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SHRINKING DIMER DYNAMICS AND ITS APPLICATIONS TO
SADDLE POINT SEARCH∗

JINGYAN ZHANG† AND QIANG DU†

Abstract. Saddle point search on an energy surface has broad applications in fields like materi-
als science, physics, chemistry, and biology. In this paper, we present the shrinking dimer dynamics
(SDD), a dynamic system which can be applied to locate a transition state on an energy surface
corresponding to an index-1 saddle point where the Hessian has a negative eigenvalue. By search-
ing for the saddle point and the associated unstable direction simultaneously in a single dynamic
system defined in an extended space, we show that unstable index-1 saddle points of the energy
become linearly stable steady equilibria of the SDD which makes the SDD a robust approach for
the computation of saddle points. The time discretization of the SDD is connected to various it-
erative algorithms, including the popular dimer method used in many practical applications. Our
study of these discretization schemes lays a rigorous mathematical foundation for the corresponding
iterative saddle point search algorithms. Both linear local asymptotic stability analysis and optimal
error reduction (convergence) rates are presented and further confirmed by numerical experiments.
Global convergence and nonlinear asymptotic stability are also illustrated for some simpler systems.
Applications of the SDD in both finite- and infinite-dimensional energy spaces are discussed.
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1. Introduction. Saddle point search has been of broad interest in many areas
of scientific application, such as predicting nucleation rates in solid state transfor-
mation [19, 21, 29, 32] and computing transition rates in chemical reactions and
computational biology [8, 14, 28].

There have been a variety of algorithms developed and successfully implemented
to compute saddle points of a given energy surface. Generally speaking, methods for
finding saddle points can be divided into chain-of-state methods involving two end
states and surface walking methods from a single state [20]. Some typical examples
of the former are given by the classical minimax method [27], the nudged elastic band
method [17, 18], and the string method [10, 11], while examples of the latter include
the gentlest ascent method developed in [7], the eigenvector-following method [6], the
activation-relaxation technique [24], the trajectory-following algorithm [15, 30], the
step and slide method [23], and the popular dimer method [16]. In comparison with
the practical success of using these algorithms to probe complex energy surfaces in
many large scale simulations, there has been relatively less mathematical development
and rigorous numerical analysis, because much of the theory developed in the numer-
ical analysis community has been devoted to problems with a prescribed saddle point
structure (see [2] for a review and related references on the latter subject). This has
begun to change as illustrated, for instance, by the studies of algorithmic convergence
and stability in recent works [5, 12, 30].
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1900 JINGYAN ZHANG AND QIANG DU

In this paper, we mainly focus on formulating and analyzing continuous dynamics
and discrete algorithms belonging to a special class of surface walking methods for
locating saddle points, namely, that represented by the gentlest ascent method and the
dimer method. The former was developed by Crippen and Scheraga [7] as an algorithm
for moving from a minimum position on an energy surface to a neighboring minimum
via an intervening saddle point. Recently, E and Zhou developed the gentlest ascent
dynamics (GAD) as a dynamic system reformulation of the gentlest ascent method,
and examined the linear stability of saddle points as the steady states [12]. While both
the gentlest ascent method and GAD require the evaluation of second-order derivatives
of the energy, the dimer method developed by Henkelman and Jonsson [16] uses only
first-order derivatives of the energy, the so-called natural forces, via a dimer system
consisting of two nearby points x1 and x2 separated by a small distance (that is, with a
small dimer length l = |x2−x1|). The dimer method works by alternately performing
rotation and translation steps using only the gradient of the energy. Later it was
argued that the method becomes more effective if the rotation step is performed until
convergence for each translation step, instead of performing a single rotation after the
translation [25]. The implementation was further improved by Kastner and Sherwood
in [20] to achieve superlinear convergence for the rotation step by using the L-BFGS
algorithm. They also reduced the number of gradient calculations per dimer iteration
through an extrapolation of the gradients during repeated dimer rotations.

Motivated by the above works, we develop a shrinking dimer dynamics (SDD) to
compute index-1 saddle points in this work. The original dimer method [16] may be
viewed as a time discretization of the continuous SDD. This draws the analogy to the
formulation of the GAD [12] as a continuous dynamic system corresponding to the
(discrete) gentlest ascent method [7]. Indeed, adopting a dynamic system approach,
such as a gradient flow of the energy, has been an immensely popular approach in
both numerical optimization and mathematical analysis of variational problems. In
the context of saddle point searching, the transformation to a continuous dynamic
system has also been utilized in the literature to expedite the mathematical under-
standing; see, for instance, the analysis of string methods presented in [4] and the tra-
jectory following method [15] for min-max saddle systems when the unstable modes
can be identified a priori. For dimer methods, a dynamic system formulation was also
proposed in [26] as second-order differential equations in time. Such transformations
allow one to utilize many well-established tools from the dynamic system theory to rig-
orously analyze the convergence and stability properties of the underlying numerical
algorithms. It is important to note that the unstable modes are generally unknown in
practice; thus they must be computed as part of the solutions for some extended sys-
tems that provide the saddle position together with a characterization of its unstable
(or stable) modes. The SDD gives a special example of such extended systems.

In the current work, we consider only index-1 saddle points which in the most
generic setting correspond to transition states with the lowest energy barriers.1 In
addition, for an index-1 saddle point, only a single unstable direction of the corre-
sponding Hessian needs to be identified, which leads to a smaller extended dynamic
system, in comparison with the case of saddle points with higher indices. To make the
converged steady state solution of the new dynamic system consistent with the saddle
point, we introduce a dynamic reduction of the dimer length (thus a shrinking dimer)
and gradually reduce the length to zero so that the probing of the unstable directions

1Here, an index-1 saddle refers to the critical point at which the Hessian of the energy functional
has only one negative eigenvalue with the remaining eigenvalues all positive.
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SHRINKING DIMER DYNAMICS 1901

is done more locally (and accurately) as we get closer to the saddle point. This is an
important point to make as a fixed dimer length has often been taken in many earlier
studies, and we show that inappropriate choices may lead to the divergence of the
SDD (and its time discretization). A full description of the SDD is given in section 2.
Some mathematical studies of the SDD system are also conducted there with an em-
phasis on characterizing equilibrium states and investigating convergence and stability
properties. The analysis of linear stability near an equilibrium is presented for the
SDD in the same spirit as the analysis in [12] and [26]. These results are applicable
to very general energy surfaces having reasonable regularity properties. Motivated by
works like [15], we also illustrate that in some simplified cases, it is possible to obtain
global convergence and nonlinear stability for the SDD. Such results, to our knowl-
edge, are explored for the first time in the literature. When time discretization is
considered in section 3, we make connections between the discrete SDD, in particular
the various forms of the first-order Euler schemes, and the dimer method [16], and
we provide theoretical analysis on both the convergence and the error reduction rates
of the corresponding iterative algorithms. The theoretical analysis is complemented
by a number of numerical experiments presented in section 4. The analytical results
given here are new in the field. Moreover, they help us to gain a better understanding
of a variety of popular saddle point search methods widely used in practice, such as
the dimer method, and also motivate us to make further algorithmic advances. For
instance, we present some variants of the numerical discretization to the SDD such
as a semi-implicit time marching with a suitable splitting which can be potentially
more effective for high-dimensional stiff problems. Finally, we conclude with some
discussion on various possible generalizations in section 5.

2. Shrinking dimer dynamics. We begin with the formulation of the shrinking
dimer dynamics (SDD). Then we present analytical discussions on linear and nonlinear
stabilities associated with the SDD.

2.1. Formulation of the SDD. Consider a Hilbert spaceH which is compactly
embedded in a Hilbert space L, with H∗ being the dual space of H with respect to the
inner product (duality pairing) in L. Let E be an energy functional defined in H and
let ∇E(x) be the gradient of E at x ∈ H defined in the Fréchet sense with respect to
the inner product in L. Similarly, HE(x) is used to denote the Hessian operator of E
at x ∈ H.

Let x1 and x2 be two endpoints of a dimer (a line segment connecting the end-
points) in H with the dimer length l = ‖x1 − x2‖. The dimer orientation is given by
the unit vector v = (x1 − x2)/l, and the rotating dimer center is

(2.1) x = (2− α)x1 + (α− 1)x2 .

Here, the constant parameter α ∈ [1, 2] allows us to possibly pick the rotating center
to be different from the geometric center, i.e., the midpoint of the dimer corresponding
to α = 1.5. Let

(2.2)

{
F1 = −∇E(x1) = −∇E(x+ (α − 1)lv) ∈ H∗,
F2 = −∇E(x2) = −∇E(x+ (α − 2)lv) ∈ H∗

be the natural forces (negative gradients of the energy E = E(x) with respect to x)
evaluated at endpoints, and let

Fα = (2 − α)F1 + (α− 1)F2

= (2 − α)F (x + (α− 1)lv) + (α− 1)F (x+ (α− 2)lv)(2.3)
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1902 JINGYAN ZHANG AND QIANG DU

be the approximated natural force at the rotating center of the dimer through a linear
interpolation. The SDD system is given in the following form:

(2.4)

⎧⎨
⎩

μ1ẋ = (I − 2vvT )Fα,

μ2v̇ = (I − vvT )(F1 − F2)/l,

μ3 l̇ = −Γ′(l),

where μ1, μ2, μ3 > 0 are positive relaxation constants. The notation vvT , commonly
used in linear algebra, is interpreted as vvT y = vT yv for any v ∈ H and y in H∗ with
vT y = yT v denoting symbolically the duality pairing (inner product) of v with y in L.
The term Γ′(l), which is used to control the dimer length l, is the derivative of some
artificial energy function Γ = Γ(l) defined on [0,+∞).

The SDD system (2.4) is coupled with an initial condition:

(2.5) xα(0) = x0, v(0) = v0, l(0) = l0,

where l0 > 0, x0 ∈ H, and v0 is a unit vector inH with ‖v0‖ = 1, with ‖·‖ denoting the
norm of L. More discussions on the choice of these parameters are given in section 4.

Geometrically and in comparison to the dimer method discussed in [16], the first
equation in (2.4) represents the dimer translation step which can be viewed as a
transformed gradient flow:

(2.6) μ1ẋ = QvFα,

where Qv = I − 2vvT is the Householder transform that gives the mirror reflection
with respect to the hyperplane perpendicular to the unit vector v. The geometric
meaning is thus clear: while Fα moves the dimer center along the steepest descent
direction, the result of mirror reflection, QvFα allows the dimer to climb up to the
energy ascent direction characterized by the orientation vector. We thus see that
geometrically one may replace Qv by I − βvvT for any β > 1 while still achieving the
same objective. If the unstable direction v is known a priori, then (2.6) is similar to
the dynamic system studied in [15]. For most application problems, it is often the
case that v is an unknown and interesting quantity which varies from different saddle
points. Thus, the first equation needs to be complemented by an equation governing
the vector v which is exactly the role played by the second equation.

Indeed, the second equation in (2.4) represents the dimer rotation step which
tends to align the orientation vector v along the direction with the gentlest ascent.
This is reflected in the term (F2 − F1)/l, which, for a small dimer length l, gives
an approximated action of the Hessian at the dimer center along the direction v.
Such a technique avoids the explicit calculation of the Hessian, which is one of the
practical advantages of the dimer method [16] in comparison with other Hessian-based
approaches. The idea is reminiscent of the use of a secant line as an approximation
of the tangent while noticing that such an approximation is needed only along one
particular direction. The projection operator

(2.7) Pv = I − vvT

is used to ensure v is a unit vector at all time.
The third equation in (2.4) is a simple gradient flow system of the function Γ

for the dimer length l. We require that Γ = Γ(l) is monotonically increasing in l,
with l ≡ 0 being the unique (and stable) equilibrium state. This simple gradient flow
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SHRINKING DIMER DYNAMICS 1903

controls how to shrink the dimer length while forcing it to approach zero. The latter
is a necessary condition for the convergence of SDD to index-1 saddle points and the
accurate local probing of the unstable direction. It is illustrated later in section 4.1
that, without meeting this condition, SDD may fail to converge. Generally, Γ = Γ(l)
is taken to increase at least superlinearly in l, but the form can be flexible. For
example, two possible choices leading to different rates of decay in the dimer length are
Γ(l) = l2/2 corresponding to an exponential decay and Γ(l) = l4/4 for a polynomial
decay.

For much of the paper, the discussions are related to the studies of the steady state
behavior of the SDD and its different discretization. We note that when H is a finite-
dimensional Euclidean space (where most of the numerical simulations of saddle point
search often take place), we have H = L = R

d, and the well-posedness of the SDD
(2.4) can be readily obtained for smooth energy functions. It is of theoretical interest
to consider H being an infinite-dimensional space including Sobolev or other function
spaces. In the latter case, we assume appropriate boundedness and smoothness of
the natural force (gradient) and the Hessian operator so that the SDD (2.4) is well-
posed in L2(0, T ;H) ∩ H1(0, T ;H∗) for any T > 0. A systematic study on the
well-posedness and the global long-time asymptotic behavior is beyond the scope of
this work; however, our discussion in the remaining part of this section establishes
a number of important mathematical properties of SDD, in particular, with respect
to the problem of saddle point search of the underlying energy. To avoid technical
complications, we assume that the gradient and the Hessian are all globally Lipschitz
continuous. Such conditions can naturally be weakened for specific applications under
consideration.

2.2. Analysis of linearly stable equilibria. In this section, we analyze lin-
early stable equilibria of SDD and their connections with index-1 saddle points. Here,
linear stability refers to the standard stability notion of a linearized dynamic system at
an equilibrium. Our discussions are made for different choices of relaxation constants
due to the fact that they control how the systems approach their equilibria. This
helps to guide us in developing methods to improve the efficiency when numerically
implementing SDD, as discussed in section 4.

We note that in (2.4), if μ3 is set to be zero and the limit l → 0 is taken, then the
SDD and its discretizations are reduced to single-end methods such as the gentlest
ascent method [7] and the GAD [12], which require evaluations of the second-order
derivatives of the energy. To avoid technical complications to the linear stability
analysis due to possible degeneracies, we assume that the Hessian of the energy E at
the saddle point of interests, HE , has no zero eigenvalues, and we also assume that
the second derivative HΓ = Γ′′(0) of Γ = Γ(l) at l = 0 is strictly positive, which is
achieved by, for example, Γ(l) = l2/2.

We now first show that linearly stable steady states of SDD in (2.4) are exactly
index-1 saddle points. The proof is similar to the analysis given in [12] for the GAD;
we include it here for completeness.

Theorem 2.1. Let x1, x2, x, v, l, E, F1, F2, Fα, and Γ be defined as above.
If the SDD is given by (2.4) with μ1, μ2, μ3 > 0, then (x∗, v∗, l∗) is a linearly stable
steady state of (2.4) if and only if

1. x∗ is an index-1 saddle point of the energy E;
2. v∗ is a unit eigenvector of the Hessian at x∗, HE(x

∗), that corresponds to the
smallest and only negative eigenvalue, λ∗.

3. l∗ is 0.
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1904 JINGYAN ZHANG AND QIANG DU

Proof. First, we show the necessary part. If (x∗, v∗, l∗) is a steady state of (2.4),
it is obvious that l∗ = 0 by the definition of Γ = Γ(l). Setting the time derivative to
zero, and noticing that as l → 0, by the continuity assumptions, we have

0 = (2 − α)F1 + (α− 1)F2 = Fα → F (x∗)

from the first equation of (2.4), so x∗ must be a critical point of E. Moreover,

lim
l→0

(F2 − F1)/l = HE(x
∗)v∗

in the dual space H∗. So, with ‖v∗‖ = 1, the second equation of (2.4) reduces to
HE(x

∗)v∗ = (v∗THE(x
∗)v∗)v∗ = λ∗v∗, which implies that v∗ must be an eigenvector

of HE(x
∗).

In order to have the steady state being also a linearly stable one, we consider the
Jacobian matrix (operator) J of the SDD,

(2.8) J =

⎛
⎜⎜⎜⎜⎜⎝

1

μ1
Qv∇xFα − 2

μ1
(vFT

α + vTFαI)
1

μ1
Qv∂lFα

1

μ1l
Pv∇x(F1 − F2) J22

1

μ1l
Pv∂l(F1 − F2)

0 0 − 1

μ3
HΓ

⎞
⎟⎟⎟⎟⎟⎠ ,

where ∂l is the derivative with respect to l, I denotes the identity operator, and the
center diagonal block J22 satisfies

μ1J22 = Pv∇x((α− 1)F1 + (2− α)F2)− v(F1 − F2)
T /l − (vT (F1 − F2)/l)I .

At the steady state (x∗, v∗, l∗ = 0), ∇xFα is equal to −HE(x
∗), and the Jacobian

becomes⎛
⎜⎜⎜⎜⎜⎝

1

μ1
[2λ∗v∗v∗T −HE(x

∗)] 0 0

1

μ2
[−HE(x

∗)v∗ + (v∗THE(x
∗)v∗)v∗]

2

μ2
[λ∗v∗v∗T −HE(x

∗) + λ∗I] 0

0 0 − 1

μ3
HΓ

⎞
⎟⎟⎟⎟⎟⎠ .

By the assumption, we have HΓ > 0 at the steady state. Since the Jacobian is lower
triangular, let us now consider the spectrum of the first and the second diagonal
blocks.

First, it is straightforward to check that v∗ remains to be an eigenvector of J∗
11 =

2λ∗v∗v∗T −HE(x
∗) with the eigenvalue λ∗. Any other eigenvector u of HE(x

∗), which
is associated with an eigenvalue λ and is perpendicular to v∗, is also an eigenvector
of J∗

11 with eigenvalue −λ. So the eigenvalues of J∗
11 are λ∗ and the additive inverse

of any other eigenvalue λ of HE(x
∗).

Similarly, v∗ remains an eigenvector of J∗
22 = 2λ∗v∗v∗T −HE(x

∗) + λ∗I with an
eigenvalue 2λ∗. Any other eigenvector u ofHE(x

∗) which is associated with a different
eigenvalue λ is also an eigenvector of J∗

22 perpendicular to v
∗ with an eigenvalue λ∗−λ.

So the eigenvalues of J∗
22 are 2λ∗ and the differences between λ∗ and any of the other

eigenvalues λ of HE(x
∗). We thus see that a necessary and sufficient condition for the

diagonal blocks to have negative eigenvalues is that λ∗ be the smallest and the only
negative eigenvalue of HE(x

∗) and v∗ be the corresponding eigenvector.
Before we end the analysis on the linear stability, we note that the above dis-

cussion can be extended to degenerate cases where one of the relaxation constants
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μ1 or μ2 is set to be zero, which leads to DAE systems. One may take advantage
of the Jacobians in (2.8) of the SDD being block lower triangular at steady states
to investigate the linear stability of the DAE systems via corresponding subsystems
of standard differential equations. In particular, the index-1 saddle points remain to
be the only linearly stable steady states if the relaxation constant μ2 is set to zero
in (2.4), but the same conclusion is no longer valid if μ1 is set to zero. In the latter
case, the linearly stable steady states of (2.4) might be any critical point of the energy
which is not a local minimum. As for the former case, we note that it corresponds to
performing an instantaneous optimization on the orientation vector, which has been
advocated in some previous works [20, 25].

2.3. Global convergence and nonlinear asymptotic stability. While the
linear stability results offer strong evidence for the convergence of the SDD to an
index-1 saddle point, it would surely provide more confidence if global convergence
or nonlinear asymptotic stability can be established. Indeed, given the SDD as a
dynamic system, a natural question is whether any of the stability concepts developed
for nonlinear systems would be applicable to the study of the asymptotic behavior of
the SDD. Here, we consider a simple energy defined by

(2.9) E(x) = −z21/2 +
∑
i�=1

z2i /2

for x = (z1, z2, . . . , zd) ∈ R
d. In this case, there is a unique saddle point at the origin,

and the gradient force is a linear map of the spatial variable x with the Hessian being
a constant diagonal matrix with entries (−1, 1, . . . , 1) on the diagonal. Moreover, the
SDD and the GAD systems [12] are identical to each other. We show that in this
case, they lead to a globally convergent system for almost all initial data. Note that
although the gradient force is linear, the SDD (or GAD) remains nonlinearly coupled.

Theorem 2.2. If the energy is given in (2.9), then for any initial condition
x0, v0 ∈ R

d such that v0 is not perpendicular to the vector (1, 0, . . . , 0), the solution
of SDD given by (2.4) will converge to (x∗, v∗, l∗) as t → ∞, where

1. x∗ = (0, . . . , 0);
2. v∗ = (1, 0, . . . , 0) or v∗ = −(1, 0, . . . , 0);
3. l∗ = 0.

Proof. First, we consider the second equation in (2.4), which can be written as

(2.10) μ2

⎛
⎜⎜⎝

v̇1
v̇2
· · ·
v̇d

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2v1(1− v1)(1 + v1)
−2v21v2
· · ·

−2v21vd

⎞
⎟⎟⎠ .

From the equation for v1 in (2.10), we can see that if initially v1 ∈ [−1, 1] and v1 	= 0,
then v1 will asymptotically converge to ±1 as t → ∞. And for 2 ≤ i ≤ d, vi
will asymptotically converge to 0. Thus, we have either v∗ = (1, 0, . . . , 0) or v∗ =
−(1, 0, . . . , 0). Next, we show that x∗ is the origin. For the special energy, the first
equation in the SDD (2.4) can be written as

(2.11) μ1ẋ = −QvQ∞x = −x+ (Q∞ −Qv)Q∞x,

where

(2.12) Q∞ =

(
−1 0
0 Id−1
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1906 JINGYAN ZHANG AND QIANG DU

and Qv = I − 2vvT → Q∞ as t → ∞, since v → v∗ = (±1, 0, . . . , 0)T . Thus, there
exists a T > 0 such that for any t > T , we have ‖Qv −Q∞‖ ≤ 1/2. Taking the inner
product of (2.11) with x, we get

μ1

2
˙|x|2 = xT ẋ = −|x|2 + xT (Q∞ −Qv)Q∞x ≤ −1

2
|x(t)|2

for t > T . So,

μ1|x(t)|2 ≤ e−(t−T )|x(T )|2 → 0 as t → ∞.

This finally gives x∗ = (0, . . . , 0). The conclusion that l∗ = 0 is obvious as the last
equation of (2.4) decouples from remaining equations.

3. Time discretization of SDD and numerical implementation. When
numerically implementing the SDD (2.4), it is important to choose a proper dis-
cretization and parameters to obtain convergence. Our discussion in this section will
not only cover the local stability/convergence property of the SDD, but also the global
stability, as well as the optimal error reduction rate. We start from the simplest Euler
scheme and then move on to other possible numerical schemes to improve the effi-
ciency and the robustness of SDD. Since a discrete implementation of SDD is often
formulated in finite dimension, to avoid technical complications, we consider only the
case that H is a finite-dimensional Euclidean space with dimension d in this section.
Same as for the continuous case, we assume that the Hessian of the energy E at
any index-1 saddle point of interest has one negative eigenvalue and d − 1 positive
eigenvalues, and we also assume that Γ(l) = l2/2 for simplicity.

We first introduce some notation. Let (x∗, v∗, l∗) be a stable steady state of SDD
in (2.4). By Theorem 2.1, x∗ is an index-1 saddle point and v∗ is a unit eigenvector
that corresponds to the smallest and only negative eigenvalue λ∗ < 0 of HE(x

∗). Let
λ1 ≤ λ2 ≤ · · · ≤ λd−1 be all of the remaining positive eigenvalues of HE(x

∗), and
let |λ|M = max{|λ∗|, |λd−1|} and |λ|m = min{|λ∗|, |λ1|} denote the largest and the
smallest absolute values of all eigenvalues, respectively.

3.1. Explicit Euler scheme for SDD: A discrete dimer method. Let Δt
be the size of the time step and let (x0, v0, l0) be the initial condition for SDD (2.4).
Let

Fn
1 = F (xn + (α − 1)lnvn),(3.1)

Fn
2 = F (xn − (2 − α)lnvn),(3.2)

Fn
α = (2− α)Fn

1 + (α− 1)Fn
2(3.3)

be natural forces evaluated at the nth step. Notice that if Γ(l) = l2, the third
equation in (2.4) can be either analytically solved or we can use a fully implicit
time stepping. Both lead to exponentially shrinking dimer length in time. Then by
adopting an explicit Euler scheme for other equations in (2.4), we get the following
iterative algorithm:

(3.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xn+1 = xn +
Δt

μ1
QvnFn

α ,

vn+1 = vn +
Δt

μ2ln
Pvn(Fn

1 − Fn
2 ),

ln+1 = ln/

(
1 +

Δt

μ3

)
.
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SHRINKING DIMER DYNAMICS 1907

The above scheme is similar to the iterations of the original dimer method [16]
where the first equation resembles the translation step while the second is for the
orientation. Note that if μ2 = 0, then an implicit scheme can be substituted in the
orientation step to align the orientation to its instantaneous dynamic equilibrium
direction. For μ2 	= 0, the orientation step only approximates such a direction.

We note that the explicit Euler scheme does not preserve the unit length of vn

exactly. A simple modification can be made to ensure ‖vn‖ = 1 holds in the discrete
scheme without much complication, and detailed discussions are given in the next
subsection.

Denote μ̃i = Δt/μi, where i = 1, 2, 3, and

(3.5) W (x, v, l) =

⎛
⎜⎝

x+ μ̃1QvFα

v + μ̃2l
−1Pv(F1 − F2)

l/(1 + μ̃3)

⎞
⎟⎠ ,

where F1, F2, and Fα are defined as (2.2) and (2.3). It is not hard to see that
(x∗, v∗, l∗) is a contractive fixed point of (3.5) for some properly chosen μ̃i if and only
if (x∗, v∗, l∗) is a stable steady state of SDD given by (2.4). The conditions for μ̃i’s
to be satisfied lead to the asymptotic local stability analysis near a linearly stable
steady state of (2.4), which also implies the local convergence of the iterative process
as n → ∞.

3.1.1. Local linear stability and convergence. The following theorem gives
the asymptotic linear stability condition of the Euler scheme given by (2.4) near a
linearly stable steady state.

Theorem 3.1. The numerical scheme given in (3.4) gives a local contraction
(thus is asymptotically linearly stable) at a linearly stable steady state of SDD (2.4),
denoted by (x∗, v∗, l∗), if and only if

(3.6) Δt < min

{
2μ1

|λ|M
,

2μ2

|λ|M − λ∗

}
.

Proof. The numerical scheme given by (3.4) is asymptotically stable at (x∗, v∗, 0)
if and only if all eigenvalues of the Jacobian matrix of W at (x∗, v∗, l∗) stay inside the
unit disc. Note that the Jacobian matrix of W at (x∗, v∗, 0) reads like

(3.7) JW |(x∗,v∗,0) =

⎛
⎝ I + μ̃1J11 0 0

∗ I + μ̃2J22 0
0 0 (1 + μ̃3)

−1

⎞
⎠ ,

where a detailed expression for a subdiagonal block is ignored and the diagonal blocks
are J11 = 2λ∗v∗v∗T −HE(x

∗) and J22 = 2λ∗v∗v∗T −HE(x
∗)+λ∗I as computed before.

The eigenvalues of JW |(x∗,v∗,l∗) are thus in the following form:

1− μ̃1|λ|, 1− μ̃2(|λ| − λ∗), (1 + μ̃3)
−1,

where λ is any one of the eigenvalues of HE(x
∗) . Thus, by setting all of the above

values inside (−1, 1), we get

μ̃1 <
2

|λ|M
and μ̃2 <

2

|λ|M − λ∗ ,

which is exactly (3.6).
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1908 JINGYAN ZHANG AND QIANG DU

From the above, we can estimate the upper bound of the size of the time step
allowable to get a local contraction, and we can see that it depends on the extreme
eigenvalues of the Hessian at x∗, as well as μ1 and μ2. A concrete example is provided
in section 4.1 to verify the above estimation. Moreover, we can show that only index-1
saddle points and their unstable directions are the contractive fix points of the Euler
scheme since at any other fixed point, the Jacobian always has an eigenvalue strictly
larger than 1. We give a theorem below, and the proof is similar to the one given
above.

Theorem 3.2. If x∗ is any critical point of the energy functional E other
than index-1 saddle points and v∗ is an associated unit eigenvector of HE(x

∗), then
(x∗, v∗, 0) is a fixed point of the Euler scheme, but not contractive.

3.1.2. Optimal error reduction rate. Theorem 3.1 gives the largest step size
allowable to get the local contraction or the linear asymptotic stability of the numer-
ical scheme (3.4). The next question is to ask what the optimal time step size is, in
the sense that an optimal error reduction rate can be achieved.

Let (x∗, v∗, l∗ = 0) be a steady state of (3.4) and let zn = (xn, vn, ln) be the
numerical solution at the nth step. Since we are mostly interested in the accuracy of
the approximations to x∗ and v∗, we define the error reduction rate as

(3.8) r = lim
n→∞

‖(xn+1 − x∗, vn+1 − v∗)‖
‖(xn − x∗, vn − v∗)‖ .

The following theorem gives an estimation of the optimal error reduction rate
when (3.4) approaches its steady state. It provides some guidelines for choosing the
relaxation constants, as well as the time step, to achieve the optimal rate.

Theorem 3.3. At a linearly stable steady state z∗ = (x∗, v∗, 0) of the SDD (2.4),
for the explicit Euler scheme (3.4), the error reduction rate given by (3.8) satisfies

(3.9) r ≥ rop =
|λ|M − |λ|m
|λ|M + |λ|m

.

The optimal error reduction rate can be achieved when

Δt =
2μ1

|λ|m + |λ|M
,(3.10) (

1 +
|λ∗|
|λ|M

)
μ1 < μ2 <

(
1 +

|λ∗|
|λ|m

)
μ1 .(3.11)

Proof. By linearization, the error reduction rate is determined by J̃W (x∗, v∗), the
projected Jacobian matrix with respect to x and v. By the computation given in the
proof of Theorem 3.1, we have

r = max{|1− |λ|μ̃1|, |1− |λ|μ̃2|},

where μ̃1 = Δt/μ1, μ̃2 = Δt/μ2, and λ is any eigenvalue of the Hessian HE(x
∗).

Thus, the optimal error reduction rate is

(3.12) rop = min
{μ̃i}

max
λ

max{|1− |λ|μ̃1|, |1− |λ|μ̃2|}.

On one hand, we have max{|1− |λ|μ̃1|, |1− |λ|μ̃2|} ≥ |1− |λ|μ̃1|, thus

(3.13) rop ≥ min
μ̃1

max
λ

{|1− μ̃1|λ||}.
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SHRINKING DIMER DYNAMICS 1909

It is not hard to see that the minimum of the right-hand side of (3.13) is achieved
when 1− μ̃1|λ|M = −(1− μ̃1|λ|m); thus, we can see

rop ≥ min
μ̃1

max
λ

{|1− μ̃1|λ||} =
|λ|M − |λ|m
|λ|M + |λ|m

,

where the equality holds when μ̃1 = Δt/μ1 satisfies (3.10).
On the other hand, we may check that if μ̃2 = Δt/μ2 satisfies (3.11), then |1 −

μ̃2|λ|| ≤ (|λ|M −|λ|m)/(|λ|M + |λ|m) for any λ. Thus, when (3.10)–(3.11) are satisfied,
an error reduction rate of (|λ|M − |λ|m)/(|λ|M + |λ|m) can be obtained.

Numerical verification of the above estimation is given in section 4.1.

3.2. Modified Euler scheme for SDD. Note that the second equation in
the SDD contains a Lagrangian multiplier for the constraint that ‖v(t)‖2 = 1. This
motivates us to consider a modified Euler Scheme which performs a normalization
on v at each step. To be more specific, the modified scheme is given in the following:

(3.14)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn+1 = xn + μ̃1QvnFn
α ,

ṽn+1 = vn + μ̃2(F
n
1 − Fn

2 )/l
n ,

vn+1 = ṽn+1/‖ṽn+1‖ ,
ln+1 = ln/(1 + μ̃3),

where μ̃i = Δt/μi for i = 1, 2, 3 and Fn
1 , F

n
2 , and Fn

α are the same as those defined
in (3.1)–(3.3). Due to the normalization step, this modified scheme can explicitly
guarantee the condition that ‖vn‖ = 1, while maintaining or improving the local
stability and optimal error reduction rate as demonstrated next.

3.2.1. Local linear stability and convergence. The following theorem shows
that the modified Euler scheme is locally linearly asymptotically stable if the time
step Δt satisfies a certain stability condition that is weaker than the one needed for
the Euler scheme discussed previously.

Theorem 3.4. The numerical scheme given by (3.14) gives a local contraction
(thus is asymptotically linearly stable) at a linearly stable steady state of SDD (2.4),
denoted by (x∗, v∗, 0), if and only if

(3.15) Δt < min

(
2μ1

|λ|M
,
2μ2

λd−1

)
.

Proof. Similar as before, we consider the Jacobian matrix, denoted by JM , of the
map determined by the modified Euler scheme (3.14) at (x∗, v∗, 0). We can write JM
at the steady state (x∗, v∗, 0) in the following form:

JM =

⎛
⎝ J11 0 0

∗ J22 0
0 0 J33

⎞
⎠ ,

where J11 is the same as in the proof of Theorem 3.1 and J33 is a negative number. So,
here we only calculate J22. Let F (vn) := vn+μ̃2(F

n
1 −Fn

2 )/l
n andK(ṽn) := ṽn/‖ṽn‖2.

We then have vn+1 = (K ◦ F )(vn), and J22 is the Jacobian of (K ◦ F ) at the steady
state which can be computed by

(3.16) J22 =

(
− v∗v∗T

(v∗T v∗)3/2
+

1

(v∗T v∗)
I

)
(I − μ̃2HE(x

∗)) .
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1910 JINGYAN ZHANG AND QIANG DU

Thus, by similar calculation as in the proof of Theorem 3.1, we can show that the
eigenvalues of J22 are 0 and {1−μ̃2λi}, and thus the eigenvalues of JM at (x∗, v∗, 0) are

1 + μ̃1λ
∗, 1− μ̃1λi, 0, 1− μ̃2λi ,

where λ∗ and λi (i = 1, . . . , d − 1) are eigenvalues of HE(x
∗) as defined before. To

make all of them stay in (−1, 1), we need

μ̃1 <
2

|λ|M
and μ̃2 <

2

λd−1
,

which is exactly (3.4).
Moreover, we show later that the optimal error reduction rates of both the Euler

and the modified Euler schemes are the same, and the only difference is that the
ranges for the choices of μ2 to achieve the optimal error reduction rate are different.

3.2.2. Optimal error reduction rate. Similar to the Euler scheme, the fol-
lowing theorem holds for the modified Euler scheme.

Theorem 3.5. At a linearly stable steady state z∗ = (x∗, v∗, 0) of SDD (2.4), for
the modified Euler scheme (3.14), the error reduction rate given by (3.8) satisfies

(3.17) r ≥ rop =
|λ|M − |λ|m
|λ|M + |λ|m

.

The optimal error reduction rate can be achieved when

Δt =
2μ1

|λ|m + |λ|M
,(3.18)

λd−1

|λ|M
μ1 ≤ μ2 ≤ λ1

|λ|m
μ1 .(3.19)

Proof. The proof is similar to that for Theorem 3.3.
We note that both [20] and [25] suggested that it is advantageous to keep rotating

the dimer until convergence, rather than to perform a single rotation and a single
translation alternately. For the SDD, as indicated earlier in the linear stability analysis
of the dynamic system, this corresponds to the case μ2 = 0. Our above analysis
shows that the optimal error reduction rate, as measured by the errors of both the
shrinking dimer (saddle point) position and the dimer orientation, is dominated by
the consideration for the dimer position when the SDD is approaching its steady
state. Moreover, a good choice of the relaxation constant for the rotation steps of
SDD can be as effective as carrying out a complete optimization process. For the
modified Euler scheme, we note that a particular choice of μ2 = μ1 is always in
the feasible range of (3.19). Naturally, the conclusion reached here is for iterative
algorithms based on the simple Euler-type schemes for the dimer position, which
is at best linearly convergent. A possible acceleration is possible if methods with
superlinear convergence can be implemented in ways that can improve the efficiency
while maintaining robust convergence properties like the ones demonstrated here.

3.2.3. Global convergence and nonlinear stability. Similar to the discus-
sion of global convergence and the asymptotic nonlinear stability in section 2.3 for
the continuous SDD, we can also study the stability and the contractive feature of
discrete schemes. Again, we consider the simple energy defined by (2.9).
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Theorem 3.6. Given the energy as in (2.9), the modified Euler scheme converges
to the globally stable steady state given by (2.2) if v0 is chosen not to be perpendicular
to (1, 0, . . . , 0) and Δt < 2μ1.

Proof. First, we get by (3.23) that

(3.20) ṽn+1 =

(
1 + μ̃2 0

0 (1− μ̃2)Id−1

)
vn.

After normalization, it is not hard to see that vn → (±1, 0, . . . , 0)T as n → ∞ if v0 is
not perpendicular to (1, 0, . . . , 0). This is reminiscent of the convergence of the power
method for solving the algebraic eigenvalue problem.

Next, by the first equation in the modified scheme (3.23), we have

xn+1 = xn − μ̃1QvnQ∞xn = −μ̃1(Qvn −Q∞)Q∞xn + (1− μ̃1)x
n,

where Q∞ is defined as in (2.12). Since Qvn = I − 2vnvnT → Q∞ as n → ∞, we get

(3.21) ‖xn+1‖ ≤ μ̃1‖(Qvn −Q∞)Q∞xn‖+ |1− μ̃1|‖xn‖.

For μ̃1 = Δt/μ1 < 2, there exists a small positive number ε < min(2 − μ̃1, μ̃1) such
that |1− μ̃1| ≤ 1− ε. Meanwhile, for ε > 0, there exists an N > 0 such that if n > N ,

μ̃1‖(Qvn −Q∞)Q∞xn‖ ≤ ε

2
‖xn‖.

Thus, (3.21) becomes

‖xn+1‖ ≤
(
1− ε

2

)
‖xn‖,

which implies that ‖xn‖ → 0 as n → ∞ if Δt < 2μ1.

3.3. Semi-implicit splitting scheme for the SDD. Explicit Euler-type meth-
ods are quite easy to implement. However, the time step has to be small enough to
satisfy the stability condition. This highly affects the efficiency of the SDD, especially
when high-dimensional energy landscapes are considered. Thus, a semi-implicit split-
ting scheme is presented in this section to improve the convergence of SDD to desired
saddle points in the numerical implementation.

For x ∈ H, let F (x) = −∇E(x) be written as

(3.22) F (x) = FL(x) + FN (x),

where FL denotes a linear map of x while FN includes the rest of the terms that may
possibly be nonlinear. Letting FiN = FN (xi) for i = 1, 2, we get

(2− α)F1 + (α− 1)F2 = FL(x) + (2− α)F1N + (α− 1)F2N =: FL(x) + FαN ,

l−1(F1 − F2) = FL(v) + l−1(F1N − F2N ).

A semi-implicit scheme is then given by

(3.23)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn+1 = xn + μ̃1Qvn(FL(x
n+1) + Fn

αN ),

ṽn+1 = vn + μ̃2(FL(ṽ
n+1) + (Fn

1N − Fn
2N )/ln),

vn+1 = ṽn+1/‖ṽn+1‖,
ln+1 = ln/(1 + μ̃3) .
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1912 JINGYAN ZHANG AND QIANG DU

Note that, in general, there are many semi-implicit schemes depending on the
use of different splitting strategies. We may take a very general view of the splitting
(3.22) that allows one to treat FL implicitly and FN explicitly. Sometimes a fully
implicit scheme can also be used where the orientation step is very much similar
to the normalized gradient flow scheme analyzed in [1]. Here, our main goals are to
reduce the stiffness of the SDD system, thus allowing a larger time step size, and to
obtain better error reduction, thus being more effective in convergence to the steady
state. A detailed analysis of the various splitting strategies and their effectiveness will
be pursued in our future works; however, a concrete example is provided in section
4.3 as an illustration for a possible choice of a semi-implicit scheme.

4. Numerical experiments and applications. In this section, we give some
numerical examples to show how the SDD is implemented numerically. Let us first
address the choices of the parameters used in the SDD besides those already discussed
in the analysis given earlier.

First, about the rotating center given by (2.1) with 1 ≤ α ≤ 2, when α = 1 or 2,
the rotating center is one of the endpoints of the dimer, and this corresponds to the
algorithm given by [20], where only forces at the center and one endpoint of the dimer
are evaluated, which may potentially reduce the number of gradient evaluations per
iteration, yet the order of approximation to the action of the Hessian along the dimer
orientation direction becomes one order lower than when using the midpoint as the
rotating center, i.e., α = 1.5. The flexibility of the choice of the dimer center becomes
more important when we consider the generalized dimer dynamics for locating saddle
points of higher-order indices, with the main difference being the use of k-dimensional
hypercubes or k-dimensional simplices for a saddle point of index k.

Concerning the initial position of the dimer, it is obviously better to choose x0

to be close to x∗ if some a priori information is available, and v0 can be obtained
by performing the rotation step until convergence to an eigenvector associated with
the lowest eigenvalue of the Hessian at x0, which is equivalent to solving the second
equation in (2.4) by fixing x = x0. However, when no a priori information on x∗ is
known and x0 is potentially far from a saddle, then there is no advantage to aligning
v0 in the direction corresponding to the eigenvector of the lowest eigenvalue of the
initial Hessian, since the Hessian at x0 might be quite different from that at x∗. As
for the initial dimer length, it obviously depends on the particular energy surface.
We mostly assign it a relatively small value and, as the iteration goes, the dimer
length shrinks automatically. Since a difference quotient of the natural forces is used
in the SDD, whenever possible, care is taken to avoid the loss of significant digits
in the arithmetic operations. We note that in the examples we have considered, the
numerical convergences are reached, that is, the dynamic iterations of the dimer are
terminated, without any numerical instability being observed.

4.1. A two-dimensional example. In the SDD, the dimer length approaches
zero at the steady state. We have theoretically shown in section 2 that this condition is
necessary for the convergence of the SDD to index-1 saddle points. The dependence
on the time step size of the convergence and the optimal error reduction rates for
various discrete schemes associated with the SDD have also been discussed in section
3. As an illustration, we consider the two-dimensional energy landscape given by
E(x, y) = (x2 − 1)2 + y2, so that (±1, 0) are the two local minima and (0, 0) is the
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SHRINKING DIMER DYNAMICS 1913

Fig. 4.1. Left: with a fixed l = 0.4 (convergent). Middle: with a fixed l = 0.7 (divergent).
Right: shrinking dimer with initial length l0 = 0.7 (convergent).

index-1 saddle point. The Hessian matrix of E(x, y) is

(4.1) HE(x, y) =

(
12x2 − 4 0

0 2

)
.

The dimer orientation v at the steady state of (2.4) is a unit eigenvector of HE(0, 0)
that corresponds to the smallest and the only negative eigenvalue −4, i.e., v∗ =
(±1, 0). So, the steady state of (2.4) is (x∗, v∗) = (0, 0,±1, 0). The following test
runs illustrate the effect of the dimer length on the trajectory of the dimer system
for the simple energy landscape considered here. In all three pictures shown in Fig-
ure 4.1, we take the same set of initial positions and directions: (x0, v0) = (0.2, 1, 1, 0),
(0.4,−1, 1, 0), and (0.7,−0.1, 1, 0). The left one takes a small fixed dimer length of
l = 0.4, while in the middle one a larger but also fixed dimer length l = 0.7 is used. We
can see that if the dimer length is fixed to be a relatively large number, it might not
converge to the saddle point. In the right picture, we allow the shrinkage of the dimer
length with an initial length l0 = 0.7 being used so the convergence is always achieved.

To better understand the above observations, we revisit the linear stability anal-
ysis of the SDD for this special two-dimensional energy landscape. The fixed length
dimer system, which is equivalent to the system consisting of the first two equations of
(2.4), shows that although (0, 0,±1, 0) is still a fixed point, the stability at this point
depends on l. To be more specific, the Jacobi matrix of the right-hand side map of the
SDD is actually a diagonal matrix with diagonal entries (12l2−4,−2, 2(4l2−4), 4l2−6),
respectively. Thus, we can see that only if l2 < 1/3 can this system be assured to con-
verge to the index-1 saddle point (0, 0). This agrees with the numerical observations.

The example suggests that when a fixed length dimer system is implemented, the
dimer length needs to be carefully chosen. Often in practical problems, especially
for high-dimensional energy landscape, it is not straightforward to determine a priori
a dimer length small enough for the convergence. However, the SDD can resolve
this issue because the dimer length is systematically reduced and is forced to be zero
asymptotically, which guarantees the theoretical convergence of the SDD. Of course,
as discussed earlier, we advocate the users to exercise best practice in the numerical
evaluation of the force difference at the endpoints; for instance, if exceedingly small
dimer length must be used for the SDD, alternative forms of the difference quotient
(perhaps through a more direct evaluation of the Hessian action, or a suitable part of
the Hessian action) may be considered to reduce any possible effect of rounding error
at the cost of more expensive computation.
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Next, we verify the theoretical results on the largest time step size allowable to
maintain the local stability and the optimal time step size for the most significant
error reduction rate given earlier. We take the explicit Euler method with the initial
guess chosen to be close to the steady state. In particular, we let x0 = (0.9, 0.1),
v0 = (9, 1)/

√
82, and l0 = 10−5. Based on the analysis given by (3.6), the largest

possible time step size is Δt = 0.25 and the optimal time step size is Δt = 0.2, with
the optimal error reduction rate 0.6. Here, the error reduction rate at the nth step is
calculated by rn = ‖en+1‖/‖en‖, where ‖en‖2 = ‖xn − x∗‖2 + ‖vn − v∗‖2. This does
not account for the change in the dimer length which carries no physical significance.
The error reduction rates corresponding to different sizes of the time step Δt (referred
to as dt) are given in Figures 4.2 and 4.3.

Fig. 4.2. Error reduction rates for different time step sizes with the Euler scheme.

For the pictures in Figure 4.2 and 4.3, the relaxation constants are taken as
μ1 = μ2 = μ3 = 1. We note from Figure 4.2 that if the Euler scheme is applied,
when Δt = 0.2, the error reduction rate can get 0.6, which is the smallest one among
the different Δt’s; also, when Δt is increased to 0.25, the error reduction rate is
nearly 1, and thus the explicit Euler scheme fails to reach the steady state. However,
in Figure 4.3 where the modified Euler scheme is applied, the largest time step size
for maintaining the stability is 1/3 instead, and the optimal error reduction rate also
changes correspondingly in agreement with the previous analysis.

Figures 4.4 and 4.5 numerically verified the analysis of the optimal error reduction
rate in the above section. Note that for the modified scheme, an eigenvalue of the
Jacobian matrix is 0, so that along the direction of v, the error disappears in one
step. Since ‖v‖ = 1, in the two-dimensional example, v is exactly solved in just one
step. This is why even if we set μ2 = 1.5μ1, the optimal error reduction rate is still
achieved, which is a special case not covered by the theorem above.

4.2. Other benchmark examples. We now test the algorithm for a number
of benchmark problems frequently studied in the literature. First, we consider the
Minyaev–Quapp surface [22] given by E(x, y) = cos(2x)+ cos(2y)+ 0.57 cos(2x− 2y).
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SHRINKING DIMER DYNAMICS 1915

Fig. 4.3. Error reduction rates for different time step sizes with the modified Euler scheme.

Fig. 4.4. Error reduction rates for different choices of parameters with the Euler scheme.

The surface is periodic in space, and in a typical unit cell it has two nearby minima
with a saddle point of index-1 situated within the narrow ridge in a relatively flat
basin. In Figure 4.6, we show the trajectories of the modified Euler scheme for the
starting point (0.9, 1.2) and (1.5, 0.8), respectively. For each case, we take 5 different
initial orientation vectors together with Δt = 0.05 and μ1 = μ2 = μ3 = 1 and l0 = 0.1.
These initial orientations include one that corresponds to the eigenvector associated
with the lowest eigenvalue of the Hessian evaluated at the initial position. The results
show the convergence of the trajectories to different saddle points, with the particular
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1916 JINGYAN ZHANG AND QIANG DU

Fig. 4.5. Error reduction rates for different choices of parameters with the modified Euler scheme.

Fig. 4.6. SDD for Minyaev–Quapp. Left: (0.9, 1.2). Right: (1.5, 0.8).

limiting solution being dependent on the initial orientation vector. For some of the
choices, the trajectories can correctly locate the saddle point at the center of the two
nearby minima even though the basin of attraction for such a saddle point is very
narrow.

Next, we consider the Eckhardt surface [13] given by

E(x, y) = exp(−x2 − (y+1)2) + exp(−x2 − (y− 1)2) + 4 exp(−3(x2 + y2)/2) + y2/2).

In Figure 4.7, we show the trajectories of the modified Euler scheme for the starting
point (0.5, 0.7) and (1.2, 1.7), respectively. For each case, we again take 5 different
initial orientation vectors and use the same set of relaxation constants, initial dimer
length, and time step as in the previous example. We see that all trajectories can
correctly locate the desired saddle point in these cases.
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SHRINKING DIMER DYNAMICS 1917

Fig. 4.7. SDD for Eckhardt surface. Left: (0.5, 0.7). Right: (1.2, 1.7) (a close-up view).

Fig. 4.8. SDD for stingray function. Left: (0.5, 0.8). Right: (0.8, 0.5).

Finally, we consider the so-called stingray function [15] given by E(x, y) = x2 +
c(x − 1)y2, where c = 100 is taken. The surface again has a flat ridge which makes
it difficult to locate the saddle point. In Figure 4.8, we show the trajectories of the
modified Euler scheme for the starting point (0.5, 0.9) and (0.7, 0.5), respectively. For
each case, we again take 5 different initial orientation vectors with the same parameters
taken as before. All trajectories can correctly locate the desired saddle point in these
cases. However, the figure shows that they do not take a direct path to the saddle
point; instead, they first climb up to the ridge, then change direction to move along
the ridge and finally converge to the saddle.

4.3. An example in infinite-dimensional space: Critical nucleation in
phase transformation. As an infinite-dimensional example, the SDD (2.4) is ap-
plied to the computation of critical nuclei in phase transformations. Nucleation is
a very common physical phenomenon in nature [9, 19, 21, 29, 32]. Our approach is
based on the extension of the diffuse interface framework developed originally by Cahn
and Hilliard [3]. Further development in [32] allowed the study of critical nuclei mor-
phology in solid state transformations. The simulation results presented here based
on the SDD are consistent with those presented in [32] using a different numerical
algorithm.

D
ow

nl
oa

de
d 

01
/0

4/
17

 to
 1

62
.1

05
.6

8.
25

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1918 JINGYAN ZHANG AND QIANG DU

In a diffuse-interface phase-field description where a single order parameter φ is
used to model the structural difference between the parent phase and the nucleating
phase, the free energy at a given temperature is given by a double-well potential

f(φ) = −φ2/2 + φ4/4− ρ(3φ− φ3)/4,

with two energy wells at φ = ±1, and ρ determines the bulk free energy driving force
for the phase transformation from the φ = −1 state to the φ = 1 state, i.e., the well
depth difference. Let Ω = [−1, 1]2 be the physical domain on which φ is defined; the
total free energy over Ω is then given by

(4.2) E(φ) =

∫
Ω

[
γx
2

(
∂φ

∂x

)2

+
γy
2

(
∂φ

∂y

)2

+ f(φ)

]
dx,

where γx and γy are constants in Ω to describe the surface energy anisotropy. Setting
γx = γy leads to the case of isotropic interfacial energy. For simplicity, we omit the
misfit elastic energy to simplify the force calculation and leave the more general case
to future works. Corresponding to earlier theoretical analysis, the functional (4.2) is
defined in an infinite-dimensional function space. By assuming the periodic boundary
condition on φ, we may take L = L2(Ω) and H = H1

p (Ω), with the latter being the
subspace of periodic functions in the conventional Sobolev space H1(Ω) to fit the
example into the theoretical framework presented earlier.

In the numerical implementation, the infinite-dimensional function spaces are first
spatially discretized using Fourier spectral approximations with sufficient number of
Fourier modes. When the spatial resolution demands a large number of modes, it is
computationally more advantageous to use the semi-implicit scheme discussed earlier.
In our nucleation example, the natural force is given by

(4.3) F (φ) = γxφxx + γyφyy + (1− φ2)(φ+ 3ρ/4) .

We take the semi-implicit Euler scheme of SDD with the linear implicit part given by
FL(φ) = γxφxx + γyφyy, and as in [32]. Figure 4.9 shows the critical nuclei and the
corresponding unstable modes, respectively, with ρ = 0.1, γx = γy = 4× 10−4 for the
isotropic case, and γx = γy/3 = 4 × 10−4 for the anisotropic case. The parameters
used in the simulation are chosen as α = 1.5, μ1 = μ2 = μ3 = 1, l0 = 10−2,
Δt = 0.8. We take a sequence of increasing numbers of Fourier modes ranging from
M = 28 to M = 211 to verify that the spatial resolution is adequate, and we terminate
the iteration when the L2 norm of the gradient vector is below 2 × 10−6. For the
isotropic case, the energy and the negative eigenvalue at the computed saddle point
all have the same first few significant digits −0.78891 and −0.011326, respectively,
for different M , while for the anisotropic case, the energy value and the negative
eigenvalue become −0.78079 and −0.011327, thus demonstrating the high spatial
resolution of the spectral approximation.

Our numerical experiments also show that for the explicit Euler scheme to work
in a numerically stable manner, a much smaller time step Δt has to be taken. For
instance, for M = 28, we need at least Δt < 0.025, while for M = 210, the step size
needs to be smaller than 0.0016. This illustrates the effectiveness of the semi-implicit
scheme. Naturally, we may also consider other splitting schemes. These and other
improvements to the implementation of the SDD for higher-dimensional problems will
be pursued in subsequent works.
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SHRINKING DIMER DYNAMICS 1919

Fig. 4.9. Critical nuclei and unstable directions with γy/γx = 1(top row) or 3 (bottom row).

5. Conclusion. We have derived a special shrinking dimer dynamics (SDD) to
locate transition states in a given energy landscape, together with theoretical anal-
ysis. This dynamic system can avoid the calculation of the second-order derivatives
by requiring only the evaluation of the natural forces which corresponds to gradients
of the energy. We have presented rigorous analysis for both the continuous dynamic
system and its time discretization. We showed in particular the importance of shrink-
ing the dimer length for the guaranteed convergence to saddle points. Our analysis of
the time discretization also illustrated that picking suitable relaxation constants for
the dimer rotation step may be an equally effective error reduction strategy as doing
a full optimization to align the dimer orientation. The latter, which has often been
advocated in the literature, obviously carries a much higher computational cost. The
SDD has also been successfully applied to solve a number of benchmark problems
in lower-dimensional spaces and an infinite-dimensional example of the critical nuclei
computation in phase transformations.

While we have focused largely on the index-1 saddle point, it is not difficult to
extend the approach to a higher-index case. For example, we may replace a dimer
determined by a single orientation vector v by a cluster (a high-dimensional cube, cor-
responding to setting α = 1.5, or a simplex, corresponding to α = 1 or 2) spanned by a
set of orthonormal vectors. While there is no essential difference in the computational
cost for index-1 saddle points with the two different values of α, the high-dimensional
cube version involves essentially twice more force evaluations than the simplex ver-
sion. Such extensions are analogous to the use of Krylov subspaces for eigenvalue
problems [31].

On the analysis side, there are still many questions unanswered concerning the
global behavior of the SDD as a dynamic system. The linear stability analysis only
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provided some local pictures, and global convergence for a more general energy land-
scape remains to be carried out. The latter is not only technically challenging but
also of practical importance. Even though global convergence is not expected for all
cases, it is useful to offer some general characterizations of those energy functionals
for which global convergence can be assured. On the numerical approximation side,
in the discussion of the discretization of the SDD, we considered only the simplest
first-order Euler-type schemes. We are currently considering high-order extensions
with the objective of maximizing the error reduction per step so as to accelerate the
convergence to the equilibrium. Adaptive time steps can also be considered to fur-
ther enhance the efficiency of discrete algorithms. As the approximate Hessian action
along the dimer orientation direction has been utilized in the numerical scheme, one
may further combine with quasi-Newton type of iterations to get a superlinear con-
vergence rate, at least along the particular unstable direction of the saddle point.
The latter is a feature, for example, of the ART method discussed in [5]. Meanwhile,
we may also consider linking the dynamic dimer length to the residuals of the dimer
center and dimer orientation equations, or to changes in dimer positions in consecu-
tive iterations, so as to improve the efficiency and robustness of the algorithms. In
addition, variations of the SDD that perform constrained saddle point search can also
be developed [33].

Furthermore, given the popularity of the dimer methods and other existing saddle
point search algorithms, the SDD and its various extensions and discretization can
also be used to solve many practical problems such as those related to the study of
critical nucleation and chemical reactions. These and other interesting applications
will be studied in future works.
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