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SINGULAR PERTURBATION METHODS IN STOCHASTIC
DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS*

ZEEV SCHUSS-

Abstract. Stochastic differential equations are used as models for various physical phenomena, such as
chemical reactions, atomic migration in crystals, thermal fluctuations in electrical networks, noisy signals in
radio transmission, etc. First passage times of solutions of such equations from certain domains and the
distribution of the exit points are computed from the solutions of singularly perturbed elliptic boundary value
problems. Physical interpretation of these quantities is given. Applications in communication theory and in
reliability of structures are shown.

1. Introduction. Since Einstein gave the mathematical theory of the Brownian
motion and applied it to explain molecular diffusion, a large body of scientific work has
been done on the theory and applications of this discovery. The applications range over
such diverse scientific areas as molecular and atomic physics, chemical kinetics, solid
state diffusion phenomena, stability of mechanical structures, electrical network and
filtering theory, wave propagation in random media, population genetics and many
other branches of the natural and social sciences. The most prominent work in the early
stages of stochastic differential equations was done by Einstein, Langevin,
Smoluchowski, Kramers and their contemporaries. This work was summarized in
Chandrasekhar’s survey paper (Chandrasekhar [6]).

The mathematical theory of stochastic differential equations was developed in the
last thirty years and several texts on this subject have appeared recently e.g. (Gihman
and Skorohod [13]). Significant progress was made with the discovery of the partial
differential equations for the distribution and moments of first passage times for
solutions of stochastic equations. The It6 calculus in particular gave the theory of
stochastic differential equations in bounded domains an important tool. The behavior
of solutions at boundaries determines boundary conditions for solutions of appropriate
parabolic and elliptic partial differential equations. The close relationship between first
passage times and boundary value problems for partial differential equations makes the
powerful methods of asymptotic analysis of partial differential equations available for
the study of such first passage problems. The absence of adequate theory or adequate
computational methods for solving first passage problems severely limited the scope of
modeling physical phenomena by stochastic differential equations. Alternative
methods were devised to overcome this difficulty. Such is the case e.g., of the transition
state method for the computation of chemical reaction rates and for the description of
diffusion phenomena in solids. The need for first passage theory arises in situations
where a particle is trapped in a potential well while random forces tend to "liberate" it
by pushing it over the potential barrier. The purpose of this paper is to present sources
of stochastic differential equations in mathematical physics and to present the new
singular perturbations methods that were recently developed for the solutions of the
appropriate first passage problems.

2. Langevin’s equation and Brownian motion. The chaotic perpetual motion of a
Brownian particle is the result of its collisions with the molecules of the surrounding
fluid. The molecular collisions of a Brownian particle occur in very rapid succession and
their number is tremendous. Thus a Brownian particle (e.g. colloidal gold particles of
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120 ZEEV SCHUSS

radius 50/z/z) will suffer about 102t collisions per second if immersed in liquid under
normal conditions. This frequency is so high that the small changes in the particle’s path
caused by each single impact are too fine to be discerned by the observer. Thus the exact
path of the particle cannot be followed in any detail but has to be described statistically.
The force acting on a Brownian particle consists of a hydrodynamical drag and a force
due to individual collisions with the particles of the surrounding fluid. The principal
assumptions concerning the second, fluctuating force i(t) (per unit mass) are the
following: (i) f(t) is statistically independent of the velocity v(t) of the particle, (ii) the
variations of f(t) are much more frequent than the variations in v(t), and (iii) the average
of [(t) is zero. Newton’s equations of motion are then given by

(2.1) dv(t)/dt -/3v(t) + |(t)

where /3 is the drag coefficient. Equation (2.1) is called Langevin’s equation. The
statistical properties of |(t) can be deduced from this equation by matching its solution
with known physical laws. The solution of the stochastic differential equation (2.1)
determines the transition probability density p(v, t, Vo) of the randomprocess v(t) i.e. a
function p(v, t, Vo) such that

P(v(t) A v(0) Vo) IA p(V, t, Vo) dv

where A c R 3. Assuming that the initial velocity Vo is given we must have

p (v, t, Vo) 6 (v Vo) as t 0

where 6 is Dirac’s function. Further, we know from statistical physics that the density
p(v, t, Vo) must approach the Maxwellian density for the temperature T of the sur-
rounding medium, independently of Vo as oo. Hence

( m ) 3/2

(2.2) p(v, t, Vo) 2rkT exp

where m is the mass of the Brownian particle and k is Boltzman’s constant. This
demand on p(v, t, Vo) requires |(t) in turn to have certain statistical properties. The
formal solution (2.1) is given by

(2.3) (t) =o e-’+ e-(’-’t(s) ds

provided the integral exists. Consequently the statistical properties of the integral must
be the same as those of the ditterence (t)-vo e -’. Since

(t)-oe-(t)
for large t, the integral must have in the limit a Gaussian density. Writing the integral as
a finite (Riemann) sum

OnAt|(n --Or eO,,Ate-t(-’|(s) ds =e-’ E e At) Ate

where Ab. |(n At) At, we obtain for large

(2.4) v

The random variables Ab, express the random accelerations suffered by a Brownian
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STOCHASTIC DIFFERENTIAL EQUATIONS 121

particle in the time interval (n At, (n + 1) At). Thus we may assume that the variables
Ab, are statistically independent of each other, since the successive collisions are
completely chaotic. We shall assume that the time intervals t are large compared
to the average period of a single fluctuation of t(t). The period of fluctuation of t(t) is of
the order of the time between successive collisions between the Brownian particle and
the molecules of the surrounding fluid; in a liquid this is generally of the order of
10-2x sec. Accordingly, each acceleration Ab, is the result of many collisions, so that we
may assume that all Ab, have the same statistical properties (Chandrasekhar [6]). If we
choose therefore Ab to be zero mean Gaussian variables the v(t) will be Gaussian as
required in (2.2). To compute the variance of Ab, we set

Elat,.l=- 2q At

and using (2.4) we obtain

E]vl2 2q At e 2[3(nAt--t)
--), 2q e 2t3(s-t) ds

q
=(1-e

On the other hand we have

--2,) as At + O.

kT
as taz

by (2.2); hence

(2.5) q BkT/m.

Let x(t) be the displacement of the Brownian particle. Then

(2.6) x(t) Xo + v(s) ds.

Substituting (2.3) in (2.6) we obtain

x(t) x+ I0 v0e
-a’ +e- e’f(u) du ds.

Using integration by parts we get

(2.7)

x(t) Xo Vo( 1 e -Bt)/[3 ---e-’ eO’f(s) ds/B

f+ f(s) ds/B =- g(s)|(s) ds.
Jo

Where g(s) (1- e(S-’))/B. Using a finite sum approximation to the integral again we
conclude that the variable

x(t) Xo- Vo(1- e-t3’)/O

is a zero mean Gaussian variable with variance

2 Io’ 1
2 -t, -2ot).(2.8) tr g2(s) ds -( Ot- 3 +4 e e
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122 ZEEV SCHUSS

Hence the probability density of x(t) is given by

p (x, t, Xo, Vo) {m/3 2/[27rkT(2t 3 + 4 e-t e-2tt)]}3/2
(2.9)

mO2]x_lto_vo(l_e_t3t)/Bi2

exp -[2kT(EBt-3 +4 e-Ct-Ti]J"
For large we have

(2.10) p(x, t, Xo, v0) (4rDt)-3/2 exp (-IX-Xol2/(4Dt)),
where

(2.11) D= kT/(m).

Using Stokes’ formula for the drag coefficient we get/3 6zrart where a is the radius ot
the Brownian particle and r/ is the viscosity coefficient of the surrounding fluid. It
follows that p(x, t, Xo, v0) becomes independent of Vo and satisfies the diffusion equation

egp/Ot D Ap

with the diffusion coefficient D given by (2.11). This is Einstein’s result (cL Einstein
[10]). Note that the pair (x(t), v(t)) is Markovian but x(t) is not. For large/3 the joint
transition density of (x(t), v(t)) splits into a product of two densities, so x(t) and v(t)
converge to Markovian processes as/3 o (cf. Chandrasekhar [6], Feller [11], Kac
[18]). We can define now the Brownian motion x(t) mathematically as the process
whose distribution is the limiting distribution of the previous Brownian particle. It has
the following properties: for all open A R3

(2.12) P{x(t) 6 A x(0) Xo} (4Dt)-3/2" IA e -Ix--’12/t4t) dx.

The process x(t) is a process of stationary independent increments and x(t)-x(O) is a
mean zero Gaussian process. Then

(2.13) E x-x0 12= Dt
and the paths of x(t) are continuous and the joint probability distribution of
(x(tl), x(t2), ", x(t,)) (tl < t2 <" < t,) is Gaussian. Let w(t) be the one dimensional
analogue of x(t) with D 1/2 and w(0)= 0. The transition probability distribution 0t
w(t) is then given by

b

<- w(t) <- b w(s) x} [2r(t- s)]-1/2 Ja e-Y-x)2/tz’-s)) dy.P{a

The joint probability distribution of (w(t), w(t2), , w(t,)) is zero mean Gaussian so
it is determined by the covariances Ew(ti)w (ti). It is easy to determine the covariances
using the independence of increments and the fact that Ew2(t)= (cf. (2.13)). Indeed,
assuming < s we have

Ew(t)w(s) E[w(s)- w(t)]w(t) + Ewe(t)
(2.14)

E[w(s)- w(t)]Ew(t)+ t= t= min (t, s)=-- t^ s.

It can be easily seen that the following are Brownian motions

(i) w(t) w(t + s)- w(s),
(2.15)

(ii) Wz(t) cw(t/cZ), c const.
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STOCHASTIC DIFFERENTIAL EQUATIONS 123

Further properties of w(t) and the rigorous construction of a process w(t) with the
above properties are given in McKean [31 ]. It can be shown for example that

lim sup w (t) , lim inf w (t) -o,

that w(t) is nowhere differentiable etc. (cf. It6 and McKean 17]). We shall refer hence
forward to w(t) as the one dimensional Brownian motion, or Wiener process. Finally we
remark that the solution v(t) of Langevin’s equation is called the Ornstein-Uhlenbeck
process. It leads to formula (2.9) which generalizes Einstein’s result (2.11), which is
valid for large t only, to all times. In particular, for short times

Ex(t)_ Xo]2 3k2
cm

is result is due to Ornstein and Frth (cf. Ornstein and Uhlenbeck [36]).

3. e It6 calculus and its applications. The one dimensional Langevin equation is
given by

-y +q
(3.1)

y (0) yo

where qff represents the "white noise" force due to collisions. Its solution is given by

(3.2) y(t) Y0 e-’ + q e-(- dw(s).

e equation, as well as the solution do not represent well defined quantities since
(t), though continuous, is nowhere differentiable. In the simple case of (3.2) this
diculty can be overcome by integration by parts, so that the form

(3.2’) y(t) yo e- +q(t)-q (s) e-(- ds

can be taken to be the solution of the integrated lorm ot (3.1)

(3.1’) y(t)= y0- y(s) ds +q(t).

is procedure becomes impossible it the inteand e-(- in (3.2)is replaced by a
function ol (t), or if q in (3.1) is a tunction ot y or (t). To overcome this diculty the
folloing constction, due to It6 (cf. McKean [31]) is made. Let [(t) be a random
process such that [(t) is independent of all the increments w (t + s) (t), s > 0 for each
t. ene say that [(t) is nonancipating. Let H[0, T] be the class of all nonanticipat-
ing measurable functions (t) such that

To [(t) dt <.
Let (t) be a right continuous step function in H[0, T], i.e. let

i=0

here
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124 ZEEV SCHUSS

and

Then we set

(3.3)

It follows that

(3.4)

and

Xt,,, ,,+1)(t) 0 otherwise, O= to<tl <. .<t, T.

T

f(t) dw(t) fi[w(ti+)- w(ti)].
i=O

T

E fo f(t) dw(t) 0

E [(t) dw(t) Y. E[[i A,w Aw,

where Aiw w(ti/l)- w(ti). Since increments are independent and [(t) is nonanticipat-
ing we have by property (i) and (2.4)

(3.5) E [(t) dw(t) Effi Ati E[=(t) dt,
i=0

where At t+l-t. It can be shown that for any function f(t) in H2[0, T] there is a

sequence {fn} of step functions in He[O, T] such that
T

E[]: f ]2 dt -* O ooas n

and such that the sequence

converges uniformly in 0 _<-t <_- T almost surely (cf. McKean [31]). We set

(3.6) Io ]:(s) dw(s)= ,-.lim [,(s) dw(s),

thus obtaining a meaninul definition of an integral. Properties (3.4) and (3.5) hold for
any/e(t) H2[0, T] and the integral (3.6) is an almost surely continuous martingale as a
function of t. The integral can be extended to all measurable and nonanticipating
functions f(t) which satisfy

P (s) ds< =1.

,This is done by setting [. (t) f(t) if t < S. and f. (t) 0 if => S., where

Then [, e H2(0, T) and one defines
T T

Io f(s) dw(s)=irn Io [,(s)dw(s,.
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STOCHASTIC DIFFERENTIAL EQUATIONS 125

The stochastic differential equation

)(t) a (y(t), t)+ b(y(t), t)Cv(t)

can now be defined by

y(t) Y0 + a (y(s), s) ds + b(y(s), s) dw(s)

where a and b are elements of H2(0, T].
The basic rules of the It6 calculus are described next. We say that a process x(t) has

the differential

(3.7)

if

dx(t) a(t) dt + b(t) dw(t), a, b H:[0, T]

t2 It t2
x(t2)-x(tl) a(s) ds + b(s) dw(s)

for all 0 _-< tl <- t2 =< T. Let

xi(t) ai(t) dt + bi(t) dw(t), (i = 1, 2).

Then the product rule for differentials (cf. Gihman and Skorohod [13]) is given by

d[Xl(t)xz(t)] x(t) dx2(t) / x2(t) dX(tl) + b(t)b2(t) dr.

In particular

dw2(t) 2w(t) dw(t)+ 1 dt,

w(t) d(t) [(t)- w(t)]-(t- t),

unlike the classical calculus.
The chain rule, known as It6’s formula, is given by

(3.8)
[tf( _-

1 z ]df(x(t) /)= x(t) t)+a(t) (x(t),t)+ (t) (x(t) t) dt
ox et’

+ b(t)OTf(x(t), t) dw(t),
OX

where f(x, t) is a smooth function of x and t, and x(t) has the differential (3.7). If
w(t) [w(t), w2(t), , w.(t)]r is a vector of independent Brownian motions and the
vector x(t) [x(t), x2(t), ., x.(t)]r has the differential

dx(t) = it(t) dt + ll(t) dw(t)

where tt(t)=[al(t), a2(t),..., a.(t)]r and II(t)={bii(t)}i.j=,, is a matrix, then It6’s
formula is given by

df(x(t), t)= Lf(x, t) dt + Mr(x, t) dw(t),
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126 ZEEV SCHUSS

where

at i=1

oEf+0
i.i OxiOxi

1(3.10) o’=-{BBT}, and llfdw , b
c3f

./
dw/.

The coefficients a and 11 may in general depend on x, and indeed, very often they depend
on x but not on (the so called autonomic case). Two important consequences of Itb’s
formula are as follows. Let x(t) be a ditierentiable process in the sense of (3.7’) where a
and !1 depend on x(t). Assume that x(0) x f where 12 is a bounded domain in R" with
smooth boundary 0I). Let rx be the first time x(t) hits the boundary 0fl, i.e. rx=
inf {t x(t) cf, x(0)= x}. The expectation of r can be found by solving a backward
parabolic or elliptic boundary value problem. For, let v(x, t) be the solution of the
problem

Lv(x, t) -1 in x (0, ) Q,
(3.11)

v(x, t)= 0 on Olq x (0, m).

Then, using the integrated form of It6’s formula (3.11) with f(x, t)= v(x, t) we obtain
for all < r,,

L

v(x(t), t) v(x, O) +.Io Lv ds + Io Mv dw(s);

hence, setting, as we may (cf. Gihman and Skorohod 13]) r, taking expectation and
using (3.4) we obtain

Ev(x(r), r,,)= v(x, 0)+E (-1) ds.

Since x(r) e cgf we have v (x(r), r) 0

SO

(3.12) v(x, 0) Er..

Formula (3.12) is due to Dynkin (cf. Dynkin [9]). If a and il are functions of x, (3.11)
becomes an elliptic boundary value problem. The existence of bounded solutions to
(3.11) implies that the process x(t) hits the boundary 0f in finite time almost surely. In
case a and B depend on x and t, (3.11) is a backward parabolic boundary value problem,
for which existence theory is discussed in Friedman and Schuss [12] and Schuss [41],
[42]. Next, let p(x, y) be the probability density of points y on 0f where x(t) hits 0 for
the first time, given x(0)= x. More precisely, let F 0f; then

P(x(rx) e FIx(0)= x)= Ir p(x, y) dS,.

It follows that p(x, y) is Green’s function of the Dirichlet problem

(3.13)
Lu 0 in f

u =/’(x) on aO

(assume for simplicity that a and !1 are independent of t). Indeed, let u(x) be the solution
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STOCHASTIC DIFFERENTIAL EQUATIONS 127

of (3.13) for some smooth function f(x). Then, using It6’s formula as above we have

IoEu(x(r))=u(x)+E Ludt+E Mudw=u(x).

Now, since x(r)f we have

(3.1,4) u(x) Ef(x(r))= f f(y)P(x(r) dS x(0) =x)

where dS is a surface area element at y in 0f. Hence

u (x)= f /(y)p(x, y) dS,

which means that p(x, y) is Green’s function for (3.13). The probability distribution of
can also be found by similar considerations. Namely, let w(x, t) be the solution of the
backward parabolic problem

Lw(x,t)=O

(3.15) w(x, t)= 1

w(x, T) 0

Then, using It6’s formula we find that

but

Thus

O<_t<_T,

x cgf,

xft.

Ew(x(rx ^ T), rx A T) w(x, 0),

Ew(x(rx^T), rx^ T)= w(x, T)P(r^ T= T)

riot w(y, z)P(x(r,,) dS, r dz)=P(r< T).+ J0fl
P(r<t)=w(x,O).

4. Stochastic differential equations and partial differential equations. If a and B in
(3.7’) are functions of x(t) and then (3.7’) becomes a stochastic differential equation.
More precisely, the integrated form of (3.7’) is the integral equation

(4.1) x(t) x(s)/ a(x(z), z) dz + B(x(z), z) dw(z)

which defines (3.7’) as a differential equation. Under certain smoothness and growth
conditions on a and B there exists a unique solution to (4.1) (cf. Gihman and Skorohod
13]). It can be shown that the solution is a diffusion process with drift coefficient a(x, t)
and diffusion tensor tr=1/2(BBr)(x, t). The converse is also true; if x(t) is a diffusion
process with sufficiently smooth coefficients a(x, t) and tr(x, t), r is strictly positive
definite and tr- is bounded then x(t) is the solution of (4.1) where B is a matrix such that
tr= BBr [13]. To explain the nature of the information we look for in stochastic
differential equations consider the simplest one dimensional case

dx(t) a(t) dt + b(t) dw(t), x(O) Xo

where a(t) and b(t) are deterministic functions. The solution is given explicitly by

(4.2) x(t) Xo + a(s) ds + b(s) dw(s).
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128 ZEEV SCHUSS

The stochastic integral in (4.5) is the limit of sums i b(si)[w(s+l)- w(si)] as described
in 3. This sum is a linear combination of zero mean independent Gaussian variables,
so it is a Gaussian variable; hence the limit is a zero mean Gaussian variable. The
variance of the stochastic integral is given by (3.5), so

by (3.4), and

Ex(t) Xo + a(s) ds

Var x(t) E[x(t)-Ex(t)]2 b(s)2 ds.

It can be shown that the solution x(t) of (4.1) has, under certain smoothness conditions,
a transition probability density (px, s, y, t) such that

P(x(/) A x(s) x) IA p(x, S, y, t) dy (s < t).

In the given example x(t) is Gaussian so that

p(x, s, y,/)= [2zr I bE(z)dz]
-/2

exp [-(y-x-I. a(z) dz)/2 I’ bE(z) dz].
Hence

O___p 1 .( oEp
Ot =-b t)y2 + a(t)OP’oy

p(x, s, y, t) 8(x y) as ts.
e basic information about the solution is not necessarily a formula for the solution,
but rather its probability distribution, moments etc. Another example of a stochastic
differential equation that can be solved explicitly is Langevin’s equation for the
Brownian harmonic oscillator

(4.3)

where/3, T and m are the same as in 2 and to is the natural frequency of the oscillator.
Equation (4.3) is equivalent to the It6 system of equations

dx y dt,

dy -(fly + toEx) dt + m
2In this case the vector a is given by a y, a2 --y--to x, and the matrix B is given by

(0 O) where q= J2Ta=
0 q m

The solution is given by

-1
[(Xo/Z2-Yo) e’l’-(Xo/Zl-y0) e"=’]+ I0 (s) dw(s),
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STOCHASTIC DIFFERENTIAL EQUATIONS 129

where

Thus

’V(s)
q [e(t-s)

E,,o.yox (t) 0, Exo.yoy (t) 0

kTEo.,oX(t)-
m

Exo.yoy2(t) - k__T
m

as

(cf. Chandrasekhar [6]). Equation (4.3) can be used as a model for a motion of an atom
performing thermal vibrations in a crystalline lattice. In this case B can no longer be
considered a viscosity coefficient but rather it represents the rate of dissipation of the
kinetic energy of an atom by interaction with the lattice through internuclear forces (cf.

7). Several important applications of the above elementary theory of stochastic
differential equations are presented in (Chandrasekhar [6]).

In the general case the transition probability density p(x,s, y, t) satisfies the
Fokker-Planck equation with respect to the "forward variables" (y, t)

(4.4)

Op/Ot -E 0[ai(y, t)p(x, s, y, t)]/Oyi + , 02[o’ii(y, t)p(x, s, y, t)]/OyiOYi,
i,i

p(x, s, y, t)6(x-y) as ts.

Equation (4.4) is called also the forward Kolmogorov equation. The density p(x, s, y, t)
satisfies the backward Kolmogorov equation with respect to the "backward variables"
(x,s)

(4.5)

(4.6)

Op/Ods + Y’. a,(x, s)Op/Ox, +. crij(x, S)O2p/c)XiOXi O,
i,i

p(x, s, y, t) 6(x-y) as s’t.

If certain behavior at the boundary 0f of a bounded domain f is imposed on x(t) then
p(x, s, y, t) satisfies some boundary conditions. Thus if 01 is a perfectly absorbing
boundary, i.e.

P(x(t) A Ix(s) s Off) = 0

for any A c fl and > s then p(x, s, y, t) 0 for all x Of, y e l and > s. If Of is an

instantanously reflecting boundary then

nO____(x,s Y, t)=0 x0f, yf, t>S.

Here 0/0y,, is the normal derivative at x 0f (cf. Gihman and Skorohod [13], Mandl
[26], Anderson and Orey [1]). Formula (3.12) can be derived directly from (4.5) as
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130 ZEEV SCHUSS

follows. Assume cgll is an absorbing boundary, then, in the autonomic case,

E-rx=I0 tdtP(7"x<t)=Io P(’xt) dt=Io P(x(s)fl, s<tlx(O)=x)dt

Integrating (4.3) with respect to s and with respect to y over O and using (4.6) we obtain
(3.12) where v()= Er,, satisfies (3.11). Equations (3.12) and (3.14) are representation
formulas for solutions of partial ditterential equations by solutions of stochastic
differential equations. For other representation formulas (cf. Gihman and Skorohod
[13]).

5. The exit problem in mathematical physics. Following the attempts of Kramers
[22] we construct a diffusion model for chemical reactions. A particle inside a molecule
is held by chemical bonds and may be considered at rest or performing small oscillations
about a stable equilibrium. In a chemical reaction external forces, such as the forces
created in molecular collisions, may activate the particle to such a degree that it
overcomes the chemical bonds and leaves the molecule. Once outside the molecule such
a particle either forms a new bond and remains at a more stable equilibrium state or is
removed permanently from the molecule by other means, such as an electrostatic field.
The rate at which the external forces push such particles over the edge of the potential
well in which they initially rest determines the kinetics of the reaction. If the particle has
n degrees of freedom its motion can be described as that of a particle in the
2n-dimensional phase space, that is by n independent displacement coordinates
x (x l,’’’, xn) and by n velocity coordinates y dx/dt. The potential well confining
the particle may consist of a succession of holes and barriers through which the particle
passes before it escapes. This is the case of successive chemical reactions. Here the
reaction may be considered complete only after the highest potential barrier has been
surmounted. The energy which the initial reactants must acquire before they can
surmount the highest barrier separating them from the final products is called the
activation energy. (See Figs. 5.1, 5.2 and 5.3.)

A+BC

FIG. 5.1. Potential barrier for a chemical reaction. AB + C"

\ 1

a 1/ y x2 Y2 x. b

FIG. 5.2. Potential for successive reactions.
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STOCHASTIC DIFFERENTIAL EQUATIONS 131

FIG. 5.3. Potential barrier with sharp edges.

The presence of intermediate states is inconsequential except in so far as such a
state contains an appreciable fraction of the total molecules, which makes them really
part of the initial state. For multiatomic molecules the potential energy is a function of
the n independent internuclear distances measured from some arbitrary origin. In this
case there are many directions of escape over the potential barrier in R n. The different
directions correspond to different chemical reactions. Such is the case where the same
activation energy is required for the splitting of any of the three equivalent H atoms in
CH3F (cf. Benson [2], Glasstone [15]).

If the potential barrier is very sharp we may consider the forces to be dis-
continuous, so that once the bond is broken the force changes abruptly from attraction
to repulsion. We shall compute for such models the rate of escape of particles over the
barrier, thus giving the escape rate as a function of the potential well and of the
temperature (i.e. as a function of the intensity of the collisions). In particular we shall
find the effect of the stereometry of the potential well on the reaction rate and on the
composition of the final products. We shall assume that the medium surrounding the
molecule is in thermal equilibrium so that the velocity distribution of the particles is
Maxwellian (in the n components yn). To be more specific we describe the motion of a
chemically bound particle by the Langevin equation

dx
d---- y’

(5.1)
dy J2BkTd-S -/Y-V(x) +

rn

The function (1)(x) describes the chemical bonds and depends on the relative
distances of atomic nuclei only. The expression x/2flkT/m , represents the white noise
forces due to molecular collisions computed from Einstein’s formula. In a typical case
/’--109--10 while kT/m .--10- 103 (cf. Chandrasekhar [6]). It follows that the
Kramers-Smoluchowski approximation to Langevin’s equation holds for large/3. It is
given by

(5 2) d_x= -v)(x) + 2mk----T,(s)ds

where =/3s.
Several derivations of (5.2) exist in the mathematical literature: Chandrasekhar

[6], Papanicolaou [37], Larsen and Schuss [23], et al.
The.following derivation was communicated by the referee. Rescaling time by

setting =./3s, noting that (1/x/)w(/3s)=if(s)= Brownian motion (cf. 2), and setting
yO (s) y(/3s) and xt3 (s) x(/3s) in (7.1) we get

dxt3 (s) By (s) ds,
(5.3)

dy (s) tip di,(s)- /32y (s) ds -/3V(x (s)) ds,
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13 2 zv SCHUSS

where p2= 2kT/m. Now let z(s) be the solution of

(5.4)
dzt3(s) Op d@(s)-zzt(s) ds,

z(0) =yo,

and set y (s) z (s) + v (s). We will determine v (s)"

(5.5)
dy (s) dz (s) + dv (s) BP d(s)- OZz (s) ds + dv (s)

Op d(s) -/32yo (s) ds + fl2v (s) ds + dvO (s).

Substituting (5.5) in (5.3) we obtain an ordinary differential equation for v (s)

The solution is given by

dv (s)/ds -B2v (s)-/3V(x (s)).

vt (s)= -/3 e-*-)V(x (r)) dr.

The solution of (5.4) is given, as in (3.2), by

z (s) Yo e- +P /3 e-(-) d@(r).

Setting (s)= By (s) we obtain from (5.1)

(s) o e- +p e-(- d#(r)- e

Integrating (s) we obtain after some manipulations

fo 1
-) 2(’xO(s) Xo+ (s) ds o(1-e +pB if(r) e

-(-)VO(xn (r)) dr.

--[32(8--r} dr

[3 2 e-tJ2(t-r)vcli(Xt3 (r)) dr dt.

Since/3 2 e -2(s-r) 8(s r) as/3 oo, s -> r, we have x (s) i(s) where

ioi(s) io + p(s)- V((r)) dr,

which is equivalent to (5.2). The Fokker-Planck equation corresponding to (5.2) is
given by

kT
zXu +V. (VcI:,u) Ou/os.
m

It is called the Smoluchowski equation. It describes diffusion in a potential field (cf.
Chandrasekhar [6]).

We shall assume that the depth of the potential well (the activation energy) is large
relative to the quantity kT/m (here m is the reduced mass of the particle in a collision).
More specifically, let f be the potential well, minn O, maxn 0 where Ofl is the
potential barrier. Then setting -V=-OVb---Ob we shall assume kT/(mO)<< 1.
Hence, replacing s by s’= Qs (thus - Bt/Q) we obtain the equation

dx dw
(5.6) d-- b(x)+

at
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STOCHASTIC DIFFERENTIAL EQUATIONS 133

where e x/2kT/(mO) (we have used the Brownian scaling (2.15 ii) again).
On c3f the force I(x) either vanishes or points in a direction parallel to rgfl, but I(x)

tends to repel particles away from the boundary on either side ot cf. If the potential has
a cusp at then does not vanish and b. V < 0 ( outer normal to ). In chemical
terminology is called a transition state. The reaction rate constant k, first derived by
Arrhenius, is the fraction of the particles entering the reaction per unit time. Thus in a
first order reaction

where C is the concentration of the single reactant. Setting

r inf {t (t) 0}

where (t) is the solution of (5.6), (0)=e, we see that 1/r is the number of
particles arriving at 0 from per unit time. Hence

where p (x) is the relative concentration of particles in the well. Our puose is to derive
an asymptotic formula for k as e 0. We may assume that initially all particles are
concentrated at the bottom of the well x 0, so that

k 1/Eor’.

The function v (x)= Er is the solution of the boundary value problem (3.11), so

Lv =eAr +b.Vv =-1 in
(5.7)

v 0 on fl.

It can be shown (cf. Ludwig [25]) that v (0) Eor A where A is the principal
eigenvalue of L. We shall use the method of Matkowsky and Schuss [29], [30] to
compute v" (x). Since v (x) grows exponentially as e 0, we set v (x)= e-r/’W (x)
where W(x)=C(e)w(x), maxo w 1, C(e)=o(er/).

The function w (x) vanishes on the boundary but approaches 1 in O very rapidly
as e 0, so that w" (x) is of boundary layer type. Using local coordinates near we find
the boundary layer equation

ewyy + ybowy +L’w =0

where y =-dist (x, ).

b yb0+ O(y2), bo>0.
The term L’w contains tangential derivatives and smaller terms in e and is of
boundary layer type. Rescaling y z we obtain

W + zbow + w =0,

Hence
/4"

(5.8) w (x) C0(e) f e
J0

w (0) 0,

w(oo)--1.

-s2b/2 ds(1 + o(1 e -y2b/z ds.
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134 ZEEV SCHUSS

Since b =-Vb we can write equation (5.7) in the form

(5.7’) e V. e-/Vv -e-/.

Integrating over fl and using the expansion (5.8) we obtain

-Ir e-/‘ dx e I e-/cgv" ds -e-X/’/eC(e) I e-/b/2 (x) dSx.

Expanding asymptotically the Laplace type integrals we obtain (Olver [34])

(2"lr’8 )n/2aq-l/2(O) (27re)"/2 e-r/Co(e e -,f,/e y,. b/2 (i)H-1/z(xi)

where 4 b (xi) maxon b,

(0)=det24 (i,j= 1,...,n),
3xOi

H(Xk) =det (i,]= 1,..., n-l),

and X’--’(X1, ,x,-1) are local coordinates in Of/. Thus K =- and C(e)=
(O)-l/2/y’.ib/2 (xi)H-1/2(xi); hence

(5.9) E0z
a--1/2(0)

e ’/.. (02/2)l/2H-1/2(xi)

The validity of the expansion (5.9) was proved rigorously by Kamin [20].
Since is the potential per unit mass let m be the potential. Using the

original time scale we obtain

Here and H are the Hessians of .
We see that the reaction rate is lower if viscosity is larger and if the particles are

heavier. Note that the preexponential factor incorporates the geometry of the well, thus
taking into account the fact that not all collisions are as likely to produce a reaction; this
is the steric factor. Further formulas were derived by Matkowsky and Schuss [29], [30].

The probability distribution of exit points on 3f will be discussed in the next
problem of atomic migration in crystals. A crystal is a periodic structure of atoms
arranged in a regular array, e.g. the cubic structure of sodium chloride (cf. Pauling [39]).
We shall assume that a cell f can be identified in a crystal so that the structure is a
repetitive pattern of identical cells. If an impurity atom is located in an interstitial
position it moves through the crystal by squeezing its way past some of the host atoms
surrounding it. This process is caused by the thermal vibrations of the structure (cf.
Girifalco [14]).

Although the vibrational amplitude of a particular atom remains small most of the
time, occasionally the atom acquires enough energy for its amplitude to become quite
large. Such a fluctuation might arise when the atoms on one side of one atom sway
simultaneously toward it and push it over the boundary of the cell into a neighboring
one. Such an interstitial atom may be considered either resting or performing small

D
ow

nl
oa

de
d 

01
/0

4/
17

 to
 2

02
.6

6.
60

.1
68

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



STOCHASTIC DIFFERENTIAL EQUATIONS 135

\,, .V V

FIG. 5.4. Nonisotro ic lattice.

oscillations at the bottom of the potential well of the interatomic forces. Each lattice
atom may be considered a Brownian harmonic oscillator, so that the force acting on the
interstitial atom may be considered to be of white noise type. It follows that (5.6) may be
used to describe the motion of an impurity atom. Let ? be the average time between a
jump from one cell into another. Then the interstitial will perform a 3-dimensional
random walk whose step size is the distance between the cells taken at time intervals ,
apart. In the case of vacancy migration one may consider a lattice withN sites as a single
particle in the 3N-dimensional space performing a random walk. If the cell structure is
nonisotropic the jump frequencies will be different in different directions and the
probability of passage through various saddle points separating the cells may be
different. (See Fig. 5.4.) Let us assume that the lowest saddle points are located at points
zl, -, z, on af and the jump probability through zi is pi (i 1, 2,. , n). We must
have n 2m, zi -z,,/,, Pi P,,+i, 1, , m. The probability of passage from a
point x to a point y in the lattice in time + At (n + 1) satisfies the backward equation

p(x, y, + At) pip(x+ zi, y, t).
i=1

Expanding in Taylor’s series we obtain

ap_ Z P,E zi a2p
+0

at k=l i,k OXiOXk

where zi (z z/, Z
3 T and h diamete,-o a cell. We have therefore

a__p VVp

where

(5.10) @ik
i=1

The matrix is called the diffusion tensor. Since ? is given by (5.9) we shall
compute p now. The exit distribution is the Green’s function for problem (3.13), which
takes the form

eAu-Vb’Vu=0 infl
(5.11)

u f on a.
We must have a,/

b(Xo)-1/2y2bo + O(y3), bo>O,

in local coordinates near Xo Ol’l.
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136 ZEEV SCHUSS

The reduced equation (5.11) is given by

-V VUo 0

or

duo(x(t))
dt

=0

where

(5.12) t-------’dx( -Vb.dt

Since all trajectories of (5.12) converge to the origin we must have

Uo COrlSt.

(cf. Matkowsky and Schuss [29], Kamin 1 ]). Consequently, a boundary layer is formed
near Ofl as e 0.

Writing (5.11) in local coordinates near 0f we obtain

euy + ybou + L’u =0.

Rescaling y r/ we find that

u,, + rtboy, + L’u =0,

u(x’, 0) =/(x’)

where

(x’, 0) e f,

u (x ’, z) C const.

Hence

(5.13) u(x’, y)’--C +(/(x’)- C) yf e -’b’,/z ds/ e -’’b/2 ds(1 +o(I)).
/,/7

Writing (5.11) in the form

e V e-/Vu 0

and integrating over tq we obtain

_IOU
(5.14) e dS =0.

Using (5.13) in (5.14) we obtain

(5.15)

C lim e-*/’f(x) {2tD
1/2 2

.-.0 a \O12J d , e 2}

=2f(x,)\-;, c9,--] H-’/a(x,) \ 0,2 J H-I/2 (Xi)

where xi are the saddle points in Of where b =minon b. This result is due to
(Schuss and Matkowsky [30]).
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STOCHASTIC DIFFERENTIAL EQUATIONS 137

It follows that

(4,,)) 1/2

or

2rb 1/2

/2(x, $2(xi)H-(5.16) p, (2(x,,) H- .)/
It is obvious (cf. Kramers [22]) that if a single saddle point exists on 0fl the particle is
certain to escape at Xo. This was rigorously proved by Ventzel and Freidlin [47].
Combining (5.9), (5.10) and (5.16) we obtain

1

We see that is proportional to the product of the frequencies of oscillation at the
bottom of the well (x 0), as (0) is the product of the eigenvalues of the matrix
32/3xi3xi at x=0. The diffusion rate is inversely proportional to the product of
the frequencies of oscillation at the saddle points x on 3fl, but proportional to the
imaginary frequency of oscillation in the direction across 3fl, at a saddle point;
the diffusion rate is slower if the particle is heavier. Here is the slowing rate of the
impurity particle due to its interaction with the lattice atoms. The same result was
derived by Larsen and Schuss [23] directly from the Fokker-Planck equation. Similar
results were obtained by Vineyard [48] and Glyde [16].

A chemical reaction or the motion of a vacancy (or the entire lattice) consists
usually of a succession of jumps over inteediate baiers before a stable equilibrium is
achieved. We shall show next how to compute the exit probabilities in such a case.
Consider for simplicity the one dimensional case first. Equation (4.11) then takes the
form

(5.7)
u(a)=a, u(b)=3

where fi=[a,b]. Let $ have minima at xi, 1,...,n and mima at y,i=
1, , n 1. It is clear that u(x) G const, as e 0, x <x < y. We may expect
therefore discontinuities to appear at x and y. Assume --O’=A(x--z)k’+ is
Taylor’s expansion of -’ near z x of z y. Rescaling the variable by setting

(x z)/e in (5.17) we obtain
1-2 (ki-1)k(5.18) e uee +[Aie +.. -]ue =0.

Hence, choosing 1/(k + 1), we see that the dominant te in (5.18) satisfies the
equation

(5.19) uee + Ad’ue 0

near 0. Equation (5.19) is the internal layer equation near z. Since

u, -* C if X < X < Xi+

we must have

u(j) Ci- as
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138 ZEEV SCHUSS

The last two conditions match the outer solutions Ci, C-1 by the internal layer u(s).
Since

u() cl exp[-Ai,k’/I/(ki+l)]d+c2

we see that c 0 unless Ai is positive, i.e. unless O has a minimum at zi. Thus no
discontinuities appear at yi. At x x we have

where

Cl (el C_)B and c (C + C_)/2

Bi exp [-A,,k’+l/(k, + 1)] d:

/(1)A/(k’/(ki + 1) k’/(k’+l 2F
ki + 1

Therefore the leading term in the expansion of u near x is given by

u(x) (C + C_1)/2 + C C,_)B

(5.20) exp [-As’//(k + 1)] ds,

--(X--Xi)-l/(ki+1).

To determine C we multiply (5.17) by e-/" and integrate over (x, xi) to obtain

e-’t’("’Vu’ (x,) e-’"V’u’ (xi) O,

and hence, using (5.20)
-l(k.+l)e-*(x’VBi(Ci Ci-1)e -1/(ki+l)e-*%v Bi(G Cj-1)e

If &(xi)= minta.bl O then Ci C_ and no discontinuity appears at x. Assuming that
O(x)=mint,.blO(x), (i=1,’’ .,n) we see that Ci=C_I if ki=maxiki. Assuming
k maxi k. we obtain the system

B,(Ci Ci-1)-Uj(C -l) 0.

At x a we have

Bi(Ci a )-B(C C-) O

and a similar equation near x b. In matrix notation we get

BI+B2
-B2
0

-B2 0

B2+B3 -B30
-B3 B3+B4

The solution is given by

-B40

-B,,-2B,,- +B

C1 o

G (ae., + 13O.,)/P.
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STOCHASTIC DIFFERENTIAl_. EQUATIONS 139

where

i=l i=l i=:l

Z e. P.-
i=1

The exit probabilities are given by

P{x. (-)= a x(0) x}=
i=0

where D
Remark. The problem of "resonance" in the boundary value problem

eu"- cb’u’ + gu =0,

or

u(a) a, u(b) =/3

e Au-Vb.Vu+gu=0 inf,,

u g on

can be treated by similar methods (cf. O’Malley [35], Matkowsky [28], Olver [33],
Pridor and Schuss [40]).

FIG. 5.5. Potential well with multiple transition states.

The case of multiple transition states in higher dimensions is treated along similar
lines. (See Fig. 5.5.) The domain f is partitioned into domains of attraction 1"2 of the
stable equilibrium points. We have u Ci in lqi and internal layers appear on the
boundaries

Using local coordinates near F and rescaling the normal component

we obtain the internal layer equation

(5.21) u,,,, + toB(l)u., + C(rt)u, =0
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140 ZEEV SCHUSS

for (5.11). We have assumed that f c R 2, and r/is a tangential variable in F0-, B(rt) >0.
The change of variables

reduces (5.21) to

(5.22)

ds
/z exp

oC(s)

u + ol3 z)u + zu. O.

It can be shown that u is independent of the choice of rio (cf. Friedman and Schuss
[12], Schuss [41], [42]). The matching conditions are

Thus

u(w,/z) C," as a, oo,

u (o.,, ta. Ci as a, -oo.

G-c,.
U (O.), /d, U (O.), / "{-

2 2

where u(o, ) satisfies (5.22) and u(+/-, ,/z) +1. The solution is given by

e -sz/2 ds

where y(t) is the solution of Bernoulli’s equation

+/3 (/z) 1 3
3’---3’ =0

y(o) t(o).,

Multiplying (5.11) by e-/ and integrating over f, we obtain the system

.., \or2] (f-C,) cts +E G-C,2- e-*/’Y(tz(s))ds"O"
ii

This is a system of linear equations for Ci whose solution is given by

C In fdmi(s)

where rni(s) is a measure on 3fI. The form of m; depends on quotients of integrals over
3f and Fi (cf. Matkowsky and Schuss [29], [30] for details, also Mangel and Ludwig
[27]).

6. The phenomenon of cycle slipping in nonlinear filtering theory. The problem of
nonlinear filtering of random signals from noisy measurements arises in many areas of
engineering, such as radar, sonar, communications and optimal control.

In communication theory the signal, e.g. speech or music, is often modeled as a
random process x(t). More precisely, the voltage entering the modulator is a random
process x(t) and we denote by P(x(tx)<b,... ,x(t,)<b,) the probability that the
voltage entering the modulator at times tl<t2<".<t, satisfies the inequalities
xi(ti, ") < b (i 1, 2, , n ). It is a common practice to assume that x(t) is a stationary
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STOCHASTIC DIFFERENTIAL EQUATIONS 141

Gaussian process. Furthermore, x(t) is often assumed to have a power spectrum
function Sx (to) given by

C if ]to] < k,
Sx (to)

0 otherwise,

where C, and k are constants. Here

Sx(to) | e-"tE[x(t)x(O)] dt
d_

is the two sided spectral density. Since a realization of such a process x(t) as a solution of
an It6 differential equation is unknown we shall proceed as follows. Following Van
Trees [46] we consider the Butterworth family of spectra

Sn(to)=2nsin(’tr/2n)/{k[()2n+a]}.
Obviously S, (to) o Sx (to) as n o c. It can be easily shown that for each n the stationary
solution x, (t) of the equation

(6.1) L,x,,(t) if(l),

where L, is an nth order linear differential operator with constant coefficients and w(t)
is a standard Brownian motion, has the spectral density $,(to). Equation (6,1) is
equivalent to the system of stochastic It6 differential equations given by

(6.2)

where

dx, (t) A,x, (t) dt + !1 dw(t)

x, (t) [x, (t), ,(t),..., x"-l) (t)]7",,,

B is a constant vector and A is a constant matrix. We shall consider the case n 1. In this
case (6.2) reduces to (6.1), namely

dx(t) -kx(t) dt + /-- dwl(t),

x(O) xo

where w(t) is the standard Wiener process. The initial condition x0 is a zero mean
Gaussian variable, Ex 1. The constant k expresses the bandwidth of the message
x(t).

We consider a problem arising in the theory of FM transmission, by describing the
transmitted signal first. The FM transmitter integrates the signal x(t) and adds a high
frequency carrier to it, so the frequency modulated (FM) signal leaving the transmitter
has the form

sin (ot + d ds sin [0t +g

Here o is the high frequency of the carrier, dr is the frequency deviation, and we refer
to the parameter dr/k as the modulation index. The FM demodulator we consider is
based on the so called phase-locked loop (PLL), which was extensively studied by
Viterbi [49] and Lindsey [24]. The PLL under consideration was proposed by Snyder
[44]; its design is based on Kalman filtering considerations and has noise intensity
dependent gains (cf. Fig. 6.3).

D
ow

nl
oa

de
d 

01
/0

4/
17

 to
 2

02
.6

6.
60

.1
68

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1,J,2 ZEEV SCHUSS

To clarify the action of the PLL and the derivation of the equations describing it we
consider first a simpler version of the PLL (cf. Fig. 6.1).

v/2Non(t)+ x/ sin (toot +O(t)) +_
e(t)

FIG. 6.1. The PLL.

The FM signal g + v/-o n(t) entering the loop contains additional white noise
x/2No n(t), e.g. atmospheric disturbances, internal noise in the transmitter etc. There-
fore, the noisy measurements process y(t) is modeled by another It6 equation

dy(t) g(x(t), t) dt + x/-o dw2(t)

where No measures the noise intensity and w2(t) is another standard Wiener process,
independent of wl(t). Thus the filtering problem is to estimate x(t), given the noisy
measurements y (s), 0 -<_ s =< r

It is well known (Viterbi [49]) that n(t) can be represented by

n(t) / (nl(/) sin toot + n2(t) cos toot)

where nl(t) and n2(t) are independent white noise processes. The parameter No
measures the noise intensity. The term 1/No is called the signal to noise ratio (SNR).
The output of the voltage controlled oscillator (VCO) is a cosine wave whose frequency
is controlled by the input voltage e(t), i.e.

H(t) x/ K3 cos [too/+ 02(/)]

where O2(t)=Kze(t). The constants K (i 1,2, 3) represent gains. The device (R)
represents multiplication of the received signal g+X/oon(t) by H(t) with the
result

[g + x/-o n(t)]H(t)= 2K3{sin [01(t)-02(t)]

--"v/2No n l(t)sin 02(t)+ x/0 n2(t)cos 02(t)

+sin [2too/+ 01(t) + 02(t)] + "v/2N0 n(t) sin [2too/+ 02(t)]

+ 42No n2(t) cos [2toot + 02(t)]}.

The low pass filter F supresses the high frequency terms so the filtered and amplified
signal is given by

e(t) KiK3F(s){sin [0a(/)- 02(t)]

-x/2No n (t)sin 02(/)+ X/oo n2(/)cos 02(t)}

KIK3F(s) sin 4 + /-o n’(t),

where F(s) is a linear operator (cf. Mikusinski [32]) which represents the effect of the
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STOCHASTIC DIFFERENTIAL EQUATIONS 14.3

linear filter F (cf. Fig. 6.2). The term

n’(t) =-nl(t) sin 02(t) + n2(t) cos 02(t)

is also a white noise (Viterbi [49]), and 4 01 02 is the phase error. The block diagram
model of the FM signal and the PLL is given by Fig. 6.2.

n’(t)

sin (t)+
I r"

FIG. 6.2. Th Block diagram of th PLL.

Here K KIK2K3. The filter F(s) can be chosen in various ways; choosing F(s)
accordingly by Kalman filtering considerations (Snyder [44], Van Trees [46]) we obtain
the PLL whose block diagram is given in Fig. 6.3.

/2Nolb2

df sin 4(t)

O*(t)

FIG. 6.3. Block diagram of the suboptimal PLL.

dtvo,/2No
s+k

x*(t)

In the PLL of Fig. 6.3 we use the process O*(t) as an estimate of the phase
O(t)=jx(s) ds, and x*(t)as the estimate of the frequency x(t). The parameter
A 1/kNo is referred to as the signal to noise ratio in the message bandwidth, and the
loop gains Voo and v01 are given by

(6.3) dvoo 4/3A--1/2
1+ 41+ 28x,/=

(6.4) drvol =4/3/(1 +/1 + 2/3A7)2 2A-1/2
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144 ZEEV SCHUSS

since in most practical cases/3 A1/:>> 1. To investigate the performance of the PLL we
analyze the estimation error in frequency ex x(t)-x*(t) and the total phase error

c/)(t) dr(O(t)- O*(t)).

The phases 01(t) and 02(t) of the PLL in Fig. 6.2 correspond to dtO(t) and dtO*(t)
respectively in the PLL of Fig. 6.3.

The system of equations describing the errors ex(t) and b(t) is given by Snyder [44]

(6.5)
dex kex +-o sin b dt

l)ldf dw2]’2No"+ aw -

(6.6) drb dre vood sin dt-d.

Using (6.3), (6.4), setting

and scaling the time by

t’=

we get from (6.5) and (6.6) (cf. Bobrovsky and Schuss [3])

(6.7)

(6.8) d(t’)=(-sin)dt’-dw4

where I"-(//(8/2)) 1/3, and dw(t’)=(1/4)dwi(t) (i=1,2), according to the
Brownian scaling law (2.15) (ii). The drift vector in this case has the components bl and
b., given by (6.9) and (6.10) respectively and the diffusion matrix crij is given by O’11 1,
o"1: 1/2 and or:2 1/2 (cf. (3.9)).

The coefficients in (6.7) and (6.8) are periodic in d, therefore a "skipping" of 2r in
b will leave the system unchanged. Since the frequency x (t) is proportional to d an error
of 2r in the estimate 0* of 0 will cause a sharp change in x* which is heard as a "click".
A natural measure of click frequency is the mean time E- between clicks, whose
computation is the object of this section. From the mathematical point of view the
system (6.7), (6.8) represents a small stochastic perturbation of the dynamical system

(6.9)

(6.10)

---sin O-6s b1(, b),

1/2C-sin b2(:, 4)

which has stable equilibria at 0, b 2rn (n 0, +/- 1, ). All solutions of (6.9) and
(6.10) which remain bounded as toe converge to equilibrium points so that any
trajectory which begins in the domain of attraction of a given stable equilibrium point
will not cross into the domain of another one. However even the slightest stochastic
perturbation is sure to cause such a crossing in finite time. The phenomenon of slipping
cycles by the PLL can be described mathematically as an instability caused by stochastic
forcing of a stable system. More precisely, the solution (:(t), b(t)) spends long time
intervals near an attractive point, 0, b 0, say, and we shall say therefore that a
cycle slipping has occurred whenever a trajectory crosses into the domain of attraction
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STOCHASTIC DIFFERENTIAL EQUATIONS 145

of 0, b +/-2 zr, say. If D is the domain of attraction of 0, b 0 then the slip time
is defined by - inf {t (:(t), b(t)) 0D}

where 0D is the boundary of D. The boundary 0D consists of the four trajectories which
converge to the saddle points : 0, +/-r. Linearizing (6.9) and (6.10) about 0,
& +/-r we see that 6 can be neglected if e is small and we see that the separating curves
are the solutions of (6.9), (6.10) with

d/d= ate:=0, b=+/-vr.
2

The expected time between cycle slips is the expected time of first exit from D for the
system (6.7), (6.8) where is taken mod (2r). Thus the expected slip time

v(:, ,/,)= E{-] :(0)= :, ,/, (0)= }

is the solution of Dynkin’s equation (cf. (3.9))

Lv e v+ ve + v,t,,t, (sin + 6:)v + (: sin )v

(6.11) =-1 inD,

v 0 on OD.

Since 6 is small we neglect the term 8:ve. Note that the field in (6.9), (6.10) is not a
gradient of a potential, or more precisely, there is no function such that

bi(:, 6) cr,6e + o’2i,, (] 1, 2)

(cf. Matkowsky and Schuss [29]). It follows that the procedure of 5 has to be modified,
since (5.7’) and (5.7") no longer hold in this case. We proceed as before, scaling v by
setting

(6.12) v(:, )= C(e) eWu($, )

where H and C(e) are constants to be chosen, ald max u(s, b)= 1.
We shall construct a boundary layer expansion for u as in 5. Let y be the distance

from the boundary and let x’ be a coordinate in a direction tangent to the boundary.
Then the equation for u in the local coordinates (x’, y) near OD is given by

(6.13)

where

euyy + ybo(x’)uy +Lu =0,

-sin 2)1/2:rb]" /= yb0(x’) + O(y as y 0,

/=outer normal to bD, and bo(x’) is the coefficient of the first term in Taylor’s
expansion of the function

[ -sin
b(x’, y)= k-sin ] "

near y 0. We note that b(x’, 0)= 0 since the vector

-sin

-sin}
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146 ZEEV SCHUSS

is tangent to cD, by (6.9) and (6.10) (with ,5 0). The expression L U contains tangential
and mixed derivatives of u. Setting r/= y/x/ we obtain the equation

(6.14) u,, + rlbo(x’)u, + Llu =0.

The second order terms in t lu are O(x/e) as e 0. The boundary conditions are

u(x’, rt)O as r/0,

u(x’, r/) 1 as rt o.

At the points c 0, b +/-zr the first order derivatives in (6.14) vanish. Thus the first
term uO(x ’, rt) of the expansion of u near the points t5 0, b +zr is the solution of the
equation

o + rlbo(x,)u o 0U nn "n

Hence

" -s2b(x’)
ds t,/ (x’)/X(6.15) u(x ’, rt) e

2

To determine C(e) and H we construct a solution w(, b) to the adjoint equation

L*w =e(w + w, +w6) +sin bw-[(1/2-sin b)w] =0,

such that w(0, 0)= 1. Then, multiplying (6.11) by w(sc, b) and integrating by parts we
obtain (Matkowsky and Schuss [29])

(6.16)
IDf [ 1 ]wLv dscdcl, e

D
re(y, +yz) +-v,t,(ya + yz) w ds

where /= (y, y2) T is the outer normal at OD. We have used here the facts that v 0 on
0D, and L*w 0. Inserting (6.12) into (6.15) we obtain

(6.17) C(e) en/
D

Ue(Y, +Y2 ""’Ub("l + "}/2) W ds w d,d4.

We shall construct w(, &) using the "ray method" (Cohen and Lewis [7]) and evaluate
the integral asymptotically using the Laplace method (Olver [33], [34]) and thus obtain
H and C(e). We assume that w(:, b) has the form

(6.18) w(C, ch)=e-’U’’)/g(, ch, e),

where

(6.19) g(s, , e)--- E gi(, d)ei
i=0

with (0, O) O, (sc, d)) >0 for sc2 + &2>O and g0(O, O) 1. Inserting (6.18) and (6.19)
into (6.11) and equating the coefficients of each power of e separately to zero we obtain
equations for and gi.

In particular qt satisfies the nonlinear equation

(6.20) 2_+.+ sin b+(1/2:-sin b) =0

D
ow

nl
oa

de
d 

01
/0

4/
17

 to
 2

02
.6

6.
60

.1
68

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



STOCHASTIC DIFFERENTIAL EQUATIONS 147

while the leading term go in the expansion (6.19) satisfies

(2 + -sin )Ogo/a+(++1/2- sin b)ago/cg&
(6.21)

-(+ + -cos b)go.

Equations (6.20) and (6.21) are equivalent to the following system of six differential
equations (Courant and Hilbert [8])

(6.22)

2p + q -sin b

p + q + 1/2:- sin &
/ -1/2q

(p + q) cos 4
p2 + pq + q2

o Xgo

where g -(xlt + -, -cos b).
Inserting (6.18) into (6.17) and comparing terms of same orders of magnitude in e

we obtain

H/(6.23) C(e)e e-*/go[ue(yl+1/2y2)+u4,(yl+y2)]ds e. godd.
D

Evaluating the Laplace type integrals asymptotically (Olver [33]) we see that the main
contribution to the double integral in (6.23) comes from the origin; hence

(6.24) I Io e-’/g dd4 27re/J

where

J det
tq,t, 6,J 1=0.6=o

The main contribution to the line integral in (6.23) comes from the points of minimum
ofqon 0D, namely : 0, b +/-zr, as follows from the numerical evaluation of (cf. Fig.
6.4). The asymptotic expansion of the integral about the points sc 0, b +/-r is given by

(6.25)

e-’V/go[ut(yi + 1/2T2)+ u,t, (yl + y2)] ds
D

2 gO(0, ’T/’)[Uc(’)tl "+" 2) "+" ’Ub (1 "{- 2)]l(O,’n’)

where the factor 2 comes from the invariance of the integrand and D under the
transformation ( -:, th -b.

The term " is the second derivative of with respect to arc length in 0D at (0, rr).
The asymptotic form of u(, &) near the point(0, ) is given by (6.15), namely

u(, &)b/2 (x’)[ e -:bdx’’/2 ds/ "0
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148 ZEEV SCHUSS

FIG. 6.4. Level curves o[ qt.

hence

Thus
0 o

_b/2 (0)/[ [ 4 S x/]-]2

Now, linearizing the coefficients of (6.20) near : 0, 7r and using Taylor’s expan-
sion of about this point we obtain

q q(O, ) :(,/, -) + 0(: +(

Hence

The boundary integral (6.25) is therefore equal to -13.725 go(0, zr)
exp [--q(0, r)/e ]. Substituting this last expression and (6.24) in (6.23) we tbtain

13.725C(r.) eW’eo(0, r) e-*’’/ = 2r/J.
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STOCHASTIC DIFFERENTIAL EQUATIONS 149

Using Taylor’s expansion of W(,f, b) about : 0, b 7r we find that

I 21_2 : + (2 + 0(:2 +
hence Y 1. It follows that H (0, or) and C(e) 2r/[13.725go(O, r)]; hence

q’(0,r)/2re
v(o, o)

13.725go(O,

or

(6.26) kE(r :(0)= 0, (0)= 0)=
2rA-1’4 r lI/(0, q’/’) ./3,4]

13.725 go(0, r)/--
exp 12--, j

where (0, zr) 1.28 and go(0, 7r)= e -4.
In most practical cases one presently finds PLL’s with constant gains i.e. gains

independent of A. Such loops were extensively studied for randomly modulated signals,
i.e. for x(t) random process (Lindsey [24], Van Trees [46], Viterbi [49]). However no
results concerning Er in this case are given there. Such loops lead to regular pertur-
bation problems in No. If the gains of such loops are chosen according to practical
considerations one can nevertheless obtain a problem with two small parameters, A and
No, where A is a design parameter. A similar method shows that

)A3/4/ A3/4 24’)],(6.27) Era exp [(0, zr (A +

where .2 A <= .25. If A oo then E- const. < oo, unlike the variable gain case of (6.28)
(cf. Fig. 6.5 below)

log kEr

Variable
Gains

Constant
Gains

log A

FIG. 6.5. Er for constant and variable gains.

7. First passage problems in mechanical systems and electric networks. Consider
the equations of motion of an elastic system expressed by generalized coordinates
ql(t),’’’ ,q,,(t)

(7.1) PJi + 2rlj(h +f(ql, ", q,) yi(t) (j 1, 2,. ., n).

Here p. are inertia coefficients, rh. are damping coefficients, f. are some nonlinear
functions of the coordinates qi. We shall assume that the system is driven by white noise
y. so that

Eyi(t) 0, Eyi(t)y(t + s) ci6(s)

where Cik are some constants.
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150 ZFV SCHUSS

To write down the Fokker-Planck equation corresponding to the system (7.1) we
rewrite the system in the It6 form first. The white noises 3,i(t) (j 1,..., n) can be
represented by

Ti(t) dt aii dwi(t)
/---1

where Y=I ailakt--" Cik, and where wi(t) are independent Brownian motions. Setting

we have, by (7.1)

where

x =q, Y

dx y dt,

R dy -(2y+ f(x)) dt + A dw,

Rii Piii, ff’ii rli(%, fi(x) [i(ql, q,)

and Aii ai. The Fokker-Planck equation for (7.1) is now given by

1

/=1 i=l pj /=1 Pi /,k=l
where p, 3p/Ot, etc. The function

p p(qo, qo, q, q, t)

satisfies the initial condition

p3(q-qo, -q0) as t$0.

It represents the transition probability density of the system in phase space. If. =-(1/pi)Uo,, then (7.1) has stable equilibrium points at local minima of U. A
neighborhood of a stable equilibrium point in phase space, which is peissible from
nodal functioning point of view is called a "reliability region". is region may be the
elasticity region of the system, a limit on the total energy of the system set by safety
requirements etc. The probability density of the exit points is the probability of failure
of a given component of the system. Equation (3.11) for the expected failure time is
given by

(7.2) o’-2 1
i,i= 3YiOYi i=1 Pi 3Yi i= Pi

in the domain of reliability fl and v 0 on 0ft. Here, by (3.10)

ii c/o0i, (i, j 1,. , n)

(cf. Bolotin [4]).
The differential equation corresponding to the simplest model of a thin elastic

curved panel is

(7.3) 0Y + 2hi +0/(x) r(t).

Here x(t) is the deflection of the panel, 0 inertia coefficient, damping coefficient,
w natural frequency,

f(x) -U’(x)
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STOCHASTIC DIFFERENTIAL EQUATIONS 151

where U(x) has two or more minima. The passage of the system from one stable
equilibrium to another is called "dynamical snap-through". This phenomenon requires
the passage of the system through an unstable equilibrium point. We will consider the
system snapped through if its energy suffices to move it over the potential barrier when
y--= 0, r/= 0. If the graph of U is given as in Fig. 7.1

U(x)

Xl x2 x3 x

FIG. 7.1. The potential ]:or the dynamical snap through.

and x is the initial state, then x3 is the snapped through state, x2 is the barrier and the
domain

.2
laX 2E(x, ?) =--+mo U(x)<o,oU(x), (x <x)

is the permissible region. The boundary 0 is the separatrix (cf. Fig. 7.2)
.2

pX 2+O U(x) o U(x).
2

The reliability problem is to find the expected time until E p2U(x). We have

a 2n
2p2v+yVx 2f(x)vr =-1 in

P

v 0 on

If e a/(2p2)<< 1 then the methods of 3 can be used to obtain asymptotic solutions
(cf. Bolotin [5]).

A more realistic model is a system consisting oftwo rigid bars of length l/2 and two
elastic hinges (cf. Slemrod [43]). It is taken as an approximation of a real deformable
beam. Assume the load P is to follow the deflections (a "follower load", Bolotin [4]).
are the deflection angles of the bars, C are elastic constants of the hinges, m are the
masses of the bars fixed at distances al and yl, is a damping coecient. The linearized
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152 ZEEV SCHUSS

FIG, 7.2. The separatrix for the dynamical snap through.

equations of motion are

Mi+/+ (C+D)x 0

r(mi+1/4m2(l2) 1/2m2y121
m 12 22

2 3’ m2//J

= C+C
-C C

[- P(t)l P(t)l]D=
0 0

(cf. Fig. 7.3). It is known that if P < Pc critical load, the double pendulum is Lyapunov
stable. If P Po(1 + y) where y is white noise we obtain a stochastic system of the form

dy Ay dt + By dw

where

and B are constant matrices such that the eigenvalues of A are purely imaginary if
O, otherwise the eigenvalues have negative real parts, and

B= H=/M
0 0

The backward Kolmogorov equation is given by

4

(7.4) E
i,i,k,l

a ijklykyl_py, + Ay Vyp Pt.
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STOCHASTIC DIFFERENTIAL EQUATIONS 153

FIG. 7.3. Elastic beam with a follower load.

The function p p(yo, t, y) is the transition probability density. The matrix is given by

M-I(C+ Do)

and aiikl Bik ]/l, Do is the matrix D with P(t) Po.
Equation (7.4) is a degenerate parabolic equation. The reliability problem is the

same as in the previous example. The stability of the system was investigated by
Parthasarathy and Evan-Iwanowski [38]. A similar degenerate parabolic problem
arises in electric networks subjected to random (e.g. thermal) e.m.f. A complete
description of such a problem is given in Wang and Uhlenbeck [50]. Further problems
of first passage in electric circuits are given in Stratonovich [45].

Acknowledgment. This author wishes to express his gratitude to the referees of the
paper for their helpful remarks.

REFERENCES

[1] R. F. ANDERSON AND S. OREY, Small random perturbations of dynamical systems with reflecting
boundary, Nagoya Math. J., 60 (1976), lap, 189-216.

[2] S. H. BENSON, The Foundation of Chemical Kinetics, McGraw-Hill, New York, 1960.

D
ow

nl
oa

de
d 

01
/0

4/
17

 to
 2

02
.6

6.
60

.1
68

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



154 ZEEV SCHUSS

[3] B. Z. BOBROVSKY AND Z. SCHUSS, Singular perturbation method for the computation of the mean first
passage time in a non-linear filter, to appear.

[4] V. V. BOLOTIN, Statistical Methods in Structural Mechanics, Holden-Day, San Francisco, 1969.
[5] -, Statistical aspects in the theory of structural stability, Dynamical Stability of Structures, Proc.

Inter. Conf., G. Herrmann, ed., Pergamon Press, E!msford, NY, 1967, pp. 67-81.
[6] S. CHANDRASEKHAR, Stochastic problems in physics and astronomy, Selected Papers in Noise and

Stochastic Processes, N. Wax, ed., Dover, New York, 1954.
[7] J. K. COHEN AND R. M. LEWIS, A ray method for the asymptotic solution of the diffusion equation, J.

Inst. Math. Appl., 3 (1967), pp. 266-296.
[8] R. COURANT AND D. HILBERT, Methods ofMathematical Physcis II, Wiley-Interscience, New York,

1962.
[9] E. B. DYNKIN, Markov Processes I, II, Springer-Verlag, New York, 1965.

[10] A. EINSTEIN, Investigations on the Theory of the Brownian Movement, Dover, New York, 1956.
[11] W. FELLER, An Introduction to Probability Theory and its Applications I, II, John Wiley, New York,

1957.
12] A. FRIEDMAN, AND Z. SCHUSS, Degenerate evolution equations in Hilbert space, Trans. Amer. Math.

Soc., 161 (1971), pp. 401-427.
[13] I. I. GIFIMAN AND A. V. SKOROHOD, Stochastic DifferentialEquations Springer-Verlag, Berlin, 1973.
[14] L. GIRIFALCO, Atomic Migration in Crystals, Blaisdell, New York, 1964.
[15] S. GLASSTONE, J. J. LAIDLER AND H. EYRING, The Theory of Rate Processes, McGraw-Hill, New

York, 1941.
[16] H. R. GLYDE, Rate processes in solids, Rev. Modern Phys., 2 (1967), pp. 373-382.
17] K. ITt5 AND H. MCKEAN, Diffusion Processes and Their Sample Paths, Springer-Verlag, Berlin, 1965.
[18] M. KAC, Probability and Related Topics in Physical Sciences, Wiley-Interscience, New York, 1959.
19] S. KAMIN, Perturbation elliptique d’ un operateur du premier ordre avec un point singulier, C. R. Acad. Sci.

Paris Sr A-B, 285 (1977), pp. 677-680.
[20], On elliptic singular perturbation problems with turning points, SIAM J. Math. Anal., 10 (1979),

pp. 447-455.
[21] A. Y. KHINCHINE, Asymptotische Gesetze der Wahrscheinlichkeitsrechung, Springer-Verlag, Berlin,

1933.
[22] H. A. KRAMERS, Brownian motion in a field of force and the diffusion model of chemical reactions,

Physica, 7 (1940), pp. 284-304.
[23] E. LARSEN AND Z. SCHUSS, The diffusion tensorfor atomic migration in crystals, Phys. Rev., to appear.
[24] W. C. LINDSEY, Synchronization Systems in Communication and Control, Prentice-Hall, Englewood

Cliffs, NJ, 1972.
[25] D. LUDWIG, Persistence of dynamical systems under random perturbations, this Review, 4 (1975),

pp. 605-640.
[26] P. MANDL, Analytical Treatment of One Dimensional Markov Processes, Springer-Verlag, New York,

1968.
[27] M. MANGEL AND D. LUDWIG, Probability of extinction in a stochastic competition, SIAM J. Appl.

Math., 33 (1977), pp. 256-266.
[28] B. MATKOWSKY, On boundary layer problems exhibiting resonance, this Review, 17 (1975), pp. 82-100.
[29] B. MATKOWSKY AND Z. SCHUSS, The exit problem, SIAM J. Appl. Math., 33 (1977), pp. 230-255.
[30] Z. SCHUSS AND B. MATKOWSKY, The exit problem: a new approach to diffusion across potential

barriers, Ibid., 35 (1979), pp. 604-623.
[31] H. P. MCKEAN, Jr., Stochastic Integrals, Academic Press, New York, 1969.
[32] J. MIKUSINSKI, Operational Calculus, Pergamon Press, London, 1959.
[33] F. H. J. OLVER, Asymptotic methods in singular perturbations, SIAM-AMS Proc., vol. X (1976), pp.

105-117.
[34],Asymptotics and Special Functions, Academic Press, New York, 1974.
[35] R. O’MALLEY, Introduction to Singular Perturbations, Academic Press, New York, 1974.
[36] L. S. ORNSTEIN AND G. E. UHLENBECK, On the theory ofthe Brownian motion. Phys. Rev., (1930),

pp. 823-841.
[37] G. PAPANICOLAOU, Introduction to asymptotic analysis o]: stochastic equations, Lecture Notes, AMS

Seminar, Rensselaer Polytechnic Inst., Troy, NY, 1975.
[38] A. PARTHASARATHY AND R. M. EVAN-IWANOWSKI, On the almost sure stability of linear stochastic

systems, SIAM J. Appl. Math., 34 (1978), pp. 643-656.
[39] L. PAULING, The Chemical Bond, Cornell University Press, Ithaca, NY, 1967.
[40] A. PRIDOR AND Z. SCHUSS, The Galerkin method for equations with resonance, to appear.

D
ow

nl
oa

de
d 

01
/0

4/
17

 to
 2

02
.6

6.
60

.1
68

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



STOCHASTIC DIFFERENTIAL EQUATIONS 155

[41 Z. SCHUSS, Regularity theorems/:or solutions o[a degenerate evolution equation, Arch. Rat. Mech. Anal.,
46 (1972), pp. 200-211.

[42] Degenerate and backward parabolic equations, J. Appl. Anal., 7 (1977-78), pp. 111-119.
[43] M. SLEMROD, Stabilization o[ bilinear control systems with application to nonconservative problems in

elasticity, SIAM J. Control, 16 (1978), pp. 131-141.
[44] D. L. SNYDER, The State-Variable Approach to Continuous Estimation with Applications to Analog

Communication Theory, M.I.T. Press, Cambridge, MA., 1969.
[45] R. L. STRATONOVICH, Topics in the Theory o/: Random Noise I, II, Gordon and Breach, New York,

1967.
[46] H. L. VAr TREES, Detection, Estimation, and Modulation,.Theory I, II, Wiley & Sons, New York, 1970.
[47] A. D. VENTZEL AND M. I. FREIDLIN, On small random perturbations ol dynamical systems, Uspehi

Mat. Nauk., 25 (1970), pp. 3-55.
[48] G. H. VINEYARD, Frequency[actors and isotope effects in solid state rate processes, J. Phys. Chem. Solids,

3 (1957), pp. 121-127.
[49], A. J. VITERBI, Principles o[ Coherent Communications, McGraw-Hill, New York 1966.
[50] C. M. WANG AND G. E. UHLENBECK, On the theory o]:Brownian motion II, Rev. Modern Phys., 17

(1945), pp. 323-342.

D
ow

nl
oa

de
d 

01
/0

4/
17

 to
 2

02
.6

6.
60

.1
68

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


