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NUMERICAL STUDY FOR THE NUCLEATION OF

ONE-DIMENSIONAL STOCHASTIC CAHN-HILLIARD DYNAMICS∗

WEI ZHANG† , TIEJUN LI‡ , AND PINGWEN ZHANG§

Abstract. We consider the nucleation of one-dimensional stochastic Cahn-Hilliard dynamics
with the standard double well potential. We design the string method for computing the most
probable transition path in the zero temperature limit based on large deviation theory. We derive
the nucleation rate formula for the stochastic Cahn-Hilliard dynamics through finite dimensional
discretization. We also discuss the algorithmic issues for calculating the nucleation rate, especially
the high dimensional sampling for computing the determinant ratios.
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1. Introduction

Nucleation is a universal and important event during phase transitions. A system
initially located at a metastable state will fluctuate around this metastable state under
thermal noise perturbation. Usually this process occurs on an exponentially long time
scale, and the phase transition occurs when the noise happens to be large enough to
carry the system out of the basin of attraction of this metastable state. As a result the
system transitions to another metastable state and similar situation continues. This
typical behavior can be characterized as an energy barrier crossing event and the
study of these rare events has attracted considerable attentions in physics, chemistry,
and applied mathematics; see [1, 2, 3] and the references therein.

When studying nucleation events with smooth energy landscape in phase transi-
tion phenomena, the following three questions are typically relevant:

Q1. What is the most probable transition path and how does one compute it?

Q2. What is the transitional state (saddle point) along the path?

Q3. How large is the nucleation rate for the considered process?

These questions are of prime importance in understanding the transition events
and lots of work has been done related to them. If we restrict ourselves to the over-
damped Langevin dynamics, there have been some answers: For Q1, theoretically, the
large deviation theory [4] in probability theory is a suitable framework for the study of
the transition paths in the zero temperature limit, and can be achieved by minimizing
an action functional [5, 6]. Numerically, some efficient algorithms such as the string
method [7] and the NEB method [8] have been developed to locate the most probable
transition path. For Q2, the saddle point can be automatically identified from the
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obtained connecting path. But in the case that the saddle point is of independent
interest, the dimer method and GAD method can be used [9, 10]. For Q3, the rate
can be obtained by studying the mean first exit time of the stochastic differential
equations or given by Kramer’s reaction rate theory [1, 11], or more sophisticatedly
by the transition path theory developed recently in [3, 12].

While studying phase transition phenomena, the Allen-Cahn and Cahn-Hilliard
equations are two typical models for describing the non-conservative and conservative
order parameters, which are classified as Model A and Model B in [13], respectively.
In this paper, we focus on the nucleation of the stochastic Cahn-Hilliard dynamics
(Model B) and aim to develop general algorithms and computational strategies to
answer the three key questions proposed above. The considered dynamics will be
only one dimensional with Ginzburg-Landau type double well potential in the current
paper and the applications to higher dimensions and more complex models will be
studied in continued publications.

In the mathematics community, the analytical study of the stochastic Cahn-
Hilliard equation has been investigated by many authors [14, 15, 16, 17, 18]. Among
these studies, the large deviation type estimates and the dynamical system analysis
on the structure of the attractors are the most relevant to the study in this paper.
By drawing a framework similar to those in [5, 7], we propose the string method to
compute the most probable transition path for the stochastic Cahn-Hilliard dynamics
with periodic or Neumann boundary conditions in the zero temperature limit. Based
on the obtained transition path, the transition state can be located easily. We also
derive the nucleation rate formula and design the related computational strategies.

The rest of this paper is organized as follows: in Section 2, we formulate the
stochastic Cahn-Hilliard equation and discretize it into finite-dimensional space. In
Section 3, we get the most probable transition path by minimizing the action func-
tional based on the large deviation theory. Then we propose the string method to
locate the transition path and the saddle points. The nucleation rate formula and the
related computational strategies are discussed in Section 4. In Section 5, we present
numerical results for the one dimensional Cahn-Hilliard equation. Further discussions
and possible extensions are included in Section 6. Finally we make conclusions. All of
the details for the derivation of the nucleation rate formula can be found in Appendix
A.

2. Problem set-up and preliminary results

2.1. One-dimensional stochastic Cahn-Hilliard equation. We consider
the 1D stochastic Cahn-Hilliard equation (or Cahn-Hilliard-Cook model) [14, 17]

∂u

∂t
=

∂2

∂x2

δF (u)

δu
+
√
2ǫξ =

∂2

∂x2

(

− κ2 ∂
2u

∂x2
+ u3 − u

)

+
√
2ǫξ, (2.1)

where x ∈ (0, 1) and F (u) is the Ginzburg-Landau type energy functional

F (u) =

∫ 1

0

[κ2

2

(∂u

∂x

)2

+ f(u)
]

dx, (2.2)

which incorporates the contribution of both the interface and bulk energy through
the gradient term and potential f(u) respectively. The parameter κ > 0 describes
the interaction strength between two phases in alloy phase separation, which is in
turn related to the thickness of the interface. The driving potential f(u) is usually
simplified to the well-known double well shape f(u) = (u2 − 1)2/4 with two global
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minima at u = ±1. The noise term is ξ = ∂xη, and η(x, t) is the space-time Gaussian
white noise satisfying

Eη(x, t) = 0 and Eη(x, t)η(y, s) = δ(t− s)δ(x− y). (2.3)

The parameter ǫ > 0 describes the strength of the noise which is related to tempera-
ture.

The following two kinds of boundary conditions (BC) are typically considered in
the literature (see Remark 2.1 for a discussion).

1. Neumann BC:

∂xu = ∂3
xu = 0 at x = 0, 1,

η(0, t) = η(1, t) = 0. (2.4)

2. Periodic BC:

u, ∂xu, ∂
3
xu are periodic in R with period 1,

η(x, t) = η(x+ 1, t). (2.5)

For both boundary conditions, ξ is a conservative noise in (2.1). To see this, we
integrate equation (2.1) over [0, 1] and use the boundary conditions, thus obtaining
the following conservation relation:

∫ 1

0

u(x, t)dx =

∫ 1

0

u(x, 0)dx = m, (2.6)

for arbitrary t > 0, as in the case of the deterministic Cahn-Hilliard equation. Defining

E =
{

w(x)
∣

∣

∣
w(x) ∈ L2[0, 1],

∫ 1

0

w(x)dx = m
}

, (2.7)

we have u(·, t) ∈ E, ∀t ≥ 0, and we define P = CE[0,+∞) as the trajectory space of
the continuous dynamics.

Remark 2.1. Now we give a rationale for the proposed boundary conditions in this
remark. Following [17], the Cahn-Hilliard equation can be obtained by considering

∂u

∂t
+∇ · J(x, t, u(t)) = 0, (2.8)

where the flux J is modeled by the Fick’s law

J = −µ∇p (2.9)

and the chemical potential p = δF (u)/δu. The stochastic effect is taken into account
by adding a random fluctuation to the flux:

J = −µ∇p+ ~η(x, t), (2.10)

where ~η(x, t) = (η1(x, t), η2(x, t), . . . , ηd(x, t)), d is the dimension, ηi(x, t) are inde-
pendent space-time Gaussian white noises. For Neumann BC, J ·~n ≡ 0 is assumed to
hold on the boundary and thus both the deterministic part and the stochastic part of
the flux in normal direction are proposed to be zero:

∇p · ~n = ~η(x, t) · ~n = 0. (2.11)

For periodic BC, similarly, both the deterministic part ∇p · ~n and the stochastic part
~η(x, t) · ~n of the flux are proposed to be periodic.

In 1D, ~η(x, t) = η(x, t) is a space-time white noise satisfying (2.3) and thus we
obtain the boundary conditions (2.4) and (2.5).
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2.2. Discretization in finite dimensions. As in [17], to get the large de-
viation theory for the infinite dimensional case, we first need to consider the finite
dimensional discretization and then take the continuum limit. This strategy is un-
avoidable especially when we want to compute the nucleation rate. For simplicity we
discretize the interval [0, 1] uniformly. Define ∆x = 1/n, xi = (i − 1/2)∆x, x′

i =
i∆x, i = 1, 2, · · · , n. Let

Xt = (X1
t , X

2
t , · · · , Xn

t ) ∈ R
n,

where Xi
t corresponds to the approximation of u(xi, t), respectively. The dynamical

system (2.1) in continuous space is discretized to a generalized gradient system

dXt = −A∇V (Xt)dt+

√

2ǫ

∆x
σdWt, (2.12)

where the matrices A and σ are the matrix forms of the operators − ∂2

∂x2 and ∂
∂x

after discretization, which will be given below for different boundary conditions. The
potential function V (w) = Fn(w)/∆x, where w = (w1, w2, · · · , wn)

T ∈ R
n, and Fn(w)

is the discretized version of the functional F (u):

Fn(w) =







{ n
∑

i=2

[

κ2

2

(

wi−wi−1

∆x

)2
+ f(wi)

]

+ f(w1)
}

∆x, for Neumann BC,

{ n
∑

i=2

[

κ2

2

(

wi−wi−1

∆x

)2
+ f(wi)

]

+ κ2

2

(

wn−w1
∆x

)2
+ f(w1)

}

∆x, for periodic BC.

(2.13)

Under Neumann BC, Wt is an (n − 1)-dimensional Brownian motion obtained by
discretizing the white noise η at xi (i = 1, 2, · · · , n) by using values on x′

i (i =
1, 2, · · · , n− 1). A ∈ Mn×n and σ ∈ Mn×(n−1) take the following forms:

A =
1

∆x2



















1 −1 0 · · · 0 0
−1 2 −1 0 · · · 0

0
. . .

. . .
. . .

. . . 0
0 · · · −1 2 −1 0
0 0 · · · −1 2 −1
0 0 · · · 0 −1 1



















, σ =
1

∆x



















1 0 0 · · · 0
−1 1 0 · · · 0

0
. . .

. . .
. . . 0

0 · · · −1 1 0
0 0 · · · −1 1
0 0 · · · 0 −1



















.

(2.14)
For periodic BC, Wt is an n-dimensional Brownian motion obtained by discretiz-

ing the white noise η at xi (i = 1, 2, · · · , n) by using values on x′
i (i = 1, 2, · · · , n).

A, σ ∈ Mn×n satisfy

A =
1

∆x2



















2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0

0
. . .

. . .
. . .

. . . 0
0 · · · −1 2 −1 0
0 0 · · · −1 2 −1
−1 0 · · · 0 −1 2



















, σ =
1

∆x



















1 0 0 · · · 0 −1
−1 1 0 0 · · · 0

0
. . .

. . .
. . .

. . . 0
0 · · · −1 1 0 0
0 0 · · · −1 1 0
0 0 · · · 0 −1 1



















,

(2.15)

and it is easy to verify that A = σσT holds for both boundary conditions.
Notice that the discrete dynamics (2.12) is still conservative. Corresponding to E

and P in continuous space, the phase space of the discrete dynamics is

En =
{

y
∣

∣

∣ y = (y1, y2, · · · , yn) ∈ R
n,

1

n

n
∑

i=1

yi = m
}

,
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and the trajectory space is Pn = CEn
[0,+∞). We define

E
0
n =

{

y
∣

∣

∣
y = (y1, y2, · · · , yn) ∈ R

n,
n
∑

i=1

yi = 0
}

=
{

y − z
∣

∣

∣
y, z ∈ En

}

,

which is a linear subspace of Rn with rank(E0
n) = n− 1.

2.3. Some available theoretical results. There has been some theoretical
results on the dynamical analysis of the deterministic Cahn-Hilliard Equation [15,
16, 19]. For Neumann BC, stationary solutions of the deterministic dynamics are
completely determined in [19]. When f ′′(m) > 0, these solutions are classified into
three types: the homogeneous solution h0 ≡ m, the boundary layer solutions sj±,κ,

and the transition layer solutions ij±,κ, where j > 0 is the index. By symmetry,

sj+,κ(x) = sj−,κ(1 − x), ij+,κ(x) = ij−,κ(1 − x); see figure 2.1(a). For larger indices

j, sj±,κ, i
j
±,κ are obtained from s1±,κ and i1±,κ by even reflections and rescaling [16].

When κ becomes smaller and smaller, there are more and more solutions sj±,κ and ij±,κ.
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−0.5
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0.5
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(b)

Fig. 2.1. Equilibrium states for the 1D stochastic Cahn-Hilliard dynamics (2.1). For Neumann
BC, homogeneous solution h0, boundary layer solutions s1±,κ, and transition layer solutions i1±,κ

are shown in (a). For j > 1, sj±,κ and i
j
±,κ are obtained by even reflections and rescaling from s1±,κ

and i1±,κ respectively. For periodic BC, homogeneous solution h0, boundary layer solutions s1κ, and

transition layer solutions i1κ are shown in (b). For j > 1, sjκ and i
j
κ are obtained by even reflections

and rescaling from s1κ and i1κ respectively.

Among them, h0 is locally stable and i1±,κ are the globally stable solutions which have
the global minimum energy. In [15], the authors proved that s1±,κ are unstable and
have a one-dimensional unstable manifold. They also conjectured that two branches
of the unstable manifold connect h0 and i1±,κ respectively. In fact, s1±,κ are the saddle
points with minimal energy on ∂Ω(h0), where Ω(h0) denotes the attractive basin of
h0 under the deterministic version of dynamics (2.1). In [16], the authors proved that
most solutions of dynamics (2.1) exit Ω(h0) close to the spike solutions s1±,κ in the
zero temperature limit ǫ → 0.

The case is similar for periodic BC. Homogeneous solutions h0, boundary layer
solutions sjκ, and the transition layer solutions ijκ exist. i1κ has the global minimum
energy. The spike solution s1κ is unstable and has a degenerate direction as well as a
one-dimensional unstable manifold; see figure 2.1(b). sjκ and ijκ with index j > 1 are
obtained by even reflections and rescaling from s1κ and i1κ respectively.
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By symmetry, we may denote ua(x) = h0(x), uc(x) = s1−,κ(x), ub(x) = i1−,κ(x) for
Neumann BC (shown in figure 3.1(b)), and uc(x) = s1κ(x), ub(x) = i1κ(x) for periodic
BC (shown in figure 3.1(c)). We will focus on numerically studying the transition
from the metastable state ua(x) to the globally stable state ub(x) passing through
the spike solution uc(x) in the zero temperature limit ǫ → 0. The computation of the
optimal transition path and the transition rates are the main concern.

2.4. Nucleation behavior on large domains. Usually the nucleation
dynamics on large domains can be reduced to a Poisson model for multiple droplets
[20, 21]. In this subsection we briefly discuss the nucleation behavior of the one
dimensional Cahn-Hilliard dynamics on large domain. We will show that under a
suitable space-time rescaling, the large domain dynamics correspond to a small κ
model on the domain [0,1].

Consider x ∈ [0, L], where L > 0 is large. The stochastic Cahn-Hilliard equation
is given by (2.1), (2.2), and (2.3) with suitable initial and boundary conditions. We
make the change of variables x̃ = x/L, t̃ = t/T , ũ(x̃, t̃) = u(x, t), so that

∂u

∂t
=

1

T

∂ũ

∂t̃
,

∂u

∂x
=

1

L

∂ũ

∂x̃
,

and

η̃(x̃, t̃) =
√
LTη(x, t), ξ = ∂xη =

1

L
√
LT

∂x̃η̃ =
1

L
√
LT

ξ̃,

by the half order property of standard Wiener processes. Thus (2.1) is converted to

∂ũ

∂t̃
=

T

L2

∂2

∂x̃2

(

− κ2

L2

∂2ũ

∂x̃2
+ ũ3 − ũ

)

+ T
√
2ǫ

1

L
√
LT

ξ̃. (2.16)

Letting T = L2, κ̃ = κ/L, we obtain

∂ũ

∂t̃
=

∂2

∂x̃2

(

− κ̃2 ∂
2ũ

∂x̃2
+ ũ3 − ũ

)

+

√

2ǫ

L
ξ =

∂2

∂x̃2

δF̃ (ũ)

δũ
+

√

2ǫ

L
ξ, (2.17)

with

F̃ (ũ) =

∫ 1

0

[ κ̃2

2

(∂ũ

∂x̃

)2

+ f(ũ)
]

dx̃ (2.18)

and
∫ 1

0

ũ(x̃, t̃)dx̃ =
m

L
= m̃. (2.19)

Therefore the dynamics can be reduced from x ∈ [0, L] to x̃ ∈ [0, 1] under the scaling
of x̃ = x/L, t̃ = t/L2, κ̃ = κ/L, ǫ̃ = ǫ/L, m̃ = m/L. If f ′′(m̃) > 0, the system is in
nucleation regime.

Notice κ̃ → 0 as L → +∞, thus the dynamics on the large domain [0, L] are
equivalent to the sharp interface limit of dynamics (2.1) on [0, 1]. When κ̃ → 0,
the functional F̃ (u) becomes complicated since there are many equilibrium boundary
layer solutions and transition layer solutions. The energy barrier between ua(x) and
uc(x) becomes smaller, thus the transition events from ua(x) occur much more easily,
which is in accordance with the nucleation behavior on large domain, where we are
in the multiple droplet regime.

In this paper, we mainly assume that κ is not so small and therefore confine
ourselves to the single droplet regime. The numerical study of the nucleation and
dynamics on large domains will be studied in the future works.
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3. The transition path and the saddle point

3.1. Action functional of the stochastic Cahn-Hilliard equation. Con-
sider the 1D deterministic Cahn-Hilliard equation

∂u

∂t
=

∂2

∂x2

δF (u)

δu
, (3.1)

and suppose a is a local attractor and that the basin of attraction of a is defined as

Ω = Ω(a) =
{

w
∣

∣

∣ lim
t→+∞

u(t) = a, u(0) = w ∈ E

}

. (3.2)

It is clear that once u(t) enters Ω, it won’t leave the basin and will be attracted to a.
For the stochastic dynamical system (2.1), things become different. The trajectory
may escape from the basin under the perturbation of the noise (see the discussion
in figure 3.1). In the case that there are two local attractors (metastable states) a
and b, as mentioned above, we are interested in the transition events between them.
What is more, we want to find the most probable transition path among all the paths
connecting them. Following the large deviation theory, in the zero temperature limit,
the probability of the path is determined by its action functional. With physical
notations, we formally have

P (u ∈ B) ∼
∫

u∈B

1

Z exp
{

− 1

ǫ
I(u)

}

Du, (3.3)

where Z is the formal partition function, B is any Borel measurable set in path space
P, I is called the action functional, and the transition events happen along the most
probable path in most cases. Denoting the probability of transition events finished
before time T by PT and by BT = {u | u(0) = a, u(T ) = b, u ∈ P} the set of all the
possible paths, it follows that

lim
ǫ→0

ǫlnPT = lim
ǫ→0

ǫlnP (u ∈ BT ) = − min
u∈BT

I(u) (3.4)

by large deviation theory. From this, we can see that the action functional of the
dynamical system is crucial when answering Q1 and Q3 above.

For system (2.1) with periodic BC (2.5), it is shown in [17] (the action functional
with Neumann BC (2.4) is similar and is given in [16]) that the action functional I(u)
for u ∈ P is

I(u) =
1

2
I0(u(0)) +

∫ T

0

1

4

∥

∥

∥

∥

∂u

∂t
−∆

δF

δu

∥

∥

∥

∥

2

−1

dt, (3.5)

where I0 is a good functional in E, ||ρ||2−1 = 〈(−∆)−1ρ, ρ〉, ∀ρ ∈ E. Notice ∆ = ∂2

∂x2

in one dimension, and (−∆)−1 is a bounded positive self-adjoint linear operator on
E.

Let u(x, t) ∈ P, a := u(·, 0), b := u(·, T ). Suppose ∂Ω(a)∩ ∂Ω(b) is nonempty and
is called the separatrix. u(t) intersects the separatrix at t = T ∗. We can estimate the
action functional I(u) following [22]:

I(u) =
1

2
I0(a) +

∫ T∗

0

1

4

∥

∥

∥

∥

∂u

∂t
−∆

δF

δu

∥

∥

∥

∥

2

−1

dt+

∫ T

T∗

1

4

∥

∥

∥

∥

∂u

∂t
−∆

δF

δu

∥

∥

∥

∥

2

−1

dt
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=
1

2
I0(a) +

∫ T∗

0

1

4

∥

∥

∥

∥

∂u

∂t
+∆

δF

δu

∥

∥

∥

∥

2

−1

dt

+

∫ T

T∗

1

4

∥

∥

∥

∥

∂u

∂t
−∆

δF

δu

∥

∥

∥

∥

2

−1

dt+

∫ T∗

0

(

∂u

∂t
,
δF

δu

)

dt

≥ 1

2
I0(a) + (F (c)− F (a)),

where c is the minimizer of F (u) on the separatrix (saddle point). Let ∆F = F (c)−
F (a) denote the energy barrier between the metastable states a and b. From the
above estimation, we obtain I(u) ≥ 1

2I0(a)+∆F . On the other hand, consider a path
u∗ ∈ P which is a concatenation of two parts

lim
t→−∞

u∗(t) = a, lim
t→+∞

u∗(+∞) = c,
∂u∗

∂t
= −∆

δF

δu
(3.6)

and

lim
t→−∞

u∗(t) = c, lim
t→+∞

u∗(+∞) = b,
∂u∗

∂t
= ∆

δF

δu
. (3.7)

Then there exists connecting paths u which geometrically converge to u∗ and I(u∗) =
1
2I0(a) + ∆F by redefining the integration interval as from −∞ to +∞. Thus the
lower bound is obtained asymptotically. u∗ is called the minimal energy path (MEP)
[7] and is the most probable transition path in the zero temperature limit. Intuitively,
from (3.6) and (3.7), we know that u∗ follows the steepest ascent Cahn-Hilliard dy-
namics before it reaches saddle point c, and follows the steepest descent Cahn-Hilliard
dynamics after it reaches c.
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Fig. 3.1. Equilibrium states for 1D stochastic Cahn-Hilliard dynamics (2.1) and illustration
of the transition event. Starting from an arbitrary initial state u0(x) (shown in (a)), located in the
attractive basin of the stable state ua(x), the system will first relax to ua(x) and fluctuate around
ua(x) for a long time. Then a sudden large fluctuation of noise may drive the system to the saddle
point uc(x), which is on the boundary of the basin of attraction. Finally, once the system escapes
from the attractive basin of ua(x), it will evolve to another stable state ub(x).

3.2. Finding the minimal energy path and saddle point. The string
method is an efficient method by which to study the transition path and has been
applied to a wide range of problems [7, 23, 24, 25]. Here, we focus on Q1 and Q2 in
Section 1. Based on the action functional (3.5) and the derived MEP equation, we
tailor the string method to the Cahn-Hilliard dynamics as follows.
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3.2.1. The string method algorithm. Consider a string ϕ(s) in P, s ∈ [0, 1]
andϕ(0) = a, ϕ(1) = b, where we parameterize the string using arc length instead of
time. (3.6) and (3.7) are equivalent to

ϕ̇(s)⊥ = 0, (3.8)

where ⊥ means the projection in the direction perpendicular to ∆ δF
δu . To solve (3.8),

we discretize the string ϕ(s) to ϕi, i = 0, 1, · · · , N − 1, N , withϕ0 = a, ϕN = b, and
evolve ϕi as in Algorithm 1 (notice that ϕi is preserved in E by linear interpolation).
The steady state of the string gives the minimal energy path.

Algorithm 1: String method for stochastic Cahn-Hilliard dynamics

Set up the initial string ϕ0, k = 0.1

Update ϕk
i according to MEP equation2

ϕ∗
i = τ∆

δF

δu
+ ϕk

i , i = 0, 1, 2, · · · , N,

where τ is the step size.
Reparameterize ϕ∗

i to get ϕk+1
i with equal arclength.3

Let L∗
0 = L0 = 0, L∗

i =

i−1
∑

j=0

|ϕ∗
j+1−ϕ∗

j |

N−1
∑

j=0

|ϕ∗
j+1−ϕ∗

j |

, Li =
i
N , i = 1, 2, · · · , N . Here | · | is

some norm in E. Suppose for 0 < i < N,L∗
j < Li ≤ L∗

j+1, ϕ
k+1
i is obtained by

linear interpolation between ϕ∗
j and ϕ∗

j+1:

ϕk+1
i =

L∗
j+1 − Li

L∗
j+1 − L∗

j

ϕ∗
j +

Li − L∗
j

L∗
j+1 − L∗

j

ϕ∗
j+1

Iterate until the string converges.4

3.2.2. Tangent direction of the string at saddle point. Once ϕ(s) is
obtained, the saddle point c = ϕ(s∗) and the unit tangent vector of ϕ(s) at c (denoted
as ~t) can be precisely calculated by using the climbing image method [8, 23]. From
(3.8), we have

ϕ̇(s) = C(s)
∂2

∂x2

δF

δu
(ϕ(s)), (3.9)

where s is the arc length parameter. C(s) is some scalar quantity to ensure |ϕ̇(s)| = 1.
C(s) > 0 when s > s∗ and C(s) < 0 when s < s∗. In discrete case, expanding ∇V at
c = ϕ(s∗) and utilizing the condition of stationarity A∇V (c) = 0 implies that

ϕ̇(s) = −C(s)∆sAH(ϕ(s∗))
ϕ(s)− ϕ(s∗)

∆s
+O(||ϕ(s)− ϕ(s∗)||2), (3.10)

where H is the Hessian of V at c. Letting s > s∗, s → s∗, then

lim
s→s∗

ϕ(s)− ϕ(s∗)

∆s
= ~t = ϕ̇(s∗),
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and thus C(s)∆s converges. We obtain µ~t = AH~t, which implies ~t is a unit eigenvector
of AH with µ < 0 and that the eigenvalue µ satisfies

µ = 〈~t, AH~t〉, (3.11)

where 〈·, ·〉 denotes the inner product of vectors in R
n.

3.2.3. Degeneracy of saddle point in periodic case. For Neumann BC,
the two saddle points (s1−,κ and s1+,κ) are isolated. But for periodic BC (2.5), if
c := uc(x) is a saddle point, then an arbitrary

φc(θ) ∈ S =
{

φc(θ, ·)
∣

∣

∣ φc(θ, ·) = uc(· − θ), θ ∈ [0, 1]
}

(3.12)

is also a saddle point and satisfies

∂2

∂x2

δF

δu
(φc(θ)) =

∂2

∂x2

(

−κ2 ∂
2φc(θ)

∂x2
+ φ3

c(θ)− φc(θ)

)

= 0. (3.13)

Under periodic BC, this is equivalent to

δF

δu
(φc(θ)) = −κ2 ∂

2φc(θ)

∂x2
+ φ3

c(θ)− φc(θ) ≡ C, (3.14)

where C is constant. Taking the derivative with respect to θ, we obtain

∂

∂θ

δF

δu
(φc(θ)) = −κ2 ∂2

∂x2
φ′
c(θ) + (3φ2

c(θ)− 1)φ′
c(θ) ≡ 0, (3.15)

which indicates that

δ2F

δu2
(φc)φ

′
c(θ) = 0.

Noticing that φ′
c(θ) = −u′

c(x− θ), by taking θ = 0 we obtain that

δ2F

δu2
(uc(x))u

′
c(x) = 0, (3.16)

which means that the Hessian at saddle point c is degenerate and the degenerate
direction is given by

vd =
u′
c(x)

||u′
c(x)||L2

.

3.2.4. Normal direction of ∂Ω at saddle point. We consider the normal
direction in discrete space and the discrete dynamics (2.12). Since ∂Ω is an invariant
set of dynamics (2.12), we have

A∇V (x) · ~n(x) = 0, ∀x ∈ ∂Ω,

where ~n(x) is normal direction of ∂Ω at x. Expanding ∇V (x) at saddle point c, and
denoting H = H(c), ~n = ~n(c), and T∂Ω(c) as the tangent space of ∂Ω at c, we obtain
that for all v ∈ T∂Ω(c),

〈AHv,~n〉 = 0 =⇒ 〈v,HA~n〉 = 0
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by the symmetry of H and A. Together with 〈v, ~n〉 = 0, we have

HA~n = α~n.

Thus AHA~n = αA~n, which means that A~n is an eigenvector of AH. What is more,
the dynamics (3.1) are unstable if perturbed along the direction A~n, therefor α < 0
and A~n ‖ ~t. Thus we obtain

~n =
A−1~t

||A−1~t||2
, (3.17)

where ~n,~t ∈ E
0
n and A−1 is well defined in E

0
n. The fact that the tangent of the

string does not coincide with the normal of ∂Ω reflects the difference between the
Allen-Cahn and Cahn-Hilliard dynamics.

4. Nucleation rate for 1D stochastic Cahn-Hilliard equation

4.1. Nucleation rate formula. In Section 2, 1D stochastic Cahn-Hilliard
Equation (2.1) is discretized to a generalized gradient system (2.12) with symmet-
ric positive semidefinite matrix A. Let a, b, c denote ua(x), ub(x), uc(x) and their
corresponding discretized states, respectively. Now we consider the nucleation rate
formula for system (2.1), (2.12) with Neumann BC (2.4) and periodic BC (2.5) (the
rate formula for the Allen-Cahn equation is discussed in [20]).

4.1.1. Neumann boundary condition. Under Neumann BC (2.4), matrix
A has the form in (2.14) after discretization. c and its reflection are two isolated saddle
points as well as the energy minimizers on ∂Ω(a). In this case, setting ǫn = ǫ/∆x,
the nucleation rate formula can be derived (see (A.37) in Appendix A for the details
— the rate is doubled since two saddle points exist) as

kn = 2
|µ|
2π

√

detH†(a)

|detH†(c)| e
−∆V

ǫn =
|µ|
π

√

detH†(a)

|detH†(c)| e
−∆Fn

ǫ , (4.1)

where µ follows (3.11), and H†(c) and H†(a) denote the Hessian matrix confined to
the subspace E

0
n at saddle point c and metastable state a, respectively.

Intuitively, letting n → +∞ we obtain the nucleation rate formula for the stochas-
tic Cahn-Hilliard Equation (2.1) with Neumann BC (2.4):

k =
|µ|
π

(

λa
1

|λc
1|

)
1
2
+∞
∏

j=2

(λa
j /λ

c
j)

1
2 e−

∆F
ǫ , (4.2)

where µ < 0 is the unique negative eigenvalue of the operator − ∂2

∂x2
δ2F
δu2 (uc). ∆F =

F (uc) − F (ua) is the energy barrier. λa
j are the eigenvalues of the operator δ2F

δu2 (ua)
confined to E and satisfying

0 < λa
1 ≤ λa

2 ≤ · · · ≤ λa
k ≤ · · · ,

and λc
j are the eigenvalues of operator δ2F

δu2 (uc) confined to E and satisfying

λc
1 < 0 < λc

2 ≤ λc
3 ≤ · · · ≤ λc

k ≤ · · · ,
i.e. there exists φγ

j (x) ∈ E, φγ
j (x) 6≡ 0 and constants Cγ

j ∈ R such that

δ2F

δu2
(uγ)φ

γ
j (x) = λγ

j φ
γ
j (x) + Cγ

j , j = 1, 2, · · · , γ = a, c.
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4.1.2. Periodic boundary condition. Under periodic BC (2.5), matrix A
takes the form in (2.15) after discretization. Letting ǫn = ǫ/∆x, the nucleation rate
formula can be derived (see (A.39) in Appendix A for the details) as

kn =
|µ|

2π
(2πǫn)

− 1
2

√

detH†(a)

|d̃etH†(c)|
||u′

c||2 e
−∆V

ǫn =
|µ|

2π
(2πǫ)−

1
2

√

detH†(a)

|d̃etH†(c)|
||u′

c||L2(Rn) e
−∆Fn

ǫ ,

(4.3)

where µ follows (3.11), d̃et is defined as the product of all the nonzero eigenvalues of

a matrix, ||u||L2(Rn) =
( n
∑

i=1

u2
i∆x

)
1
2

= ||u||2(∆x)
1
2 , ∀u ∈ R

n, and H†(c) and H†(a)

denote the Hessian matrix confined to subspace E
0
n at saddle point c and metastable

state a respectively.
Intuitively, letting n → +∞ we obtain the nucleation rate formula for the stochas-

tic Cahn-Hilliard Equation (2.1) with periodic BC (2.5):

k =
|µ|
2π

(2πǫ)−
1
2

(

λa
1λ

a
2

|λc
1|

)
1
2
+∞
∏

j=3

(λa
j /λ

c
j)

1
2 ||u′

c||L2 e−
∆F
ǫ , (4.4)

where all of the notations are similar to those in the Neumann boundary condition

case except that λc
j are the eigenvalues of δ2F

δu2 (uc) confined to E and satisfying

λc
1 < λc

2 = 0 < λc
3 ≤ · · · ≤ λc

k ≤ · · · .

4.2. Nucleation rate computation. Now we consider the algorithm to
compute the nucleation rate according to (4.1) and (4.3). First of all, as mentioned
above, µ as well as its corresponding eigenvector ~t and the degenerate direction vd
(for periodic BC (2.5)) at saddle point c can be obtained precisely by using the string
method. For the notations, given q ∈ R

n, H ∈ Mn×n, q† denotes the orthogonal
projection of q to E

0
n and H† denotes the confinement of H to E

0
n, i.e. H

†q = (Hq)†

is the orthogonal projection of Hq to E
0
n.

The Hessian matrixH†(c) at saddle point c has a negative eigenvalue λ1 < 0 which
appears in the term detH†(c) of (4.1) and d̃etH†(c) of (4.3). By the Courant-Fischer
theorem, we have

λ1 = min
||x||2=1,x∈E0

n

〈x,H†(c)x〉. (4.5)

Based on this formula, λ1 and its corresponding eigenvector v1 can be obtained by a
two step procedure similar to that in [23]. In each step, xi is first updated to x∗

i :

x∗
i = xi −∆tH†(c)xi. (4.6)

Then x∗
i is projected onto the unit sphere by normalization:

xi+1 =
x∗
i

||x∗
i ||2

. (4.7)

The steady state v1 of (4.6), (4.7) satisfies H†(c)v1 = λ1v1 and

λ1 = 〈v1, H†(c)v1〉. (4.8)

Now we turn to calculate the ratio of the determinant in (4.1) and (4.3). We
adopt the algorithm in [26, 24, 25]. Before describing the method, we need to modify
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H†(c) to a symmetric positive definite matrix without changing the magnitude of its

determinant. For Neumann BC, let H†
1 = H†(c) − 2λ1v1v

T
1 , so that the negative

eigenvalue λ1 of H†(c) is transformed to an eigenvalue −λ1 > 0 of H†
1 and H†

1v1 =

−λ1v1, detH†
1 = |detH†(c)|. For periodic BC, the zero eigenvalue also needs to

be eliminated. Letting H†
1 = H†(c) + vdv

T
d − 2λ1v1v

T
1 , we have H†

1v1 = −λ1v1,

H†
1vd = vd and detH†

1 = |d̃etH†(c)|. Notice that the Hessian matrix H†(a) is itself
positive definite. Thus, we have modified the determinant ratio in formula (4.1) and
(4.3) to

detH†(a)

detH†
1

,

which is the determinant ratio of the two symmetric positive definite matrices H†(a)

and H†
1 .

To calculate the determinant ratio of H†(a) and H†
1 , define Uα(q) = 1

2q
T [αH†

1 +
(1− α)H†(a)]q, where q ∈ E

0
n, α ∈ [0, 1], and β is a small constant. Then

Z(α) =

∫

E0
n

dq exp
[

− βUα(q)
]

= (2πβ−1)
n−1
2

{

det[αH†
1 + (1− α)H†(a)]

}− 1
2

. (4.9)

After taking the derivative of lnZ(α) with respect to α, we have

d

dα
lnZ(α) =

1

Z(α)

∫

E0
n

dq
[β

2
qT (H†(a)−H†

1)q
]

exp
[

− βUα(q)
]

=
〈[β

2
qT (H†(a)−H†

1)q
]〉

α
, Q(α), (4.10)

where 〈·〉α is the expectation with respect to

πα(q) =
1

Z(α)
exp
[

− βUα(q)
]

=
1

Z(α)
exp
{

− β

2
qT [αH†

1 + (1− α)H†(a)]q
}

, (4.11)

which is an (n − 1)-dimensional multivariate normal distribution on E
0
n. After inte-

gration, it follows that

detH†(a)

detH†
1

=
[Z(1)

Z(0)

]2

= exp
{

2

∫ 1

0

Q(α)dα
}

. (4.12)

Thus the ratio can be obtained by calculating Q(α). More specifically, Q(α) is the

expectation of β
2 q

T (H†(a)−H†
1)q under πα(q). Notice that the ratio is independent

of the constant β and thus we can simply choose β = 1. In our work, we evaluate
this expectation by the Metropolis-Hastings method [27], which generates a Markov
chain having πα(q) as its stationary distribution. The reason to take the randomized
algorithm is that it can be easily generalized to higher dimensions. At a state qk of
the Markov chain, we consider two widely used proposals:

1. Random Walk (RW) proposal: q∗ ∼ N(qk, σ
2
nIn),

2. Metropolis-adjusted Langevin (MALA) proposal:

q∗ ∼ N(qk +
σ2
n

2 ∇logπα(qk), σ
2
nIn),
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where σn is the step size. Set qk+1 = q†∗, which is the orthogonal projection of q∗
to E

0
n with probability

a(qk, q
†
∗) = min

(

πα(q
†
∗)Tn(q

†
∗, qk)

πα(qk)Tn(qk, q
†
∗)
, 1

)

.

Here Tn(x, y) ≡ 1 for the RW proposal and Tn(x, y) = exp(−‖z†‖22/2σ2
n) for the

MALA proposal, where

z = y − x− σ2

2
∇logπα(x).

5. Numerical results

5.1. Single droplet regime. We study the nucleation events of dynamics
(2.12) from the homogeneous state ua(x) ≡ m to transition state ub(x). Both Neu-
mann BC and periodic BC are considered. We take n = 100, κ = 0.04, m = 0.6,
and use 50 nodes along the string while using the string method, with time step
size ∆t = 5 × 10−8. The string is parameterized using an energy weighted distance
function.

For Neumann BC (2.4), we show ua(x), ub(x), and the saddle point uc(x) obtained
by using the string method in figure 5.1(a). The energy along the MEP is shown
in figure 5.1(b). The 9th node has the maximum energy along the MEP and the
energy barrier is ∆F = 5.04× 10−5. More nodes are concentrated near the maximum
energy node due to the utilization of the energy weighted distance function while
reparameterizing the nodes. As mentioned above, after MEP is obtained by the string
method, the saddle point uc(x) is precisely computed using climbing image method
with ||A∇V (uc)||2 = 8.7× 10−10 and is shown in figure 5.1(a). The tangent direction
~t at saddle point uc(x) is calculated following [23], and µ = −3.44 from (3.11). The

outer normal direction ~n of ∂Ω is obtained using ~n = A−1~t
||A−1~t||2

. λ1 = −1.32 × 10−1

and v1 are calculated using (4.6), (4.7), and (4.8). ~t, ~n are shown in figure 5.1(c).
From the profile of ~t, we can imagine that once the dynamics passes the saddle point
uc(x), an internal layer connecting −1 to 1 is formed [15].

For periodic BC (2.5), ua(x), ub(x), and the saddle point uc(x) are shown in
figure 5.1(d). The energy along the MEP is shown in figure 5.1(e). The 17th node
has the maximum energy along the MEP and the energy barrier is ∆F = 4.48×10−4.
The saddle point uc(x) is precisely computed using the climbing image method with
||A∇V (uc)||2 = 9.8×10−10 and is shown in figure 5.1(d). µ = −12.75 from (3.11) and
λ1 = −1.89× 10−1. ~t, ~n, and the degenerate direction vd are shown in figure 5.1(f).

To calculate the determinant ratio (4.12), the interval [0, 1] for α is discretized
into 30 subintervals and Q(α) is integrated using Simpson’s rule. Using the RW and
MALA proposals, we compute Q(α) for 10 runs with 2 × 106 iterations for each α
in each run. Figure 5.2(a) and figure 5.2(d) show Q(α) as a function of α by taking
the average of 10 runs for each α using the MALA proposal for Neumann BC and
periodic BC respectively. The ratio obtained from Q(α) for 10 runs is shown in
figure 5.2(b) for Neumann BC and figure 5.2(e) for periodic BC. The step size σn is
optimized with acceptance rate 0.234 for the RW proposal and 0.574 for the MALA
proposal respectively, as suggested in [27]. For Neumann BC, the average ratio of the
results of 10 runs is 0.4221 for the RW proposal and 0.4161 for the MALA proposal,
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with variance equal to 2.4 × 10−4 and 6.7 × 10−6 respectively. For periodic BC, the
average ratio of the results for 10 runs is 0.0282 with the RW proposal and 0.0280 with
the MALA proposal and the variance equals 2.1 × 10−6 and 4.2 × 10−8 respectively.
These results are also shown in table 5.1. To check the results, we also calculate the
eigenvalues of H†(c) and H†(a) directly using LAPACK software (we need to find
their forms in the confined subspace E

0
n, and they become dense matrices) and the

ratio is 0.4168 for Neumann BC and 0.0282 for periodic BC. From figure 5.2(b), figure
5.2(e), and table 5.1, we conclude that Metropolis-Hastings method, with either the
RW or the MALA proposal, can be used to compute Q(α) and the ratio. The ratio is
accurate when comparing to the results obtained by directly solving the eigenvalues.
We could also see that the results with the MALA proposal, which makes use of
the information of πα, are more accurate and have smaller variance when comparing
to the results with the RW proposal. For both Neumann BC and periodic BC, we
show the numerical results with different κ in table 5.2 and the nucleation rate as a
function of ǫ for different κ is plotted in figure 5.2(c), figure 5.2(f). As κ increases, the
interfacial energy will play more important roles in the total energy F (u). Thus the
system tends to form a flat interface and the homogeneous state ua(x) (no interface)
become more stable. As a result, when κ increases, the energy barrier becomes larger
and nucleation rate decreases rapidly, as shown in table 5.2, figure 5.2(c), and figure
5.2(f). We also list the results for different n in table 5.3. From these results, we
conclude that the results are nearly the same for different n.

Direct RW MALA

Neumann
mean 0.4168 0.4221 0.4161

variance 2.4× 10−4 6.7× 10−6

periodic
mean 0.0282 0.0282 0.0280

variance 2.1× 10−6 4.2× 10−8

Table 5.1. Mean and variance of the determinant ratio for 10 runs obtained using the
Metropolis-Hastings method and directly computing the eigenvalues. The acceptance rates for the
RW and MALA proposals are 0.234 and 0.574. Here n = 100, κ = 0.04,m = 0.6.

κ λ1 µ Rd RMALA ∆Fn ||u′
c||L2(Rn)

kn

Neumann
0.02 −1.11 × 10−1 −6.27 0.4042 0.4027 1.28 × 10−5 3.54 × 10−1

0.03 −1.20 × 10−1 −4.16 0.4123 0.4123 2.67 × 10−5 5.90 × 10−2

0.04 −1.32 × 10−1 −3.44 0.4168 0.4161 5.04 × 10−5 4.58 × 10−3

periodic
0.02 −1.32 × 10−1 −13.78 0.0195 0.0194 5.03 × 10−5 0.550 1.40 × 10−1

0.03 −1.60 × 10−1 −12.41 0.0244 0.0241 1.57 × 10−4 0.751 4.43 × 10−6

0.04 −1.89 × 10−1 −12.75 0.0282 0.0280 4.48 × 10−4 1.067 1.57 × 10−18

Table 5.2. Results with different κ. λ1 is the negative eigenvalue of H† at saddle point uc.
µ is the negative eigenvalue of AH at saddle point uc. Rd is the determinant ratio obtained by
directly solving the eigenvalues. RMALA is the determinant ratio obtained by taking the average of
the results of 10 runs using the Metropolis-Hastings method with the MALA proposal. ∆Fn is the
energy barrier. kn is the nucleation rate. Here κ = 0.02, 0.03, 0.04, ǫ = 10−5, n = 100,m = 0.6.

5.2. Multiple droplet regime. To investigate the nucleation behavior on
large domains, we may equivalently consider the case when κ is small. Here we take
κ = 0.008, direct simulation of the discretized stochastic dynamics (2.12) is carried
out with only Neumann BC (2.4) for simplicity. n is taken to be 500 to capture the
interface. The time step size is ∆t = 10−8. The noise strengths ǫ are 5 × 10−6,
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Fig. 5.1. (a) and (d): metastable states ua(x) ≡ m, ub(x) and the saddle point uc(x) (solid
lines), as well as several other selected states along the MEP are plotted (dashed lines). (b) and
(e): Energy of nodes along MEP. (c) and (f): Tangent direction ~t, outer normal direction ~n of
∂Ω at saddle point uc(x), degenerate direction vd at saddle point uc(x) (for periodic BC). Here
n = 100,m = 0.6, κ = 0.04. Neumann BC (2.4) is assumed in (a)(b)(c) and periodic BC (2.5) is
assumed in (d)(e)(f).
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Fig. 5.2. (a) and (d): Q(α) as a function of α. (b) and (e): determinant ratio obtained by
using the RW and MALA proposals for 10 runs. (c) and (f): nucleation rate for κ = 0.02, 0.03, 0.04.
ǫ ranges from 3× 10−6 to 1.3× 10−5 in (c) and from 1.5× 10−5 to 3.5× 10−5 in (f). Neumann BC
is assumed in (a)(b)(c) and periodic BC is assumed in (d)(e)(f). n = 100,m = 0.6 in all figures
and κ = 0.04 in (a)(b)(d)(e).
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n λ1 µ Rd RMALA ∆Fn ||u′
c||L2(Rn)

kn

Neumann

50 −1.11 × 10−1 −6.34 0.4049 0.4007 1.27 × 10−5 3.61 × 10−1

100 −1.11 × 10−1 −6.27 0.4042 0.4027 1.28 × 10−5 3.54 × 10−1

150 −1.10 × 10−1 −6.26 0.4040 0.4035 1.28 × 10−5 3.53 × 10−1

200 −1.10 × 10−1 −6.26 0.4039 0.4036 1.28 × 10−5 3.53 × 10−1

250 −1.10 × 10−1 −6.25 0.4039 0.4039 1.28 × 10−5 3.53 × 10−1

periodic

50 −1.32 × 10−1 −13.96 0.0204 0.0194 4.98 × 10−5 0.541 1.49 × 10−1

100 −1.32 × 10−1 −13.78 0.0195 0.0194 5.03 × 10−5 0.550 1.40 × 10−1

150 −1.32 × 10−1 −13.75 0.0194 0.0192 5.04 × 10−5 0.551 1.38 × 10−1

200 −1.32 × 10−1 −13.74 0.0194 0.0194 5.04 × 10−5 0.552 1.37 × 10−1

250 −1.32 × 10−1 −13.74 0.0194 0.0196 5.04 × 10−5 0.552 1.37 × 10−1

Table 5.3. Results with different n. λ1 is the negative eigenvalue of H† at saddle point uc.
µ is the negative eigenvalue of AH at saddle point uc. Rd is the determinant ratio obtained by
directly solving the eigenvalues. RMALA is the determinant ratio obtained by taking the average of
the results of 10 runs using the Metropolis-Hastings method with the MALA proposal. ∆Fn is the
energy barrier. Here κ = 0.02, ǫ = 10−5, m = 0.6.

1 × 10−5, and 3 × 10−5 in figure 5.3, figure 5.4, and figure 5.5 respectively. From
these simulation results, we can see that when ǫ = 5× 10−6 is small (figure 5.3), the
dynamics is in the zero temperature limit, the nucleation event is likely to happen by
the boundary spike and the system will transition to the global stable transition layer
state. When the noise strength ǫ = 1× 10−5 is slightly larger (figure 5.4), it does not
take a very long time to wait for the nucleation event to occur. Thus after the first
nucleation event happens near the right boundary (figure 5.4(c)), another nucleation
event occurs near the left boundary (figure 5.4(d)), while the interface formed in the
first nucleation event is moving. As a result, instead of evolving to the global stable
state, the system transitions to another metastable state (figure 5.4(f)). When we
enlarge the noise strength ǫ to 3 × 10−5 as in figure 5.5, the nucleation events occur
more easily. Besides the two boundary spikes in figure 5.5(c), a nucleus is formed
in the middle of the domain as in figure 5.5(d). Correspondingly, there are more
interfaces in the final state, which has a higher energy comparing to the final state in
figures 5.3(f), 5.4(f). In the later two cases, both the effects of the domain size and
the finite temperature begin to play a role in the nucleation and evolution process.
As a result, the nucleation events may take different paths during the transition and
the system may evolve to various metastable states.
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Fig. 5.3. Here κ = 0.008, n = 500, m = 0.6, ǫ = 5× 10−6. The strength of the noise is small
and therefore we are in the zero temperature limit. It takes a long time for the transition events to
occur. After fluctuating around the homogeneous stable state for a long time, a spike is formed on
the right boundary and the transition event occurs. Later, the interface is formed and moving from
right to left. Finally, the system approaches the global stable state.
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Fig. 5.4. Here κ = 0.008, n = 500, m = 0.6, ǫ = 1×10−5. The strength of the noise is medium
and the transition events occur more easily. What is more, after the interface forms near the right
boundary and moves from right to left, another transition event occurs near the left boundary and
leads to the formation of another interface. As a result, the system approaches a metastable state
with two interfaces near both boundaries.

0 0.03 0.06 0.09 0.12
0.01
0.03
0.05
0.07
0.09
0.11

F
(u

)

t

(a) F (u)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

(b) t = 0.010

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

(c) t = 0.023

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

(d) t = 0.030

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

(e) t = 0.050

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

(f) t = 0.080

Fig. 5.5. Here κ = 0.008, n = 500, m = 0.6, ǫ = 3×10−5. The strength of the noise is relatively
large and the transition events occur much more easily. After waiting a short time, two transition
events occur on both boundaries and lead to two interfaces. Later, another transition event happens
in the middle. As a result, the system approaches a metastable state containing more interfaces.

6. Discussion

We tailor the string method to study the transition events and compute the
nucleation rate for one dimensional stochastic Cahn-Hilliard dynamics. While the
Allen-Cahn equation has been studied a lot (see [20, 24, 25] and references therein),
there are very few numerical works on the nucleation study of Cahn-Hilliard dynamics.
Here, comparing to the previous methods for the Allen-Cahn equation, we want to
emphasize the following three important aspects in our work.

• Firstly, due to the extra Laplacian operator in the Cahn-Hilliard equation,
its trajectory is conservative and thus confined in a subspace. Accordingly,
after discretization, unlike the Allen-Cahn equation which leads to a standard
gradient system, the Cahn-Hilliard equation is converted to a generalized
gradient system with a symmetric positive semidefinite coefficient matrix A
(A = I for the Allen-Cahn equation). Although the nucleation rate formula
has been derived for a generalized gradient system with nonsingular coefficient
A and is applied to simple finite-dimensional cases in [22, 28], we do not find
any previous works connecting it to the study of the Cahn-Hilliard equation.

• Secondly, the matrix A is singular for the Cahn-Hilliard equation. To over-
come this singularity, we make a change of variables to reduce the original
model to a nonsingular system when deriving the nucleation rate formula (see
Appendix A for more details). What is more, while calculating the rate nu-
merically, we need to consider the determinant and eigenvalues of the Hessian
matrix in a subspace.

• Thirdly, we should deal with the degeneracy of the saddle point in the periodic
boundary condition case. With periodic boundary conditions, the nuclei may
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pop up from any position along the interval, thus the saddle point is no longer
isolated and the potential is degenerate. A similar situation occurs for the
Allen-Cahn equation with periodic boundary conditions [20].

Different from Cahn-Hilliard dynamics, in [29] the authors essentially studied
the dynamics of conservative order parameters using the projected Allen-Cahn type
equation

∂u

∂t
= P

(

−δF

δu
+ η

)

,

where η is the space-time Gaussian white noise and P is the orthogonal projection
operator onto the confined subspace with mass conservation. As an orthogonal projec-
tion, PT = P and P2 = P, thus the framework proposed in this paper should be ap-
plied to these dynamics without any difficulty. Generally speaking, although these dy-
namics share the same metastable states and transition states with the Cahn-Hilliard
dynamics studied in this paper, the trajectory of these dynamics and the transition
path obtained by the string method will be different from those of the Cahn-Hilliard
equation because of the difference between the orthogonal projection P in projected
Allen-Cahn dynamics and the oblique projection ∆ in Cahn-Hilliard dynamics.

We use the algorithm in [26, 24, 25] to calculate the determinant ratio of two
symmetric positive definite matrices. We adopt the Metropolis-Hastings method to
compute the expectation and verify that the MALA proposal is more efficient than
the RW proposal. While calculating the expectation, high dimensional integration
is needed, and there are alternative algorithms to deal with this integration [30, 31].
However, we should point out that, in 1D, these algorithms are more computation-
ally expensive than directly factoring the matrix ((n− 1)-dimensional matrix) to get
eigenvalues. We also want to mention that ratios of functional determinants arises
in several other situations. Calculating the ratio of two functional determinants is a
general topic and interesting theoretical results have been obtained in some special
cases (see [32, 33] for example). We will investigate the possibility to utilize their
results and methods in solving our problem in the future.

In this work, we mainly focus on the single droplet regime in the zero temperature
limit. However, in reality, we need to consider nucleation on large domains (κ → 0)
in finite temperature, in which case the dynamics are much more complicated and
interesting, as the direct simulation results show. For the case of large domains, the
dynamics are in the multiple droplet regime and can be connected with the Poisson
model and KJMA dynamics; see [20, 21] for detailed discussions. For the case of
finite temperature, instead of finding the most probable transition path, transition
tube theory and the transition path theory may need to be considered [34].

Future study will be concentrated on higher dimensional stochastic Cahn-Hilliard
equations, models with more complex energy forms and the nucleation events on large
domains. More efficient algorithms for calculating the ratio of matrix determinants
will also be investigated.

7. Conclusions

In this paper, we focus on numerically studying the transition events of the
stochastic Cahn-Hilliard equation. We tailor the string method for computing the
most probable transition path in the zero temperature limit based on large deviation
theory. We derive the nucleation rate formula for stochastic Cahn-Hilliard dynamics
through finite dimensional discretization. Both Neumann boundary condition and pe-
riodic boundary condition are considered. After discretization, we obtain generalized
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gradient dynamics with a degenerate potential and confined trajectory. We discuss
the algorithmic issues for calculating the nucleation rate, especially high dimensional
sampling for computing the determinant ratios. The methods presented in the cur-
rent paper are generally for Cahn-Hilliard dynamics with conservation for the order
parameters. Application of the methods to more complex and higher dimensional
problems will be discussed in continued publications.

Acknowledgments. T. Li acknowledges the support from NSFC under grants
11171009 and 91130005. P. Zhang acknowledges support from NSFC under grant
50930003.

Appendix A. Nucleation rate formula for 1D stochastic Cahn-Hilliard

equation. In this section, we focus on Q3 in Section 1 and derive the nucleation rate
formula for

dXt = −A∇V (Xt)dt+
√
2ǫσdWt, A = σσT , (A.1)

which is related to the discrete version (2.12) of the 1D stochastic Cahn-Hilliard
Equation (2.1). The case when A = I is studied for a nondegenerate potential in [22]
and for a degenerate potential in [20], and the case for general positive definite matrix
A for a nondegenerate potential is studied in [22, 28]. Here we adapt their derivations
for a symmetric positive semidefinite matrix A with degenerate potential.

A.1. Mean first exit time problem when A is symmetric and positive

definite. Assume matrix A is symmetric and positive definite. The semi-definite
case will be deferred to A.3. Consider the deterministic system

dXt = −A∇V (Xt)dt, (A.2)

and suppose x0 is a local attractor of it and that Ω = Ω(x0) is the corresponding basin
of attraction. For stochastic system (A.1), starting from X0 ∈ Ω, Xt may escape from
Ω. In this situation,

τ(x) = inf
t

{

t
∣

∣

∣
Xt 6∈ Ω, X0 = x ∈ Ω

}

tells, under the perturbation of noise, the first time when the trajectory leaves the
basin of attraction, and its expectation Eτ(x) is called mean first exit time and shows
how long in average the system will stay in Ω if starting from x ∈ Ω.

Using Ito’s formula, for any smooth function g(x), x ∈ R
n,

dg(Xt) = ∇g · dXt +
1

2
dXT

t ∇2gdXt = Lǫgdt+
√
2ǫ∇g · (σdWt), (A.3)

where Lǫg = ǫA : ∇2g − (A∇V ) · ∇g is the backward Kolmogorov operator, and the
contraction of two tensors is denoted by A : B =

∑

i,j aijbij . We take a special g(x)
which satisfies

{

Lǫg = −1, x ∈ Ω,
g = 0, x ∈ ∂Ω.

(A.4)

For g satisfying (A.4), integrate (A.3) on both sides from t = 0 to τ(x) and take the
expectation, we conclude that g(x) = Eτ(x) by noticing that the stochastic integral
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vanishes. Consider w(x) = e−
K
ǫ g(x), where K is a constant to be determined later.

From (A.4), w(x) satisfies

{

Lǫw = −e−
K
ǫ , x ∈ Ω,

w = 0, x ∈ ∂Ω.
(A.5)

Far from ∂Ω, we consider the expansion w(x) =
∞
∑

i=0

wi(x)ǫ
i, substitute it into

(A.5) and compare the coefficients; we obtain the equation for leading term

−(A∇V ) · ∇w0 = 0,

which indicates that w0(x) is constant along (A.2). Since x0 is the attractor of (A.2),
we obtain

w0(x) ≡ w0(x0) = C0. (A.6)

On the other hand, the invariant distribution p(x) = 1
Z e−

V (x)
ǫ , where Z is a

normalized constant, satisfies the Fokker-Planck equation

ǫ∇ · (A∇p) +∇ · (pA∇V ) = 0. (A.7)

Multiply (A.5) by p(x) and integrate over Ω; by using (A.7) and integration by parts
we obtain

∫

∂Ω

ǫe−
V (x)

ǫ (A∇w) · ~n dσ = −e−
K
ǫ

∫

Ω

e−
V (x)

ǫ dx, (A.8)

where ~n is the outer normal of ∂Ω.
To simplify the LHS of (A.8), we study w near the boundary ∂Ω. For simplicity,

we parameterize Ω by x = (x1, x2, · · · , xn)
T with xn = dist(x, ∂Ω) near ∂Ω, so that

~n = (0, 0, · · · , 0,−1)T . We introduce the variable y = Bx, where

B =



















1 0 0 · · · 0 − an1

ann

0 1 0 · · · 0 − an2

ann

0 0 1 0 · · · − an3

ann

0 0
. . .

. . . 0
...

0 0 · · · 0 1 −ann−1

ann

0 0 · · · 0 0 1
ann



















.

Then ∇x = BT∇y holds by the chain rule. Here ∇x,∇y are the gradient operators
with respect to variables x and y, respectively. With this new variable y, (A.5) is
transformed to

{

ǫ(BABT ) : ∇2
yw −∇yV · (BABT∇yw) = −e−

K
ǫ , y ∈ Ωy,

w = 0, y ∈ ∂Ωy,
(A.9)

where Ωy is the image of Ω in coordinate y. It is easy to verify that

∂w

∂yn
=

n
∑

i=1

ani
∂w

∂xi
= −(A∇w) · ~n. (A.10)
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We change the variable again by stretching the nth component yn of y to z = yn/
√
ǫ

and let C = BABT = (cij). Direct calculation shows that cnn = 1/ann > 0, and
cin = cni = 0 for i 6= n. What is more, since ∂Ω is the invariant set of the dynamics
(A.2), we conclude

∂V

∂yn

∣

∣

∣

yn=0
=

∂V

∂yn

∣

∣

∣

∂Ω
=

n
∑

i=1

ani
∂V

∂xi

∣

∣

∣

∂Ω
= −(A∇V ) · ~n|∂Ω = 0.

From (A.9), it follows that

∂2w

∂z2
+ zk(y′)

∂w

∂z
+ L(y′)w +O(

√
ǫ) = −anne

−K
ǫ , (A.11)

where

y′ = (y1, y2, · · · , yn−1),

k(y′) = −∂2V (y′,0)
∂y2

n
= −

n
∑

i,j=1

anianj
∂2V

∂xi∂xj
= −〈AHA~n,~n〉,

L(y′) = −ann
n−1
∑

j=1

( n−1
∑

i=1

cij
∂V (y′,0)

∂yi

)

∂
∂yj

.

(A.12)

Expanding w(x) =
∞
∑

i=0

wi(x)ǫ
i again, substituting it into (A.11), and comparing the

coefficients, we obtain

∂2w0

∂z2
+ zk(y′)

∂w0

∂z
+ L(y′)w0 = 0. (A.13)

Thus we obtain the equation for w0 as a function of a single variable z, which can be
integrated as

w0(y
′, z) = C1(y

′)

∫ z

0

e−
1
2k(y

′)η2dη−
∫ z

0

e−
1
2k(y

′)η2
[

∫ η

0

e
1
2k(y

′)s2L(y′)w0(y
′, s) ds

]

dη,

with

∂w0

∂z
(y′, 0) = C1(y

′). (A.14)

Letting z → +∞, we obtain

w0(y
′,+∞) = C1(y

′)

√

π

2k(y′)
− C2(y

′), (A.15)

where

C2(y
′) =

∫ +∞

0

e−
1
2k(y

′)η2
[

∫ η

0

e
1
2k(y

′)s2L(y′)w0(y
′, s) ds

]

dη. (A.16)

Together with (A.15) and (A.6), we have

C1(y
′) = (C0 + C2(y

′))

√

2k(y′)

π
. (A.17)
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From (A.14), on ∂Ω we have

−(A∇xw) · ~n =
∂w

∂yn
= ǫ−

1
2
∂w

∂z
= ǫ−

1
2C1(y

′).

Using (A.17), (A.8) can be simplified to give

ǫ
1
2

∫

∂Ω

e−
V (x)

ǫ (C0 + C2(y
′))

√

2k(y′)

π
dσ = e−

K
ǫ

∫

Ω

e−
V (x)

ǫ dx. (A.18)

Suppose that c ∈ ∂Ω is the saddle point of V (x) on ∂Ω, and its corresponding co-
ordinate in y is (y′∗, 0). Using Laplace’s method, and noticing that C2(y

′
∗) = 0 since

∇xV (c) = 0, we obtain

ǫ
1
2

∫

∂Ω

e−
V (x)

ǫ (C0 +C2(y
′))

√

2k(y′)

π
dσ = ǫ

1
2

[

C0

√

2k(y′∗)

π
+O(ǫ)

]

√

(2πǫ)n−1

detH⊥(c)
e−

V (c)
ǫ ,

(A.19)
where H⊥ denotes the Hessian matrix of V (x) constrained to ∂Ω. For the RHS of
(A.18), let a = x0 denote the attractor of V (x) which minimizes V (x) in Ω; using
Laplace’s method, we have

e−
K
ǫ

∫

Ω

e−
V (x)

ǫ dx =

√

(2πǫ)n

detH(a)
e−

V (a)+K

ǫ (1 +O(ǫ)). (A.20)

From (A.19) and (A.20), we obtain K = V (c)− V (a) = ∆V and

C0 = π

√

detH⊥(c)

k(y′∗) detH(a)
. (A.21)

When ǫ is small, w(x) ≈ w0(x) = C0, the mean first exit time is

Eτ(x) = w(x)e
K
ǫ ≈ C0e

K
ǫ = π

√

detH⊥(c)

k(y′∗) detH(a)
e

∆V
ǫ . (A.22)

The nucleation rate is given by

k =
1

2Eτ(x)
=

1

2π

√

k(y′∗) detH(a)

detH⊥(c)
e−

∆V
ǫ =

|〈AHA~n,~n〉|1/2
2π

√

detH(a)

detH⊥(c)
e−

∆V
ǫ ,

(A.23)
which is in accordance with the result in [22] using Kramer’s method.

It is not convenient to obtain the nucleation rate numerically using formula (A.23)
since we need to compute the determinant of H(c) confined to the subspace ∂Ω, which
is not explicitly known. For this reason, we follow [28] to derive another form of the

rate formula. At saddle point c, the outer normal of ∂Ω satisfies ~n = A−1~t
||A−1~t||2

=

− H(c)~t

||H(c)~t||2
, and k(y′∗) = − µ~t·~n

||A−1~t||2
. Reconsidering the LHS of (A.18), we have

ǫ
1
2

∫

∂Ω

e−
V (x)

ǫ (C0 + C2(y
′))

√

2k(y′)

π
dσ
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= ǫ
1
2 (C0 +O(ǫ))

∫

∂Ω

e−
V (x)

ǫ

√

2k(y′∗)

π
dσ

≈ C0

π
e−

V (c)
ǫ

∫

∂Ω

∫ +∞

−∞

|µ|(~n · ~t)e
− 1

2ǫ

(

〈x−c,H(c)(x−c)〉+
µ2(~n·~t)2

k(y′
∗)

s2
)

dσds

=
C0

π
|µ|e−

V (c)
ǫ

∫

Rn

e−
1
2ǫ (〈x−c,H̃(c)(x−c)〉)dx

=
C0

π
|µ|e−

V (c)
ǫ

(2πǫ)
n
2

(detH̃(c))
1
2

. (A.24)

In (A.24), we make the decomposition x = c+x1+s~t, x1 ⊥ ~n, s ∈ R and the following
change of variables: H̃ = H̃(c) is given by

H̃ = H(c)

(

I − 2
~t ~nT

~t · ~n

)

= H(c)Ĩ ,

where Ĩ = I − 2~t ~nT /(~t · ~n). Direct calculation shows

〈x− c, H̃(x− c)〉 = 〈x1, H(c)x1〉+
µ2(~n · ~t)2
k(y′∗)

s2

and H̃T = H̃. From the definition of Ĩ, we obtain Ĩv = v, ∀v ⊥ ~n, and Ĩ~t = −~t, thus
detĨθ = −1 and

detH̃ = −detH(c) = |detH(c)|.

Substituting this into (A.24), we obtain

ǫ
1
2

∫

∂Ω

e−
V (x)

ǫ (C0 + C2(y
′))

√

2k(y′)

π
dσ =

C0

π
|µ|e−

V (c)
ǫ

(2πǫ)
n
2

|detH(c)| 12
. (A.25)

Together with (A.20), we obtain the nucleation rate

k =
|µ|
2π

√

detH(a)

|detH(c)|e
−∆V

ǫ . (A.26)

A.2. Nucleation rate formula when the potential is degenerate. We
follow [20] to consider the rate formula for (A.1) when the potential V (x) is degenerate
on ∂Ω. Suppose the minimizers of V (x) on ∂Ω can be parameterized as

S = {γ(θ)|θ ∈ [0, 1]d}, (A.27)

and V (γ(θ)) = Vs = min
x∈∂Ω

V (x). In this case, we can not directly apply Laplace’s

method to the LHS of (A.18). Notice that the major contribution to the LHS of (A.18)
comes from γ(θ), and C2(y

′) = 0 at γ(θ). Let ~t(θ) denote the eigenvector of AH(θ) cor-
responding to the negative eigenvalue µ(θ) < 0, where H(θ) = H(γ(θ)) is the Hessian
matrix of V (x) at γ(θ). Then following the notation of A.1, the outer normal direction

of ∂Ω satisfies ~n(θ) = A−1~t(θ)

||A−1~t(θ)||2
= − H(θ)~t(θ)

||H(θ)~t(θ)||2
, and k(y′) = −µ(θ)~t(θ)·~n(θ)

||A−1~t(θ)||2
. Let Px =

γ(θ) denote the orthogonal projection of x on S and O(θ) = {Px = γ(θ), x ∈ ∂Ω}.
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For the LHS of (A.18), applying the Co-Area formula as in [20], omitting the higher
term of ǫ, and adopting similar methods as in A.1, we have

ǫ
1
2

∫

∂Ω

e
−

V (x)
ǫ (C0 + C2(y

′))

√

2k(y′)

π
dσ

= ǫ
1
2

∫

[0,1]d

∫

O(θ)

J(θ)e−
V (x)

ǫ (C0 + C2(y
′))

√

2k(y′)

π
dσ

′
dθ

=
C0

π
e
−Vs

ǫ

∫

[0,1]d
J(θ)

∫

O(θ)

∫ +∞

−∞

{

|µ(θ)|(~n(θ) · ~t(θ))

×e
− 1

2ǫ

(

〈x−Px,H(Px)(x−Px)〉+
µ2(θ)(~n(θ)·~t(θ))2

k(y′)
s2

)}

dσ
′
dsdθ

=
C0

π
e
−Vs

ǫ

∫

[0,1]d

∫

{Px=γ(θ)}

J(θ)|µ(θ)|e−
1
2ǫ

(〈x−Px,H̃(Px)(x−Px)〉)
dH

n−d
dθ

=
C0

π
e
−Vs

ǫ

∫

[0,1]d
J(θ)(2πǫ)(n−d)/2 |µ(θ)|

(detH̃θ(θ))
1
2

dθ. (A.28)

In (A.28), J(θ) is the Jacobian defined as

J(θ) =
√

det(∇γ(θ)(∇γ(θ))T ),

and σ′ is the volume element on O(θ). We have made the decomposition x = Px +
x1 + s~t(θ), x1 ⊥ ~n(θ), s ∈ R and the following change of variables: H̃(θ) = H̃(γ(θ))
is given by

H̃(θ) = H(θ)

(

I − 2
~t(θ)~n(θ)T

~t(θ) · ~n(θ)

)

= H(θ)Ĩ(θ),

where Ĩ(θ) = I − 2
~t(θ) ~n(θ)T

~t(θ)·~n(θ)
. H̃θ(θ) is H̃(θ) confined to {x|Px = γ(θ), x ∈ R

n} .

Direct calculation shows that

〈x− Px, H̃(θ)(x− Px)〉 = 〈x1, H(θ)x1〉+
µ(θ)2(~n(θ) · ~t(θ))2

k(y′)
s2,

and H̃T (θ) = H̃(θ).
Consider Rn = M(θ)⊕M(θ)⊥, M(θ) = {v|H(θ)v = 0, v ∈ R

n}, rank(M(θ)) = d.
For v ∈ M(θ),

v · ~n(θ) = −v · H(θ)~t(θ)

|H(θ)~t(θ)|
= − (H(θ)v) · ~t(θ)

|H(θ)~t(θ)|
= 0,

which indicates ~n(θ) ∈ M(θ)⊥. Suppose

M(θ)⊥ = span{~n(θ), v1(θ), v2(θ), · · · , vn−d−1(θ)},

where vi(θ) ⊥ ~n(θ), i = 1, 2, · · · , n − d − 1. Let Hθ(θ), Ĩθ(θ) denote the constraint
of H(θ) and Ĩ(θ) in M(θ)⊥, respectively. It is clear that H̃θ(θ) = Hθ(θ)Ĩθ(θ) and
Ĩ(θ)vi(θ) = vi(θ), since vi(θ) ⊥ ~n(θ). Consider ~t(θ) = t1+ t2, t1 ∈ M(θ), t2 ∈ M(θ)⊥,
then

Ĩ(θ)~t(θ) = −~t(θ), t1 ⊥ ~n(θ) =⇒ Ĩ(θ)t2 = −2t1 − t2.
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Thus we obtain Ĩθ(θ)vi(θ) = vi(θ), Ĩθ(θ)t2 = −t2, which indicates detĨθ(θ) = −1,
therefore

detH̃θ(θ) = −detHθ(θ) = |λ1(θ)|
n
∏

j=d+2

λj(θ) = |d̃etH(θ)|,

where λj(θ) are the eigenvalues of H(θ):

λ1(θ) < 0 = λ2(θ) = · · · = λd+1(θ) < λd+2(θ) ≤ · · · ≤ λn(θ),

and d̃etH(θ) is the product of all the nonzero eigenvalues of H(θ). (A.28) can be
expressed by H(θ):

C0

π
e−

Vs
ǫ

∫

[0,1]d
J(θ)(2πǫ)

n−d
2

|µ(θ)|
|d̃etH(θ)| 12

dθ

=
C0

π
e−

Vs
ǫ

∫

[0,1]d
J(θ)(2πǫ)

n−d
2

|µ(θ)|
|λ1(θ)|

1
2

∏n
j=d+2(λj(θ))

1
2

dθ. (A.29)

When d = 1 and the eigenvalues are independent of θ, this becomes

C0

π
e−

Vs
ǫ (2πǫ)(n−1)/2 |µ|

|λ1|
1
2

∏n
j=3(λj)1/2

∫ 1

0

||γ′(θ)||2dθ. (A.30)

For the RHS of (A.18), Laplace’s method is still valid. If the eigenvalues of the Hessian
matrix H at a are

0 < λa
1 ≤ λa

2 ≤ · · · ≤ λa
n,

then we obtain the nucleation rate

k =
|µ|
2π

(2πǫ)−
1
2

√

detH(a)

|d̃etH(c)|

∫ 1

0

||γ′(θ)||2dθ e−
∆V
ǫ

=
|µ|
2π

(2πǫ)−
1
2

n
∏

j=1

(λa
j )

1/2

|λ1|
1
2

n
∏

j=3

(λj)1/2

∫ 1

0

||γ′(θ)||2dθ e−
∆V
ǫ . (A.31)

A.3. The case when A is positive semidefinite. We generalize the results
in A.1 and A.2 to the symmetric positive semidefinite case in this subsection. Suppose
A can be diagonalized as UTAU = diag{λ1, λ2, · · · , λl, 0, · · · , 0}, where λi > 0, i =
1, 2, · · · , l, UTU = I. That is, we assume A has eigenvalue 0 with multiplicity n − l.
Decomposing U = (U1, U2), U1 ∈ Mn,l, U2 ∈ Mn,n−l, then each column of U2 is an
eigenvector of A corresponding to eigenvalue 0. We also have UT

2 σ = 0. In this case,
letting Yt = UTXt, (A.1) can be written as a nSDE for variable Yt:

dYt = −UTAU∇yV (Yt)dt+
√
2ǫUTσdWt. (A.32)

From the above assumption, it is easy to see that only the first l components of
Yt are nontrivial and therefore we introduce the variable Zt = PYt, where P =
(Il×l, 0l×(n−l)) ∈ Ml,n, Zt ∈ R

l, to reduce (A.32) to

dZt = −PUTAUPT∇zV (Zt)dt+
√
2ǫPUTσdWt. (A.33)
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Letting Ã = PUTAUPT , σ̃ = PUTσ, then

dZt = −Ã∇zV (Zt)dt+
√
2ǫσ̃dWt. (A.34)

What is more, Ã = σ̃σ̃T still holds and Ã = diag{λ1, λ2, · · · , λl} is positive definite,
and thus the derivation of the nucleation rate formula in A.1 and A.2 is valid for
Zt. Notice that the dynamics of (A.1) for Xt and (A.34) for Zt are equivalent. The
trajectory of Xt spans a l-dimensional subspace Xl in the whole space R

n and the
basin of attraction Ωx ∈ Xl obviously. Here we derive the nucleation rate formula for
Xt by changing the variables back.

When the potential (A.34) has a unique saddle point in ∂Ωz, (A.18) holds for Zt:

ǫ
1
2

∫

∂Ωz

e−
V (z)

ǫ (C0 + C2(z
′))

√

2k(z′)

π
dσ = e−

K
ǫ

∫

Ωz

e−
V (z)

ǫ dz. (A.35)

Since the change of variable can be viewed as rotation followed by projection, the
inner product in k(z′) is invariant and we can change the variable from z to x:

ǫ
1
2

∫

∂Ωx

e−
V (x)

ǫ (C0 + C2(y
′))

√

2k(y′)

π
dσ = e−

K
ǫ

∫

Ωx

e−
V (x)

ǫ dx, (A.36)

and the nucleation rate formula can be obtained in the same way:

k =
|µ|
2π

√

detH†(a)

|detH†(c)|e
−∆V

ǫ , (A.37)

where H†(a) and H†(c) are the Hessian matrix confined to Xl at a and c respectively.
When the potential is degenerate, following a similar approach to that in A.2 and

changing the variables, we have

ǫ
1
2

∫

∂Ωz

e−
V (z)

ǫ (C0 + C2(z
′))

√

2k(z′)

π
dσ

=
C0

π
e−

Vs
ǫ

∫

[0,1]d
J(θ)(2πǫ)(l−d)/2 |µ(θ)|

|detH†
θ (θ)|

1
2

dθ, (A.38)

where H†
θ (θ) is the Hessian matrix confined to Xl and M(θ)⊥. When d = 1 and the

eigenvalues are independent of θ, we obtain the nucleation rate

k =
|µ|
2π

(2πǫ)−
1
2

√

detH†(a)

|d̃etH†(c)|

∫ 1

0

‖γ′(θ)‖2dθ e−
∆V
ǫ . (A.39)
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