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we obtain

2d.*Qy + (1 — 2)d.Q; + (2/29)0, = 0. (5.2.132)
This is the differential equation for the Laguerre polynomials [5.6] provided

A=12ny. (5.2.133)
We can write

0i(x) = L,(yx*/2p) (5.2.134)

which is normalised. Hence, the conditional probability is

oo B0
pix, 110, 0) = 3 Hexp (50 L, (B9 L (57 (5:2.135)

We can compute the autocorrelation function by the method of (5.2.90):

XD = 2 [jxdx—exp ( zyﬂ")Ln (yz—’;:)] exp(— 2nyt) (5.2.136)
and using
[z zrerL(2) = (—17Ta + (%), (5.2.137)

we find for the autocorrelation fungtion

() xO)) = 7“ i e (%) exp(— 2nyt). (5.2.138)

5.2.7 First Passage Times for Homogeneous Processes

It is often of interest to know how long a particle whose position is described by
a Fokker-Planck equation remains in a certain region of x. The solution of this
problem can be achieved by use of the backward Fokker-Planck equation, as
described in Sect. 3.6.

a) Two Absorbing Barriers
Let the particle be initially at x at time ¢ = 0 and let us ask how long it remains
in the interval (a, b) which is assumed to contain x:

a<x<b (5.2.139)

We erect absorbing barriers at a and b so that the particle is removed from the
system when it reaches a or b. Hence, if it is still in the interval (a, b), it has never
left that interval.

Under these conditions, the probability that at time ¢ the particle is still in
(a, b) is



5.2 Fokker-Planck Equation in One Dimension 137

fdx’p(x', t|x,0) = G(x,t). (5.2.140)
Let the time that the particle leaves (a, b) be T. Then we can rewrite (5.2.140) as

Prod(T > t) = fdx'p(x’, t|x,0) (5.2.141)

which means that G(x, t) is the same as Prob(T > ¢). Since the system is time
homogeneous, we can write

P, t]x,0) = p(x/, 0] x, —1) (5.2.142)
and the backward Fokker-Planck equation can be written

a.p(x', t|x,0) = A(x)d,p(x’, t| x,0) + % B(x)d2p(x, t| x, 0) (5.2.143)
and hence, G(x, t) obeys the equation

9,G(x, t) = A(x)d.G(x, t) + % B(x)02G(x, t) . (5.2.144)

The boundary conditions are clearly that
p(x',0]x, 0) = &(x — x')
and hence,

G(x,0)=1 a<x<b (5.2.145)

=0 elsewhere
and if x = a or b, the particle is absorbed immediately, so

Prob(T > 1) =0 when x =aorb, ie.,
G(a, t) = G(b,t) = 0. (5.2.146)

Since G(x, t) is the probability that T > ¢, the mean of any function of T is

T = — ;f ANdG(x, 1) . (5.2.147)
Thus, the mean first passage time

T(x) = (T (5.2.148)
is given by

T(x) = — [ 18,G(x, t)dt (5.2.149)
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G(x, t)dt (5.2.150)

Otem

after integrating by parts.
Similarly, defining

T(x) =<T", (5.2.151)
we find
Ty(x) = [1"'G(x, 1)dt . (5.2.152)

We can derive a simple ordinary differential equation for 7((x) by using (5.2.150)
and integrating (5.2.144) over (0, oo). Noting that

[ 8, G(x, t)dt = G(x, ) — G(x,0) = —1, (5.2.153)
0
we derive
A(X)3,T(x) + } B(X)a2T(x) = —1 (5.2.154)
with the boundary condition ¥
T(a) = T(b) = 0. ‘ (5.2.155)

Similarly, we see that
— nT,_y(x) = A(x)3.T.(x) + } B(x)3:T,(x) (5.2.156)

which means that all the moments of the first passage time can be found by repeated
integration.

Solutions of the Equations. Equation (5.2.154) can be solved directly by integration.
The solution, after some manipulation, can be written in terms of

w() = exp ] dr24(x)/BE| ‘ (5.2.157)
We find
fdy\t dy ydzy(z) (¢ dy\¢dy % dzy(z)
T(x):z[(! v Lot | ) utn ! 5| 52158

dy
J w(y)
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b) One Absorbing Barrier
We consider motion still in the interval (a, ) but suppose the barrier at a to be re-
flecting. The boundary conditions then become

9.G(a,t) =0 (5.2.159a)
G, t)=0 (5.2.159b)

which follow from the conditions on the backward Fokker-Planck equation
derived in Sect.5.2.4. We solve (5.2.154) with the corresponding boundary condi-
tion and obtain

? a reflecting
dy 1y(2) :
T(x) =2 _[ — j 3G) dz b absorbing (5.2.160)
v0)e a<b
Similarly, one finds
v (z) b reflecting
j' J' a absorbing (5.2.161)
w(y); B(z ) a<b

c) Application—Escape Over a Potential Barrier
We suppose that a point moves according to the Fokker-Planck equation

0.p(x, 1) = 3,[U'(x)p(x, )] + DILp(x, 1) . (5.2.162)

The potential has maxima and minima, as shown in Fig. 5.3. We suppose that
motion is on an infinite range, which means the stationary solution is

ps(x) = A" exp [ U(x)/D] (5.2.163)

which is bimodal (as shown in Fig. 5.3) so that there is a relatively high probability
of being on the left or the right of b, but not near 5. What is the mean escape time
from the left hand well? By this we mean, what is the mean first passage time from
ato x , where x is in the vicinity of 5? We use (5.2.160) with the substitutions

b —_— xO

a— —oo (5.2.164)

X —a

so that

T(a— x,) = % T dy exp[U(y)/D] _’L exp[— U(z)/D]dz . (5.2.165)
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(a) (b)
b
U(x) ps(x)
: b
x X
(c)
Tla=x)

Fig. 5.3. (a) Double well potential U(x);
(b) Stationary distribution p,(x);
(¢) Mean first passage time from a to x, T(a — x,)

If the central maximum of U(x) is large and D is small, then éxp [U(y)/D] is sharply
peaked at x = b, while exp[—U(z)/D] is very small near z = b. Therefore,
j'{, exp [—U(z)/D)dz is a very slowly varying function of y near y = b. This means
that the value of the integral [* _exp[— U(z)/D]dz will be approximately constant
for those values of y which yield a value of exp [U(y)/D] which is significantly
different from zero. Hence, in the inner integral, we can set y = b and remove
the resulting constant factor from inside the integral with respect to y. Hence,
we can approximate (5.2.165) by

l b xQ
T(a — x,) = [3 _j' dy exp[— U(z)/D]}I dy exp [U(y)/D] . (5.2.166)
Notice that by the definition of p,(x) in (5.2.163), we can say that
b
[ dy exp[— U(z)/D] = n,JN" (5.2.167)

which means that n, is the probability that the particle is to the left of b when the
system is stationary.

A plot of T(a — x,) against x, is shown in Fig. 5.3 and shows that the mean first
passage time to x, is quite small for x, in the left well and quite large for x, in the
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right well. This means that the particle, in going over the barrier to the right well,
takes most of the time in actually surmounting the barrier. It is quite meaningful
to talk of the escape time as that time for the particle, initially at a, to reach a point
near c, since this time is quite insensitive to the exact location of the initial and
final points. We can evaluate this by further assuming that near 4 we can write

U(x) = U(b) — % ("T"b) ’ (5.2.168)

and near a

U(x) = U@) + %(" - ") i (5.2.169)
The constant factor in (5.2.166) is evaluated as

j dzexp[~UG)IDI ~ | dz exp[ g _ (22;;2’)2] (5.2.170)

~ ay/3%D exp [— U(a)/D] (5.2.171)

and the inner factor becomes, on assuming X, is well to the right of the central point
b,

uk) —by
J' dy exp U(y)/D ~ _|' dy exp[ D 2D5? ] (5.2.172)
= 8./27D exp [U(b)/D] . (5.2.173)

Putting both of these in (5.2.166), we get
T(a — x,) = 2adn exp {[U(b) — U(a))/D}. (5.2.174)

This is the classical Arrhenius formula of chemical reaction theory. In a chemical
reaction, we can model the reaction by introducing a coordinate such that x = a
is species A and x = c is species C. The reaction is modelled by the above diffusion
process and the two distinct chemical species are separated by the potential barrier
at b. In the chemical reaction, statistical mechanics gives the value

D =kT, (5.2.175)

where k is Boltzmann’s constant and T is the absolute temperature. We see that the
most important dependence on temperature comes from the exponential factor
which is often written

exp (AE/KT) (5.2.176)

and predicts a very characteristic dependence on temperature. Intuitively, the
answer is obvious. The exponential factor represents the probability that the energy



142 5. The Fokker-Planck Equation

will exceed that of the barrier when the system is in thermal equilibrium. Those
molecules that reach this energy then react, with a certain finite probability.
We will come back to problems like this in great detail in Chap.9.

5.2.8 Probability of Exit Through a Particular End of the Interval

What is the probability that the particle, initially at x in (a, b), exits through aq,
and what is the mean exit time?

The total probability that the particle exits through a after time ¢ is given by
the time integral of the probability current at a. We thus define this probability by

g.(x, 1) = — [ dt' J(a, '|x, 0) (52.177)
= Tdt' {—A(a)p(a, t’'| x, 0) + 43,[B(a)p(a, t’'|x, 0)]} (5.2.178)

!

(the negative sign is chosen since we need the current pointing to the left) and
gu(x, 1) = [ dt’' {A(B)p(b, t'| x, 0) — $3,[B(b)p(b, t'| x, 0)]} . (5.2.179)
t

These quantities give the probabilities that the particle exits through a or b after
time ¢, respectively. The probability that (given that it exits through a) it exits after
time 7 is

Prob(T, > 1) = gu(x, t)/g.(x, 05‘- (5.2.180)

.

We now find an equation for g,(x, t). We use the fact that p(a, t| x, 0) satisfies a
backward Fokker-Planck equation. Thus,

A(x)9.g.(x, t) + 1B(x)d2g.(x, t) = — | dt'd,J(a, t'|x, 0)

= J(a, t| x, 0)
= 0,8.,(x,1) . (5.2.181)

The mean exit time, given that exit is through a, is
T(a, x) = [ 13,Prob (T, > 1) dt = | g.(x, 1)dt/gu(x, o). (5.2.182)
0 d

Simply integrating (5.2.181) with respect to ¢, we get

A(x)0:[na(x)T(a, x)] + }B(x)03[m(x)T(a, x)] = —ni(x), (5.2.183)

where we define

n,(x) = (probability of exit through a) = g,(x,0) . (5.2.184)



