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We developed a theoretical framework to prove the existence and
quantify the Waddington landscape as well as chreode-biological
paths for development and differentiation. The cells can have
states with the higher probability ones giving the different cell
types. Different cell types correspond to different basins of attrac-
tions of the probability landscape. We study how the cells develop
from undifferentiated cells to differentiated cells from landscape
perspectives. We quantified the Waddington landscape through
construction of underlying probability landscape for cell develop-
ment. We show the developmental process proceeds as moving
from undifferentiated to the differentiated basins of attractions.
The barrier height of the basins of attractions correlates with the
escape time that determines the stability of cell types. We show
that the developmental process can be quantitatively described
and uncovered by the biological paths on the quantified Wadding-
ton landscape from undifferentiated to the differentiated cells.
We found the dynamics of the developmental process is controlled
by a combination of the gradient and curl force on the landscape.
The biological paths often do not follow the steepest descent path
on the landscape. The landscape framework also quantifies the
possibility of reverse differentiation process such as cell reprogram-
ming from differentiated cells back to the original stem cell. We
show that the biological path of reverse differentiation is irrever-
sible and different from the one for differentiation process. We
found that the developmental process described by the underlying
landscape and the associated biological paths is relatively stable
and robust against the influences of environmental perturbations.

Cells are dynamical entities: They change their phenotype dur-
ing development in an almost discontinuous manner, giving

rise to discrete developmental stages (such progenitor and differ-
entiated states) as well as discrete lineages and terminally differ-
entiated types. This pattern of cell dynamics during development
was already noted by C. Waddington in the 1940s, leading to his
by now famous metaphor of the epigenetic landscape (1) (see
Fig. 1) In this iconic picture a marble rolls down a surface (land-
scape), staying in valleys and seeking the lowest point. At water-
sheds, the valleys branch so that the marble takes one of two
available paths. In Waddington’s picture, the ball represents a
developing cell in an embryo and the landscape epitomizes some
more abstract set of constraints, thus clearly heralding the notions
of stability and instability in the modern sense of dynamics (1).
Indeed, it has recently become clear thatWaddington’s epigenetic
landscape in principle represents the dynamics of a system of
gene regulatory interactions that impose constraints to and drive
cell development (2, 3), giving a metaphor for the qualitative
understanding of developmental processes of cells. However, a
detailed quantitative examination of how the dynamics of a gene
regulatory circuit that governs binary cell fate decisions produces
a generalized potential landscape that may recapitulate the epi-
genetic landscape has not been presented. In other words, it is not
very clear on exactly what the Waddington landscape represents,
how the qualitative picture of landscape can be quantified, and
how the connection to the experiments can be made.

Here we develop a theoretical framework to show the exis-
tence of such a landscape as the formal representation of the

dynamics of a gene circuit and quantify its detailed topography.
We define Waddington’s chreodes—the biological paths (or tra-
jectories) of development. Herein, the entity that changes, and
hence is embodied by the marble, is the gene expression pattern
of a cell that reflects the network state of the genes in a particular
network. The state SðtÞ ¼ ðx1;x2;xi::xNÞ thus reflects the vector
consisting of the expression values (cellular concentration and
activity of the products of gene i), x1, x2, in a gene regulatory
network of N genes at a given time t. Because of the regulatory
interactions not all states can be realized with equal ease and in a
system with fluctuations, probabilities can be assigned to the
states S. They can have a higher or lower probability of appear-
ance that translates inversely into the elevation (potential) of the
landscape (4, 5). The states with locally highest probability (low-
est potential) represent attractor states of the gene regulatory
network as a dynamical system, surrounded by their basins of
attraction. Attractor states have been proposed to represent cell
types (6).

The landscape metaphor has recently seen renewed interest
with the arrival of cell reprogramming (5, 7, 8). If cell types
are attractors, then reprogramming represents the transition
between attractors. Thus the height of hills between two valleys,
or the barrier heights between the attractors, can be correlated to
the escape time from the basins, offering a quantitative measure
for the nonlocal relative stability of the attractors or cell types.
The landscape topography thus has a quantitative meaning.

Here we construct such a probability landscape quantitatively
based on the underlying gene regulatory circuit for the biological
process of a binary cell fate decision of a multipotent progenitor

Fig. 1. The original artistical picture of Waddington epigenetic landscape
(1).
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cell. Fate decision and subsequent lineage commitment to a
particular fate is described by a path in this landscape from
the attractor of the progenitor cell to that of either one of two
differentiated cell types. These paths can be identified and quan-
tified through counting the weights of all the possible paths and
selecting the optimal paths with largest weights. We will do so
with a path integral approach (9–11). The advantage of the path
integral approach is that it addresses the fundamental issues of
biological paths directly. Furthermore, the weights associated
with the biological paths can also be determined. By varying the
configurational states, we can also explore the corresponding
probability landscape topography and investigate the association
of escape time with the barrier height for global stability analysis
of the cell types. Thus, landscape, paths, kinetics, and stability
that are all of practical interest for determining reprogramming
strategies, can be evaluated in one model.

We will study an important example of cell developmental
circuit (Fig. 2) (12) composed of a pair of self-activating and
mutually inhibiting genes as a model, a gene regulatory motif
that has been found in various tissues where a pluri/multipotent
stem cells has to undergo a binary cell fate decision (8, 12). For
instance, in the multipotent common myeloic progenitor cell
(CMP), which faces the binary cell fate decision between the
myeloid and the erythroid fate, the fate determining transcription
factors (TF), PU.1, and GATA1, which promote the myeloid or
the erythroid fates, respectively, form such a circuit. The relative
expression levels x1 (PU.1) and x2 (GATA1) of these two recipro-
cal TFs can tilt the decision toward either lineage (7, 12).

We quantitatively constructed the probability landscape for the
GATA1-PU.1 type of circuit, showing its similarity and difference
with Waddington’s epigenetic landscape, and quantified the
developmental paths. We show that the cell development process
proceeds from the basin of attraction of the undifferentiated state
to that of the differentiated attractors. The heights of the barriers
separating the basins of attractions correlate with the escape time
that reflect the stability of cell types. Specifically, we demonstrate
that the developmental process can be quantitatively described
by the biological path on a quantified Waddington landscape
and is governed by a combination of a gradient and a curl force
on the landscape. The paths of differentiation do not follow the
steepest descent path on the landscape (gradient) and the paths
of the reverse differentiation process is different from the ones of
the differentiation process indicating irreversibility.

Results and Discussions
Developmental Network and Cell Fate Decision Module. A gene reg-
ulatory circuit that governs binary cell fate decision module is
shown in Fig. 2A. It consists of mutual regulation of two opposing
fate determining master TF X1 and X2. The module has been
shown to control developmental cell fate decision and commit-
ment in several instances of multipotent stem or progenitor cells

that faces a binary fate decision, (i.e., GATA1 and PU.1) (8, 12).
X1 and X2 are coexpressed in the multipotent undecided cell and
committed to either one of the two alternative lineages is asso-
ciated with either one factor dominating over the others, leads to
expression patterns in a mutually exclusive manner (13).
Importantly, in many cases the genes X1 and X2 also self-activate
(positive autoregulate) themselves (Fig. 2A). The circuit can be
described by the following minimal system equations (12):
dx1
dt ¼

a1xn1
Snþxn

1

þ b1Sn

Snþxn
2

− k1x1 ¼ F1ðx1;x2Þ and dx2
dt ¼

a2xn2
Snþxn

2

þ b2Sn

Snþxn
1

−
k2x2 ¼ F2ðx1;x2Þ. In vector form, dx∕dt ¼ FðxÞ ¼ ½F1ðx1;x2Þ;
F2ðx1;x2Þ�. x1 and x2 represent the cellular expression or activation
levels of the two lineage determining transcription factors X1 and
X2, and a1, a2, b1, b2, k1, k2 are positive parameters that denote
the strength of the following interactions or processes: The first
expression represents, in the common formalization (12), a self-
activation (of strength a1, a2) that obeys a sigmoidal transfer func-
tion, the second term represents mutual inhibition, given basal
expression, (of strength b1, b2); and the last term is the first-order
inactivation (degradation) of either factor with the rate k1, k2.
For our purpose it suffice to consider the symmetric situation
a ¼ a1 ¼ a2; b ¼ b1 ¼ b2; k ¼ k1 ¼ k2. The mutual regulations
and self-activations are often separated and do not have to be
simultaneously changed in a synchronized way in the experi-
ments, therefore the underlying interactions described above
follow an OR rather than AND logic. (Details in SI Text).

In this example, the self-activation strengths change due to the
regulations on the transcription factors by other regulators such
as Klf4 (14) during the developmental process. As we will see that
parameter a of self-activation strength gives a sense of measure
and direction of the development.

Landscape at a Given Stage of Development: Cross-Section of Wad-
dington Landscape. Based on the above dynamics of the cell fate
decision, we quantitatively mapped out landscape of the develop-
ment at different stages in Fig. 2B. In the resulting landscape re-
presentation, the vertical axis represents the potential landscape
U (inversely related to the probability landscape P: U ¼ − lnP)
(5). The horizontal axis represents the expression level of either
x1 or x2 (due to the symmetry between x1 and x2 as well as for easy
visualization we only show one of them).

We see that the decision making circuit often has three basins
of attractions. The center attractor C represents the undifferen-
tiated undecided multipotent stem cell state with balanced
expression of the two opposing fate determining transcription
factors (13). The side attractors A and B represent the the dif-
ferentiated states with mutually excluding expressions of x1 and
x2 (12). In this view the three attractors become evident as
potential wells.

When the self-activation is strong (characterized by large value
of a), the central basin of attraction is deep and therefore the cell

A

C

B

Fig. 2. (A) The illustration of cell fate decision module.
(B) The landscape of the development at different stages
or different paramenters. (C) Escape time under certain
fluctuations versus the parameter a and the barrier height
from the central undifferentiated state to differentiated
state versus the parameter a. (a ¼ a1 ¼ a2, b1 ¼ b2 ¼ 1,
k1 ¼ k2 ¼ 1, and S ¼ 0.5, n ¼ 4).
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is more preferred to stay there, corresponding to undifferentiated
conditions. As self-activation is weaker, the basins of attractions
on the side become deeper, thus the differentiated states are pre-
ferred. At the extreme value of a where self-activation is weak,
the central basins of attraction becomes hilltop and therefore
unstable, only the differentiated states are preferred. Thus desta-
bilization of the central progenitor attractor as the self-activation
parameter a is gradually decreased (Fig. 2B) (12) represents one
possible mechanism for the development undifferentiated cell C
committed to either differentiated cell A or B.

Another possible way to formalize the fate commitment is to
assume there is stochastic fluctuation-driven transition from the
central undifferentiated attractor into either of the side differen-
tiated attractors. The fluctuations can be intrinsic from small
copy numbers ofmolecules or extrinsic from the environments. The
strength of fluctuations is quantified by diffusion coefficient in
method section. Experimental evidences support the role of both
a destabilization of the progenitor undifferentiated attractor (12),
aswell as gene expression fluctuation-induced state transitions (15).

Fig. 2C shows the barrier height as a measure of the landscape
topography) for the transition from the central undifferentiated
state to the differentiated state (green) and the escape time (red)
from the former state under certain fluctuations versus the para-
meter a mimicking the differentiation process. We can see that
the escape time correlates with the barrier height. The barrier
height decreases (increases) as parameter a decreases (increases)
during development, and the escape time becomes faster (slower).
This guarantees the stability of the developmental process to the
differentiated states (when parameter a goes down) or stability of
undifferentiated state (when parameter a goes up) (5).

As one can see, the chance for differentiation at initial stage of
development when a is large is nonzero but small (long escape
time). As development proceeds (a decreases) the chance for
differentiation becomes larger and reaches the largest when
the undifferentiated state becomes unstable. We see both induc-
tion for instability of undifferentiated state through the change of
self-activation and fluctuations in action for the developmental
processes in our picture.

Pathways at a Given Stage of Development. From our path integral
approach, we can uncover quantitatively the developmental paths
from the undifferentiated state to the differentiated state at
certain stage of development (at certain value of self-activation
parameter a). Fig. 3 shows the transcription factor expression
level X1∕X2 state space as two dimensional contour and three
dimensional landscape and the paths from theoretical reversed
multipotent undifferentiated state to differentiated state for de-
velopment (and the paths from differentiated state to undiffer-
entiate state) at certain developmental stage characterized by
self-activation strength a.

Fig. 3 A and B show that effective developmental paths (from
central basin of the undifferentiated state to side basin of the
differentiated state and vice versa) and the undifferentiated ones
do not follow the gradient paths, that is the path determined by
following the steepest directions of U. As we pointed out earlier,
(for details see method and supporting information), the dy-
namics or paths of such developmental circuit is determined by
both the force from the gradient of the landscape and an addi-
tional term representing the curl flux (4). The additional dynami-
cal driving force emanating from the curl flux causes the paths to
deviate from the naively expected steepest descent path computed
from the gradient of U. This quantitative picture of paths is
different from what would follow from Waddington’s picture
where the developmental paths, symbolized by the rolling down
of a marble, follow the gradient of the underlying landscape.
By contrast, the real developmental paths do not simply go down
the gradient but also are driven by a curl force leading to spiraling
movements that can be quantitatively tested in experiments.

Furthermore, the forward developmental paths and backward
retrodifferentiation paths are not identical. In other words, the
developmental pathways are irreversible. The differentiation and
the reverse process of retrodifferentiation follow different routes.
This is unexpected from the original Waddington picture. The
irreversibility of the developmental pathways is very fundamental
and provides a unique prediction to test for developmental biology.

In Fig. 4 A and B, we show how fluctuations (defined in the
method section as the strength of the autocorrelation function
of protein concentrations quantitatively measured by the diffu-
sion coefficient D) influence the (apparent) population barrier
heights and the escape time for development. We see when
the fluctuations increase, the population barrier height decreases,
the escape time is faster. Nonzero but small fluctuations can help
to accelerate the developmental processes. Large fluctuations
can be damaging because the resulting population landscape be-
comes flat and therefore no essential preference or distinction
among differentiated and undifferentiated state (equal probabil-
ity) as well as other states. Therefore the landscape for develop-
ment is stable against certain fluctuations.

In Fig. 4 C and D, we show how the fluctuations influence the
paths. We can see that the consistency from the original paths
for development decreases as fluctuations increase. For small
fluctuations, the paths do not deviate much from the original
ones. When fluctuations further increase, the barrier decreases,
increasing the chances for different paths to go from undifferen-
tiated state to the differentiated state. Therefore, the paths
deviate more from the original paths when the fluctuations are
larger. The paths for development is stable and robust against
certain fluctuations.

Quantifying the Waddington Landscape and Paths of Development.
From experimental evidences (5, 12), both mechanisms are in
action for development: the instructive change of landscape via

Fig. 3. (A) Two dimensional illustration of dominant kinetic path and flux
between three basins of attraction in gene network. (B) Three dimensional
illustration of dominant kinetic path and flux between three basins of attrac-
tion in gene network.
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decrease of a and the stochastic state transitions in cell differen-
tiation. To cover the whole picture of the developmental process,
one needs to explore the dynamics of different developmental
stages (from the stage where undifferentiated state is preferred
to the stage where the differentiated states are preferred).
Because in our model the different stages of development are
characterized by a single parameter, the self-regulation strengths.
We use that as our reaction coordinate for development, and the
other coordinate (cross-section coordinate connecting undiffer-
entiated to differentiated state, as in Fig. 3) in which the relation-
ship between the undifferentiated state to differentiated state can
be displayed and the expression level changes of the transcription
factors can be monitored. The third and vertical axis is the height
of the potential landscape (see Fig. 5).

We have discussed the dynamics at certain stage of develop-
ment in the previous section. The full landscape and dynamical
paths for the development requires the specification of the
dynamics of self-regulation parameter a. We assume the self-ac-
tivation strengths decrease in the developmental process due to
the influences of the other regulators in a self-degraded fashion.
Then the dynamical equations for the developmental process is
controlled by the following equations: dx1

dt ¼
axn

1

Snþxn
1

þ bSn
Snþxn

2

−

k1x1 ¼ F1ðx1;x2Þ; and dx2
dt ¼

axn
2

Snþxn
2

þ bSn
Snþxn

1

− k2x2 ¼ F2ðx1;x2Þ; and
da
dt ¼ −λa. Here λ is the self-degradation rate. We assume self-ac-
tivation strength a representing the developmental process
changes relatively slowly compared to the dynamics of the x1
and x2 (For full time scale dynamics, see discussions in SI Text).
In this way, in each developmental evolution stage, the system has
time to relax to steady state among x1 and x2.

Based on the above developmental network circuit, we quan-
titatively obtain our probability landscape and associated paths
for the developmental processes. This can be seen as the quanti-
fication of the Waddington landscape and associated chreodes.

Fig. 5 shows the developmental landscape and paths. The
developmental reaction coordinate is parameter a. At large a,
the undifferentiated basin of attraction dominates and stable as
shown in the cross-section coordinate X linking side minimum-
central minimum-side minimum representing the gene expres-
sion level. As the developmental process progresses (parameter
a decreases), the undifferentiated state becomes less and less
stable, the differentiated state becomes more and more stable

forming basins of attractions. The qualitative similarities between
our quantified landscape/paths in Fig. 5 and Waddington’s land-
scape/paths in Fig. 1 are obvious. So the basic picture and features
conjectured by Waddington for development and differentiation
do exist and can now be quantified based on the underlying gene
regulatory circuit. The quantitative description of the landscape
and paths now allow for predictions. The Waddington landscape
is no longer a metaphor. It is physical and quantifiable by the un-
derlying probability landscape.

However, we need to point out to the differences between
the quantified Waddington landscape/paths in Fig. 5 and one
suggested by Waddington’s marble shown in Fig. 1. Waddington
describes the developmental processes as the downhill rolling of
the marble. The undifferentiated state is unstable, which triggers
the differentiation process. Whereas it is true that in vivo during
embryonic development the stem cells are not stable (except
when taken into culture and provided with the appropriate fac-

A B

C D

Fig. 4. (A) Barrier heights BH from side (center) to
center (side) basin with solid line (dotted line) versus
fluctuations via diffusion coefficients, D. (B) Loga-
rithm of escape time τ from center (side minimum)
versus barrier height, BH. (C) RRpath from from center
(side) to side (center) versus D. RRpath represents the
ratio of the weights between the path at fluctuation
strength D compared with the low fluctuation
strength D0 ¼ 0.01. (D) RRpath from versus the barrier
height BH.

Fig. 5. The quantified Waddington developmental landscape and pathways
(a ¼ a1 ¼ a2, b1 ¼ b2 ¼ 1, k1 ¼ k2 ¼ 1, S ¼ 0.5, n ¼ 4, and λ ¼ 0.01).
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tors), in the adult the multipotent undifferentiated cells are
stable. In contrast to Waddington, our model allows for temporal
stabilization of the undecided stem or progenitor state. This is not
captured by the original Waddington picture of landscape. Our
quantified landscape covers all stages of development process.
Before or near the very early developmental stage, the undiffer-
entiated state can still be stable but has a small but finite chance
to climb up (induced from fluctuations) from the basin of attrac-
tion for escaping to the differentiated states. This process can
happen even before the undifferentiated state become unstable.

The cell fate decision making process for development is also
different in our picture compared with the Waddington picture.
Whereas Waddington believes that the cell fate decision happens
at the hill top, in our potential landscape we see that even before
climbing up (induced by fluctuations) to the barrier top, the de-
velopmental paths (yellow lines) have already started to depart
or bifurcate from each other. The bifurcation starts from the un-
differentiated state even when it is still stable (down in the basin
of attraction). The random directions of climbing out of the un-
differentiated basin can bias to the choice of the different cell
fates later on. This is the second quantitative difference between
our quantified Waddington landscape (Fig. 5) and the original
Waddington picture (Fig. 1).

We also quantified the dominant course of developmental
paths from undifferentiated states (central basins of attraction)
to the differentiated states (side basins of attractions) shown in
yellow lines (Fig. 5). The developmental paths start from the un-
differentiated states, climb up from the basin to reach the top,
and then gradually bifurcate to two distinct pathways along the
landscape valley to the differentiated states. As shown in Fig. 5,
the developmental paths clearly do not follow gradient paths that
the gravity driven metaphor of Waddingon would predict. This is
the third quantitative deviation of our pathways (Fig. 5) from the
Waddington paths or chreodes (Fig. 1). This is due to the fact that
dynamics is controlled by both the force from landscape gradient
and the force from the curl flux. The curl flux force makes the
developmental path deviate from the steepest descent gradient
path. This provides testable predictions.

Furthermore, there is a forth difference between our develop-
mental paths (Fig. 5) and the Waddington paths (Fig. 1). The
reverse paths in the original Waddington picture is supposed to
be the same as the forward path. In other words, the retrodiffer-
entiation process would follow exactly the same paths as differ-
entiation except with opposite direction. By contrast, in our
quantitative path picture, the paths are no longer reversible. The
developmental paths (yellow lines) are clearly distinct from the
retrodifferentiation paths (shown in red lines). This could be
tested by studying the effective developmental path for instance
in the iPS generation process. The study of paths on a potential
landscape of development suggests a way to reverse the develop-
mental process. We can increase the parameter a by increasing
the self-activation strength of the transcription factors through
the regulations or over expression of both transcription factors
X1 and X2, as of the ongoing efforts in the stem cell research.

One should keep in mind that the quantified Waddington land-
scape topology depend on the structure of the underlying gene
regulatory circuits. Accordingly, genetic mutations that change
the network architecture through the wiring node, resulting rewir-
ing (i.e., coupling strength b), change the resulting potential land-
scape as well as the paths for development. A slight distortion of
the landscape may result in biasing paths to entire distinct, but
independently robust valleys. This would straightforwardly ex-
plain homeotic mutations that Waddington noticed from studying
drosophila. On the other hand, the landscape topology can also
be altered by the links and connectivity strengths even when there
is no missing nodes or genetic mutations. So through the epige-
netics with environmental and local chemical reaction changes
as Waddington envisioned, the network connection strengths can

be altered, resulting the changes of the Waddington landscape
and associated paths for development. Therefore both genetic
changes (mutations on gene nodes) and epigenetic changes (link
strengths between genes) are important and can alter the topol-
ogy of landscape and paths for development.

Our study provides a framework for studying the global nature
of the binary fate decision and commitment of a multipotent cell
into one of two cell fates (8). The two fate options for CMP in
hematopoietic system correspond to the erythroid fate and the
myeloid fate attractor (side minimum). Measurement of PU.1
and GATA1 are confirming the predicted symmetric gene expres-
sion configuration in the progenitor state, which exhibits the
coexpression of both fate determining factors at intermediate
levels (center minimum) (12). Further experimental verifications
and design can be studied by the use of two different GFPs for
PU.1 and GATA1 and collecting the expression data. The joint
histogram will directly give the information of the underlying
landscape, confirming the tristable basins for cell decision mak-
ing. Further experimental exploration can be carried out through
the modulation of the transcription factor Klf4 for controlling the
self-regulation strength and therefore the differentiation/undif-
ferentiation process. The real time trajectories of expressions
can provide us information on dynamics (jumps between basins)
and kinetic paths, linking to the underlying landscape topography
such as basins and barrier heights in between (through joint
histograms). Previous experimental and theoretical studies (12)
explored the natures of the cell fate decision systems using flow
cytometry and dynamical system analysis at certain stages of de-
velopment. In the present work, we focus on the underlying global
landscape, transitions between the attractors and associated
kinetic paths for the dynamical developmental process.

Methods and Models
Potential and Flux Landscape for Development. We first evaluated
the global dynamics of the developmental network motif so that
we can quantitatively assign potentials to the attractor states and
determine their distinct relative depth within the same frame of
reference. The idea of a potential landscape describes how forces
acting in a system relate to its global behavior. They are particu-
larly useful for systems of interacting components, such as
chemical reactions and protein dynamics, motion, and folding
(16). However, these applications deal with equilibrium systems
where the potential function is a priori knowable. For nonequili-
brium systems, such as gene circuits that exhibit stable stationary
states in higher (N > 1) dimensional state space, the intuition of
some form of a potential is still warranted and widely used me-
taphorically (1); however, its functional form is not easy to obtain.
In the gene circuit dx∕dt ¼ FðxÞ, exemplified in Eq. [S2] of SI
Text, the vector FðxÞ is the force that drives the system. However,
FðxÞ cannot in general be written as a gradient of a potential
U: FðxÞ ≠ −gradðUÞ for systems of more than one dimensions.
For stochastic systems, the system is not determined by the local
trajectories but by the probability distributions. The probability
distribution follows master equations for discrete state space
or diffusion equations for continuous case.

In continuous representation, the diffusion equation for prob-
ability evolution can be written in the form of the probability
conservation: ∂P∕∂tþ ∇ · J ¼ 0 where J is the probability flux
J ¼ FP − D∇P. This means flux in and out of the system gives
the increase or decrease of the local probability. Whereas in
nonequilibrium systems at steady-state the divergence of the
probability flux Jss vanishes ∇ · J ¼ 0, the flux itself need not
vanish. When local flux is equal to zero, the detailed balance is
preserved and the system is in equilibrium state. When local flux
is not equal to zero, the detailed balance is broken and the system
is in nonequilibrium state. We found (details in SI Text) (4, 5) that
F ¼ −D · ∇U þ Jss∕Pss. We have decomposed the force driving
the dynamics of the system into two terms, the gradient of the
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potential U where U is linked with the steady-state probability by
U ¼ − lnðPssÞ and curl flux force linking the divergence-free stea-
dy-state (long time limit) probability flux Jss (velocity current)
and the steady-state probability Pss (density). Divergence-free
flux has no place to start or end. It is in this sense that the flux
has a curl nature.

We treated x1 and x2 as independent variables. For the com-
plete model of development, both concentration variables x1 and
x2 characterizing the gene expression and self-regulation variable
a are dynamical (as shown in Fig. 5). For simplicity of the treat-
ment, we assume here the D is a constant independent of concen-
trations. Detailed discussions are in SI Text.

Developmental Pathways Through Path Integral. The dynamics of
the cellular network has often been studied by the chemical
reaction rate equations of various local protein concentration
species. However, both internal statistical fluctuations from finite
number of molecules within the cell and external fluctuations
from cellular environments can be significant (17). Therefore
it is more appropriate to formulate the dynamics of the chemical
rate equations in the noisy fluctuating environments. The dy-
namics therefore can be formulated as: dx

dt ¼ FðxÞ þ η where x
is the protein concentration vector, FðxÞ is the chemical rate flux
vector. η is Gaussian noise term where its autocorrelation func-
tion is hηðx;tÞηðx;0Þi ¼ 2DδðtÞ. D is the diffusion coefficient. The
noise term is related to the intensity of cellular fluctuations either
from the environmental external fluctuations or intrinsic fluctua-
tions (under large number expansions, the process follows Brow-
nian dynamics and diffusion coefficient is often concentration
dependent).

We can now formulate the dynamics for the probability of
starting from initial configuration xinitial at t ¼ 0 and end at the
final configuration of xfinal at time t, with the Onsager–Machlup
functional (11) as Pðxfinal;t;xinitial;0Þ ¼ ∫Dx exp½−∫ dtð1

2
∇ ·

FðxÞ þ 1
4
ðdx∕dt − FðxÞÞ · 1

DðxÞ · ðdx∕dt − FðxÞÞÞ� ¼ ∫Dx exp½−SðxÞ�
¼ ∫Dx exp½−∫LðxðtÞÞdt�:

The integral overDx represents the sum over all possible paths
connecting xinitial at time t ¼ 0 to xfinal at time t. DðxÞ is the diffu-
sion coefficient matrix tensor. The second term of the exponent
represents the weight contribution from specific trajectory path
due to the underlying Gaussian noise. The first term of the ex-
ponent represents the contribution due to the variable transfor-
mation from the Gaussian noise η to the trajectory path x
(Jacobian). The exponential factor gives the weight of each path.
So the probability of network dynamics from initial configura-
tions xinitial to the final state xfinal is equal to the sum of all pos-
sible paths with different weights. The SðxÞ is the action and
LðxðtÞÞ is the Lagrangian or the weight for each path (Fig. 2).

Notice that not all the paths give the same contribution. We
can approximate the path integrals with a set of dominant paths.
Because each path is exponentially weighted, the other sublead-
ing path contributions are often small and can be ignored. One
can easily use this observation to find the paths with the optimal

weights. We identify the optimal paths as biological paths or
developmental pathways in our case.

Once the paths are known, we can substitute back to the path
integral formulation to calculate the probability evolution in time.
We can obtain the rate or speed of kinetics from one state to
another. One can also use the long time limit to infer the weights
of states and therefore map out the landscape. Details are given
in SI Text.

We further notice that if the force F is a gradient, then the term
F · dx in the weight functional above is a constant depending only
on ending points. When force F is not purely a gradient (none-
quilibrium with no detailed balance), then the curl flux compo-
nent of the force leads to path dependent weights ∫ F · dx. It will
create a topological winding (nonzero) contribution to the
weights of the paths going back to itself (∮F · dx ≠ 0). This will
result the deviation of the pathways from the pure gradient paths
and furthermore the forward path and backward path will not be
the same (∫ forwardF · dx ≠ −∫ backwardF · dx) and therefore the cor-
responding developmental pathways are irreversible. Details are
shown in SI Text. We point out that curl flux as a result of detailed
balance breaking of nonequilibrium system is the origin of opti-
mal kinetic paths deviating from the steepest descent one, which
was not previously known (9, 10).

Conclusion
We developed a theoretical framework to quantify the Wadding-
ton landscape and biological paths for development and differ-
entiation. We quantified the Waddington landscape through the
construction of the underlying probability landscape for the cell
development. We show the developmental process proceeds as
moving from undifferentiated basin of attraction to the differen-
tiated attractors. The barrier heights between the basins of attrac-
tions correlate with the escape time that determines the stability
of cell types.

We show that the developmental process can be quantitatively
described and uncovered by the biological paths on the quantified
Waddington landscape and the dynamics of the developmental
process is controlled by a combination of the gradient and curl
force on the landscape. The biological paths do not follow the
normally expected steepest descent path on the landscape. We
show that the biological paths of the reverse differentiation pro-
cess or reprogramming are irreversible and different from the
ones of the differentiation process.

We found that the developmental process described by the un-
derlying landscape and the associated biological paths is stable
and robust against the influences of environmental perturbations.
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