) as follows:

(D.6) OS. Q'?/ � lim inf
l!1

inf
 2 NCx1

.0;Tkl
/

�ıkl
. /�Tkl

STkl
. / � lim inf

l!1
STkl

. Q rl
/

D lim inf
l!1

S QTrl

. Q rl
/ D OS.'?/ D inf

'2 NCx2
x1
.0;1/

OS.'/:

If Tkl
� T ? for some l , then we can define the path Q rl

by first following the

path  ? D Q rD1 in time T ? (which in this case is well-defined since T ? < 1)
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and then staying at x2 for the remaining time 4l WD Tkl
� T ?. As l ! 1, we

have 4l ! 0, and thus the additional action on the second part of the path goes

to 0 as well, so that S QTrl

. Q rl
/ ! OS.'?/ still, and (D.6) also remains valid in this

case.

Since by assumption of Proposition 2.3 we have

Q'?.1/ D lim
l!1

'kl
.1/ D lim

l!1
 ıkl

;Tkl
.Tkl

/ D x2;

Q'? is in NC x2
x1
.0; 1/, and so from (D.6) we can conclude that

OS. Q'?/ D inf
'2 NCx2

x1
.0;1/

OS.'/ D OS.'?/:

The uniqueness of the minimizing curve '? now implies that 	. Q'?/ D 	.'?/,

terminating the proof. �

Step 3. For all T; ı > 0 the set of paths f 2 NCx1
.0; T / j �ı. / � T g is

regular with respect to ST .

PROOF: First, note that the set f�ı � T g WD f 2 NCx1
.0; T / j �ı. / � T g is

closed since its complement f�ı � T gc D f�ı > T g D f j 	. /\Bı.x2/ D ¿g
is open. Since closing the latter set amounts to replacing the closed ball Bı.x2/

by the corresponding open ball, we find that the interior of the set f�ı � T g is

f�ı � T g0 D f�0
ı

� T g, where �0
ı

denotes the infimum of all times at which the

path is inside the open ball with radius ı around x2. Thus we must show

inf
 2 NCx1

.0;T /

�ı. /�T
ST . / � inf

 2 NCx1
.0;T /

�0
ı
. /�T

ST . /

since the relation � is clear. We will show that for every  2 f�ı � T g we can

construct functions Q r 2 f�0
ı

� T g, r > 0, such that jST . Q r/ � ST . /j becomes

arbitrarily small as r ! 0C. The function Q r will be constructed in such a way

that it traverses 	. / at a slightly higher speed than  , and we will use the time

we saved to make a small excursion from the point where  touches the outside of

the ball Bı.x2/ into its interior and back, so that in fact �0
ı
. Q / � T .

In order to show that the action ST . Q r/ differs only slightly from ST . /, it

turns out that one can speed up the path  only at places where j P j is bounded

away from 1. To do so, we pick some M > ess inf0�t�T j P .t/j, define for every

r 2 .0; 1
2
/ the time rescaling Gr via its inverse by

G�1
r .t/ WD

Z t

0

.1 � r1j P j�M /d�; G�1
r W Œ0; T � ! Œ0; Tr �;

Tr WD G�1
r .T / < T;
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where 1j P j�M denotes the indicator function on the set ft 2 Œ0; T � W j P .t/j � M g,

and set  r.s/ WD  .Gr.s//. Using

G0
r.s/ D 1

.G�1
r /0.Gr.s//

D �
1 � r1j P j�M .Gr.s//

	�1
;

we find that

STr
. r/ D

Z Tr

0

L. r.s/; P r.s//ds

D
Z Tr

0

L

�
 .Gr.s//;

P .Gr.s//
1 � r1j P j�M .Gr.s//

�
ds

D
Z T

0

L

�
 .t/;

P .t/
1 � r1j P j�M .t/

��
1 � r1j P j�M .t/

	
dt:

As r ! 0C, the integrand in the last integral converges pointwise toL. .t/; P .t//.
To show that one can exchange limit and integral, observe that on ft 2 Œ0; T � W
j P .t/j > M g the integrand equals L. ; P / before taking the limit, and that on

ft 2 Œ0; T � W j P .t/j � M g we can use the bounded convergence theorem since

(i) 1
2

� 1 � r1j P j�M � 1, (ii)  .t/ traverses the compact set 	. /, and (iii)

L.x; y/ is continuous. Thus limr!0C STr
. r/ D ST . /.

Now let �r WD 1
2
.T � Tr/ D r

2

R T
0 1j P j�M dt > 0, and pick a point xı 2

	. / \ @Bı.x2/ at which  touches the boundary of Bı.x2/. Consider

�C
�r
.t/ WD xı C t .x2 � xı/ and ��

�r
.t/ WD xı C .�r � t /.x2 � xı/

(for 0 � t � �r ): �
C
�r

starts at xı and enters the ball Bı.x2/ in the direction of its

center x2; ��
�r

then goes back the opposite way. The corresponding actions

S�r
.�C
�r
/ D

Z �r

0

L.xı C t .x2 � xı/; x2 � xı/dt;

S�r
.��
�r
/ D

Z �r

0

L.xı C .�r � t /.x2 � xı/; xı � x2/dt

D
Z �r

0

L.xı C s.x2 � xı/; xı � x2/ds

converge to 0 as r ! 0C (and thus �r ! 0C). We can now define Q r by piecing

 r , �
C
�r

, and ��
�r

together in such a way that Q r moves from x1 to xı along  r ,

briefly enters and exits the interior of Bı.x2/ via �C
�r

and ��
�r

, and continues along

the remaining part of r . The total time for this path is TrC2�r D TrC.T �Tr/ D
T , and the total action is

ST . Q r/ D STr
. r/C S�r

.�C
�r
/C S�r

.��
�r
/ ! ST . /C 0C 0

as r ! 0. Since �0
ı
. Q r/ � T for every r 2 .0; 1

2
/, this completes the proof. �
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Appendix E: Proof of Proposition 3.1

In the following lemma we will compute the derivatives of O#.x; y/ and �.x; y/,

which we will need later in the proof of Proposition 3.1 to compute the Euler-

Lagrange equation for OS .

LEMMA E.1 (Derivatives of O# and �) For all x 2 D and y 2 Rn n f0g we have

O#x.x; y/ D �H�1
��

�
PyH�x C ��1 y ˝Hx

hy;H�1
��
yi

�
;(E.1)

O#y.x; y/ D �H�1
�� Py ;(E.2)

O#y.x; y/T y D 0;(E.3)

�x.x; y/ D �Hx�H
�1
��
y �Hx

�hy;H�1
��
yi ;(E.4)

�y.x; y/ D � �H�1
��
y

hy;H�1
��
yi ;(E.5)

where we abbreviate

(E.6) Py WD I � y ˝H�1
��
y

hy;H�1
��
yi ;

and where Hx , H�x , Hx� , and H�� are evaluated at the point .x; O#.x; y//.
PROOF: All formulae can be obtained by implicit differentiation of equations

(2.7), where � D �.x; y/ and O# D O#.x; y/.
First we differentiateH.x; O#.x; y// D 0 both with respect to x and y to obtain

(E.7) HT
x CHT

�
O#x D HT

x C �yT O#x D 0; HT
�

O#y D �yT O#y D 0:

From the second equation we see that (E.3) holds since � D 0 only if x is a critical

point and since O#y is continuous.

Differentiating the second equation in (2.7),H� .x; O#.x; y// D �y, with respect

to x and y, we obtain

(E.8) H�x CH�� O#x D y�Tx ; H�� O#y D �I C y�Ty :

Left-multiplying both equations by �yTH�1
��

and using equations (E.7), we con-

clude

�yTH�1
�� H�x �HT

x D �hy;H�1
�� yi�Tx ;

0 D �2yTH�1
�� C �hy;H�1

�� yi�Ty ;
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which we can solve for �Tx and �Ty :

(E.9) �Tx D �yTH�1
��
H�x �HT

x

�hy;H�1
��
yi ; �Ty D � �yTH�1

��

hy;H�1
��
yi ;

proving (E.4) and (E.5). We can now solve equations (E.8) for O#x and O#y and plug

in equations (E.9) to obtain

O#x D H�1
�� .y�

T
x �H�x/

D H�1
��

�
�yyTH�1

��
H�x � yHT

x

�hy;H�1
��
yi �H�x

�

D �H�1
��

�
PyH�x C ��1 yHT

x

hy;H�1
��
yi

�
;

O#y D H�1
�� .�I C y�Ty /

D H�1
�� �

�
I � yyTH�1

��

hy;H�1
��
yi

�
D �H�1

�� Py ;

where

Py D I � yyTH�1
��

hy;H�1
��
yi D I � y ˝H�1

��
y

hy;H�1
��
yi :

This proves (E.1) and (E.2) and we are done. �

PROOF OF PROPOSITION 3.1: Starting from the representation (2.5) of the ac-

tion OS , we obtain

D OS.'/ D O#Tx '0 � @˛. O# C O#Ty '0/
D O#Tx '0 � O#x'0 � O#y'00 � @˛. O#Ty '0/
D . O#Tx � O#x/'0 � O#y'00 � @˛. O#Ty '0/:(E.10)

(E.3) in Lemma E.1 says that the last term in (E.10) vanishes. We can then apply

formulae (E.1) and (E.2) for the derivatives of O# to obtain

�H��D OS.'/ D �H�� .. O#Tx � O#x/'0 � O#y'00/

D
�
P'0�H�x C '0HT

x

h'0;H�1
��
'0i

� �H��HT
�xP

T
'0H

�1
�� � H��Hx'

0TH�1
��

h'0;H�1
��
'0i

�
'0 � �2P'0'00
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D
�
P'0�H�x C '0HT

x

h'0;H�1
��
'0i

�
'0 � 0 �H��Hx � �2P'0'00

D P'0.��2'00 C �H�x'
0 �H��Hx/:

The relation � D hH� ; '0i=j'0j2 follows directly from (2.7).

To show the second representation of this term, we use (E.4) and (E.5) to com-

pute

��0'0 D �.@˛�.'; '
0//'0

D .h��x; '0i C h��y ; '00i/'0

D h�Hx�H�1
��
'0 �Hx; '0i � h�2H�1

��
'0; '00i

h'0;H�1
��
'0i '0

D h�H�x'0 �H��Hx � �2'00;H�1
��
'0i

h'0;H�1
��
'0i '0

D '0 ˝H�1
��
'0

h'0;H�1
��
'0i .��

2'00 C �H�x'
0 �H��Hx/

D .I � P'0/.��2'00 C �H�x'
0 �H��Hx/: �

Appendix F: Update Formula for the Inner Loop

COMPUTING STEP 2: Given a vector O#p and

h D h. O#p/; h� D h� . O#p/; h�� D h�� . O#p/;
we must find �0, A, and c such that the quadratic function

f .�/ WD 1

2
h� � �0; A.� � �0/i C c

fulfills

(F.1) f . O#p/ D h; f� . O#p/ D h� ; f�� . O#p/ D h�� :

Clearly, the last equation in (F.1) implies A D h�� . From the second equation in

(F.1) we obtain

A. O#p � �0/ D h� , O#p � �0 D A�1h� D h�1
�� h� :
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Finally, the first equation in (F.1) tells us that

h D 1

2
h O#p � �0; A. O#p � �0/i C c

D 1

2
hA�1h� ; h� i C c

, c D h � 1

2
hh� ; A�1h� i D h � 1

2
hh� ; h�1

�� h� i:

Summarizing, f is given by

f .�/ D 1

2
h� � �0; h�� .� � �0/i C

�
h � 1

2
hh� ; h�1

�� h� i

;

where �0 D O#p �h�1
��
h� . Thus, if f .�0/ D h� 1

2
hh� ; h�1

��
h� i � 0, then we return

O#pC1 D �0.

COMPUTING STEP 3: Suppose now that f .�0/ < 0 (i.e., the region ff < 0g is

nonempty), and let some direction '0 be given. We must find the point O#pC1 such

that

(F.2) f . O#pC1/ D 0 and f� . O#pC1/ D �'0 for some � � 0:

The second equation in (F.2) is equivalent to

h�� . O#pC1 � �0/ D �'0 , O#pC1 D �0 C �h�1
�� '

0:

To obtain �, we then use the first equation in (F.2):

0 D f . O#pC1/

D 1

2
h O#pC1 � �0; h�� . O#pC1 � �0/i C

�
h � 1

2
hh� ; h�1

�� h� i


D 1

2
�2hh�1

�� '
0; h��h�1

�� '
0i C

�
h � 1

2
hh� ; h�1

�� h� i


) � D C
�hh� ; h�1

��
h� i � 2h

h'0; h�1
��
'0i

�1=2
since we are interested in the nonnegative solution �. The point we are looking for

is thus

O#pC1 D �0 C
�hh� ; h�1

��
h� i � 2h

h'0; h�1
��
'0i

�1=2
C
h�1
�� '

0

D O#p C h�1
�� .

Q�. O#p/'0 � h� / with Q�. O#p/ WD
�hh� ; h�1

��
h� i � 2h

h'0; h�1
��
'0i

�1=2
C
:
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Note Added in Proof

In the proof stage, the authors noted that the following improvements could be

made.

Relaxed Smoothness Assumptions
Assumption 2 requires that H.x; �/ be twice differentiable in both variables,

but in fact it is enough to require that it be only once differentiable in x and twice

in � . This is significant since the smoothness ofH in x is given by the smoothness

of the drift vector field b.x/ and the diffusion matrix a.x/ (in the SDE case), or

of the reaction rate functions �j .x/ (in the Markov chain case). Thus, we modify

Assumption 2 as follows:

ASSUMPTION 2 (MODIFIED) The derivatives H� , Hx , H�x D .Hx� /
T , and H��

exist and are continuous.

To achieve this improvement, all that has to be changed is the proof of Lem-

ma 2.8, which is the only place that required the existence of Hxx . This is done

below.

Passing Critical Points in Infinite Time
Interestingly, relaxing the smoothness assumptions sheds more light onto the

question of what is necessary for a point to be passed in infinite time: IfHxx.xc; 0/

does not exist at some critical point xc , then this point may be passed in finite time.

An example where this happens is given in Section 5, when U.x/ � cst � jx�xcjˇ
close to xc for some 1 < ˇ < 2. We therefore introduce the following property

that is sufficient to guarantee that a critical point is passed in infinite time, even

under the reduced smoothness assumptions:

DEFINITION A critical point xc 2 D is said to fulfill property (P) if H.x; 0/ D
O.jx � xcj2/ as x ! xc .

Property (P) is a rather weak requirement: Looking at Assumption 1 and re-

calling that H.xc; 0/ D 0, we see that this property is automatically fulfilled if

Hxx.xc; 0/ exists (which explains why we did not need to require it previously). In

particular, it is fulfilled ifH.x; 0/ 
 0 for all x 2 D, as it is the case for the Hamil-

tonians of large deviations theory treated in this paper. Now while Lemma 2.2

remains unchanged (i.e., critical points are always passed at zero speed, even un-

der the reduced smoothness assumptions), Lemma 2.8 is modified: To show that a

critical point is passed in infinite time, we need to require property (P).

LEMMA 2.8 (MODIFIED)

(i) Let xc be a critical point with property (P). Then there exists a C > 0 such
that for all x close enough to xc and all y ¤ 0, we have �.x; y/ � C jx � xcj=jyj.
In particular, for any y ¤ 0 the function � is Lipschitz-continuous at the point
.xc ; y/.
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(ii) Suppose that ' is parametrized such that j'0j 
 cst a.e., and let ˛c 2
Œ0; 1� be such that '.˛c/ is a critical point with property (P). Then the function
˛ 7! 1=�.'; '0/ is not locally integrable at ˛c . In particular, if the curve 	.'/
contains a critical point with property (P), then T ? D R 1

0 1=�.'; '
0/ d˛ D 1:

Let us summarize: For SDEs and continuous-time Markov chains, critical

points are those points x with vanishing drift, H� .x; 0/ D 0, and property (P)

is always fulfilled; therefore points with vanishing drift are always passed at zero

speed (Lemma 2.2(i)) and in infinite time (Lemma 2.8(ii)). This is case 3 below.

For other Hamiltonians (see, e.g., Section 5), points with H� .x; 0/ D 0 fall into

one of the following three categories:

Case 1. The point fulfills H.x; 0/ < 0, and so x is not a critical point. By

Lemma 2.2 we thus have �.x; y/ > 0 for any direction y ¤ 0, and therefore the

point x is passed at positive speed (and consequently in finite time).

Case 2. We have H.x; 0/ D 0, but property (P) is not fulfilled. In this case x

is a critical point, so again by Lemma 2.2(i) we have �.x; y/ D 0 for any y ¤ 0,

and the point is passed at zero speed. But since property (P) is not fulfilled, it may

or may not take infinite time to pass the point.

The latter may also depend on the direction from which the point is approached.

To decide, one would have to check whether 1=�.'; '0/ is locally integrable at

that point; in the example in Section 5, this can be done by computing an explicit

formula for �.x; y/.

Case 3. We have H.x; 0/ D 0, and property (P) is fulfilled. Then the point is

critical, �.x; y/ D 0 for all y ¤ 0, and the point is passed at zero speed and (by

Lemma 2.8(ii)) in infinite time.

PROOF OF LEMMA 2.8 (MODIFIED):

(i) Let K 	 D be a compact ball around xc and C1 > 0 such that for all

x 2 K we have H.x; 0/ � �C1jx � xcj2. We abbreviate O# D O#.x; y/, do two

Taylor expansions in x and � , and use the defining property of O# , Assumptions

1 and 3, and Cauchy’s inequality to find that for some constants C2; C3 > 0 and

some vector . Qx; Q�/ between .xc; 0/ and .x; O#/ we have

0 D H.x; O#/

D H.x; 0/C hH� .x; 0/; O#i C 1

2
h O#;H�� .x; Q�/ O#i

� �C1jx � xcj2 C hH� .xc; 0/„ ƒ‚ …
D0

; O#i C hH�x. Qx; 0/.x � xc/; O#i C 1

2
m.x/j O#j2
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� �C2.jx � xcj2 C jx � xcj j O#j/C 1

2
mK j O#j2

� �C2
��
1C C2

mK

�
jx � xcj2 C mK

4C2
j O#j2

�
C 1

2
mK j O#j2

D �C2
�
1C C2

mK

�
jx � xcj2 C 1

4
mK j O#j2

) j O#j2 � C3jx � xcj2 ) j O#j �
p
C3jx � xcj:

In particular, this shows that j O#j stays bounded, so that the termsH�x andH��
below are bounded as well. We conclude that (for some new vector . Qx; Q�/ between

.xc ; 0/ and .x; O#/) we have

�.x; y/jyj D jH� .x; O#/j

D jH� .xc ; 0/„ ƒ‚ …
D0

CH�x. Qx; Q�/.x � xc/CH�� . Qx; Q�/ O#j

� C4.jx � xcj C j O#j/

� C4.1C
p
C3/jx � xcj DW C jx � xcj:

(ii) This is now a direct consequence of (i): Using that

j'.˛/ � '.˛c/j D
ˇ̌̌
ˇ
Z ˛

˛c

'0.s/ds
ˇ̌̌
ˇ � j'0j j˛ � ˛cj;

we conclude that for almost every ˛ close to ˛c , we have

�.'.˛/; '0.˛// � C
j'.˛/ � '.˛c/j

j'0.˛/j � C j˛ � ˛cj:

Thus we have for arbitrarily small " > 0 thatZ
j˛�˛c j<"

d˛

�.'; '0/ � 1

C

Z
j˛�˛c j<"

d˛

j˛ � ˛cj D 1:

�
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