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The string method originally proposed for the computation of minimum energy paths (MEPs) is
modified to find saddle points around a given minimum on a potential energy landscape using the
location of this minimum as only input. In the modified method the string is evolved by gradient
flow in path space, with one of its end points fixed at the minimum and the other end point (the
climbing image) evolving towards a saddle point according to a modified potential force in which
the component of the potential force in the tangent direction of the string is reversed. The use of
a string allows us to monitor the evolution of the climbing image and prevent its escape from the
basin of attraction of the minimum. This guarantees that the string always converges towards a MEP
connecting the minimum to a saddle point lying on the boundary of the basin of attraction of this
minimum. The convergence of the climbing image to the saddle point can also be accelerated by
an inexact Newton method in the late stage of the computation. The performance of the numerical
method is illustrated using the example of a 7-atom cluster on a substrate. Comparison is made with
the dimer method. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798344]

I. INTRODUCTION

Locating saddle points on a multidimensional potential
energy surface is a challenging computational problem. It is
of great interest in the context of reactive processes involv-
ing barrier crossing events. Indeed, the transition state theory
asserts that these saddle points are the dynamical bottlenecks
for the transitions, thereby explaining their mechanisms and
allowing one to compute their rates. A number of methods
have been proposed to compute the transition pathways and
saddle points when both the initial state and the final state of
a transition are known.1–8 The situation becomes more dif-
ficult when the final state of the transition is unknown, and
the aim is to find saddle points on the boundary of the basin
of attraction around a given minimum using the minimum as
the only input. To this end, a number of computational tech-
niques have been designed, which include eigenvector follow-
ing approaches, the activation relaxation technique (ART), the
dimer method, the one-side growing string method (OGS), the
shrinking dimer method, the gentlest ascent dynamics (GAD),
etc.9–25 Accelerated molecular dynamics techniques, which
use the initial state as the only input, were also proposed for
the study of transition events.26–29

The aim of the present paper is to propose a simple mod-
ification of the string method,7, 8 termed the climbing string
method (CSM), to perform these computations. As in the orig-
inal string method, CSM evolves a continuous curve with a
fixed parametrization (the string) on the potential energy sur-
face. One end point of the string is fixed at the minimum,
while the other end point (the climbing image) is evolved up-
hill according to a modified force in which the component of
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the potential force in the tangent direction of the string is re-
versed. In the meanwhile, the string connecting the two end
points follows the steepest descent dynamics and relaxes to
the minimum energy path (MEP) connecting these end points.
To prevent the climbing image of the string from escaping
from the basin of attraction of the minimum and converging
to irrelevant saddle point (i.e., saddle points not directly con-
nected to the minimum), we examine the energy along the
string at each time step or once in a few time steps. If the
energy becomes non-monotonic, which is an indication that
the climbing image of the string might have escaped from the
basin, we truncate the string at the first maximum of the en-
ergy along it. The state at the maximum then becomes the
new climbing image. The process repeats until convergence,
when the string becomes a MEP connecting the minimum to
a saddle point on the boundary of its basin of attraction.

Besides its simplicity, the main advantage of CSM is that
the saddle points it locates are guaranteed to lie on the bound-
ary of the basin of the given minimum. This is in contrast to
the methods listed above which evolve a single image on the
energy surface. The image may escape from the basin of the
starting minimum and converge to saddle points that are not
located on the boundary of this basin. In these methods, an ad-
ditional step is then needed to check which minima the saddle
point is connected to.

CSM can also be combined with other methods to evolve
the climbing image. For example, to accelerate the conver-
gence, we can switch to an inexact Newton method after the
climbing image has been evolved to the vicinity of a saddle
point. In the inexact Newton method, this climbing image is
used as initial guess, and the step vector is computed by ap-
proximately solving a symmetric indefinite linear system. The
inexact Newton method typically requires a few iterations to
achieve convergence to a saddle point with high accuracy.
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The remainder of this paper is organized as follows. In
Sec. II, we review the string method for the computation of
MEPs. In Sec. III, the string method is extended to saddle
point search and we discuss the algorithmic details of CSM.
The inexact Newton method is presented in Sec. IV. In Sec. V,
we illustrate the performance of CSM using a system consist-
ing of a seven-atom cluster on top of a substrate, and com-
pare it to the dimer method. Concluding remarks are made in
Sec. VI. Details of some algorithms used in the paper are
given in Appendices A and B.

II. THE STRING METHOD

The (zero-temperature) string method was designed for
the computation of MEPs.7, 8 Denote by V (x) the potential
energy of the system, and let a and b be the location of two
minima of this potential. The MEP between a and b is a curve
connecting these minima which is parallel to the potential
force.

The string method finds the MEP using the steepest de-
scent dynamics in the space of paths.7 One starts with an ini-
tial string ϕ(α, 0) = ψ(α), which connects a and b and is pa-
rameterized by α ∈ [0, 1], e.g., the normalized arc-length. The
initial string can be constructed in various ways, e.g., the lin-
ear interpolation between a and b. The string is then evolved
according to

ϕ̇ = −∇V (ϕ) + (∇V (ϕ), τ̂ )τ̂ + λτ̂ , 0 < α < 1 (1)

with the two end points fixed at a and b, respectively,

ϕ(0, t) = a, ϕ(1, t) = b. (2)

In (1), ϕ̇ is derivative of ϕ with respect to time t; τ̂ = ϕ′/|ϕ′|
is the unit tangent vector to the string, where ϕ′ is deriva-
tive of ϕ with respect to α; ( · , · ) denotes the inner prod-
uct. The last term in (1) does not affect the evolution of
the curve γ (t) = {ϕ(α, t): α ∈ [0, 1]}, but it allows one
to control its parametrization and the distribution of the
images along the string after discretization: λ(α, t) is the
Lagrange multiplier used to this end. In practice, the action
of the term λτ̂ can be accounted for easily using interpola-
tion/reparametrization technique. The steady-state solution of
(1) and (2) is a MEP connecting the two states a and b along
which

(∇V )⊥(ϕ) := ∇V (ϕ) − (∇V (ϕ), τ̂ )τ̂ = 0. (3)

The simplified string method8 is based on the observation
that the second term at the right-hand side of (1), being paral-
lel to τ̂ , can be absorbed in the Lagrange multiplier term, i.e.,
(1) can also be written as

ϕ̇(α, t) = −∇V (ϕ) + λ̄τ̂ , 0 < α < 1, (4)

where λ̄(α, t) is a new Lagrange multiplier.
In practice, the string is discretized into a sequence of

images, {ϕk
0 ,ϕ

k
1 , · · · ,ϕk

N }, where ϕk
i = ϕ(i'α, k't) is the ith

image along the string at time t = k't, with 'α = 1/N and
't being the time step. These images are evolved according

to the following two-step procedure:

1. Evolve each image by the projected potential force
−(∇V )⊥(ϕk

i ) (in the original method) or the bare poten-
tial force −∇V (ϕk

i ) (in the simplified method);
2. Redistribute the images along the string using interpola-

tion/reparametrization.

These two steps are repeated until the images reach a steady
state.

In (2), the two end points of the string are fixed at a and b,
respectively, during the evolution of the string. These condi-
tions can be relaxed when we compute the MEP between two
minima. In this case, we may choose an initial string with the
two end points being in the basins of the two minima, respec-
tively. Then the string is evolved according to the dynamics in
(4), but with the boundary conditions in (2) replaced by

ϕ̇(α, t) = −∇V (ϕ(α, t)), α = 0, 1. (5)

This equation simply means that the two end-points are
evolved towards the nearest minimum according to the steep-
est descent dynamics. Therefore, as long as the two end points
of the initial string lie in the basins of attraction of two min-
ima of interest, respectively, they will converge to the minima
and the string will converge to a MEP connecting them.

Next, we show that, with another choice of boundary con-
ditions for the string, the string method can be modified to find
saddle points around a given minimum.

III. THE CLIMBING STRING METHOD FOR SADDLE
POINT SEARCH

Let a be the location of a minimum of the potential V (x).
We are interested in finding the saddle points that are directly
connected to a, i.e., saddle points that lie on the boundary of
the basin of attraction of a. To this end we start with an initial
string ϕ(α, 0) = ψ(α), with one end point fixed at a, ψ(0)
= a, and the other at an initial guess for the location of the
saddle—this guess can be quite bad, e.g, by taking ψ(1) close
to a. We then evolve the string using (4) by keeping one end-
point fixed at a,

ϕ(0, t) = a, (6)

and using the following modified boundary condition at the
other end:

ϕ̇(1, t) = −∇V (ϕ) + ν(∇V (ϕ), τ̂ )τ̂ . (7)

Here τ̂ is the unit tangent vector to the string at α = 1 and ν is
a parameter larger than 1. Equation (7) means that the poten-
tial force acting on the final point is reversed (then rescaled by
ν̃ = ν − 1) in the direction tangent to the string. This makes
the final point climb uphill on the potential energy surface in
this tangent direction while following the original steepest de-
scent dynamics in the subspace perpendicular to it. The value
of ν controls the ascent speed of the final point relative to the
steepest descent dynamics in the perpendicular subspace. The
larger the parameter ν, the faster the final point moves in the
tangent direction. In the examples below we fixed ν = 2.

Equation (4) together with the boundary conditions (6)
and (7) forms a closed system which is solved with initial
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condition ϕ(α, 0) = ψ(α) until a steady state is reached. At
the steady state, the end point of the string moving according
to (7) will converge to a saddle point, and the string will con-
verge to the MEP connecting this saddle point and the mini-
mum at a.

For complex systems, the final point of the string may
escape from the basin of the minimum and converge to a sad-
dle point which is not directly connected to the minimum. To
prevent this from happening, we impose a constraint on the
above dynamics and require the potential energy to be mono-
tonically increasing along the string from the minimum at α

= 0 to the final point at α = 1. This guarantees that the ob-
tained saddle point lies on the boundary of the basin of the
minimum a. In practice, the constraint can be easily imposed
by truncating the string at the point where the potential energy
attains the (first) maximum, followed by a reparametrization
of the string using normalized arc-length.

Next, we describe in detail how the various steps de-
scribed above are implemented in practice.

A. Step 1: Evolution of the string

As in the string method, the string is discretized into a
sequence of images {ϕ0, ϕ1, . . . , ϕN}, where ϕi = ϕ(i'α, t)
is the ith image along the string at time t and 'α = 1/N . The
intermediate images are then evolved over one time step 't

according to

ϕ̇i = −(∇V )⊥(ϕi), i = 1, . . . , N − 1, (8)

where the projection of the force is defined in (3) and the tan-
gent vectors τ̂ are computed using an upwinding finite differ-
ence scheme.7 Alternatively, in the simplified string method,
the bare potential force (without any projection) can also be
used to evolve the intermediate images. Concerning the end-
points, the first image is being kept fixed at a, ϕ0 = a and the
last image follows

ϕ̇N = −∇V (ϕN ) + ν(∇V (ϕN ), τ̂N )τ̂N, (9)

where ν > 1 (e.g., ν = 2) and τ̂N denotes the unit tangent
vector at the final point of the string, which is computed using
the one-sided finite difference,

τ̂N = ϕN − ϕN−1

|ϕN − ϕN−1|
, (10)

where | · | denotes the Euclidean norm. Equations (8) and (9)
can be integrated in time by any suitable ODE solver, e.g., the
forward Euler method,

ϕ∗
i = ϕk

i − 't (∇V )⊥
(
ϕk

i

)
, i = 1, . . . , N − 1, (11)

where ϕk
i = ϕ(i'α, k't), and similarly for (9). Other ODE

solvers, e.g., the Runge-Kutta methods, can be used as well.
The result of Step 1 is a new sequence of images,

{ϕ∗
0 , ϕ∗

1 , . . . ,ϕ∗
N }. Note that Step 1, which is the most costly

since it is the only one involving force calculations, can be
trivially parallelized since all the images move independently
of each other.

B. Step 2: Imposing the monotonic-energy constraint

The purpose of this step is to prevent the end point ϕk
N

from converging to a saddle point which is not on the bound-
ary of the basin of the minimum located at a. At each time
step, the potential energy along the string, {V (ϕ∗

i ), i = 0,

1, . . . N}, is computed. If the sequence of the potential energy
is monotonically increasing, then we keep the whole string
and go to the reparametrization step; otherwise we denote by
J the index at which the first maximum of the potential en-
ergy is attained, and define the new string by the truncated
sequence

{ϕ∗
0 , ϕ∗

1 , . . . , ϕ∗
J−1}. (12)

C. Step 3: Reparametrization of the string

The purpose of this step is to impose the equal-arclength
constraint (or other parametrization) so that the discrete im-
ages remain evenly distributed along the string. It can be done
using interpolation techniques in a straightforward manner.
It consists of two steps: first we interpolate across the dis-
crete images obtained from Step 2, then we compute a set
of new images on a uniform grid. Given the images {ϕ∗

i ,

i = 0, . . . ,M} (where M = J − 1 if the string was truncated
and M = N otherwise), a continuous curve γ can be con-
structed by interpolating these images using, e.g., linear in-
terpolation, splines, etc. This gives an analytic representation
for γ in the form of γ = {ϕ(α): α ∈ [0, 1]} whose specific
form depends on the parametrization we choose, such as the
normalized arc-length. Using this continuous representation
of the string, it is straightforward to obtain N new discrete
images on a uniform grid,

ϕk+1
i = ϕ(i/N ), i = 0, 1, . . . , N. (13)

In the simplest case when we choose to enforce the equal
arclength parametrization, the problem is simply that of in-
terpolating given values {ϕ∗

i } defined on a non-uniform mesh
{α∗

i , i = 0, . . . ,M}, onto a uniform mesh with N points. To
do so, we first compute the arc-length at the given images,

s0 = 0, si = si−1 + |ϕ∗
i − ϕ∗

i−1|, (14)

for i = 1, 2, . . . , M. The mesh {α∗
i } is then obtained by nor-

malizing {si}:

α∗
i = si/sM, i = 0, 1, . . . ,M. (15)

The new images ϕk+1
i on the uniform grid {αi = i/N, i = 0, 1,

. . . , N} are then computed by cubic polynomial or cubic spline
interpolation across the points {(α∗

i ,ϕ
∗
i ), i = 0, 1, . . . , M}.

At the end of Step 3, we have computed an up-
dated sequence of equidistant images along the string,
{ϕk+1

0 ,ϕk+1
1 , . . . ,ϕk+1

N }, and we can go back to Step 1 for an-
other iteration. This process is continued until convergence,
which is monitored according to

max
{

max
1<i<N

∣∣(∇V )⊥
(
ϕk

i

)∣∣,
∣∣∇V (ϕk

N )
∣∣} < δs , (16)

where the norms are the maximum norm and δs is a prescribed
tolerance.
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IV. ACCELERATION OF THE CONVERGENCE BY
INEXACT NEWTON METHOD

After the final point of the string has been evolved to the
vicinity of a saddle point, as measured by the error in (16), it
may be useful to switch the computation to a second phase to
accelerate the convergence. Specifically, we apply an inexact
Newton method to improve the accuracy of the approximation
to the saddle point. The final point of the string obtained in the
first phase is used as the initial guess for the inexact Newton
method. Note that in the second phase we evolve only a single
image (the final point of the string), which is denoted by x
below, but not the entire string.

The initial guess for the inexact Newton method is given
by the final point of the string: x0 = ϕN. At step k, the image
is updated as follows:

xk+1 = xk + pk, (17)

where the step vector pk satisfies the condition:

|Hkpk + ∇V (xk)| ≤ η|∇V (xk)|, (18)

where the norm is the Euclidean norm and Hk = ∇2V (xk) is
the Hessian of the potential energy at xk, and η is a prescribed
small parameter called the forcing parameter. The iteration is
terminated when the maximum norm of the potential force
falls below some tolerance δn: |∇V (xk)| < δn.

To find a step vector pk satisfying the condition in (18),
we approximately solve the following linear system:

Hkpk = −∇V (xk). (19)

The Hessian matrix Hk in (19) is symmetric but in general in-
definite since xk is in the vicinity of a saddle point. We solve
(19) using an iterative method based on Krylov subspaces and
the LQ factorization.30 This inner iteration is terminated when
the relative residue falls below the prescribed forcing param-
eter η, i.e., when condition (18) is met. Details of the algo-
rithm are given in Appendix A. The iterative method requires
a matrix-vector multiplication of the form Hku for some vec-
tor u at each iteration. To avoid the computation of the Hes-
sian matrix, we employ the standard practice and use a finite
difference to approximate the product:16, 26

Hku = ∇V (xk + εu) − ∇V (xk)
ε

, (20)

where ε is a small parameter (ε = 10−3 in the numerical ex-
amples). The approximation only requires the evaluation of
potential forces. More accurate approximation using central
finite difference can be used as well.

It can be shown that, under mild condition on the smooth-
ness of the potential energy near the saddle point x*, the se-
quence of iterates generated by (17) converges to x*, provided
the initial guess x0 is sufficiently close to x* and η is suffi-
ciently small.31 The convergence rate depends on the choice
of η. For example, if η → 0 as k → ∞, then the conver-
gence is super-linear, and if η = O(|∇V (xk)|) then the con-
vergence is quadratic. In practice, it only takes a few steps for
the image to converge to a saddle point with high accuracy.

V. NUMERICAL EXAMPLES

We illustrate the performance of the numerical method
proposed above using the system of a seven-atom cluster on
a substrate (see Fig. 1). The cluster consists of seven atoms.
The substrate is modeled by six layers of atoms with each
layer containing 56 atoms. Periodic boundary conditions are
used in the x and y directions, respectively. The system has
been extensively studied in the literature21 and it has a large
number of saddle points.

The interaction between the atoms is modeled by the pair-
wise Morse potential:

V (r) = D(e−2α(r−r0) − 2e−α(r−r0)), (21)

where r is the distance between the atoms, D = 0.7102,
α = 1.6047, and r0 = 2.8970. Figure 1 shows the configu-
ration of the system at the minimum of the potential energy.

The numerical methods will be illustrated using three
examples. In the first example in Sec. V A, we consider a
three-dimensional problem in which only the lower-left edge
atom in the cluster is free to move. We use this system to il-
lustrate the performance of the climbing string method and
its convergence region. The second example in Sec. V B is
used to illustrate the local convergence of the inexact Newton
method. In the third example in Sec. V C, we apply the com-
plete algorithm (the climbing string and the inexact Newton
method) to compute the saddle points starting from the mini-
mum, and compare the performance of the algorithm with the
dimer method.

A. Performance of the climbing string method

For illustrative purpose, we first consider a simple case in
which only the lower-left atom in the cluster is free to move
while all the other atoms are fixed in their minimum configu-
ration. The dimension of this problem is 3.

The convergence history of the string projected onto
the xy plane is shown in Fig. 2. The linear interpolation

x

y

FIG. 1. The configuration of the seven-atom cluster on a substrate at the
minimum of the potential energy.
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(a)

(b)

(c)

(d)

FIG. 2. Snapshots of the climbing string at different times. The string is pro-
jected onto the xy plane. The surface is the energy Ṽ (x, y) = minz V (x, y, z).
(a) The initial string; (b) the string at a time when the potential energy
along the string becomes non-monotone; (c) the string after truncation
at the point where the potential energy attains its first maxima; (d) the
converged string and the saddle point located by the final point of the
string.

4 6 8 10 12

4

6

8

10

x

y

FIG. 3. The five saddle points (filled circles) and their corresponding con-
vergence region in the 3D problem. The minimum is shown as the filled
square near the center of figure. The lines are the level curves of the energy
Ṽ (x, y) = minz V (x, y, z).

between the minimum and an image obtained from a pertur-
bation of the minimum is used as initial string which is shown
in Fig. 2(a). Figure 2(b) shows the string at a later time when
the potential energy along the string becomes non-monotonic,
which indicates the end point of the string might have escaped
from the basin of the minimum. The string is then truncated
at the maxima of the potential energy along it. Figure 2(c)
shows the string after the truncation. Finally, Fig. 2(d) shows
the saddle point that the final point of the string converged to
and the MEP between the minimum and the saddle point.

The system has 5 saddle points around the minimum.
The convergence regions of these saddle points are shown in
Fig. 3. The initial string is constructed by the linear interpola-
tion between the minimum (the square near the center of the
figure) and a perturbed state from the minimum. The string
is evolved according to the climbing string algorithm and it
converges to one of the five saddle points (the filled circles in
Fig. 3). The five regions indicated by the solid colors are the
convergence regions of the five saddle points, respectively.
When the (x, y) coordinates of the final point of the initial
string lies in one of the five regions (its z coordinate is chosen
to minimize the potential energy), it converges to the corre-
sponding saddle point within the region. Note that the conver-
gence region depends on the choice of the initial string. In the
present example, we used linear interpolation to construct the
initial string. We also note that the convergence regions are
larger than the basin of attraction of the minimum. Indeed,
the climbing string method does not require the initial data to
be within the basin of attraction for convergence to a saddle
point on the boundary of the basin.

B. Performance of the inexact Newton method

The performance of the inexact Newton method is illus-
trated using a high dimensional example. In this example, the
atoms in the 7-atom cluster and those in the top three layers
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of the substrate are free to move, while the other atoms are
frozen in space. The system has dimension 525 in this case.

Since our purpose here is to illustrate the local conver-
gence of the inexact Newton method, the initial guess is pre-
pared by a random perturbation of a pre-computed saddle
point. Each atom in the system is randomly displaced from
the saddle point configuration by an amount drawn from the
uniform distribution on [0, 0.1]. We carried out 25 runs from
the perturbation of 25 different saddle points.

Besides the parameter ε used in the finite difference ap-
proximation of the Hessian-vector product (20), which takes
the value 10−3 in this work, the other only parameter we need
to prescribe is the forcing parameter η. The forcing parameter
controls the accuracy of the solution to the linear system (19).
With η = 0.01, the inexact Newton method takes an average
of 189 force evaluations in 5 iterations to reduce the maxi-
mum norm of the force |∇V | to below δn = 10−6. A smaller
value of η requires fewer Newton iterations. On the other
hand, each Newton iteration needs more force evaluations
since it requires a more accurate solution of the linear system
with a smaller η. As a result, the total number of force evalua-
tions slightly increases when η is decreased. This is shown in
Fig. 4, where the error (measured by the magnitude of the
potential force) is plotted against the number of force evalu-
ations for the convergence to the 25 different saddle points.
The numerical results are obtained using different choices of
η: η = 0.1 (circles), η = 0.01 (stars), and η = 0.001 (squares).
Overall, the computational cost in terms of the number of
force evaluations is not very sensitive to the value of η. In
this example, two orders of difference in η only changes the
average number of force evaluations by less than a factor of
2 - from NNewton = 158 for η = 0.1 to NNewton = 276 for
η = 0.001.

C. Performance of the complete algorithm

In this example, we start from the minimum configura-
tion of the 7-atom cluster system and compute saddle points
around the minimum in the 525D space using the acceler-

0 100 200 300
10

−8

10
−6

10
−4

10
−2

10
0

N
Newton

||∇
V

||

FIG. 4. Convergence history of the inexact Newton method to different sad-
dle points and for different choice of the forcing parameter η: η = 0.1 (cir-
cles), η = 0.01 (stars), and η = 0.001 (squares). NNewton is the number of
force evaluations. Each cluster corresponds to one inexact Newton iteration.

ated climbing string method. The computation proceeds as
follows:

1. Preparation of the initial data. The configuration of the
minimum is perturbed by randomly displacing the atoms
in the cluster by 'x. This gives the final point of the ini-
tial string. The initial string is then obtained by linearly
interpolating the minimum and the final point. The string
is discretized using N points. N ranges from 5 to 20.

2. Evolution of the string. The climbing string method is
applied to evolve the string. The time step 't = 0.03 is
used in this example. The string is reparametrized every
10 time steps. The evolution of the string is terminated
when the condition in (16) is met, i.e., when the force on
the string falls below δs = 0.01.

3. Acceleration by the inexact Newton method. The final
point of the string from the previous step is used as
the initial data for the inexact Newton method. The
forcing parameter η = 0.01. The computation is termi-
nated when the maximum norm of the force falls below
δn = 10−6.

The performance of the above algorithm is shown in
Table I. The data in each row are based on 100 runs from dif-
ferent initial data. With N = 20 points along the string, each
run successfully converged to a saddle point directly con-
nected to the minimum, as indicated by the success ratio ϱ = 1
in the table. The success ratio decreases for smaller N, due to
the discretization error and a poor representation of the string
with the few number of points. However, even with as few as
N = 5 points, we are still able to achieve a success ratio 0.96
(i.e., 96 of the 100 runs converged to a saddle point directly
connected to the minima) for 'x = 0.1 and 0.71 for 'x = 0.5.

TABLE I. Performance of the accelerated climbing string method for the
example of 7-atom cluster in the 525d space. The performance of the dimer
method is shown for comparison. The data are based on 100 runs from differ-
ent initial data, which are prepared by randomly displacing the minimum by
'x. N is the number of images along the string, ϱ is the ratio of the number of
runs that converged to a saddle point directly connected to the minimum, and
ns is the number of different saddle points obtained in these runs. Nstring is
the average number of steps (i.e., the number of force evaluations per image)
in the climbing string method, NNewton is the average number of force evalu-
ations in the inexact Newton method, Ntotal = N ∗ Nstring + NNewton is the
total number of force evaluations. Ndimer and Nrelax are the average number of
force evaluations in the dimer method and in the relaxation step, respectively.

Method N ϱ ns Nstring NNewton Ntotal

String 5 0.96 20 475 241 2616
'x = 0.1 8 0.98 25 468 244 3988

16 0.97 9 493 259 8147
20 1.00 8 507 266 10406

String 5 0.71 21 773 229 4049
'x = 0.5 8 0.90 38 741 221 6149

16 0.93 31 648 227 10595
20 1.00 27 619 213 12592

'x ϱ ns Ndimer Nrelax Ntotal

Dimer 0.1 0.40 24 5522 1490 7012
0.5 0.43 28 4761 1772 6533

Dimer (CG) 0.1 0.31 19 1551 1660 3211
0.5 0.39 30 1190 1606 2796
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The last three columns show the average number of force
evaluations per saddle point: Nstring is the number of force
evaluations per image (i.e., the number of time steps) in the
first phase of the computation, NNewton is the number of force
evaluations in the acceleration phase by Newton method, and
the last column is the total number of force evaluations for the
whole string, i.e., Ntotal = N ∗ Nstring + NNewton. On aver-
age, it requires several hundred steps to evolve the final point
of the string from the neighborhood of the minimum to the
vicinity of a saddle point in the first phase, and another sev-
eral hundred force evaluations to improve the accuracy of the
approximation in the second phase. These numbers are insen-
sitive to the number of images that are used to discretize the
string. When the number of images N increases, the compu-
tation becomes more costly. In fact, the total number of force
evaluations for the whole string increases linearly with the
number of images. However, we note that the string method
can be easily parallelized and the force of the different images
along the string can be computed simultaneously on different
processors. Therefore, when implemented on a parallel com-
puter with N processors, the efficiency of the algorithm is de-
termined by the number of force evaluations per image (i.e.,
Nstring + NNewton) instead of Ntotal.

The climbing string method tends to locate low-barrier
saddle points. Using a relatively small displacement 'x
= 0.1 in the preparation of the initial data, 57 of the 100
strings (N = 20) converged to saddle points with the lowest
barrier 'V = 0.6011, 37 strings converged to saddle points
with the second lowest barrier 'V = 0.6195, and the rest
converged to saddle points of barrier about 'V ≈ 1.6. We
obtained 8 different saddle points from the 100 runs.

By increasing the magnitude of the perturbation to 'x
= 0.5, the number of different saddle points obtained using
the climbing string method with N = 20 increased to 27. The
histogram of the energy barriers obtained from the 100 runs is
shown in Fig. 5 (upper panel). Similar to the previous result,
the climbing string method finds a saddle point of low energy
barrier with high probability. In Ref. 22, it was reported that
ART and OGS methods also found lower lying saddle point
preferably in a given direction in the example of the diffusion
of a water molecule on NaCl(001) surface.

The performance of the climbing string method is
compared with the dimer method in Table I. The dimer
method is applied to the same set of initial data as in the
climbing string method. The initial orientation of the dimer is
chosen randomly. The dimer method has 6 parameters. In the
computation, we used the values suggested in Ref. 21 (see
Appendix B).

The dimer method has no guarantee that the computed
saddle point lies on the boundary of the basin of the mini-
mum we started with. An additional step is needed at the end
of each run to check to which minima the obtained saddle
point is connected. Therefore, the complete algorithm con-
sists of two steps. In the first step, the system is evolved to-
wards a saddle point following the eigenvector correspond-
ing to the lowest eigenvalue of the Hessian; the algorithm is
given in Appendix B. This step is terminated when the poten-
tial force falls below δn = 10−6. In the second step, the system
is slightly perturbed from the computed saddle point in the un-
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FIG. 5. Histogram of the energy barriers at the saddle points obtained from
100 runs using the climbing string method (upper panel, N = 20) and the
dimer method (lower panel). The initial data were obtained by randomly dis-
placing the minimum by 'x = 0.5. The climbing string method locates a
saddle point of low energy with higher probability. Other runs with fewer
images along the string exhibit similar behavior.

stable direction (forward and backward), then it is relaxed to
the nearest minimum following the steepest descent dynam-
ics. The steepest descent dynamics is solved using the forward
Euler method with time step 't = 0.03. The relaxation is ter-
minated when the distance of the system to the minimum that
we began with falls below 0.1 or the force falls below 10−3.
In the former case the saddle point is directly connected to the
minimum and the search is successful, while in the later case
it is not. For the 100 runs, the success ratio is ϱ = 0.4 when the
initial perturbation 'x = 0.1 and ϱ = 0.43 when 'x = 0.5.
About half of the searches converged to saddle points that are
not directly connected to the minimum or failed to converge.

The columns Ndimer and Nrelax in Table I show the number
of force evaluations in the two steps, respectively. These num-
bers were averaged over the runs that successfully converged
to a saddle point. The last column is the total number of force
evaluations: Ntotal = Ndimer + Nrelax.

The histogram of the energy barriers obtained from the
successful searches (i.e., the runs that converged to a saddle
point directly connected to the minimum) with 'x = 0.5 is
shown in Fig. 5 (lower panel). Compared to the histogram
obtained from the climbing string method, the distribution is
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more random, and the result is more sensitive to the initial
data. With the perturbation 'x = 0.1, 8 of the 100 searches
found the lowest energy barrier 'V = 0.6011 (not shown),
while with 'x = 0.5, none of the 100 searches found the low-
est energy barrier as seen in the histogram.

As pointed out in Ref. 20, the efficiency of the dimer
method can be improved by using conjugate gradient (CG)
directions in the evolution of the dimer. Indeed, we found that
using conjugate gradient directions can reduce the total num-
ber of force evaluations Ntotal by a half. The algorithm is given
in Appendix B. The success ratio slightly reduces to ϱ = 0.31
for 'x = 0.1 and ϱ = 0.39 for 'x = 0.5. More than half of
the 100 runs either converged to a saddle point not directly
connected to the minimum or failed to converge.

VI. CONCLUSION

In this paper the string method originally proposed for
the computation of minimum energy paths was extended to
the computation of saddle points around a given minimum.
The numerical method consists of evolving a string on the po-
tential energy landscape with one end point fixed at the min-
imum, while the other end point (the climbing image) climbs
uphill towards a saddle point until the potential force falls
below a threshold. We also showed how the convergence of
the final state of the string to the saddle point can be acceler-
ated using an inexact Newton method in the final stage of the
computation.

Compared to the existing methods for saddle points
search, CSM uses a string instead of one image. This gives
us control on the evolution of the climbing image based on
the potential energy along the string. When the string is dis-
cretized using enough images, the saddle point located by the
final state of the string is guaranteed to be directly connected
to the minimum, i.e., it lies on the boundary of the basin of
this minimum. In contrast, all the existing numerical methods
based on one image have the difficulty that they may converge
to irrelevant saddle points that are not directly connected to
the given minimum.

There is no doubt that evolving a string is more costly
than the methods using only one image. However, the method
can be easily parallelized since the images along the string are
only weakly coupled to each other. In particular, the compu-
tation of the forces and the energies of the different images
along the string can be carried out on different processors. In
addition, the evolution of the string with multiple images is
only run for a short time and it is to provide good initial data
for the more efficient Newton method. Once the final state of
the string is evolved to a vicinity of a saddle point, the compu-
tation is then accelerated by the Newton method. In the sec-
ond phase, only the final state of the string is evolved.

CSM is simple and easy to implement. One essential pa-
rameter that the user needs to prescribe is the tolerance δs
for the termination of the evolution of the climbing string.
The choice of δs is problem-dependent, and it relies on the
characteristics of the potential energy near the saddle point.
In general, the smaller the parameter δs, the more likely the
inexact Newton method is to converge. Of course, a smaller
δs requires more iterations and more force evaluations. In the

inexact Newton method, the user also needs to specify the
forcing parameter η which controls the accuracy of the ap-
proximate solution to the linear system in the inexact New-
ton method. However, our numerical examples show that the
computational cost in terms of force evaluations is insensitive
to the choice of this forcing parameter.

Our numerical examples also show that CSM has a large
convergence region. In particular, it does not require the initial
data to be within the basin of attraction of the minimum. CSM
also tends to locate low-barrier saddle points. These saddle
points are more relevant to noise-induced transitions out of
the basin of the minimum. In contrast, the existing numerical
methods, such as the dimer method, are more sensitive to the
choice of the initial data.

Two interesting questions are how to avoid the conver-
gence of the string to a saddle point that has already been
found, and how to systematically enumerate as many sad-
dle points as possible. This second goal could, for instance,
be achieved by letting the climbing image make a random
walk (or a biased random walk) on the potential energy sur-
face while keeping the other components of the algorithm un-
changed, in particular, truncating the string at the first max-
imum of the energy along it to prevent the climbing image
from escaping the basin of the minimum of interest. Another
question is how to choose the number of images and how to
distribute these images along the string in order to optimize
the efficiency of the numerical method. These issues will be
studied in future work.
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APPENDIX A: ALGORITHM FOR SOLVING
SYMMETRIC INDEFINITE LINEAR SYSTEMS

The linear system in (19) is solved using an iterative
method. The algorithm is based on the Lanczos iteration and
the LQ factorization of tridiagonal matrices.30 To simplify the
notation, let us write the linear system as Hp = f, where H is a
symmetric matrix, and without loss of generality we assume
| f | = 1. Starting with an initial guess p(0) (p(0) = 0 was used in
the numerical examples), the iterative method generates a se-
quence of iterates {p(1), p(2), . . . , p(n), . . . }. These approximate
solutions are computed from the successive Krylov subspaces
of H generated by f.

At the nth iteration, the matrix H is first reduced to a sym-
metric n × n tridiagonal matrix T(n):

V (n)T HV (n) = T (n). (A1)

This triangularization is done by the standard Lanczos itera-
tion in which the vectors {v1, v2, . . . , vn} forming the columns
of V (n), and the scalars {α1, α2, . . . , αn} and {β2, β3, . . . , βn}
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forming, respectively, the diagonal and sub-diagonal of T(n)

are obtained from

v0 = 0, v1 = f/β1, β1 = |f |,
w = Hvj − αj vj − βj vj−1, αj = vT

j Hvj , (A2)

vj+1 = w/βj+1, βj+1 = |w|,

for j = 1, 2, . . . . The approximate solution p(n) is found by
first solving the equation

T (n)y(n) = β1e1, (A3)

where e1 = (1, 0, . . . , 0)T, then setting

p(n) = V (n)y(n). (A4)

The tridiagonal system (A3) is solved using the LQ
factorization.

Following the above iterative procedure, we obtain a
sequence of approximate solutions to (19). The iteration is
terminated when the relative residue of p(n) falls below the
threshold η as required in (18).

As a byproduct of the above procedure, we may compute
the approximate extreme eigenvalues and the corresponding
eigenvectors for the Hessian H, in particular the lowest eigen-
value and the corresponding eigenvector, using the tridiagonal
matrix T(n). This strategy was used in the activation-relaxation
technique18, 19 to compute the unstable direction near the sad-
dle point. The system climbs uphill on the potential energy
surface in the unstable direction while following the relax-
ation dynamics in the perpendicular directions. In the algo-
rithm developed in this paper, the Lanczos iteration (A2) is
used in different purpose—the aim here is to compute the step
vector p in the inexact Newton method.

The algorithm for solving (19) is as follows.

Algorithm A (Lanczos iteration, symmetric LQ):

p0 = 0, v0 = 0, v1 = f , w̄0 = 0, β1 = 1, e0 = 1,
s−1 = s0 = 0, c−1 = c0 = −1, ζ−1 = ζ 0 = 1

for k = 1, 2, . . .
αk = vT

k Hvk

u = Hvk − αkvk − βkvk−1

βk + 1 = |u|
vk+1 = u/βk+1

εk = sk − 2βk

δ̄k = −ck−2βk

δk = ck−1δ̄k + sk−1αk

γ̄k = sk−1δ̄k − ck−1αk

γk =
(
γ̄ 2

k + β2
k+1

)1/2

ck = γ̄k/γk

sk = βk + 1/γ k

ζ k = −(εkζ k − 2 + δkζ k − 1)/γ k

w̄k = sk−1w̄k−1 − ck−1vk

ek = ek − 1|ck − 1sk/ck|
if ek ≤ η

p∗ = pk−1 + ζkw̄k/ck

stop
endif
wk = ckw̄k + skvk+1

pk = pk−1 + ζkwk

k = k + 1
end for

APPENDIX B: ALGORITHM OF THE DIMER METHOD

The dimer method evolves an image to a saddle point
following the direction of the eigenvector corresponding to
the lowest eigenvalue of the Hessian. At each iteration,
the lowest eigenvalue and the corresponding eigenvector are
first estimated by rotation of a dimer centered at the cur-
rent iterate, then the system is translated based on a mod-
ified potential force. The algorithms given below are from
Refs. 20 and 21.

Denote the center of the dimer by x and its orientation
by N̂ . F = −∇V (x) is the potential force at x. The algorithm
below computes the lowest eigenvalue of the Hessian at x and
the corresponding eigenvector.

Algorithm B1 (Rotation):

for k = 1, 2, . . .
x1 = x + δxDN̂

F1 = −∇V (x1)
F2 = 2F − F1

F12 = F1 − F2

F⊥ = (F12 − (F12 · N̂ )N̂)/δxD

if |F⊥| < δFD

λ = −F12 · N̂/(2δxD)
stop

endif
/̂ = F⊥/|F⊥|
N̂∗ = (cos δθD)N̂ + (sin δθD)/̂
/̂∗ = −(sin δθD)N̂ + (cos δθD)/̂
x∗

1 = x + δxDN̂∗

F ∗
1 = −∇V (x∗

1 )
F ∗

2 = 2F − F ∗
1

F ∗
12 = F ∗

1 − F ∗
2

f ∗⊥ = F ∗
12 · /̂∗/δxD

fr = (f*⊥ + |F⊥|)/2
c = (f*⊥ − |F⊥|)/δθD

'θ = − (arctan (2fr/c) + δθD) /2
if c > 0

'θ := 'θ + π /2
endif
N̂ = (cos 'θ )N̂∗ + (sin 'θ )/̂∗

N̂ := N̂/|N̂ |
if k = nmax

D

λ∗ = −F ∗
12 · N̂∗/(2δxD)

F ∗⊥ = (F ∗
12 − (F ∗

12 · N̂∗)N̂∗)/δxD

λ = λ∗ − 1
2 |F ∗⊥| tan ('θ − δθD/2)

stop
endif
k:=k+1

end for

After the lowest eigenvalue λ and the corresponding
eigenvector N̂ are computed, the dimer is translated by a mod-
ified potential force in which the component of the potential
force in the direction N̂ is reversed. In this paper, we imple-
mented two algorithms for the translation: One translates the
dimer in the direction of the modified potential force (Algo-
rithm B2), and the other translates the dimer in the conjugate
gradient direction (Algorithm B3). As before, F denotes the
potential force at the center of the dimer x.
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Algorithm B2 (Translation):

if λ > 0
Ñ = −sign(F · N̂ )N̂
x := x + 'xmaxÑ

else
F̃ = F − 2(F · N̂ )N̂
Ñ = F̃ /|F̃ |
x∗ = x + δxlmÑ

F ∗ = −∇V (x∗)
F̃ ∗ = F ∗ − 2(F ∗ · N̂ )N̂
ft = (F̃ ∗ + F̃ ) · Ñ/2
c = (F̃ ∗ − F̃ ) · Ñ/δxlm

'x = −ft/c + δxlm/2
'x: = sign('x) min ('xmax, |'x|)
x := x + 'xÑ

endif

Algorithm B3 (Translation CG):

if λ > 0
F̃ = −(F · N̂ )N̂

else
F̃ = F − 2(F · N̂ )N̂

endif
γ = (F̃ − F̃ old ) · F̃ /|F̃ |2
G = F̃ + γGold

Ñ = G/|G|
if λ > 0

x := x + 'xmaxÑ

else
x∗ = x + δxlmÑ

F ∗ = −∇V (x∗)
F̃ ∗ = F ∗ − 2(F ∗ · N̂ )N̂
ft = (F̃ ∗ + F̃ ) · Ñ/2
c = (F̃ ∗ − F̃ ) · Ñ/δxlm

'x = −ft/c + δxlm/2
'x: = sign('x) min ('xmax, |'x|)
x := x + 'xÑ

endif

In the above algorithm, F̃ old and G̃old are the modified force
and the conjugate gradient direction in the previous iteration,
respectively.

The rotation and translation steps are repeated until the
maximum norm of the potential force at x falls below δn.
There are a number of parameters whose values need to be
specified in the algorithm. In the numerical examples, we used
the values suggested in Ref. 21: δxD = 10−4, δFD = 0.1, δθD
= 10−4, nmax

D = 1, 'xmax = 0.1, δxlm = 10−3.
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