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Abstract
Dynamical systems that describe the escape from the basins of attraction of
stable invariant sets are presented and analysed. It is shown that the stable fixed
points of such dynamical systems are the index-1 saddle points. Generalizations
to high index saddle points are discussed. Both gradient and non-gradient
systems are considered. Preliminary results on the nature of the dynamical
behaviour are presented.
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1. The gentlest ascent dynamics

Given an energy function V on Rn, the simplest form of the steepest decent dynamics (SDD)
associated with V is

ẋ = −∇V (x). (1)

It is easy to see that if x(·) is a solution to (1), then V (x(t)) is a decreasing function of t .
Furthermore, the stable fixed points of the dynamics (1) are the local minima of V . Each local
minimum has an associated basin of attraction which consists of all the initial conditions from
which the dynamics described by (1) converges to that local minimum as time goes to infinity.
For (1), these are simply the potential wells of V . The basins of attraction are separated by
separatrices, on which the dynamics converges to saddle points.

We are interested in the opposite dynamics: the dynamics of escaping a basin of attraction.
The most naive suggestion is to just reverse the sign in (1), the dynamics would then find the
local maxima of V instead. This is not what we are interested in. We are interested in the
gentlest way in which the dynamics climb out of the basin of attraction. Intuitively, it is clear
that what we need is a dynamics that converges to the index-1 saddle points of V . Such
a problem is of general interest to the study of noise-induced transition between metastable
states [3, 6]: under the influence of small noise, with high probability, the escape pathway has
to go through the neighbourhood of a saddle point [5].
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The following dynamics serves the purpose:

ẋ = −∇V (x) + 2
(∇V, v)

(v, v)
v, (2a)

v̇ = −∇2V (x)v +
(v, ∇2V v)

(v, v)
v. (2b)

We will show later that the stable fixed points of this dynamics are precisely the index-1
saddle points of V and the unstable directions of V at the saddle points. Intuitively the idea
is quite simple. Equation (2b) attempts to find the direction that corresponds to the smallest
eigenvalue of ∇2V , and the last term in the first equation makes this direction an ascent
direction.

This consideration is not limited to the so-called ‘gradient systems’ such as (1). It can be
extended to non-gradient systems. Consider the following dynamical system:

ẋ = F (x). (3)

We can also speak about the stable invariant sets of this system, and escaping basins of attraction
of the stable invariant sets. In particular, we can also think about finding index-1 saddle points,
though in this case, there is no guarantee that under the influence of small noise, escaping the
basin of attraction has to proceed via saddle points [9].

For non-gradient systems, (2a), (2b) have to be modified to

ẋ = F (x) − 2
(F (x), w)

(w, v)
v, (4a)

v̇ = (∇F (x))v − α(v)v, (4b)

ẇ = (∇F (x))Tw − β(v, w)w. (4c)

Here, two directional vectors v and w are needed in order to follow both the right and left
eigenvectors of the Jacobian. Given the matrix ∇F (x), two scalar valued functions α and β

are defined by

α(v) = (v, (∇F (x))v), (5a)

β(v, w) = 2(w, (∇F (x))v) − α(v). (5b)

Throughout the paper, we will take the normalization for the direction v and w such that
(v, v) = 1 and (w, v) = 1. This normalization is preserved by the dynamics as long as it holds
initially. Thus, the first equation in (4a) actually is equivalent to ẋ = F (x) − 2(F (x), w)v.
(Of course, one can enforce other types of normalization condition, such as the symmetric one:
(v, v) = (w, w) and (w, v) = 1, and define new expressions of α and β accordingly.) In the
case of gradient flows, we can take w = v and (4a)–(4c) reduce to (2a)–(2b).

We use figure 1 to illustrate the idea above and call this gentlest ascent dynamics (GAD).
It has its origin in some of the numerical techniques proposed for finding saddle points. For
example, there is indeed a numerical algorithm proposed by Crippen and Scheraga called the
‘gentlest ascent method’ [2]. The main idea is similar to that of GAD, namely to find the right
direction, the direction of the eigenvector corresponding to the smallest eigenvalue and making
that an ascent direction. But the details of the gentlest ascent method seem to be quite a bit more
complex. The ‘eigenvector following method’ proposed in the literature, for example, [1, 8],
is based on a very similar idea. There at each step, one finds the eigenvectors of the Hessian
matrix of the potential. Also closely related is the ‘dimer method’ in which two states connected
by a small line segment are evolved simultaneously in order to find the saddle point [7].
One advantage of the dimer method is that it avoids computing the Hessian of the potential.
From the viewpoint of our GAD, the spirit of the ‘dimer method’ is equivalent to use central
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Figure 1. Illustration of the gentlest ascent dynamics. F is the force of the original dynamics and
F̃ is the force of the gentlest ascent dynamics. v1 and v2 represent the unstable and stable right
eigenvectors, respectively; w1 and w2 are the corresponding left eigenvectors. Note that w1 ⊥ v2
and w2 ⊥ v1. F has the decomposition F = F1 + F2 = c1v1 + c2v2 where the coefficient
c1 = (F , w1)/(v1, w1). Thus, F̃ := −F1 + F2 = F − 2F1 = F − 2c1v1.

difference scheme to numerically calculate the matrix-vector multiplication in GAD (4a)–(4c)
and (5a)–(5b) by writing (∇F (x))b = d

dε
F (x+εb)|ε=0 ≈ 1

2ε
(F (x+εb)−F (x−εb)) for any

vector b.
We believe that as a dynamical system, the continuous formulation embodied in (2a)–(2b)

and (4a)–(4c) has its own interest. We will demonstrate some of these interesting aspects in
this note.

Proposition. Assume that the vector field F is C3(Rn).

(a) If (x∗, v∗, w∗) is a fixed point of the GAD (4a)–(4c) and v∗, w∗ are normalized such that
vT

∗ v∗ = vT
∗ w∗ = 1, then v∗ and w∗ are the right and left eigenvectors , respectively, of

∇F (x∗) corresponding to one eigenvalue λ∗, i.e.

(∇F (x∗))v∗ = λ∗v∗, (∇F (x∗))
Tw∗ = λ∗w∗,

and x∗ is a fixed point of the original dynamics system, i.e. F (x∗) = 0.
(b) Let xs be a fixed point of the original dynamical system ẋ = F (x). If the Jacobian

matrix J(xs) = ∇F (xs) has n distinct real eigenvalues λ1, λ2, . . . , λn and n linearly
independent right and left eigenvectors, denoted by vi and wi correspondingly, i.e.

J(xs)vi = λivi , J(xs)
Twi = λiwi , i = 1, . . . , n

and in addition, we impose the normalization condition vT
i vi = wT

i vi = 1, ∀i , then for
all i = 1, . . . , n, (xs , vi , wi ) is a fixed point of the GAD (4a)–(4c). Furthermore, among
these n fixed points, there exists one fixed point (xs , vi ′ , wi ′) which is linearly stable if
and only if xs is an index-1 saddle point of the original dynamical system ẋ = F (x) and
the eigenvalue λi ′ corresponding to vi ′ , wi ′ is the only positive eigenvalue of J(xs).

Proof.

(a) Under the given condition, it is obvious that (∇F (x∗))v∗ = α(v∗)v∗ and (∇F (x∗))
Tw∗ =

β(v∗, w∗)w∗. By definition and other conditions, β(v∗, w∗) = 2wT
∗ (∇F (x∗))v∗ −

α(v∗) = 2wT
∗ (α(x∗))v∗−α(v∗) = α(v∗). Therefore, v∗ and w∗ share the same eigenvalue
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λ∗ = α(v∗) = β(v∗, w∗). From the fixed point condition F (x∗) − 2(wT
∗ F (x∗))v∗ = 0,

we take the inner product of this equation with w∗ to get wT
∗ F (x∗) = 2wT

∗ F (x∗). So
wT

∗ F (x∗) = 0 and in consequence, the conclusion F (x∗) = 0 holds from the fixed point
condition F (x∗) − 2(wT

∗ F (x∗))v∗ = 0 again.
(b) It is obvious that for all i, (xs , vi , wi ) is a fixed point of the GAD (4a)–(4c) by the

definition of vi and wi . It is going to be shown that we can explicitly write down the
eigenvalues and eigenvectors of GAD at any fixed point (xs , vi , wi ).

Let J(x) = ∇F (x). The Jacobian matrix of the GAD (4a)–(4c) has the following
expression:

J̃(x, v, w)

=

⎛

⎜⎜⎜⎜⎝

(I − 2c−1vwT)J(x), −2(F (x), w)(c−1I − c−2vwT), −2c−1vF (x)T

+2(F (x), w)c−2vvT

L1, J(x) − α(v)I − vvT(J(x) + J(x)T), 0
L2, −2wwTJ(x) + wvT(J(x) J(x)T − β(v, w)I

+J(x)T), −2wvTJ(x)T

⎞

⎟⎟⎟⎟⎠
,

(6)

where L1, L2 are n×n matrices and I is the n×n identity matrix. The parameter c := vTw is
actually constant 1 due to the normalization condition. To derive the above formula, we have
used the results from (5a)–(5b) that ∇v(α) = vT(JT + J), ∇v(β) = 2wTJ − vT(JT + J) and
∇w(β) = 2vTJT .

In the first n rows of J̃, there are two n × n blocks which contain the term F (x) and thus
vanish at the fixed point xs . So the eigenvalues of J̃(xs , vi , wi ) can be obtained from the
eigenvalues of its three n × n diagonal blocks: N, M and K:

N = (I − 2viw
T
i )J(xs),

M = J(xs) − λiI − viv
T
i (J(xs) + λiI),

K = J(xs)
T − λiI − 2wiv

T
i J(xs)

T.

Here the obvious facts that α(vi ) = β(vi , wi ) = λi and vT
i J(xs)

T = λiv
T
i are applied.

Now we derive the eigenvalues of N, M and K by constructing the corresponding
eigenvectors. Note that vT

i wj = δij holds under our assumption about the eigenvectors.
One can verify that

Nvi = (I − 2viw
T
i )λivi = −λivi ,

Mvi = −2λiviv
T
i vi = −2λivi ,

Kwi = −2λiwiv
T
i wi = −2λiwi ,

and for all j ̸= i,

Nvj = (I − 2viw
T
i )λjvj = λjvj , (7)

Kwj = (λj − λi )wj − 2λjwiv
T
i wj = (λj − λi )wj , (8)

and with a bit more effort,

M(vj − (vT
i vj )vi ) = Mvj − vT

i vj (Mvi ) = Mvj + 2λi (v
T
i vj )vi

= (λj − λi )vj − (λj + λi )vi (v
T
i vj ) + 2λi (v

T
i vj )vi

= (λj − λi )(vj − (vT
i vj )vi ). (9)
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Hence the eigenvalues of the Jacobian J̃ at any fixed point (xs , vi , wi ) (i = 1, . . . , n) are

− 2λi , −λi , {λj : j ̸= i}, {λj − λi : j ̸= i}. (10)

The first and last set of eigenvalues have multiplicity 2. The linear stability condition is that
all numbers in (10) are negative. Thus one fixed point (xs , vi ′ , wi ′) is linearly stable if and
only if λi ′ > 0 and all other eigenvalues λj < 0 for j ̸= i ′, in which case the fixed point xs is
index-1 saddle.

Next, we discuss some examples of GAD.
Consider first the case of a gradient system with V (x) = xTAx/(xTx), where A is a

symmetric matrix. V is nothing but the Rayleigh quotient. A simple computation shows that
the GAD for this system is given by

ẋ = − Ax

xTx
+

xTAx

(xTx)2
x + 2

(
vTAx

xTx
− xTAx

(xTx)2
(vTx)

)
v,

v̇ = −Av + (vTAv)v.

(11)

Next, we consider an infinite-dimensional example. The potential energy functional is the
Ginzburg–Landau energy for scalar fields: I (u) =

∫
&
( 1

2 |∇u|2 + 1
4 (u2 − 1)2) dx. The SDD in

this case is described by the well-known Allen–Cahn equation:

∂t u = (u − (u2 − 1)u. (12)

A direct calculation gives the GAD in this case:

∂t u = (u − (u2 − 1)u − 2((u − (u2 − 1)u, v)v,

∂t v = (v − (3u2 − 1)v − ((v − (3u2 − 1)v, v)v,
(13)

where the inner product is defined to be

(u, v) =
∫

&

u(x)v(x) dx.

Clearly both the SDD and the GAD depend on the choice of the metric, the inner product.
If we use instead the H−1 metric, then the SDD becomes the Cahn–Hilliard equation and the
GAD changes accordingly.

2. High index saddle points

GAD can also be extended to the case of finding high index saddle points. We will discuss how
to generalize it to index-2 saddle points here. There are two possibilities: either the Jacobian J
at the saddle point has one pair of conjugate complex eigenvalues or it has two real eigenvalues
at the saddle point. We discuss each separately.

Intuitively, the picture is as follows. We need to find the projection of the flow, F (x), on
the tangent plane, say P , of the two-dimensional unstable manifold of the saddle point, and
change the direction of the flow on that tangent plane. For this purpose, we need to find the
vectors v1 and v2 that span P . In the first case, we assume that the unstable eigenvalues at the
saddle point are λ1,2 = λR ± iλI . In this case there are no real eigenvectors corresponding
to λ1,2. However, for any vector v in P , (∇F )v simply rotates v inside P . Hence, v2 can
be taken as (∇F )v1 if we have already found some v1 ∈ P . The latter can be accomplished
using the original dynamics in (4a)–(4c).

To see how one should modify the flow F on the tangent plane, we write

F = c1v1 + c2v2 +
∑

j>2

cjvj .
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Using the fact that the eigen-plane of (∇F )T corresponding to λR ± iλI , which is spanned by
w1 and w2 = (∇F )Tw1, is orthogonal to vj for all j > 2, we can derive a linear system for
c1 and c2 by taking the inner product of F and w1, w2. The solution of that linear system is
given by

c1 = a22f1 − a12f2

a11a22 − a21a21
, c2 = a11f2 − a21f1

a11a22 − a21a21
, (14)

where aij = (wi , vj ) and fj = (F (x), wj ) for i, j = 1, 2. The GAD for the x component is

F̃ = F − 2c1v1 − 2c2v2.

To summarize, we obtain the following dynamical system:

ẋ = F − 2c1v1 − 2c2v2,

v̇1 = (∇F (x))v1 − α(v1)v1,

ẇ1 = (∇F (x))Tw1 − β(v1, w1)w1,

v2 = ∇F (x)v1,

w2 = (∇F (x))Tw1,

(15)

where c1, c2 are given by (14) and α, β are defined by (5a) and (5b).
If the Jacobian has two positive real eigenvalues at the saddle point, say, λ1 > λ2 > 0 !

λ3 > · · ·, let us define a new matrix by the method of deflation:

J2 := ∇F − (v1, (∇F )v1)

(v1, v1)(w1, v1)
v1w

T
1 . (16)

It is not difficult to see that if v1 is an eigenvector of ∇F corresponding to λ1, then J2 shares the
same eigenvectors as J, and the eigenvalues of J2 become 0, λ2, λ3, . . .. The largest eigenvalue
of J2 at the index-2 saddle point becomes λ2. One can then use the dynamics (4b) associated
with the new matrix J2 to find v2. Therefore, we obtain the following index-2 GAD:

ẋ = F − 2c1v1 − 2c2v2,

v̇1 = (∇F (x))v1 − α1v1,

ẇ1 = (∇F (x))Tw1 − β1w1,

v̇2 = J2v2 − α2v2,

ẇ2 = JT
2 v2 − β2w2,

(17)

with the initial normalization condition (v1, v1) = (v2, v2) = (w1, v1) = (w2, v2) = 1.
c1 and c2 are given in the same way as shown above (14) and α1,2, β1,2 are defined as
follows to enforce that the normalization condition is preserved: α1 = (v1, (∇F (x))v1),
β1 = 2(w1, (∇F (x))v1) − α1 and α2 = (v2, J2v2), β2 = 2(w2, J2v2) − α2.

The generalization to higher index saddle points with real eigenvalues is obvious.

3. Examples

3.1. Analysis of a gradient system

To better understand the dynamics of GAD, let us consider the case when a different relaxation
parameter is used for the direction v:

ẋ = −∇V (x) + 2(∇V, v)v,

τ v̇ = −∇2V (x)v + (v, ∇2V v)v.
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To simplify the discussions, we consider the limit as τ → 0. In this case, we obtain a closed
system for x:

ẋ = −∇V (x) + 2(∇V, v(x))v(x), (18)

where v(x) is the eigenvector of ∇2V (x) associated with the smallest eigenvalue. Now we
consider the following two-dimensional system:

V (x, y) = 1
4 (x2 − 1)2 + 1

2µy2

where µ is a positive parameter. x± = (±1, 0) are two stable fixed points and (0, 0) is the
index-1 saddle point. The eigenvalues and eigenvectors of the Hessian at a point x = (x, y) are

λ1 = 3x2 − 1 and v1 = (1, 0),

λ2 = µ and v2 = (0, 1).

Therefore, the eigendirection picked by GAD is
⎧
⎪⎪⎨

⎪⎪⎩

vGAD(x) = v1, if |x| <

√
1 + µ

3
,

vGAD(x) = v2, if |x| >

√
1 + µ

3
.

(19)

Consequently, by defining

V1(x, y) = − 1
4 (x2 − 1)2 + 1

2µy2

and

V2(x, y) = 1
4 (x2 − 1)2 − 1

2µy2,

we can write the GAD (18) in the form of a gradient system driven by the new potential:

VGAD(x) = V1(x) · 1|x|<
√

1+µ
3

(x) + V2(x) · 1|x|>
√

1+µ
3

(x), (20)

where 1·(x) is the indicator function. Note that VGAD is not continuous at the lines x = ±
√

1+µ
3

(figure 2). The point (0, 0)becomes the unique local minimum ofV1, with the basin of attraction
{(x, y) : −1 < x < 1}. Outside of this basin of attraction, the flow goes to (x = ±∞, y = 0)

and the potential V1 falls to −∞. For V2, the point (0, 0) is the unique local maximum and all
solutions go to (x = ±1, y = ±∞).

If we start the GAD with the initial value x± = (±1, 0), then there are two different
situations according to whether µ > 2 or µ < 2. Although x± becomes a saddle point
for any µ ̸= 2, the unstable direction for µ < 2 is ±v2 while the unstable direction for
µ > 2 is ±v1, as illustrated in figure 3. Furthermore, from figure 3 and the above discussion,
it is clear that the basin of attraction of the point (0, 0) associated with the potential VGAD

is the region −
√

1+µ
3 < x <

√
1+µ

3 for µ < 2 and −1 < x < 1 for µ > 2. (which is
larger than the basin of attraction for the Newton–Raphson method, confirmed by numerical
calculation.) Consequently, the GAD with an initial value (x0, y0) near the local minimum
x± of V converges to the point (0, 0) of our interest when µ > 2 and |x0| < 1.

This discuss suggests that GAD may not necessarily converge globally and instabilities
can occur when GAD is used as a numerical algorithm. When instabilities do occur, one may
simply reinitialize the initial position or the direction.
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Figure 2. The discontinuity of VGAD(x, y = 0) at the location x = ±
√

1+µ
3 . Left: µ < 2,

right: µ > 2.

3.2. Lorenz system

Consider
ẋ = σ (y − x),

ẏ = ρx − y − xz,

ż = −βz + xy.

(21)

The parameters we use are σ = 10, β = 8
3 and β = 30. There are three fixed points: the origin

O = (0, 0, 0) and two symmetric fixed points

Q± = (±
√

β(ρ − 1), ±
√

β(ρ − 1), ρ − 1).

O is an index-1 saddle point. The Jacobian atQ± has one pair of complex conjugate eigenvalues
with positive real part. In our calculation, we prepare the initial directions v0 and w0 by running
the GAD for long time starting from random initial conditions for v and w while keeping x
fixed, although this is not entirely necessary. Figure 4 shows two solutions of GAD. For
the index-1 saddle point O, figure 5 depicts how the trajectory of GAD converges to it. It
can be seen that the component of the original force F along the unstable direction of O

is nearly projected out, thus the trajectory will not be affected by the unstable flow in that
direction and avoids departing the saddle point. Therefore the trajectory tends to follow the
stable manifold toward the saddle point when the trajectory is close enough to the saddle point.
Similar behaviour is seen for the case of searching the point Q+ which has one pair of complex
eigenvalues. The trajectory surrounding Q+ in figure 4 spirals to Q+ and these spirals are closer
and closer to the unstable manifold of Q+ in the original Lorenz dynamics, which looks like a
twisted disc. The convergence rate of the spiraling trajectories in GAD is very slow because
the real part of the complex eigenvalues (λ = 0.1474 ± 10.5243i) in the original dynamics is
rather small compared with its imaginary part.

If we reverse time t → −t , we have the time-reversed Lorenz system, in which the origin
O becomes an index-2 saddle point. We can apply the index-2 GAD algorithm (17) to search
for this saddle point. The GAD trajectory in this case is also plotted in figure 5. It is similar to
the situation of GAD applied to the original Lorenz system in the sense that the GAD trajectory
nearly follows the z-axis when approaching the limit pointO. Indeed, as far as the x-component
is concerned, the linearized GAD for the original Lorenz system and the time-reversed one are
the same. From the proof of the proposition (particularly, note that the eigenvalues of N are
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Figure 3. The contour plots of V , VGAD for µ = 1 and VGAD for µ = 3, from the top to the

bottom, respectively. For the plot of VGAD, V1 lies in the middle region −
√

1+µ
3 < x <

√
1+µ

3 and
the V2 lies at the two sides. The arrows show the flow directions of the GAD (18).

−λi and λj ), it is not hard to see that the eigenvalues of the linearized GAD at the point O

are all negative and have the same absolute values as the eigenvalues of the original dynamics,
and the two dynamics share the same eigenvectors (again, we mean the x component of the
GAD). Thus, since the change t → −t does not change the absolute values of the eigenvalues
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Figure 4. The trajectories of GAD for the Lorenz system starting from two initial points. They
converge to the index-2 saddle point Q+ (marked by the dot) and the index-1 saddle point O (marked
by ‘+’), respectively.
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Figure 5. How the GAD trajectories approaches the saddle point O. The curve with two arrows is
the trajectory of index-1 GAD for the Lorenz system; the curve with single arrow is the trajectory of
index-2 GAD for the time-reversed Lorenz system. The unstable manifold of O, which is tangent
to the z = 0 plane, is also shown.

of the original dynamics, the GAD for the original and time-reversed Lorenz system have the
same eigenvalues: λ1 = −23.3955, λ2 = −2.6667, λ3 = −12.3955. The two linearized GAD
flows near the point O are the same: x(t) = e−23.3955tv1 + e−2.6667tv2 + e−12.3995tv3, where
v1,2,3 are the eigenvectors: v2 = (0, 0, 1), and v1, v3 are in the z = 0 plane. As t → +∞, we
then have x(t) ∼ e−2.6667tv2. This explains why both trajectories in figure 5 follow the z-axis
when approaching the saddle point O.

3.3. A PDE example with nucleation

Let us consider the following reaction–diffusion system on the domain x ∈ [0, 1] with periodic
boundary condition:

∂u

∂t
= δ(u + δ−1f (u, v),

∂v

∂t
= δ(v + δ−1g(u, v),

(22)
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Figure 6. The profiles of saddle points of the example (23) (δ = 0.01). Only the component u
is shown since v = 1

2 u2 at the saddle point. From inside to outside, the values of µ are −1.000,
−1.020, −1.040, −1.045, −1.046, −1.050.

where

f (u, v) = (u − u3 + 1.2)v + 1
2µu,

g(u, v) = 1
2u2 − v.

(23)

The parameter δ is fixed at 0.01 and we allow the parameter µ to vary. There are two stable
(spatially homogeneous) solutions for certain range of µ: u+ = (u+, v+) and 0 = (0, 0). If
one uses the square-pulse shape function as a initial guess in the Newton–Raphson method,
no convergence can be achieved in most situations. We applied the index-1 GAD method to
this example. The initial conditions for GAD are constructed by adding a small amount of
perturbations around either stable solutions: u+ or 0. We observed that for a fixed value of µ,
the solutions of GAD constructed this way converge to the same saddle point. The different
saddle points obtained from GAD at different values of µ are plotted in figure 6. It is also
numerically confirmed that these saddle points indeed have index 1 and the unstable manifold
goes to u+ in one unstable direction and to 0 in the opposite unstable direction. It is interesting
to observe the dependence of the saddle point on the parameter µ and that such a dependence is
highly sensitive when µ is close to −1.046 ∼ −1.045. In fact, there exists a critical value µ∗

in this narrow interval at which the spatially extended system (22) has a subcritical bifurcation,
which does not appear in the corresponding ODE system without spatial dependence. We refer
to [4] for further discussions about this point.

4. Concluding remarks

We expect that GAD is particularly useful for handling a high-dimensional system in the sense
that it should have a larger basin of attraction for finding saddle points, than, for example, the
Newton–Raphson method. There are many questions one can ask about GAD. One question is
the convergence of GAD as time goes to infinity. Our preliminary result shows that GAD does
not have to converge. For finite-dimensional systems, there is always local convergence near
the saddle point. The situation for infinite-dimensional systems, i.e. PDEs, seems to be much
more subtle. Another interesting point is whether one can accelerate GAD. For the problem
of finding local minima, many numerical algorithms have been proposed and they promise to
have much faster convergence than SDD. It is natural to ask whether analogous ideas can also
be found for saddle points.
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