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Switching between phenotypes and population extinction

Ingo Lohmar* and Baruch Meerson†

Racah Institute of Physics, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
(Received 26 July 2011; published 3 November 2011)

Many types of bacteria can survive under stress by switching stochastically between two different phenotypes:
the “normals” who multiply fast, but are vulnerable to stress, and the “persisters” who hardly multiply, but
are resilient to stress. Previous theoretical studies of such bacterial populations have focused on the fitness: the
asymptotic rate of unbounded growth of the population. Yet for an isolated population of established (and not
very large) size, a more relevant measure may be the population extinction risk due to the interplay of adverse
extrinsic variations and intrinsic noise of birth, death and switching processes. Applying a WKB approximation
to the pertinent master equation of such a two-population system, we quantify the extinction risk, and find the
most likely path to extinction under both favorable and adverse conditions. Analytical results are obtained both
in the biologically relevant regime when the switching is rare compared with the birth and death processes, and
in the opposite regime of frequent switching. We show that rare switches are most beneficial in reducing the
extinction risk.
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I. INTRODUCTION

Understanding and quantifying the persistence of bacterial
populations is of major importance for the efficient treatment
of diseases. While bacterial persistence was uncovered more
than 65 years ago [1], conclusive evidence for the underlying
mechanism was only obtained during the last decade from
laboratory experiments at the single-cell level. It has been
established that an isogenetic population under identical
conditions can still exhibit two different phenotypes. They
are clearly distinguished by different rates of cell division:
“normals” multiply fast and “persisters” do it much slower. For
the same reason, however, normals are much more susceptible
to antibiotic treatment, while persisters are highly resilient to
the antibiotic. An individual bacterium can switch stochasti-
cally (at a certain rate, often without sensing its environment)
between the two phenotypes [2] (type-II persistence).

Systems of two interacting subpopulations, such as normals
and persisters, have been studied in different contexts in
theoretical biology [3–6]. Deterministic models of exponential
(unbounded) growth were mostly employed, and analysis
focused on the fitness—the time-averaged net growth rate—of
the total population, see, e.g., Refs. [7–11]. In favorable
conditions, when normal bacteria have a high net growth
rate, frequently switching to persisters is merely a burden,
as it decreases the average net growth. If the environment
changes (deterministically or randomly) between different
states, including some that represent adverse conditions for
the normals, e.g., in the presence of an antibiotic, the same
frequent switching can become beneficial. In this case, the
persisters uphold a base population size during such a stress
phase, while normals are heavily decimated. By properly
tuning the switching rates between different phenotypic states,
one can optimize the fitness of the total population [8].
For two phenotypes and two environments, the average time
spent as a certain phenotype should be equal to the average
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duration of the environment in which this phenotype is the
fittest one. In more complicated models (including phenotype-
specific response and recovery times upon a change of the
environment), one still finds that comparing two (genetic)
species, the one with switching rates better tuned (in the above
sense) outperforms the other fitnesswise [10].

These are important insights into the role that persisters
play in a growing population. However, the underlying
assumption of exponential growth is tailored to the description
of competition among different genotypes trying to establish
themselves by outgrowing others. Here, fitness is instrumental
to survive in the competition, and a good indicator of a specific
genotypes’ prospects. While such an unbounded growth can be
realized in vitro, the necessary resources and space in vivo are
limited. To account for this fact, one should introduce models
with bounded growth [12]. In a deterministic (mean-field)
description, the population will then typically exhibit a stable
fixed point corresponding to an established population. In
addition, there will be a fixed point describing an extinct
population. In reality, population dynamics is a stochastic
process: an established population is subject to noise coming
from the random character of births and deaths. A rare chain of
events, where deaths dominate over births, eventually drives an
isolated established population into the absorbing extinction
state. Thus for an isolated established population, the ultimate
goal is survival in the face of intrinsic, and also, possibly,
environmental noise. We suggest, therefore, a paradigm shift
in the analysis of bacterial phenotype switching by focusing
on the population extinction risk.

With this motivation, we consider a simple two-population
system of normals and persisters, possibly in a time-varying
environment mimicking a phase of catastrophic conditions for
the population. In a constant environment, a proper measure
of the extinction risk is the mean time to extinction (MTE)
of the population, see, e.g., Ref. [13]. We show that a
higher fraction of persisters exponentially increases the MTE
even in this setting. With a transient catastrophic phase, a
more informative measure of extinction risk is the extinction
probability increase (EPI) because of the catastrophe [14].
Here, a higher fraction of persisters exponentially reduces
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the EPI. Therefore, when viewed from the perspective of
population extinction risk, the presence of persisters is always
beneficial, providing an “insurance policy” against extinction
in small communities. This should be compared with persisters
being a mere burden, unless in adverse conditions, when
viewed from the perspective of fitness.

The remainder of the paper is organized as follows. In
Sec. II, we set up a simple model that describes the interacting
populations of normals and persisters. We also introduce, in
the same section, the pertinent master equation and employ
a WKB approximation, which reduces the master equation
to an effective Hamiltonian mechanics. We formulate the
mechanical problem that needs to be solved and describe
a numerical iteration method for dealing with this problem.
Section III presents a perturbation theory, based on time-scale
separation, first for favorable conditions, then including a
catastrophic phase. There we obtain approximate analytic
results for the MTE or the EPI, respectively, and for the
most probable path to extinction, and compare them with our
numerical solutions. In Sec. IV, we contrast the biologically
relevant regime of rare switching with the regime of frequently-
switching bacteria. We discuss the main findings in Sec. V.

II. MODEL AND METHODOLOGY

We consider a well mixed two-population system the
dynamics of which is described by a continuous-time Markov
process. The number of “normals” is denoted by n and that
of “persisters” by m. Normals die at a rate that we set to
unity throughout, and they multiply at a rate B(1 − n/N )
per individual. In a stochastic model, this corresponds to a
finite state space, with a maximum number n = N of normal
individuals. N can be thought of as a number of sites each of
which can carry at most one individual or as food resources
necessary to produce offspring. This dynamics coincides
with that of infected individuals in the SIS model, with a
fixed total population size N , unit recovery rate of infected,
and an infection rate B/N between infected and susceptible
individuals [15].

We now introduce a persister population whose individuals
do not multiply or die at all. The populations are coupled
by normal individuals switching to persisters at a rate α,
and persisters switching to normals at a rate β. The ratio of
these switching rates is denoted � = α/β. In a mean-field
description, the average numbers of individuals are governed
by rate equations

ṅ = Bn(1 − n/N ) − n − αn + βm,

ṁ = αn − βm. (1)

The rate equations have a trivial fixed point (FP) F0 at n = m =
0, which describes population extinction, and a nontrivial FP
FM at nM = N (1 − 1/B), mM = �nM. A viable population
therefore needs B > 1, when FM is stable, while F0 is a saddle
point. At the stable FP FM, the ratio between the population
sizes of persisters and normals is �.

A. Noise and metastability

Even for large population size, intrinsic noise is crucial,
as it will ultimately drive the system, residing in the vicinity

of the deterministically stable FP FM, toward extinction. The
stochastic system is described by the master equation for the
dynamics of the probability distribution of population sizes,
Pn,m(t),

dPn,m

dt
= ĤPn,m = B(n − 1)

(
1 − n − 1

N

)
Pn−1,m

−Bn
(

1 − n

N

)
Pn,m + (n + 1)Pn+1,m − nPn,m

+α(n + 1)Pn+1,m−1 − αnPn,m (2)

+β(m + 1)Pn−1,m+1 − βm(1 − δn,N )Pn,m.

Here, the Kronecker delta δn,N prevents transition to a state
with n = N + 1. Together with the prescription Pn<0,m =
0 = Pn,m<0 and Pn>N,m = 0, probability is conserved and
limited to the stripe (n,m) ∈ [0,N ] × [0,∞). The extinction
probability P0,0(t) is described by the equation

dP0,0

dt
= P1,0. (3)

When higher moments are assumed to factorize, the mean-field
equations (1) are recovered by summation over Eq. (2).

The stochastic system, as described by Eq. (2), has an
absorbing extinction state n = 0 = m, corresponding to zero
eigenvalue and eigenstate δn,0; m,0 of the transition matrix Ĥ .
All other eigenvalues are negative, hence all other eigenstates
of the probability distribution decay, and the population goes
extinct. We assume (and verify a posteriori) that, in contrast
to all other nonzero eigenvalues, the eigenvalue with smallest
nonzero absolute value is exponentially small in the system
size N . This corresponds to a metastable distribution centered
around FM [14,16–25]. The shape function of this distribution,
normalized to unity, is called the quasistationary distribution
(QSD); we denote it by πn,m. The decay time of the metastable
distribution is τ � 1. An initial distribution, describing a vi-
able population, first quickly relaxes to the QSD on a time scale
∼1/(B − 1). Then the metastable distribution will “leak” to
zero, as described by the equations Pn,m(t) � πn,m exp(−t/τ )
[for (n,m) �= (0,0)] and P0,0(t) � 1 − exp(−t/τ ), where τ is
expected to be exponentially large in N . Using Eq. (2), the
QSD πn,m obeys the equation

Ĥπn,m = −πn,m/τ, (4)

and with τ exponentially large in N , the right-hand side can
be approximated by zero. Having found πn,m, one obtains
τ by using Eq. (3): τ = 1/π1,0. One can show (see, e.g.,
Ref. [19]) that τ is indeed the mean time to extinction (MTE)
when starting from the QSD. We remind the reader that time
is measured throughout this paper in units of the death rate
coefficient of the normal population.

B. WKB approximation

When N is sufficiently large, one can approximately solve
Eq. (4) by a Wentzel-Kramers-Brillouin (WKB) eikonal ansatz
[16,26–28]:

πn,m = exp [−NS(x,y)] , (5)

where x = n/N and y = m/N are assumed to be continuous
variables. Having found S(x,y) in the leading order in
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1/N , the MTE can be calculated up to a pre-exponential
factor:

τ = 1/π1,0 ≈ exp[NS(0,0)], (6)

such that S(0,0) plays the role of an entropic barrier against
extinction.

Plugging Eq. (5) into Eq. (4) and Taylor-expanding
S around (x,y) to first order, one obtains, in the
leading order of 1/N , a zero-energy Hamilton-Jacobi
equation

H (x,y,∂S/∂x,∂S/∂y) = 0, (7)

where

H (x,y,px,py) = Bx(1 − x)(epx − 1) + x(e−px − 1)

+αx(e−px+py − 1) + βy(epx−py − 1) (8)

is the effective Hamiltonian. The corresponding Hamilton
equations,

ẋ = Bx(1 − x)epx − xe−px − αxe−px+py + βyepx−py , (9a)

ẏ = αxe−px+py − βyepx−py , (9b)

ṗx = −B(1 − 2x)(epx − 1) − (e−px − 1) − α(e−px+py − 1),

(9c)

ṗy = −β(epx−py − 1), (9d)

describe trajectories of the system in the four-dimensional
phase space of rescaled population sizes x and y and conjugate
momenta px and py . To determine S(x,y), one can calculate
the mechanical action accumulated along the proper activation
trajectory, or instanton, of Hamilton’s equations of motion and
ending in (x,y).

As the Hamiltonian H does not explicitly depend on
time, H (x,y,px,py) = E is an integral of motion. In view
of Eq. (7), the energy E must be zero. One type of mo-
tion with E = 0 occurs in the invariant plane px = py = 0
where Eqs. (9a) and (9b) coincide with the (rescaled) rate
equations (1). Overall, there are three zero-energy FPs of the
Hamiltonian flow: (0,0,0,0), [1 − 1/B,�(1 − 1/B),0,0], and
(0,0, − ln B, − ln B), all of them four-dimensional saddles.
The first two originate from the mean-field FPs, and we will
continue referring to them as F0 and FM, respectively. The third
FP, which we call Fø, is the fluctuational extinction point:
it appears in a broad class of stochastic population models
exhibiting extinction [17,20,21,29]. Note that all the FPs merge
into the origin upon approaching the bifurcation point B = 1.

As the established population resides around FM, the
instanton must start at this FP. Now, as we look for S(0,0),
we need to choose between the fixed points F0 and Fø as
the final destination. It has been shown that only Fø can
be reached from the region x, y > 0, px , py �= 0 [21,24].
The instanton, therefore, must be a heteroclinic trajectory,
which starts at the metastable FP FM at time −∞ and enters
the extinction FP Fø at time +∞. Finding the MTE, see
Eq. (6), demands calculating the action S = S(0,0) along this

heteroclinic trajectory:

S =
∫

dt (pq̇ − H ) =
∫

dt (−ṗq − H )

=
∫

(px dx + py dy − H dt), (10)

where q = (x,y) and p = (px,py). In a boundary layer of
width ∼ 1/N around x = 0 and y = 0 the assumption of
large population size n, m � 1 breaks down. However, for
a sufficiently large system size N , the contribution of this
layer to the MTE is subleading in the parameter 1/N [25,30].

C. Iterative numerical solution

The two-degrees-of-freedom Hamiltonian (8) has only
one independent integral of motion: the energy. It is thus
nonintegrable. Therefore the instanton can in general be only
obtained numerically.

In earlier work, “shooting” algorithms were used to in-
tegrate numerically Hamilton’s equations of motion for this
purpose, see, e.g., Refs. [14,20,21]. Below (Sec. III C) we
will explain why such an algorithm is not feasible in our
case. Instead, we adapted an iterative algorithm introduced,
in the context of Hamiltonian field theories, in Refs. [18,31].
Let subscripts “M” and “ø” label the initial and the final
FP, respectively. We fix a sufficiently long calculation time
tmax to traverse the trajectory; it should not be too long in
order to avoid instabilities in the vicinities of the fixed points.
The starting iteration numerically integrates Eqs. (9a) and
(9b) with the momenta fixed at their target values p = pø,
starting from the initial condition q(t = 0) = qM and up to
time tmax. The resulting coordinate curve q(t) is now used to
fix the coordinates in Eqs. (9c) and (9d), leaving a system
of equations for the momenta, which is integrated backward
in time starting from p(t = tmax) = pø down to t = 0. In
each following iteration half step, momenta (coordinates) are
fixed by the time-dependent solution obtained in the previous
step, and the coordinates (momenta) are integrated forward
(backward) in time, starting from the values at the initial (final)
FP and up (down) to t = tmax (t = 0). We found that this
scheme rapidly converges to the desired instanton.

To compute the action, we use the expressions in the first
line of Eq. (10). The difference between these two versions
is an easy measure of the numerical accuracy that has been
reached. This algorithm makes it possible to obtain, with little
effort, the most likely path to extinction and the MTE for a
broad class of population dynamics models when the target
FP has a different momentum than the initial FP (as it happens
here).

III. INSTANTON TRAJECTORIES

A. Close to the bifurcation

To simplify the algebra, we will restrict ourselves to the
regime close to the bifurcation point B = 1 where all FPs
merge, and define the distance to bifurcation δ = B − 1 	 1.
As can be checked a posteriori, x, y/�, |px |,

∣∣py

∣∣ ∼ δ or
smaller. Therefore exponentials in the Hamiltonian (8) can be
Taylor-expanded. In addition, we assume that the switching
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from the normals to persisters and back is rare: α, β 	 δ 	 1.
Under these conditions, the Hamiltonian (8) becomes

H (x,y,px,py) � xpx(px − x + δ) − (αx − βy)(px − py).

(11)

Here, we neglected terms ∼ δ4, and the term (αx + βy)(px −
py)2/2 ∼ αδ3. This is consistent if αδ2 � δ4, that is, δ 	 √

α.
The Hamilton equations read

ẋ = x(2px − x + δ) − (αx − βy), (12a)

ẏ = αx − βy, (12b)

ṗx = −px(px − 2x + δ) + α(px − py), (12c)

ṗy = −β(px − py), (12d)

and the zero-energy FPs are (0,0,0,0) (trivial FP, F0), (0,0, −
δ, − δ) (extinction FP, Fø), and (δ,�δ,0,0) (metastable FP,
FM).

It is helpful to rescale all quantities by putting x = δX,
y = δY , px = δPX, py = δPY , and t = T/δ. The equations of
motion become

dX

dT
= X(2PX − X + 1) − ε(�X − Y ), (13a)

dY

dT
= ε(�X − Y ), (13b)

dPX

dT
= −PX(PX − 2X + 1) + ε�(PX − PY ), (13c)

dPY

dT
= −ε(PX − PY ), (13d)

where ε = β/δ. These equations are still canonical with
Hamiltonian

h = H/δ3 = XPX(PX − X + 1) − ε(�X − Y )(PX − PY ).

(14)

The action becomes S = δ2s, where

s =
∫

(PX dX + PY dY − h dT ). (15)

The rare-switching limit corresponds to ε 	 1, and we will
treat it perturbatively in the following.

B. Solution in a constant favorable environment

The leading-order behavior of X and PX, the fast degrees
of freedom, takes place on the unit time scale T ∼ 1. The
dynamics of Y and PY , the slow degrees of freedom, however
happens on the long time scale T ∼ 1/ε � 1. We formally
introduce a separate slow time variable T ′ = εT to account
for this separation of time scales, and consider perturbative
solutions of the form

X = X0(T ) + εX1(T ,T ′) + . . . ,

PX = PX0(T ) + εPX1(T ,T ′) + . . . ,

Y = Y0(T ′) + εY1(T ′) + . . . , (16)

PY = PY0(T ′) + εPY1(T ′) + . . . .

Inserting into the Hamilton equations (13) yields a system of
partial differential equations in each order of ε. Note that, in
contrast to previous work [20,21], here the dynamics of fast
variables (normals) drives the slow variables (persisters).

0 1

0

1
FM

FØ

Normals X

P
er

si
st

er
s

Y

−1 0

−1

0 FM

FØ

PX

P Y

0 1

−1

0
FM

FØ

Normals X
P X

0 1

−1

0 FM

FØ

Persisters Y

P Y

FIG. 1. (Color online) Instanton (constant environment, close to
bifurcation) for � = 1 and ε = 0.1 in several projections. Theory
prediction (dashed blue) and numerical solution (solid red).

In the leading order ∼ ε0, only two equations
remain, dX0/dT = X0(2PX0 − X0 + 1) and dPX0/dT =
−PX0(PX0 − 2X0 + 1). This amounts to the one-dimensional
system of [14,29] close to the bifurcation. The solution must
satisfy the energy constraint hX0 = X0PX0(PX0 − X0 + 1) =
0, hence PX0 = X0 − 1: the projection of the instanton to the
X-PX plane is a straight line between FM and Fø (cf. Fig. 1),
and this part contributes an action sX0 = 1/2 [14,20,21]. The
solutions for X0 and PX0 are

X0(T ) = 1

1 + eT
, PX0(T ) = −1

e−T + 1
, (17)

where we have arbitrarily fixed the position of the instanton
along the time axis.

The slow persister variables appear in the order ∼ ε1,

dY0

dT ′ + Y0(T ′) = �X0(T ),
(18)

dPY0

dT ′ − PY0(T ′) = −PX0(T ).

On the slow time scale of the left-hand sides, the driving
terms X0(T ) and PX0(T ) change with time only in the narrow
region |T ′| ∼ ε 	 1; for earlier and later times, they are
almost constant. Therefore, on the slow time scale, they can be
described as step functions X0 = θ (−T ′) and PX0 = −θ (T ′).
We thus solve dY0/dT ′ + Y0(T ′) = �θ (−T ′) by matching
solutions [with Y0(−∞) = �, Y0(+∞) = 0] at T ′ = 0,

Y0(T ′) =
{

� for T ′ � 0,

�e−T ′
for T ′ � 0.

(19)

Similarly, we have dPY0/dT ′ − PY0(T ′) = θ (T ′) [with
PY0(−∞) = 0, PY0(+∞) = −1], such that

PY0(T ′) =
{−eT ′

for T ′ � 0,

−1 for T ′ � 0.
(20)
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The phase trajectory projection to the Y -PY plane forms
a rectangle and contributes an area sY0 = � to the action.
To resolve the small region |T ′| � ε, one would need to
include subleading corrections, which would smoothen the
discontinuous derivatives of Y0 and PY0 at T ′ = 0, round off
the trajectory, and decrease the action by small terms ∼ ε.

The total action in the leading order ∼ ε0 reads

s0 = 1
2 + �. (21)

The MTE of the population becomes, up to a pre-exponent,

τ � exp(Nδ2s0) = exp

[
Nδ2

(
1

2
+ �

)]
. (22)

In comparison, without persisters, the MTE is
�exp(Nδ2sX0) = exp(Nδ2/2), so the persisters cause
an exponential increase of the MTE of the population. A
part of the exponential increase comes simply from an
increased metastable population size: persisters do not
compete with normals, so there is no “cost” of increasing
their population (via �), only a benefit against extinction.
Therefore let us compare the MTE (22) with the MTE τ 1d

of a single-population system of normals, compensated by
N → N (1 + �). Both systems then have the same carrying
capacity K = Nδ(1 + �). The ratio of the MTEs is

τ

τ 1d
= exp

[
Kδ�

2(1 + �)

]
, (23)

still exponentially large at Kδ � 1 and not too small �.
Notable is the effect of increasing the persister fraction
�/(1 + �), which saturates at large �. Equation (23) does not
suggest any optimal value of � but the largest possible one;
we will discuss the relation to other results and the biological
context in Sec. V.

Interestingly, persisters contribute an action that does not
depend on the absolute switching rates α and β, see Eq. (21).
It may be surprising that an arbitrarily small but finite
perturbation ε > 0 yields an exponential change in the MTE
with respect to ε = 0. This is yet another instance of extinction
rate fragility [22]. As in other “fragile” population systems,
the explanation to this counter-intuitive effect comes from
a time-resolved picture [23]. The effective extinction rate is
time dependent. At relatively small times 1 	 T 	 1/ε, the
extinction rate is the same as if the persisters were absent
(ε = 0). At longer times T � 1/ε, the extinction rate crosses
over to its asymptotic value which determines the MTE (22)
[23].

In deriving Eq. (22), we assumed closeness to the bifurca-
tion and rare switching, i.e., α, β 	 δ 	 1, or equivalently ε,
ε�, and δ 	 1; in particular, implying the upper bound � 	
1/ε. To obtain the approximate Hamiltonian (11), we also had
to demand α � δ2 (ε� � δ); with hindsight this can be lifted:
solving the (effectively one-dimensional) fast subsystem only
employs δ 	 1, while the ansatz (16) only relies on time-scale
separation ε 	 1. As the small parameters δ and ε describe
unrelated mechanisms, the analytical results do not depend
(to the given order) on ε� � δ. The WKB approximation is
valid, and the resulting MTE τ � 1 is exponentially large, if
Nδ2(1/2 + �) � 1. For that, a minimum system size N �
δ−2 is sufficient, when N−1/2 	 δ 	 1 (QSD width much
smaller than the distance between initial and target FPs).

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

Switching rate ratio Γ

A
ct

io
n

s

FIG. 2. (Color online) Action s of Eq. (15) vs the ratio of
switching rates �, analytical (21) (solid blue line) and numerical
result (green marks ε = 0.2, red pluses ε = 0.1). The error bars were
obtained by using the original action expression and its integrated-
by-parts counterpart [see Eq. (10)].

Figure 1 compares the instanton found analytically with
the numerical solution (see Sec. II C) of Eqs. (13) for a
moderately small ε = 0.1. Agreement is reasonably good, and
we checked that it improves, in all projection planes, with
decreasing ε. Figure 2 shows that the numerically obtained
action approaches the theoretical value (21) as ε → 0. The
deviation also decreases as � goes down, as expected.

C. Effect of a catastrophe

What is the effect of a “catastrophe,” i.e., temporary adverse
conditions, on the population extinction risk? For a single
population, this question was addressed in Ref. [14]. Here, we
find that the presence of a persister subpopulation dramatically
reduces the extinction probability increase (EPI) caused by the
same type of catastrophe.

As in Ref. [14], we will model a catastrophe by setting
B = 0 during a certain period of time tc. This may mimic
the effect of a drug that inhibits cell multiplication. The
system history then differs from the one described in Sec. II A.
For early times, after relaxation of the system to the QSD,
the extinction probability still increases with time nearly
linearly as P0,0(t) � 1 − exp(−t/τ ) � t/τ , where τ is the
MTE of the system without a catastrophe. At a time t0 	 τ ,
when P0,0 = Ppre

0,0 , the catastrophe starts, acting for a duration
tc 	 τ . Compared with τ , this is a short transient, which may
however considerably increase the extinction probability to the
value Ppost

0,0 . Afterwards, the system is again described by the
(downscaled) QSD and continues to decay, while the extinction
probability increases as P0,0(t) � 1 − (1 − Ppost

0,0 ) exp[(t0 +
tc − t)/τ ]. In this setting, the MTE is too crude a measure
of the effect of the catastrophe: it is dominated by realizations
surviving the catastrophe, resulting in nearly the unperturbed
MTE τ . Instead, we measure the influence of the catastrophe by
the EPI �P0,0 = Ppost

0,0 − Ppre
0,0 . Up to a pre-exponential factor

it is given by

�P0,0 � e−NSc , (24)
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where Sc is the mechanical action accumulated along the
instanton [14], see Eq. (10). While it describes a very different
quantity, one gets, in the leading order, �P0,0 from the action
exactly as one gets 1/τ in a constant environment, cf. Eq. (6).
For Eq. (24) to be valid, in addition to NSc � 1 one has to
demand that the change of the exponent with respect to the
constant-environment case is large, N (S − Sc) � 1 [14].

The instanton itself is obtained analogously to the case of
time-independent transition rates described in Sec. II B. The
Hamiltonian now explicitly depends on time: before and after
the catastrophe, the system is still described by the Hamiltonian
(8). During the catastrophe, the effective Hamiltonian becomes

Hc = x(e−px − 1) + αx(e−px+py − 1) + βy(epx−py − 1).

(25)

The instanton trajectory now consists of three connected seg-
ments: the precatastrophe segment starts at the metastable FP
FM and is determined by the Hamiltonian (8), the catastrophe
segment is described by Eq. (25), and the postcatastrophe
segment leads to the extinction FP Fø, again governed by
Eq. (8). We assume that, after the catastrophe ends, there
is still a relatively large population left (with exponentially
long MTE). Neither H nor Hc depend on time explicitly,
therefore on each segment, energy is conserved: before and
after the catastrophe, H = E = 0, and during the catastrophe
Hc = Ec �= 0. Furthermore, the phase space points matching
the segments are fixed by the catastrophe duration tc. In turn,
this fixes the energy Ec.

Again, we consider the system close to the bifurcation,
δ 	 1, and assume rare switching, α, β 	 δ 	 1, such that
before and after the catastrophe we have the Hamiltonian (11).
We expect (and check a posteriori) that x, y/�, |px |,

∣∣py

∣∣ ∼ δ

or smaller. This leads to

Hc � −xpx + xp2
x

2
− (αx − βy)(px − py), (26)

where we have kept the same orders as for Eq. (11).
Rescaling all quantities by δ as in Sec. III A, the Hamilto-

nian during the catastrophe becomes

hc = Hc

δ3
= −XPX

δ
+ XP 2

X

2
− ε(�X − Y )(PX − PY ), (27)

with the equations of motion

dX

dT
= −X

δ
+ XPX − ε(�X − Y ), (28a)

dY

dT
= ε(�X − Y ), (28b)

dPX

dT
= PX

δ
− P 2

X

2
+ ε�(PX − PY ), (28c)

dPY

dT
= −ε(PX − PY ). (28d)

The rescaled duration of the catastrophe is denoted Tc = δtc.
The leading terms in dX/dT and dPX/dT are ∼ 1/δ � 1: dur-
ing the catastrophe the population size decays exponentially
on the fast time scale.

To get some insight into the impact of the catastrophe,
let us consider a numerical solution. To this end, we use the
method described in Sec. II C, where the equations of motion
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FIG. 3. (Color online) Numerically found instanton for � = 1,
ε = 0.2, and δ = 0.1, without a catastrophe (dashed blue) and with
a catastrophe of duration Tc = 0.5 (solid red). Green dots mark both
the start and the end of the catastrophe.

now change from Eq. (13) to Eq. (28) at some time (and
back after a duration Tc). The result is insensitive to this
starting time, provided it is sufficiently far from t = 0 and
t = tmax. Figure 3 shows several projections of an instanton
with and without the catastrophe phase, for otherwise identical
parameters. In the top panels, due to time-scale separation, the
catastrophe segment is nearly horizontal—X and PX rapidly
decay, persisters are (indirectly) affected much later. The
bottom panels show that a subpopulation size and its conjugate
momentum do not change simultaneously. For persisters, first
the momentum builds up, then the population size drops, as
in a constant environment (see Fig. 1). For normals, on the
other hand, the situation has changed; the population size now
decays earlier than the momentum, this will be explained in
Sec. III D. The sudden onset and end of the catastrophe is
reflected by nonsmoothness of the instanton (except for the
Y -PY projection). “Wiggles” due to nonmonotonic X and PX

immediately precede or follow the catastrophe segment (we
confirmed that these are not numerical artifacts). One can see
that, after an initial decay of the normal subpopulation size, it
briefly recovers, only to be hit all the harder by the catastrophe.
Afterwards, there is a short recovery period caused by influx
from persisters (cf. the Y -PY projection).

The two-population system with a catastrophe shows a
fundamental difference from the single-population case: the
instanton is not only changed during the catastrophe phase,
but the whole trajectory including pre- and postcatastrophe
segments is affected. This can be understood via the following
counting argument.

Imagine we try to match, in a d-population system with
piecewise constant Hamiltonian, the three segments of the
instanton. The 2d-saddle FM affords a d-dimensional unstable
manifold of possible end points of the precatastrophe segment.
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A useful parametrization of this point (where the catastrophe
segment begins) consists in d − 1 “angles” describing different
trajectories, and a timelike parameter along the trajectories.
By matching the catastrophe segment of a given duration, the
phase space point at its end is then fixed as well. At the other
end, Fø affords a d-dimensional stable manifold of possible
starting points for the postcatastrophe segment, which can
be parametrized as above. We thus have d + d parameters
at our disposal describing the possible points at the end of
the catastrophe segment and the start of the postcatastrophe
segment. Since we have to match them in 2d phase space
coordinates, this picture does not contradict a unique instanton
(although there still may be more than one solution).

For the single-population case d = 1, the phase trajectories
leaving and entering the fixed points are unique, and thus
cannot be affected by the catastrophe part in between. In the
generic case d � 2, however, the pre/postcatastrophe segments
may differ from the no-catastrophe instanton. In the concrete
model studied here, these segments have to differ simply
because of time-scale separation. During the catastrophe,
normals are rapidly decimated, whereas the persister dynam-
ics follows much more slowly. In the X-Y -projection, the
catastrophe segment is thus less steep than the slope between
any two points on the no-catastrophe instanton. It is therefore
impossible to simply splice the catastrophe segment into the
latter.

This explains why “shooting” algorithms are impractical
for finding the catastrophe-related instanton numerically in a
multipopulation system. For a single population with catastro-
phe [14], such an algorithm can start with a small displacement
from the metastable FP along the no-catastrophe instanton,
testing different starting points of the catastrophe segment—
this works as the precatastrophe segment is unchanged.
Likewise, one can parametrize the zero-energy trajectories
leaving the initial FP in the two-population system without
catastrophe (see Sec. III B) by a shooting angle. Adding a
catastrophe provides an additional freedom (in the form of the
starting point), and the method is no longer practical.

At the same time, Fig. 3 shows that the instantons without
and with catastrophe practically coincide (in all projections)
for an extended part next to both FPs, before eventually
departing from each other. This means that the system is
extremely sensitive to minute variations in the angle at which
the trajectory leaves (enters) the initial (final) FP, which
only become visible closer to the catastrophe segment. We
confirmed this behavior in tests of the aforementioned shooting
algorithm (without catastrophe), which, for this reason, already
proves to be rather tedious.

D. Analytic theory with catastrophe

We look for an analytic solution analogously to Sec. III B.
Time-scale separation is still effective: X and PX show fast
dynamics on the time scale T ∼ 1, or even T ∼ δ, see Eq. (28).
They drive the slow Y and PY , which change on a time scale
T ′ = εT . We denote the catastrophe duration on this scale by
T ′

c = εTc.
The leading-order equations ∼ ε0 reduce to the normals-

only system again, and hX,c = −XPX/δ + XP 2
X/2 governs

the dynamics during the catastrophe. Since X, PX ∼ 1 	 1/δ,

we neglect the second term, and arrive at the simple catastrophe
Hamiltonian hX,c � −XPX/δ used in the single-population
model [14]. The solution is an exponential decay (growth) of
X (PX) at a rate 1/δ and for a duration Tc. Let X+ > X−
and 0 > P +

X > P −
X denote coordinates and momenta at the

start and the end of the catastrophe, respectively. Then X− =
X+ exp(−Tc/δ) and P −

X = P +
X exp(+Tc/δ). The solution for

X and PX before and after the catastrophe is the same (up to a
time shift) as in the constant environment, Sec. III B. This is no
contradiction to the arguments of Sec. III C, since the leading
approximation is effectively one-dimensional. Therefore

X0(T ) =
{

(1 + eT −T< )−1 for X0 � X+,

(1 + eT −T> )−1 for X0 � X−,
(29)

and PX0(T ) = X0(T ) − 1 for both PX0 � P +
X = X+ − 1 and

PX0 � P −
X = X− − 1. The quantities T< and T> are yet

undetermined. From the constraints, we get

X± = 1

1 + e∓Tc/δ
, P ±

X = −1

1 + e±Tc/δ
, (30)

and the conserved (X-part) energy during the catastrophe
becomes hX0,c = cosh−2[Tc/(2δ)]/(4δ). Fixing the time such
that the catastrophe occurs between T = ±Tc/2, we obtain

X0(T ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + eT −Tc(1/δ−1/2))−1 for T � − Tc
2 ,

exp(−T/δ)

2 cosh[Tc/(2δ)]
for − Tc

2 � T � + Tc
2 ,

(1 + eT +Tc(1/δ−1/2))−1 for Tc
2 � T .

(31)

The momentum is PX0 = X0 − 1 before and after the catas-
trophe, and during it decays as

PX0(T ) = −eT/δ

2 cosh[Tc/(2δ)]
= −X0(−T ). (32)

The action found for this Hamiltonian and trajectory is sX0,c =
[1 + exp(Tc/δ)]−1 [14]. During the catastrophe, the “trajectory
contribution”

∫
PX0 dX0 and

∫ −hX0,c dT cancel each other.
The slow equations of motion (28b) and (28d) are the same

as in the favorable environment of Sec. III B, hence the slow
leading-order equations (18) (and boundary conditions) are
unchanged. Again, we only resolve the slow dynamics here.
The driving terms X0 and PX0 are different now, since a
part of their movement is replaced by a faster exponential
decay (rate 1/δ � 1) during the catastrophe. Therefore on the
slow T ′ scale, one obtains a step function as an even better
approximation than in Sec. III B. The only difference between
Eqs. (17) and (31) is that the driving by X0 (PX0) ends (sets in)
at the start (end) of the catastrophe T = ∓Tc/2 (instead of T =
0), such that X0 = θ (−T ′

c/2 − T ′) and PX0 = −θ (T ′ − T ′
c/2).

Since coordinates and momenta remain separate in Eq. (18),
the general piecewise solutions for Y0 and PY0 are unchanged,
but now matched at T ′ = ∓T ′

c/2:

Y0(T ′) =
{
� for T ′ � −T ′

c/2,

�e−T ′−T ′
c /2 for − T ′

c/2 � T ′, (33)

and

PY0(T ′) =
{−eT ′−T ′

c /2 for T ′ � T ′
c/2,

−1 for T ′
c/2 � T ′. (34)
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The simple geometric picture that the catastrophe merely time-
shifts Y0 and PY0 into opposite directions results in a hyperbola
Y0PY0 = −� exp(−T ′

c ) on the corresponding segment.
Persisters contribute an action

sY0,c =
∫

PY0 dY0 −
∫

hY0,c dT , (35)

with the switching Hamiltonian hY,c = −ε(�X − Y )(PX −
PY ). The energy during the catastrophe is evaluated on the
slow time scale, such that X0 = 0 = PX0, and

hY0,c = −ε(�X0 − Y0)(PX0 − PY0) = ε�e−T ′
c . (36)

The contribution to the action −hY0,cTc = −�T ′
c exp(−T ′

c )
again cancels the phase space area under the catastrophe
segment,

∫ � exp(−T ′
c )

�
PY0 dY0. Hence the persister action is

sY0,c = � exp(−T ′
c ), and the total action becomes

s0,c = 1

1 + eTc/δ
+ �e−T ′

c . (37)

Reinstating the original time scale t by using T ′ = εT =
εδt = βt we obtain from Eq. (24)

�P0,0 � exp

[
−Nδ2

(
1

1 + etc
+ �e−βtc

)]
. (38)

The system without persisters (� = 0) has an EPI �
exp(−Nδ2sX0,c) = exp[−Nδ2/(1 + etc )]. As for favorable
conditions, we compare with the EPI �P1d

0,0 of such a
single-population system of normals, compensated by N →
N (1 + �) to have the same carrying capacity K = Nδ(1 + �):

�P0,0

�P1d
0,0

= exp

[
− Kδ�

1 + �

(
e−βtc − 1

1 + etc

)]
. (39)

The system with persisters has exponentially smaller EPI, to
which the initial population size K and the persister fraction
�/(1 + �) contribute as to the MTE ratio (23). The parenthe-
sized factor quantifies the fundamental benefit of persisters and
generalizes the numerical value 1/2 in Eq. (23): the effect is
most pronounced for catastrophes that are long on the fast scale
of normals, but short on the slow persister time scale, tc �
1 � T ′

c = βtc. Then �P0,0/�P1d
0,0 � exp [−Kδ�/ (1 + �)],

i.e., the ratio is squared with respect to the MTE ratio (23)
in a constant favorable environment: the benefit of persisters
is even more apparent in the face of a catastrophe. Again the
result (39) suggests to choose � as large as possible, on which
we comment in Sec. V.

These results are based on δ, ε, and ε� 	 1 (cf. the end of
Sec. III B). For a short catastrophe tc ∼ 1 or smaller, the WKB
result (24) is valid if the reduction Nδ2(s0 − s0,c) due to the
catastrophe is sufficiently large, yielding the condition N �
4δ−2/tc. A long catastrophe T ′

c ∼ 1 (or larger) strongly reduces
the action, and the stricter condition is that the remaining
action be large enough. Considering � ∼ 1 for simplicity, the
persister action dominates, leading to N � exp(T ′

c )/(δ2�).
The theory path to extinction is shown in Fig. 4 and

compared with the numerical solution (see Secs. II C and
III C). For a short catastrophe Tc = 0.2, persisters are mostly
unaffected, while the X-PX projection resembles the one-
dimensional system [14]. Already for the moderate Tc = 1
(not shown), normals have gone virtually extinct at the end
of the catastrophe, and the population survives mainly due

to the remaining persisters. With a long catastrophe Tc = 10,
the action contributed by persisters is severely decreased as
well. Agreement between analytical and numerical solutions
is better than in a constant environment. Normals go extinct
nearly exclusively during the catastrophe, which completely
determines the fast part of the trajectory, rendering the
instanton very simple. In turn, back-reaction of persisters
becomes less important, and replacing the fast driving terms by
step functions on the slow time scale becomes more accurate.
These are the main approximations of the zeroth-order theory,
hence the predictions improve with increasing catastrophe
duration. We also confirmed that in all projections, the theory
becomes more accurate with decreasing ε. At the same time,
the “wiggles” identified in Sec. III C become less pronounced.
Both tendencies go hand in hand, as both are based on
reducing back-reaction. In Fig. 5, we compare the action (37)
with numerical results. Even for moderately rare switching
(ε = 0.1), the analytical prediction is reasonably accurate, and
improving with increasing catastrophe duration.

We summarize the effect of the catastrophe in the leading
order of rare switching. Independent of its duration, the
strength of the catastrophe is set by the (normalized) death rate
of normals. Normals decay exponentially on the very fast scale
t ∼ 1, responsible for the major part of phase space motion
(unless tc 	 1). Persisters are affected indirectly via switching
between the two populations. For a short catastrophe, T ′

c 	 1,
the effect on Y0 and PY0 is negligible; switching hardly occurs
during T ′

c , and the slow dynamics cannot resolve the difference
in driving. Therefore only the normal action is reduced, and
persisters are perfectly buffered against the catastrophe. Note
that the time tc 	 1/(δε) can be much longer than the typical
lifetime of an individual normal ∼ 1. If the catastrophe is
long enough to be seen on the slow scale, T ′

c ∼ 1 or larger,
switching has an effect. While persisters still cannot resolve
the accelerated extinction of normals, they trace the delay
between X0 and PX0 in the instanton. On the slow switching
time scale it appears far shorter, forming a buffer that mitigates
the catastrophe. The structure of the EPI (38) is thus based
on the separation between the time scale of the catastrophe
effect (strength), and the far longer time scale of persister
dynamics. The catastrophe affects both populations, but acting
on normals, its duration is measured on the very fast scale
t ∼ 1 of the death rate [action scales ∼ exp(−tc)]; acting
on persisters it is measured on the slow scale T ′ ∼ 1 of
switching back to normals [∼ exp(−T ′

c )]. The crossover shows
prominently in Fig. 5.

IV. WHY ARE SWITCHING RATES SMALL IN NATURE?

So far, we have considered small switching rates between
the normal and persister states, ε 	 1. The corresponding
time-scale separation was the basis of our qualitative expla-
nation and analytical treatment of the system’s dynamics. We
also numerically examined what happens at ε ∼ 1 or larger. We
still consider the system described by the Hamiltonians (11)
and (26), respectively, as motivated at the end of Sec. III B.
The instanton and the associated action are again obtained as
detailed in Secs. II C and III C.

We found that both with and without catastrophe, instanton
trajectories are qualitatively similar to the ε 	 1 case even
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FIG. 4. (Color online) Instanton for � = 1, ε = 0.1, and δ = 0.1,
with a catastrophe of duration Tc = 0.2 (top) and 10 (bottom),
respectively. Prediction by theory (dashed blue) and numerical
solution (solid red). Green dots mark both the start and the end of the
catastrophe.

when ε = 1. Further increasing ε “locks” persisters ever
stronger to the dynamics of normals, see Eqs. (13) and
(28). For very large ε, PY � PX and Y � �X with only
small deviations. Moreover, persisters still increase the action
compared with a normals-only system of the same carrying
capacity. We examined the action as a function of varying
switching rate ε and catastrophe duration tc (N , δ, �, and hence
the carrying capacity K , being fixed). As expected, for given
ε, the action decreases with increasing catastrophe duration
tc, and this decrease becomes stronger for larger switching
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FIG. 5. (Color online) Action s vs catastrophe duration Tc,
analytical (37) (solid blue line) and numerical result (red pluses), for
� = 1, ε = 0.1, and δ = 0.1. Error bars span the results obtained
using the original action expression and its integrated-by-parts
counterpart.

rate ε; the more frequent the switching is, the less insurance
against extinction persisters provide. For given tc, the action
decreases with increasing switching rate ε, and this decrease
becomes stronger for longer catastrophe duration: persisters
are especially beneficial in the face of a catastrophe.

For very frequent switching, there is a new time-scale
separation, which permits an analytical treatment. Consider
the case δ 	 1 	 α, β, (ε, ε� � 1/δ), such that switching
is frequent compared with the normal dynamics even during
the catastrophe. In both the favorable [see Eqs. (13)] and
catastrophic [see Eqs. (28)] environments, we have

Y = �X − 1

ε

dY

dT
, PY = PX + 1

ε

dPY

dT
. (40)

For large ε, the second term is a small correction, and we
obtain

Y = �X − �

ε

dX

dT
+ . . . , PY = PX + 1

ε

dPX

dT
+ . . . .

(41)

Inserting into the normal equations of motion yields, in the
leading order in 1/ε, the normals-only equations, but with a
rescaled time T̃ = T/(1 + �):

dX

dT̃
= X(2PX − X + 1),

dPX

dT̃
= −PX(PX − 2X + 1)

(42)

in a favorable and

dX

dT̃
= −X

δ
+ XPX,

dPX

dT̃
= PX

δ
− P 2

X

2
(43)

in a catastrophic environment. As in Sec. III D, from this we get
X as of Eq. (31), only with the substitutions T(c) → T(c)/(1 +
�), and likewise for the momentum PX and the energy hX,c. Y
and PY are given by Eq. (41).

Calculating the action along this instanton, first note that
the switching term in the Hamiltonian is hY (,c) ∼ 1/ε at all
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times. Second, the corrections in Eq. (41) do not contribute to
the leading-order action, which becomes

sc �
∫

pre / post

(PX dX + PY dY ) +
∫

cat.
(PX dX + PY dY − hX,c dT )

� (1 + �)
∫

pre / post

PX dX + (1 + �)
∫

cat.

PX dX − hX,cTc.

(44)

The second and third terms cancel; factoring out (1 + �), both
contributions are the same as in the rare-switching case, only
with the above rescaling applied to all times. The first integral
is also known from the rare-switching case, where it coincided
with the total action contributed by normals. Applying the time
rescaling, the action thus becomes

sc � 1 + �

1 + eTc/[δ(1+�)]
. (45)

We confirmed (for ε = 100 and various values of � and tc)
that this agrees excellently with the action found numerically
as described at the beginning of this section. This result is
easily interpreted; very frequent switching effectively “mixes”
the two subpopulations, as they rapidly switch back and forth.
Compared with a normals-only system, the factor 1 + � in
the numerator describes the increased size of the combined
population. A more subtle effect is the reduction, by the same
factor 1 + �, of the effective duration of the catastrophe. This
reduction accounts for the lag still gained by switching to the
persister state.

In a favorable environment (tc = 0), persisters switching
frequently do not provide any benefit compared with a
normals-only system of the same carrying capacity. With a
catastrophic phase, however, we obtain

�P0,0

�P1d
0,0

= exp

[
−Kδ

(
1

1 + etc/(1+�)
− 1

1 + etc

)]
. (46)

This is still a substantial benefit, although much less (for �

not too large) than that for rarely switching persisters, see
Eq. (39). Note that here � only appears in the effective
catastrophe duration, not as the persister fraction.

Persisters are thus most valuable when stochastic switching
is relatively rare. The fact that rare switching dominates in
nature can be attributed to an evolutionary process.

V. DISCUSSION AND CONCLUSIONS

We have used a simple two-population model of normals
and persisters to show that (and how) persisters exponentially
decrease the extinction risk of an established bacterial popula-
tion. We have compared the two-population system of normals
and persisters to a normals-only system starting from the
same total population size. Already in a constant environment
favorable for normals, it is beneficial to switch to the persister
state: persisters contribute to the MTE exponentially more than
normals since their extinction is delayed by first switching
back. When the population is under stress—that we model
as a catastrophe—the same buffering is effective, rendering
persisters far less prone to extinction, so that they exponentially
reduce the EPI due to the catastrophe. For catastrophes that

are long compared with the lifetime of normals but short
compared with the much longer switching time scale (from
persisters to normals), the reduction factor is squared with
respect to the MTE increase in a constant environment:
persisters are even more valuable for the population if it faces a
catastrophe.

In exponential-growth models, which focus on fitness,
persisters are only a burden in a constant favorable envi-
ronment. To explain their existence with an overall benefit
one needs to invoke temporary adverse conditions. In con-
trast, we have shown that persisters are always beneficial
as an insurance against the extinction of an established
population, as measured by the increased MTE, or by the
reduced EPI during a catastrophe, respectively. We have also
shown that to provide the optimal benefit, switching to and
from the persister state has to be rare compared with all
other processes. In this sense, the extinction risk perspective
presented here explains, in a natural and robust way, the
existence of persister phenotypes in bacteria as well as the
small switching rates from the normals to persisters and
back.

Our main analytical results (23) and (39) advocate that
switching back from persisters to normals should be rare
compared with switching to the persister state, leading to
the largest possible fraction of persisters in the metastable
state (within the range where our theory applies). For a
bacterial population optimized solely against extinction from
the established state, this would be an intuitive strategy even
in favorable conditions. During the growth stage, on the
other hand, the population needs optimal fitness to establish
itself. These two complementary strategies, optimizing two
different quantities, are not incompatible. The extinction risk
perspective explains the mere existence of persisters, already
without invoking environmental variations. The switching
rates themselves (fixing the metastable persister fraction) may
be tuned by evolution to optimize the growth stage in a variable
environment.

Our simple model neglects many features that can be
biologically relevant. For example, in reality persisters have
reduced but nonzero birth and death rates. Such a more
realistic system still features time-scale separation; persisters
are now directly affected by a catastrophe (e.g., inhibiting
their births), but again on a much slower scale than normals.
Therefore we expect a qualitatively similar behavior. Future
work can attempt to account for the cost of switching to
persisters, for example, via competition between persisters
and normals. There are also many alternatives for the detailed
dynamics during the catastrophe. For many of them, the
WKB approximation to the master equation provides a viable
theoretical framework for determining the long-time behavior
of bacterial populations.
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