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A new algorithm to compute long time molecular dynamics trajectories is presented. The technique
is based on the stochastic path integral of Onsager and Machlup. Trajectories of fixed length of time
are computed by path optimization between two end points. Modes of motion with periods shorter

than the discrete time step are automatically filtered out, making the trajectories stable for almost an
arbitrary time step. Several numerical examples are provided, including motions on the Mueller

potential and a conformational transition in alanine dipeptide. Paths similar to the usual molecular
dynamics trajectories are obtained, employing time steps 100 times larger than those used in
straightforward molecular dynamics. ®996 American Institute of Physics.
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I. INTRODUCTION there is a need for approximate methodologies that do not
reduce the number of degrees of freedom.
Molecular dynamics(MD) simulations are a standard Another approach to study “dynamics” is the reaction

tool in computational studies of biological macromolecdles. path methodRP). There, one seeks a low energy path con-
Thermodynamical variables, as well as time correlation funcnecting reactants and products. The calculated path provides
tions and other average dynamical properties can be ex qualitative description of the structural changes as a func-
tracted from the simulations providing valuable atomic infor-tion of the reaction progress. We define “reaction progress”
mation on the system of interest. as a coordinate displacement along the reaction path from
It is therefore a misfortune that the time scale of thereactants to productéfigure 1). The reaction path is also
simulations is severely limited. Nowadays there are cleauseful in computations of rates that are based on statistical
limits on the dynamics that we can explore, as well as on th@pproaches such as the transition state th€b8f).’
conformational space that can be sampled in a single run. For The reaction path approach does not suffer from the time
systems of more than 1000 atoms, the present limit is a fewcale limitation of molecular dynamics, since explicit time is
nanoseconds. This is a serious drawback considering theot employed. The computational effort is determined prima-
typical time scales of motions in proteins. For example, therily by the roughness of the energy surface and by the coor-
subnanosecond time scale accessible to atomically detailatinate curvature. The lower the roughness and the curvature
simulations covers only extremely rapid processes)., of the computed path, the larger the change in the structure
geminate recombination of a ligand and a protewhich are  that we can examine in a single step.
only a small fraction of biochemical phenomena. Allosteric ~ The potential energy is expected to be a slowly varying
transitions in proteins occur on a time scale offunction of the reaction coordinaté@at least compared to
microsecond$,and folding of a protein can last for secorfds. other degrees of freedom in the sysjett is therefore ex-
Another related limitation of the molecular dynamics pected that the energy roughness along the reaction path is
field is the necessity of doing the computations preciselymuch lower than the roughness sampled by a regular MD
even if high precision is not required nor warranted. It is nottrajectory. Hence, the “step” in RP, in which the fast mo-
possible to use molecular dynamics approximately, whileions are damped, can be larger than in MD.
still maintaining the complete atomic level picture of the The obvious drawback of the reaction path approach is
system. In contrast, electronic structure calculations suggeste indirect connection to the real motions of the system and
a hierarchy of techniques that differ in their accurdtye to the rate. One commonly used approach to connect the RP
simplest example is the variation in the size of the basis setto the rate of the process is the transition state thethgt
The hierarchy makes it possible to investigate the moleculawas mentioned earlier. In practical applications of the TST,
system at the desired level of accuracy. we have to rely on the assumption that real trajectories pass
A number of models of proteins that enable the compu-in the neighborhood of the reaction path and to further rely
tation of long time dynamics have emerged in the last fewon statistical estimates of the weights of different configura-
years® However, without exception, these models give up ontions. In other words, we have to assume local equilibraam
the atomic resolution of the protein and of the solvent. Toleaston a surface dividing reactants and products. This is a
understand biological processes such as enzymatistrong assumption that is hard to justify in the general case,
reactions, or processes involving specific interactions of ae.g., in systems that react far from equilibrium.
few amino acids, atomic models are required. Therefore, Moreover, an application of the reaction path approach
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step are described in section lll. Numerical examples are
found in section 1V, and conclusions and final remarks in
section V.

Throughout, the following notations are used: A vector
is denoted by a bold face and a matrix by an underline.
Differentiation with respect to a vector denotes the corre-
sponding gradient. Higher order differentiation corresponds
to the appropriate tensor of derivatives.

Il. THEORY

We consider a trajectory for which the total time —
teng— and the starting and the ending positions are known
FIG. 1. A schematic presentation of a reaction coordirttitiek line with and are denoted by the vector COOI’din&Hﬁ) and R(tf)
arrows between_reactarﬁR) ar_]d produc{P). The Mueller potential energy (tt—t=tsnd. R(1), the path that connects the two end points,
surface(Ref. 22 is used in this example. . . .. .

is the target of the calculations. This is different from what is

usually done in molecular dynamics simulations, in which

the coordinates and the velocities are specified at some initial
and the transition state theof'ST) in condensed phase time.
problems must address an additional problem of path multi- If the starting and the ending points of the process are
plicity. In condensed phases many minimum energy path&nown, then there is no reason not to use this informatiion
leading from reactants to products are possible. It is likelywe knew how. The known final point can add significantly
that many of these are relevant and contribute significantly téo the stability and to the accuracy of the computed trajec-
the rate of the process. Searching and identifying the differtory. We are not aware of a known way of using this infor-
ent paths can be a significant computational buftkeis not ~ mation in molecular dynamics trajectories to obtain time de-
at all obvious that different paths are in thermal equilibriumpendent data. It is difficult, if not impossible, to “hit” a
with each other on the time scale of the reaction. Rapid exdesirable product using a condensed phase MD trajectory.
change between paths is assumed, at least implicitly, whenExamples of cases in which starting and ending points are
single reaction coordinate is employed. known include ordinary chemical reactions with pre-

To summarize the discussion up to now, atomic detailegpecified reactants and products, and conformational changes
simulations of biological macromolecules can be pursued towithin a single molecule.
day either by computing molecular dynamics trajectories or  On the other hand, when the end points are not known
by computation of reaction paths. Molecular dynamics traimolecular dynamics is the prime choice. An example of a
jectories are severely restricted in their length of tittea  problem that is difficult to investigate by a boundary value
few nanosecondsand computed reaction paths are difficult formulation is that of protein folding.
to interpret and to convert to experimentally accessible infor-  Given that a formulation as a boundary value problem is
mation. It is therefore desirable to have a computationabuitable, the dynamics of the system is conveniently de-
technigue that could, in some way, benefit from the advanscribed in terms of a conditional probability. That is, if the
tages of both, providing plausible paths of slow processestarting point is at the coordinate vect(t;), we ask: What
with a direct estimate of the time of the trajectdne., pro- is the probability of ending at the coordinate vecift;)
viding the coordinates as a function of tijne after time {,4? The answer — the conditional probability —

In the present paper an approximate computational tectis denoted by FR(t))|R(t;);teng- Questions that are related to
nique that computes molecular dynamics trajectories for longhe rate can be addressed by computations employing the
times is suggested. The proposed algorithm employs compwbove conditional probability. Appropriate formulae and nu-
tational techniques similar to the approach which was develmerical examples will be described in forthcoming publica-
oped by Czerminski and one of the authors to calculate retions. In this paper we focus on finding a trajectory or tra-
action coordinate$. The computational algorithm is also jectories that maximize the above probability. Hence, the
similar in spirit to the work of Gillianet al’® and Cho goal of the research is to find most probable trajectories that
et al In a related protocol it uses optimization of function- start and end at given positions and also have a fixed length
als to compute classical trajectories. However, our functionabf time — t,,4.
is different, andas we shall argyemore useful for extend- It will be shown how a time step which is larger by
ing time scale of simulations. orders of magnitude than the time step employed by ordinary

This paper is organized as follows. In the next sectionrmolecular dynamics can be implemented in the scheme. The
the Onsager-MachlugOM) actiont? is reviewed and re- inevitable result of such a large time step is an approximate
derived in the context of the present application. The OMtrajectory. Nevertheless, we shall demonstrate that the trajec-
action is the base for the suggested computational methotbry is stable and quite accurate. This is in contrast to regular
The numerical implementation of the OM action, formal MD trajectories that rapidly loose precision and stability as
properties of the algorithm, and its dependence on the timéhe time step increasésee also figure 4
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As a result of a finitdand large time step that is used in  namics is considered. To construct a “short time” trajectory,
the numerical integration, the solution of the trajectory is notit is separated into two components: a deterministic part
exact. For special cases it is possible to estimate the errors imhich is our zero order guess of where the system would like
the trajectory by comparing approximate solutions to the exto go, and a random component sampled from a Gaussian
act answer. In Appendix A we provide such an estimate fodistribution of errors. Since the discrete time step leads to an
the harmonic oscillator. This estimate is useful in establishapproximate solution, a volume of uncertainty is added to the
ing a certain weight or a probability for a given approximateneighborhood of the computed new location. The size of the
trajectory. volume should reflect and be proportional to an estimate of

Alternatively, it can be argued that the approximate tra-the errors in our integrator.
jectories generated by the numerical computations do not The first component of the solution after a time sidpis
satisfy exactly thedifferential equations of motion. We Ry(t+At). Ry(tj+At) is obtained fronR(t;) in a deterministic
therefore write for the approximate solution of Newton's calculation, i.e.,Rq is the guessed coordinate vector at the
equations center of the Gaussian. It is the solution wheris zero,

wheree is the error vector that was defined in equati{@n

MdzRa”p/ d’ +dU/dRp, =e(1), @ In a discrete time representation, the error corre?a[t&qua-
where Rydt) is the approximate solution of the trajectory tion (2)] is approximated by
R(t), U is the potential energy function, ardis a vector of o 2
error componsnts for each (gxthe individual coordinatess M (2(t)-£(t)) = 0"3(t=t)~ o= /AL ®
the diagonal mass matrix. The next expression of interest is the probability of ending

The essential hypothesis of the present study is that thafter a time intervalAt at R(t;+At), if at time § the system
errors (t) are sampled in time from identical and uncorre-was atR(t;). The above inquiry defines a conditional prob-
lated Gaussian distributions. The width of the Gaussian deability which for the problem at hand can be written as
creases as the time step is reduced. The Gaussian hypothesj ]
is an ad-hoc assumption which we cannot and do not attem t&&(t‘)m(tﬁm)’m)
to justify for the general case. Nevertheless, we shall show  =[1/(2m(¢?))]%? exd — (R(t;+ At —Ry(t;+ A (2(2)].
that this assumption can carry us quite far. The first two
moments of the error distribution are given by (4)
The difference vectoR(tj+At)—Ry(t+At) is exactly

(e()=0i(e(t)-&(t') = o*S(t—t"), ) (d is the system dimensionaljtyThe term in the exponent is
where(...) denotes an ensemble averagé-t') is the Dirac  therefore proportional tat [see equatioit3)].
delta function, and? is the standard deviation of the distri- A long time solution can be obtained by multiplying
bution of the errors. many short time conditional probabilities and summing up

In the limit of small deviations from the exact trajectory, over all the intermediate positions. Singést the final time
a quadratic expansia@nd the Gaussiaris the leading term. of the desired trajectory—+tt;+NAt, we write
The Gaussian cﬁstnbuuon is \{v!dely _used fO( thg eStImat".)nP(R(tiﬂR(tf);NAt)
of errors, especially when additional information is not avail-

able.

We obviously would like to comput®,, in the best :f{lz[ dRj} {1;[ P(R(t)|R (t+At); A} 5
way that we can. When we make the hypothesis about the
errors, there is clear danger that the choice of errors will  In the limit in which the number of points approaches

influence the quality of the solution. It is therefore importantinfinity and At is infinitesimal we obtain a path integréllt
to provide information comparing the properties Rf,, to is also convenient to accumulate all the Gaussians into a
the exact trajectory. We shall do it later in this paper. single exponential function, that is,
The same functional form of the conditional probability
density of trajectories would have been obtained if we had | P(R(t)|R(t,+At);At)
used the Langevin equation. In the Langevin equation, and in'
the limit of short times, the random force gives rise to a
Gaussian distribution around the exact trajectory. In spite of = exp{ —(At/202)2 (R(t+AD) - Rg(tj+At))2
the apparent similarity to the Langevin equation, we empha- !
size that the formalism described below does not have an
explicit randomness or phenomenological stochastic term as %ex;{ —(1/202)f dte(t)?
in the Langevin equation. Rather, Newton’s equations of mo-
tion are directly used. Our errors are assumed to be a result The above result is quite striking, representing the
of the discretization of the trajectory, and they can be estiweight of a trajectoryor the probability that it is corregas
mated by direct comparison to an exact traject@ge Ap- the square of the amplitude of the transient noise. It is, of
pendix A). course, not surprising that the trajectory is most accurate
Returning to the approximate solution of the differential when the noise is zero. The real question is how to proceed
equations of motion, the computation of “short time” dy- from this point in order to get the desired trajectory.

: (6)
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The above formula of the weight of an individual trajec- This bound makes the identification of the global minimum
tory was derived by Onsager and Machitim the context of  easier, since the lowest possible value of the OM action is
irreversible thermodynamics and stochastic trajectories. Theero.
most probable trajectory is found when the transient noise is A second point, why the OM numerical computations
zero, everywhere along the trajectory. This means that thare advantageous compared to calculations that employ the
usual deterministic equations of motions are satisfied everyelassical action, is related to the representation of the time
where in time and that they are “error free.” In the presentintegral and to its stability upon optimization. The simplest
case these are Newton’s equations of motion. Hence, thepproach(which we employed to deal with systems with
weight for asingle trajectory can be also written based on many atomyis to use a discrete time step. For the classical
equation(4) as action we have

PR(DIR(E):R(®) Su=2 AURAP)R .1~ R IM(R11-Ri )~ UR))]

x exp{— 1/(20?) f dt(Md?R/dt? +dU/dR)?|. (7) (10

where the indices refer to the discrete time. Numerical opti-
To obtain the above equation(t) in equation(6) was  mization of S, is with respect to all its independent variables
replaced by the left hand side of equatid). Note, that if R;. That is, we search for a minimum of;&long the gra-
the precision was infinitéo®=0), only a single trajectory dient of S, {9Sy/dR;}. To demonstrate the computational
would remain. If the complete conditional probability with difficulties associated with a large time stép the frame-
pre-determineds? is desired, then all possible trajectories work of the classical action optimizatipronsider the one
must be summed up to obtain a path inteljral dimensional harmonic oscillator

DR(t — 1202 JdthzR/dtLl—dU/dR 2 _ . - -
ocf ()exp{ (20%) (M ) where X is the displacement from the equilibrium position,

m the oscillator mass and k the force constant. At a finite
= f DR(t)exp{ — 1/(20?) IRV}, (8a) At the distance between sequential points in time is deter-
mined by opposing factors. The kinetic energy term is hold-
ing X;;; and X together while the potential energy term is
S[R(t)]zfdt(l\_/ldzR/dtzwLdU/dR)z, (8b) an inverted parabola which upon minimization pushes the
points away. It is therefore evident that Asincreases, $
changes from a function with a minimum to a function with

where [R(t) denotes path integral summatibh,and ) . . . .
SR(®)] is the Onsager-Machlup actidha functional of the a maximum, making a stable calculation for a variety of time
steps more difficult.

pathR(t). The most probable trajectory is obtained, when the : he O Machl . in its di
Onsager-Machlup action is minimal. In this paper we suggest n contrast, the Onsager-Machlup action, even In its dis-

that optimization of S can be employed to compute rnolecug:rete form, is non-negative. It therefore has a minimum re-

lar dynamics trajectories. gardless of the size of the time step
Before analyzing further the properties of the Onsager-
Machlup action, it is useful to discuss alternatives. The  S=2, A{(M/AP)(R;;1+Ri_;—2R))—dU/RZ (12
Onsager-MachlugOM) action is one of the possible func- '
tionals from which one may compute molecular dynamics  Caution must be exercised when comparing the classical
trajectories. One may ask what is the advantage of th@nd the OM action. At the first glance it seems that both
p_resent formulation. Consider the well known classical acformulations lead to Newton's equations of motion. This is
tion not exactly so. For analysis purpo&es opposed to the com-
putational goal of the present manuscripts useful to con-
Sy= f [1/2(dR/dO)M (dR/dt) — U(R)]dt. (9) sider now t.he functional variation of either .of the acti?ns—
S or §—with respect to the pathR(t), that is, 5S/6R(t).*°
Following the well known Euler-Lagrange procedure,

Here a classical trajectory is the paiit) for which Sis 0 ¢13qgjcal action provides Newton’s equations of mdfion

stationary** This is already a difficulty, since a stationary
solution can also be a maximum or a saddle point, which are  Md?R/df + dU/dR =0 (13
unstable with respect to small perturbations. It is consider- ) . )

ably more difficult to locate a saddle point than to identify aWhile the equations of motion that are derived from the OM
minimum. In the optimization of the OM action we seek a &ction in a similar fashion are of higher order

minimum; the minimum corresponding to a trajectory with ,, 2 242 3 3

the highest conditional probability. Furthermore, the OM ac-Md RIdt’ +2M(AU/RAR/dE +M(dU/dR?)

tion is a non-negative functional which is bound by zero.  X(dR/dt)?>+(d?U/dR?)(dU/dR)=0. (14)
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The connection between equatiofi8) and (14) can be  discussion below attempts to address this point by examining

demonstrated with the help j defined below the effects of the approximations used on the exact represen-
tation of the coordinate evolution in time.
Q=Md’R/dt* + dU/cR. (19 As the discussion continues, it will become evident that

} ) ) ] an exact and analytical estimate of the errors for an arbitrary
~ Equation(14) is now decomposed into two more instruc- potential is not available. However, we gained some under-
tive equations standing of the characteristics of motions that are eliminated
2 _ when the large time step is employed. At the end of Appen-
MdR/dt + dU/dR =Q, (169 dix A it will be outlined how the ideas discussed next can be
used in numerical estimates of.
We consider an exact expansion of the coordinate as a

It is therefore evident that the OM equations are morgunction of time in the interval0,t]
general than Newton’s equations of motion. Only in the spe-
cial case in whichQ is identically zero[and therefore also R(7)=a+b7+ 1/2c7+ 2, di sin(wy7); (w =kald), (18)
S is zero, see equatiofi7) below], the two equations of :
motion coincide. The OM calculation requires more bound-wherea, b, andc are used in a three point expansion of the
ary conditions than are required by the classical equations gfath to be described below.is the time variable. The Fou-
motion (after all it is a fourth order differential equatipn rier expansion in the sine functions describes the deviations
The boundary conditions that we employed are of fixed enaf the exact path from the three point expansion. Only the
points and of zer®@ at the edges of the path. sine expansiorino cosing is used sincey, b, andc satisfy

In order to develop some understanding of equatiah, the boundary condition of the coordinates
it is useful to return to the good old one dimensional har-
monic oscillator. The fourth order differential equation ~ R(O=Rii1; RO=Ri_1. (19
yields four solutions. The two solutions obtained wi@ns  Hence, it is possible to writeR(0)=a and R(&)
set identically to zero are also the solutions of Newton's— g+pst+1/2c8t2
equations of motionR;=A cosfwt) andR,=B sin(wt). The For the derivation below it is convenient to set the
other solutions are for non-zef@ and are obtained by solv- poundary conditions as close as possible to our three point
ing for Q first [equation(16b)]. Since(d?U/dR?) is a constant  interpolation. The change in the velocity during the above

Md?Q/dt + (d?U/dR?)Q=0. (16b)

for the harmonic oscillator, the two solutions fQrare simi-  interval is set toAV =cét. The last equation adds a condition
lar to the above solution toR, Q;=A’cos@t) and  on thed,—s as follows: The magnitud@nd the changeof

— ! 1 . . . .
Q.=B' sin(wt). the velocity are estimated employing also the coordinate at

Substituting forQ in equation(16a we find that the  sy2—R(/2)=R;: V(U/4)=2(R,—R;_,)/& and V(384
solutions forR are therefore those of a forced harmonic 0s-=2 (R, ,—R.)/&. An estimate for the acceleration is there-
cillator with a driving force exactly in resonance. These so+ore; 2AV/&t=c=(R;_,+R.,;—2R)/(&/2)%. In the spirit of

lutions are required if the boundary conditions do not CON+the three point approximation the condition becomes
serve energy and it is necessary to feed energy into the

system in order to satisfy the boundary conditions. In this ~AV=2(Ri_1+Ri;1—2R;)/dt. (20)

case, the errorgand Q) fulfill a similar role to the random

force of the Langevin equation that heats up the system.
Note that the OM action can also be written as

For the above to be exaéte., when the sine series is
also included another condition must be met

> dyarcog w ) — cog0)] =0, (21)

S= f dt(Q-Q) 17 g
Zk=135, di(km/8)=0 (i.e., the sum is over odd elements
where - denotes a scalar product. Clearly, wh@nis zero, only). The analysis of the accuracy of the solution is now
the value of S is minimal, and we avoid picking the secondcontinued. It is divided into two steps: First, the time integral
solution that does not conserve the energy. Therefore, sigising the exact expansion of the coordinates in time is per-
nificant effort must be devoted to find the lowest minimumformed. Second, the action S is minimized as a function of
of S that moneyand computer timecan buy. all the coefficients—{d,}—in an attempt to estimate their

As discussed above, the goal which we keep in mind isvalues. Clearly, the larger their values, the poorer the ap-
the possibility of computing trajectories with a very large proximation used.
time step. Equatiofl?) is the discretized form employed in In the integration, an approximation is employed which
the calculations. While it is stable for an arbitrary time step,is consistent with the above three points expansion of the
it is nevertheless rather primitive, and uses a simple finitgpath. The force is set to a constant throughout the interval.
difference formula to estimate the time derivatives. The ob-The approximate integration and the following analysis sug-
vious questions are how accurate is it for different time stepsgest how the approximation used behaves numerically. The
and can one get an idea on the type and the order of magr&nalytical integration of the forces in time is not possible and
tude of the errors and their dependence on the time step. Thberefore less useful. It is the question of the consequence
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of this approximation which is our prime interest here. So, inforces by a constant in this interval, then the solution elimi-
that sense, the calculations below are not a “true” errornates(in an automatic wayall these high frequency mo-
estimate. tions.

In principle, it is possible to go beyond the constant  Elimination of rapid motiongsuch as bond stretchipg
force approximatior(see Appendix B The expressions are make study of long time processes possible, has been the
likely to be useful for further analytical studies, and for thetarget of many algorithms, for example, SHARE,
derivation of an approximate long time conditional probabil-RATTLE,'’ or the Back EulerBE)® algorithms. The first
ity. The formulae are rather messy and are therefore placevo approaches are conceptually different from the OM pro-
in Appendix B. The basic idea, however, is rather simple andocol. In the RATTLE or the SHAKE algorithm, a decision
is outlined below: The “fixed force”—dU/dR; is replaced of which are the fast and which are the slow coordinates
by a linear expansion of the force with the path, must be made prior to the beginning of the computations.
ie., —dU/dR%—dU/dRi—d2U/dRi2(R(t)—Ri), where  The OM automatically finds the fast and the slow coordi-
d?U/dR? is the second derivative matrix of the potential com-nates compared to the time stép The BE algorithm re-
puted atR;. Since the integrals ar@t mosj quadratic with moves energy from the fast modes and in that sense it is
R(t), they are doable analytically, as is shown in Appendixsimilar to the optimization of the OM action. However, since
B. the BE is formulated as an initial value probléas opposed

However, for calculations of aingle optimal trajectory to a boundary value problem in the QMhe gain from the
the computations are complex and numerically intensiveincrease in the time step is much smaller in BE than in the
Therefore, the correction terms were not employed in thédM protocol.
numerical computations described in section IV. Rather than It is the removal of rapid motions that makes the OM
using higher order expansion of the integrand, the propertiegction an especially stable algorithm. It is nevertheless clear
of the solution as a function of the size of the time step andhat as the time step is increased, accuracy is lost. Rigorous

the number of grid points were examined. estimates of the errors are difficult to make. In Appendix A
The exact action integral is written beloflsy notation,  we consider the error for the simple example of the harmonic
vectors on the left of the matrix are row vectors oscillator. As the time step increases and passes a critical

value, the oscillations are frozen and the errors become the
motions that were eliminated. This is in contrast to the mo-
lecular dynamics approach, in which large time steps can
lead to unbound, exponentially growing errgsge also fig-
ure 4.

This concludes the more formal discussion of the paper,
that is aimed at introducing a new numerical algorithm.

St
szf dt(Md?R/d? + dU/dR)?
0

= f dif (PRIAP)M[(MPR/AP)]

+2 f dff (°R/d®)M][dU/dR]
lll. THE NUMERICAL ALGORITHM

+fdt[dU/dR][dU/dR]- (22) In order to compute and to optimize the Onsager-
Machlup action, the simplest possible discretization scheme
The first integral on the right hand side can be evaluate@/ready outlined in equatiof12) is employed. S is a function
exactly of N intermediate coordinate vectofR;}. It is minimized
using a variety of options, such as the conjugate gradient
algorithm with the restart option of Pow#lland simulated
fdt[(dzR/dtz)M][(MdzR/dtz)] annealing®® Multigrid techniques are also appliéd.
The initiation of the optimization process requires a
starting path for the optimization, i.e., a starting se{Rf.
The simplest starting path which we used at the beginning of
this research and also in past reaction path calculatisns
The other two integrals cannot be solved in a closed form fothe straight line interpolation. This initial guess is the limit of
a general potential. However, employing the same approxivery high kinetic energy in which the system “travels” at a
mation as the one used in our numerical calculations, i.egonstant speed over the potential energy surface. In this
dU/dR~dU/dR;, the second integral becomeshMXdU/dR;) limit, the potential energy surface is irrelevant. This is the
and the third igdU/dR;)?&t. Within our approximation, only —expected solution in the limit of a short trajectory time and
the first integral depends ady . The contribution is also non relatively large distances to be traveled.
negative. That is, a minimum of S with respect to all the  Clearly, for sufficiently large number of pointer a suf-
dy is whendS/ad,= 0, which corresponds td,=0. This so- ficiently small time stepwe should converge to the “right”
lution also satisfies the boundary conditi¢h9) and it is  answer. However, some care must be exercised since the
therefore the lowest action solution for our problem. optimization of the trajectory is a global optimization prob-
The sine series was employed to capture the motionkem. The most probable trajectories are the ones with the
with frequencies higher thas1/6t. If we approximate the globally lowest S.

=cMMcdt+ D, dM Mdy(ka/dt)*. (23)
k
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D7

energy surface. There is no general “best” initial guess for
the trajectory.

Another approach that was employed to identify better
local minima of the OM action is multigrié This is an
exceptionally important protocol for large systems with dif-
ferent time scales. Multigrid makes it possible to recover the
correct behavior of different modes efficiently, in separate
calculations. It was found to be most important for the com-
putational example of alanine dipeptide.

The straightforward approach to optimize S is to repre-
sent it by a set of N discrete points and to minimize the
180 discrete representation of the functional. In multigrid, a se-
quence of different grid approximations to the functional are
FIG. 2. An example for a local minimum with a high value for the Onsager-Optlmlze_d kgeplng the tOFal t,ra]eCtory Flme fixed. Each rep-
Machlup action. A conformational transition in alanine dipeptide is consid-resentation is most effective in recovering part of the modes.
ered. The initial guess for the path was a straight line interpolation fromFor example, when the grid includes only a small number of
reactants to products. The initial guess was minimized directly using a con. oints, low frequency modes are computed most effectively.

jugate gradient protocol. The local minimum that was obtained include . . . .
significant delay of the system in the neighborhood of the transition state, | he solution of one grid is used to initiate the computation of

fixed poiny, in addition to the more intuitive delays at the different minima. the next grid.
There is considerable mathematical literature proving
that the sequence of optimizations using different grids con-
In practice, the straight line interpolation leads, manyverges much faster that the optimization of a single &fid.
times, to local minima of the action S. One phenomenon forThe so-called “V cycle” was employed in the OM compu-
which we were not able to prOVide detailed theoretical analy‘tations_ The beginning is a path with h|gh resolution and

sis is the existence of “fixed” points along the path. Theremany grid points which is the upper left corner of the letter
are relatively high energy configurations at which the mini-« » This path is optimized until the convergence rate be-
mized path is “trapped.” The path cannot get away from comes slow.

such acoo rdi'natef set by a straightforward conjugated gradi- Next, a path with a lower resolution is constructed from
ent minimization(figure 2. There is no reason for a complex the optimized solution. This is done by selectiffgr ex-

function such as %ot to have fixed coordinate@.e., a co- . . ) .
5 ample each second grid point. The lower resolution path is

ordinate sefR;} for which §S/6R;=0, and therefore in direct imized and th lution i loved i h h
minimizationR; will not change. It is therefore important to optimized and the solution is employed in yet another pat

employ global optimization techniques that are able to gey\/ith even smaller number of grid points. This process con-
out from a local minimum. tinues until the path with the lowest resolution of the cycle
Three different computational setups were tried in ordefthe lower corner of the “V’) is reached.
to obtain better paths than those obtained in the calculations At this point the “right arm” of the V is investigated.
that use conjugate gradient and straight line interpolationThe resolution is increased in an inverse sequence to the
The first approach was to use a global minimizer, i.e., simudecrease in the resolution. The new coordinate sets are con-
lated annealing. This attempt failed. Simulated annealingtructed by a linear interpolation between two “old” coor-
was successful in locating different local minima of S. How-dinate sets. At each step the time integral is optimized and
ever, it was difficult to “convince” the algorithm to look for employed to initiate the next step. The final solution is ob-
the minimum with the lowest value of S. Reasonable Varia'tained from the Optimization of the upper nght corner of the
tions in the length of the simulations and in the cooling pro-«,
tocols were not successful. o - There is still considerable room for improvement in the
In the second trial, different initial co_nquns .for the application. Improvement can be made in the design of better
paths were emplo.ygd. Rather than a stralght line InterpOIaénd more effective grids, and development of different tran-
tion, we equally divide the intermediate points between the

minimum of the reactants and the minimum of the products.S'tIon protocols between the grids. Computational enhance-

In contrast to the straight line interpolation in which the ments may '|n.clude.automated algorithms to mod'|fy the grid
forces component of the action is highly excited in the initialwhenever difficulty is encountered. These are topics of future

path, in the last setup the time derivative part of the actionVork: _ _

requires significant relaxation. In the next section, a number of numerical examples that
In practice, the last protocol produces, many times, lowdiffer in their complexity and relevance to biological systems

energies and low S paths. It successfully avoids the difficultyare provided. The numerical calculations are employed to

of high energy fixed points that was mentioned above. Howillustrate the analytical properties of the algorithm that were

ever, using more than one initial guess is a good idea, sincdiscussed previously, as well as the promise of the algorithm

the optimization results strongly depend on the underliningn producing very long time trajectories.
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FIG. 3. Optimization of the Onsager-Machlup action for the harmonic os-FIG. 4. The stability of the solutions of the OM action optimization and of
cillator using different time steps. The total time considered includes 10.3he Verlet algorithm. The trajectory of the harmonic oscillator is examined
periods of oscillations and different number of grid points were employed tods a function of the time step. Three and a half oscillations are considered.
approximate the trajectory. Below, we exclude from the number of configu-The exact solution(dotted ling, an OM solution with 11 grid points
rations the two fixed end points. Thus only the intermediate points ardAt=2.2, solid ling and a solution with the Verlet algorithra\t=2.04,
counted: 200 grid pointssolid line), 100 grid points(dotted dashed lipe ~ dashed lingare shown. For the Verlet algorithm the initial coordinate is the
and 20 grid pointgdotted ling. The 200 grid points provide a solution that same as in the OM and the initial velocity is set to zero. Attempts to use a
is essentially exact. Note the complete “annihilation” of the oscillation time step for the Verlet algorithm which is larger than 2.04 failed. The
amplitude once the number of points is reduced to 20. solution “explodes” immediately.

IV. NUMERICAL EXAMPLES It is of interest to examine at this point the behavior of

usual integratoréwe employed the velocity Verlgfor time

steps that are of the same order as the oscillation period
It does not come as a surprise that the harmonic oscillafigure 4. As is evident from the figure, the integrator looses

tor can be solved analytically also in the Onsager-Machlugts stability and provides a useless trajectory. This is in con-

framework(see section ) It is therefore convenient to com- trast to the OM optimization that overdamps modes which it

pare the exact solution of the harmonic oscillator to numericannot possibly follow.

cally derived approximations. We present the solution as a

function of time in figure 3. The units of time are such that . . . .

_ . __.B. A two dimensional harmonic oscillator

w=1, the mass was set to one, and the boundary coordinates

are at=10. Throughout the computations presented below A better way of demonstrating the effectiveness of the

the value ofQ at the boundaries is zero. The initial guess foroptimization in filtering outonly the high frequency compo-

the path in this case is irrelevant since there is only oneents is to examine a two dimensional harmonic oscillator.

A. A one dimensional harmonic oscillator

solution once four boundary conditions are specified. We consider an oscillator with two well separated
As anticipated from our previous analysis of the highfrequencies —ew;=1 and  w,=5, ie., ux,y)

frequency modes, when the time step is such ttatm/w = 1/2(x2+25y).

the oscillations die out. This behavior is not surprising con-  In the computed time intervdfigure 5, the slow oscil-

sidering the analytical proof we provided in section Il. Nev- lator finishes 3.5 cycles while the fast oscillator completes
ertheless, it is a demonstration of one of the most important7.5 oscillations. If 500 grid points are employg@gkcluding
features of the OM algorithm, filtering out high frequency the end points there are about 28 points to describe a fast
motions with periods smaller than the time step employed. oscillation, which is more than enough. The fast oscillations
The argument above suggests that the algorithm will bare reasonably described. When the number of grid points is
stable undeall conditions This is not precisely so and in- reduced to 2@about 1 point per fast cycle and about 6 points
stabilities are possible for a limited range At values. for a slow oscillation the fast motions are eliminated and
Rarely, we encountered the instabilities in computations. Thenly the slow oscillations remain.
existence of problematidt's can be demonstrated as fol- As mentioned in section Il, the OM action filtering out
lows: For the harmonic oscillator the discretized version ofhigh frequency motions is a physically appealing approxima-
the Onsager-Machlup action is quadratic, i.e., S can be writtion. In bond stretching, for example, the spatial deviation of
ten as $2(gRiR;). The g's are determined by opposing bonds from their equilibrium position is not large. Some
factors—the time derivatives and the potential derivativesquantitative changes in the properties of the trajectories are
For a smallAt the time derivatives “win” and for a large expected, however, many properties remain unchanged and
At the potential derivatives are larger. At some intermediateéhe computed approximate trajectories are qualitatively simi-
At they cancel each other leading to a flat surface of S anthr.
possible numerical instabilities. Computations should there- The OM optimization automatically eliminatedl of the
fore avoid this narrow window of a time step. components with frequencies which are larger thaat.1/
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FIG. 5. Optimization of the Onsager-Machlup action for the two dimen- 00

sional harmonic oscillator. The potential energy employed is,W 0.5
=1/2(x>+25y), the mass is 1 and 3.5 slow oscillations are considered. The ;| z
boundary conditions are X(8)—X(teng=—10 and Y0)= —y(ten9=—5. .
Two trajectories are shown. The first consists of 500 intermediate points t t
(dotted line$ which provide an essentially exact solution. The x component
corresponds to the slower and larger amplitude motion. The second trajegG, 7. Onsager-Machlup optimal trajectories on the Mueller potential. The
tory employed only 20 intermediate poir{gplid lines. Note that for the 20 mass was set to 1. The total time of the trajectories was 10 and two different
points the fast oscillations are overdamped and frozen while the slow oscilime steps were considered: 0.01 and 0.04. The initial guess for the path was
lations are reasonably well reproduced. half of the points in minimum A and half of the points in minimum C. The
final optimized actions are not zero but equal 136 and 2150, respectiaely.
A display of the OM trajectory with a time step of 0.01 on the contour plot.
This is advantageous, since we are not required to identif{P) A display of the OM tra_jectory with'a time step of O.(_)4 on the contour
he fast motions prior to the beginning of the computations lot. (c) The x and y coordmatgs of trajectofg) as‘afunctlon of time(d)
the P 8 9 9 o p The x and y coordinates of trajectofly) as a function of time.
Other features of the dynamics that are difficult to follow

using a large time step are rapid jumps between minima and

fast passage over barriers. To demonstrate the difficulties andaction path algorithms since the intrinsic reaction coordi-
to further advance our understanding of the approximationate and the saddle points are somewhat difficult to locate.
involved we consider next trajectories on the Mueller poten-The Mueller potential is also helpful in demonstrating nu-

tial. merical properties of the Onsager-Machlup optimization pro-
tocol for highly anharmonic systems: information that is im-
C. The Mueller potential (Ref. 22) possible to obtain from the previous examples. Here we are

interested in trajectories between the two extreme minima on
the energy surface.

To start the optimization of the path, half of the grid
points (the time intermediat¢sare placed at the upper left
minimum (labeled A in figure §and the rest of the points at
the lower right minimum(labeled @. At the boundariesQ
was set to zero. The optimizations were pursued directly by

15 conjugate gradient minimizations.
In figure 7 we demonstrate the effects of filtering that

10 may occur on a highly anharmonic energy surface. The com-
= putations are for a particle with mass 1. Traject@yis a
detailed computation with 1000 intermediate points. The par-
ticle remains most of the trajectory at the minimum in which
it was initiated and the transition between the minima occurs
rapidly (see also figure(€) in which the different degrees of
freedom are plotted as a function of tijne
-15 10 -05 00 05 10 We identify two types of rapid motions in the system.
One type corresponds to the vibrations in the wells and the
FIG. 6. A contour plot of the Mueller potentigRef. 22 that we employed ~ S€cond type to the transition over the barrier. In figurds 7
as one of the tests of the OM calculations. The potential is of the form:and 7d), we examine the changes in the trajectory after the
Uy) =i, A exdax—x)*+b(x=x)(y-y)+6(y-y)?, where the time step is increased by a factor of four. The size of the new
Eir?(;"gtlelrso 5 are A;((‘_ngjllg(}ggg ’315’ a?(:_(i’glfoss’_oin)’ time step is similar to the period of the rapid oscillations in
yi=(0,0.5,1.5.1 The three local minima are labeled A, B and C. The sepa-the narrower directions of the two minima and to the time
ration between the contour lines is 15. scale required to pass the barrier. The changes in the trajec-

A more ambitious two dimensional model is the Mueller
potential (figure 6. It was invented as a nontrivial test for

0.5 B

0.0
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20 In the above example it was shown that the OM per-
forms as expected from the theoretical analysis. Rapid oscil-
13 lations are filtered out, producing a trajectory with slow com-
Y ponents only. Nevertheless, it is worth emphasizing that the
characteristics of thelow degrees of freedom, e.g., the typi-

= 05 cal frequencies and amplitudes, exemplified by the time de-
S pendent plots, are similar to the “exact” trajectories.

00 If a fast and rare movement, such as barrier crossing, is
of interest it is possible to use multilevel time grids and to
describe this motion in more detail. Computationally this re-
finement involves two steps: First, the identification that a
rapid jump indeed occurred must be made. This can be done

¢ by searching for unusually large changes in structure over a
few time steps. The second step is interpolation of the time
FIG. 8. The time evolution of the x and y coordinates on the Muellerjntarya| of interest with more time points. Such a refinement
potential[the same as figureg& and(d)], this time with a time step of 0.2. is Straightforward to do using the OM action, however, it is
beyond the scope of the present paper.

tory are evident when examining the new motion on the two  The rapid passage over a barrier presents a significant
dimensional energy surfadéigures 7a) and 7b)]. The os- challenge to the OM protocol. Nevertheless, the OM algo-
cillations in the direction that corresponds to more rapid mo{ithm has a significant advantage in the study of barrier
tions in the well are factored out. crossing as compared to regular MD. In the OM algorithm a

In figures 7c) and 7d) the time dependence of the x and boundary value problem is solved. It is therefore possible to
the y coordinates is shown. The vibrations in the minimum agompute asingle trajectory that will pass the barrier. It is
the lower right corner can be decomposagproximatelyto  difficult to guarantee a crossing trajectory in MD employing
oscillations along the x axisslow) and the y axigfast. As & room temperature condensed phase simulation.
expected from the description above and from the display of ~ To focus our attention on different types of barrier cross-
the trajectory on the energy Surfaﬁf'@ure Kb)]’ the fast y |ng in the OM we return next to a simple one dimensional
motions are almost completely overdamped. The oscillation§1odel, i.e., a double well system.
along the x axis remain similar.

This brings us to the behavior of the oscillations at the
second minimum at the upper left corner of the energy sur—D Double well potential
face(labeled A. The upper minimum is narrow similarly to ~ P
the lower minimum with one slow and one fast direction. In In this section trajectories are computed using only a
contrast to the lower minimum discussed above, the fast ansimall time step. Such a step is appropriate for the investiga-
the slow modes do not follow the x or the y axes. Thereforetion of rapid barrier crossing. Instead of focusing on the de-
the apparent narrowing of the trajectory on the energy surpendence of the solution on the size of the time $&epwas
face is harder to detect in the time dependent plot. Bothxthe done in sections IV A-IV ¢ emphasis is made on the pos-
and the y coordinates have a component of the slow motiosibility of multiple solutions.
that is not overdamped when the time step is increased. It was emphasized that the conjugate gradient optimiza-
Some degradation in the amplitude is therefore observed, btibn of the Onsager-Machlup action finds tleeal minimum
not annihilation of the vibrations as for the y direction in the which is the closest to our initial guess. The OM optimiza-
lower minimum(labeled Q. tion may have numerous solutions for systems with non-

The last piece of the trajectory that changes its shapénear potentials. This makes the OM path optimization a
when the fast motions are filtered out is the passage over thtglobal optimization problem which, in spite of recent ad-
barrier. This motion is, of course, not a bound vibration,vances in the field, is a complex problem with no general
however, it is executed over a short time interval which issolution.
difficult to follow using a large time step. The time depen- Demonstration of path multiplicity is better done by a
dent plot shows that the time required to jump over the barsimple model system, and for that purpose a double well
rier is somewhat shorter when a large time step is used. Theotential is considered. It is shown that markedly different
spatial description emphasizes the abrupt characteristic of trelutions may be obtained by using different initial guesses
jump which is represented by a small number of pointsto start the optimization.

(four). The details of the calculations are provided in the legend

An example that is going to the extreme is the use of aof figure 9. Two different paths were employed as initial
time step which is larger thaany time scale in the system. guesses for the trajectory: The first is a straight line connect-
In figure 8 we show the time dependent of the barrier crossing the two end points: ®=R(0)—2R(O)t/teq
ing in this case. In this trajectory nothing moves until the(t,,;=47.86 and the second is the solution of the harmonic
time to jump to the other sidéwhich is arbitrary arrives.  part of the potential R)=R(0)cos(2st/T), where T is the
After the jump occurs the system returns to absolute rest. period of the corresponding classical trajectory. The different

-1.0
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-10

FIG. 9. The minimization of paths using the OM action for the double well
potential UR)=1/2(R?+A exp(—aR?) —B), where B= 1/a[log(eA) +1],
A=80 and «=0.04375. The boundary conditions are such that
R(0)= —R(teng, With R(0) satisfying UR(0))=20 and Q0)= Q(te,9=0.
The barrier height of the potential defined above is about 14.3. The dotted
line is the solution obtained from a straight line interpolation between the
end points as an initial guess. The solid line is the optimized solution when
the initial guess is R)=R(0)cos(27t/T), where T is the period of the New-
tonian trajectory(~8.7). In both cases the path has 500 intermediate points,
the mass is one and the total length of time is 5.5 periods. The correspongsG. 10. Sticks and balls picture of alanine dipeptide. Note the two soft
ing actions were 10° (solid line) and 2.4(dotted ling. degrees of freedom-- and y—that determine the conformation of the
chain backbone.

guesses were optimized and the solutions are presented in
figure 9. Which of the different optimized paths is correct, or  In figure 10 we show a plot of alanine dipeptide. It in-
more correct? One possible approach is to examine the valududes two blocked amide planes and a single side
of the action. The value of the action for the classical trajecchain—CH (Cp) branched from the Cposition. There are
tory is 108 while the value of the action of the second two soft degrees of freedom in this molecule that determine
trajectory is 2.4. Hence, the classical path is to be preferredts conformational state. These are #eand they dihedral
The path with the lower value of the action is the clas-angles(figure 10. The rest of the internal degrees of free-
sical Newtonian trajectory, however, the other trajectory isdom are relatively rigid, making only small deviations from
meaningful too. It is a trajectory that is trapped in one welltheir equilibrium values.
and is provided with the required additional energy to pass It is therefore useful to consider a two dimensional pro-
the barrier by the “errors” in the solution. Alternative inter- jection of the energy surface of this molecule. A two dimen-
pretation follows the Langevin equation in which the errorssional adiabatic energy mafigure 1) is constructed. The
are associated with the random force and the fluctuations of
the environment that “kick” the system over the barrier. If
the time step is large, the accuracy is reduced and the total
energy is not known precisely, it becomes more difficult to
distinguish between the two solutions and both trajectories
are possible. Of course, i is very small only the classical
trajectory will have significant probability

E. Alanine dipeptide

The last numerical example considered is of a larger
system: a conformational transition in alanine dipeptide. The
system includes 12 particles and therefore 36 degrees of free-
dom (all the CH, groups are modeled as sphereEhe sig-

. . . . . . -180 -120 -60 0 60 120 180
nificant increase in complexity and the existence of multi- ¢
time scales in the system is, of course, of prime interest. The
use (and the needof an additional path optimization tool FIG. 11. ¢ and adiabatic energy map of alanine dipeptide. For each fixed
iari i i value of the pair of the torsion angles the energies of the rest of the degrees
(the multigrid schente) will be demonstrated. In spite of the o iy oieon g ¢ il

e . . . . . . reeaom are tully minimizead. € energies are In Kcal/mol. Here we
add'Flonal complexny, alanine d'p‘?pF'de IS S|mple e_nOUQh’ Sc?ocused on the computations of trajectories from the equatorial conforma-
detailed analysis of the characteristics of the solution can bgy (the minimum até=67 andy=—55) to the axial conformatiorithe
made. minimum at¢=—84 andy=68).
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from the conformation €equatorial to G axial is of a total
length of 10 ps. The molecular dynamics simulation was
much longer than the above mentioned segment. However,
most of the time the trajectory spent in the €quatorial
minimum without executing “exciting” motions.

From the segment of 8.34 ps of the simulation with a
time step of 1 fs, a “lower resolution” trajectory was con-
structed. A single point was picked each 100 fs, creating a
new trajectory with a time step of 0.1 ps. The new set of
structures was given as input to the OM algorithm, and an
optimized value of the actiotand an optimal trajectojy

ﬁ W were computed using the conjugate gradient procedure. The
T s conjugate gradient is an effective algorithm to find the near-
est local minimum.
FIG. 12. The dihedral angles¢-and y—as a function of time. The dotted In figure 12 we compare the optimized trajectésplid

line is a 10 ps segment of a molecular dynamics trajectory. The trajectonyline) with the original. We show the time dependence of the
computed wib a 1 fstime step, jumps from the equatorial conformation to soft degrees of freedome-and . In spite of the increase in
the axial conformation. The RATTLE algorithRef. 17 was employed 0 0 time step by a factor of 100, the resulting trajectory is
fix the bond length during the MD simulation. The solid line is an optimized L7 o .
Onsager-MachlugOM) trajectory. For the initial guess of the OM optimi- €markably similar to the original. Of course, smaller time
zation we used structures from the molecular dynamics trajectory separatesteps provide even better results. One factor that works for us
by 01 ps. The final loptimized result is similar to t_he original, in spite_ of the jn this case is the clear separation of time scales between the
significantly larger time step that was employed in the OM calculation. rest of the degrees of freedom and the soft degrees of free-
dom. The short time step is essential to follow the vibrations
of the bonds. However, it cannot be the whole story since
adiabatic map is generated by minimizing the energy for alSHAKE or RATTLE, that forces bonds to their equilibrium
degrees of freedom excluding the fixgdand . The corre-  positions, do not support a step increase to more than a factor
sponding energies are displayed on a contour plot. We conef 2 or 3. The OM path remains in the neighborhood of the
pute the trajectory usingpf course all the degrees of free- exact solution for significantly larger time steps than ordi-
dom, however, it is convenient to represent the trajectory andary MD of biomolecules can accommodate.
to analyze it using the two degrees of freedom that dominate The dipeptide system includes many modes that differ
the motions. considerably in their time scales. Bond stretchifegntosec-

All the computationdincluding the optimization of the ond9 is the most rapid and the conformational transitions of
OM action were performed using a modifiedioiL the dihedral angles the slowest. The last are not only slow
program?3 MoIL is a general purpose public domain molecu-but also rare. As was argued in section Il that dealt with the
lar dynamics package for biomolecules developed in ounumerical algorithm, to find a good optimum for a system
group. It is also a library of routines, that allows easy patchwith multiple time scales, multigrid approach is a very sug-
ing or addition to the package of a new code. The potentiagestive technique. The principles of the multigrid technique
energy invoIL is the combination of AMBER and OPLS>  were briefly described in section Il and can also be found
implemented in a reasonably flexible database, making ielsewheré! Therefore, we restrict the discussion below to a
possible to add or to modify the energy function. The calcu+eport of the optimization parameters and the results.
lations were done without van der Waals or electrostatic cut-  In figure 13 we show a direct minimizatioria 5 ps OM
offs and with 1-4 factor48 for van der Waals and 2 for trajectory between the(quatorial and the {Caxial confor-
electrostatit appropriate for the@MBER/OPLS force field. mations. The calculation setup is described in the legend.

Suppose that a molecular dynamics trajectory is comThe shape of the trajectory on the two dimensional energy
puted using a standard integrator such as Vé&fldtthis MD surface seems quite ordinary for the trained eye of the mo-
trajectory is now used to initiate OM computations, are we atecular dynamicist. This remains so when examining the time
a local minimum of the action? This is a non-trivial question dependence of the soft degrees of freedfigure 13b)].
since in the OM investigations a much larger time g&pm- Hence even in the first trigivithout multigrid optimiza-
pared to MD is employed. tion), a reasonable description of the motion of the soft de-

In figure 12 the trajectory computed with the Verlet al- grees of freedom is obtained. However, the value of the po-
gorithm (dotted ling is shown. A typical time step of 1 fs tential energy as a function of time reveals that the
was used. The bond lengths were fixed using the RATTLEconfigurations sampled are not fully relaxed since the energy
algorithm?’ It is difficult to increase the time step to more reaches high valugsee figure 16, dotted lineWe therefore
than 4 fs using standard tools. Significantly larger computaeontinue with the application of multigrid relaxation.

tional effort must be devoted to the calculation osiagle To improve the present trajectory the so-called “V
step in time if a largenAt (in the framework of molecular cycle” procedure of the multigrid algorithth was em-
dynamics is desired-32® ployed. The first run was done with 401 grid points with a

The segment of the trajectory that describes a transitiotime step of 0.0125 pgfigure 13. In the next step of the
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FIG. 13. Minimization of the OM trajectory from the equatorial to the axial FIG. 14. The same as figure 13, but this time at the lowest corner of the

conformation of alanine dipeptide. 401 grid points were employed. The timemultigrid “V” (i.e., the lowest resolution representation that was employed

step was 0.0125 ps and the total time was 5.0 ps. The final action was 2.fn the multigrid cyclé. The time step is 0.1 ps and only 51 grid points are

(@) The trajectory on the adiabatic mafp) The time evolution of the two  employed. Note the significant similarity of the time evolution of thand

relevant backbone torsion angles. This run was the first in the multigridihe y dihedral angles in figures (), 13(b), and 15b), demonstrating that

cycle. the time evolution of the slow degrees of freedom is affected only slightly
by the different resolutions employed in the calculations.

optimization we doubled the time step to 0.0250 ps maintain-
ing the same length of trajectory. The total number of points

was therefore reduced to 201. Using each second point of the itiarid d t Th traiectory h
previous optimized solution, we initiated a new optimizationmu 'gnd procedure are apparent. 1he new trajectory has po-

with lower time resolution that provided us with a qualita- ©€"tial €nergy variations comparable to the barrier height
tively similar trajectory. sepe}ratlng. the two minima in the map. The application of

We continued to the next cycles of 101 and 51 gridmultlple gnds also reduceq the value_of_the S from 2.5t0 1.6
points, re-optimizing in each time resolution the final path of(cOmpare figure 13 and figure 155 is in the usuaMoiL
the previous run. The optimization for each size of the grid isUnits of distance in angstrom, masses in gram/mol and en-
continued(in general until the convergence is significantly €rgy in kcal/mol. We therefore note that the relative variation
slowed down. The last trajectory of the series of computain S can be small. It is therefore useful to examine the po-
tions was the lower part of the “V” cycle. We then returned tential energy along the trajectory as well, selecting paths
to the upper resolution of 401 points by increasing the timehat are energetically less demanding.
step in a similar series of optimizations. The same sequence In figures 14 and 15 we have shown the trajectory of the
of calculations as the one employed in the forward directiorflow coordinates— and ¢/—which remains essentially un-
was used. changed after the last modifications of the time step.

An important lesson from the cyclgeside the improve- This summarizes the numerical examples of this paper.
ment in the final results described belois that the qualita- The examples aim to demonstrate that the computations are
tive shape of the trajectory and the motion of the soft degreegoable, but also include non-trivial difficulties that must be
of freedom is reasonably well reproduced even with only 51considered. The most important problem is of global optimi-
grid points(figure 14. zation of the path. Nevertheless, we showed the significant

In figure 16, we show all the potential energies of thestability of the algorithm and its relative accuracy for mo-
paths at the extrema of the “V” cycle of the multigrid opti- tions with time scales significantly longer than the numerical
mization. The significant improvement and the success of théme step.
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instead of initial value problems. That is, the two end points
and the length of the trajectory must be determined prior to
the calculations. Second, we do not solve differential equa-
tions, rather we optimize a target function which is a discrete
representation of the Onsager-Machlup action. It is a func-
tional of the whole trajectory.

In assessing the numerical properties of the new algo-
rithm we note that for the same accuracy the present ap-
proach is significantly more expensive than ordinary molecu-
lar dynamics. This is since the complete trajectory is
considered at once, in contrast to ordinary MD in which a
single structure is followed at a time. In this paper we fo-
cused on the comparison of the OM with MD and detailed
analysis of the solution accuracy. We did not exploit yet the
® possibilities of pursuing very long time dynamics and fo-
cused instead on times that are covered by both, the MD and
the OM protocols.

The advantage of the OM protocol is the systematic and
the stable way in which the time step can be increased. Mak-
ing the time step larger results in filtering out the motions
with periods faster than the time step. The filtering maintains
the stability of the solution for almostn arbitrary time step
An estimate for the magnitude of the errdqsee Appendix
A) suggests that they are approximately bound by the ampli-
tude of the rapid motions that were factored out. An alterna-
¢ [ps] tive way to estimate the errors and the action “width"—

o—(Appendix B can be therefore based on the prior knowl-
FIG. 15. The same as figures 13 and 14 but this time for the upper righdge of the number of fast oscillations in the systeny.,
corner of the “V” cycle that was used in the multigrid calculations. The from normal mode analysis Accordingly, a plausible ap-
time step is the same as in figu(t3), i.e., 0.0125 ps. proach of estimating the missing part of the trajectory is to
assume that the amplitudes of the fast modes can be com-
puted in the harmonic approximation, assuming a state of
equilibrium.

We proposed a new technique for calculating molecular ~ Where do we expect the OM action to be more useful
dynamics trajectories. The computational method proposednd where do we expect it to fail? The answer to the above
is different from ordinary molecular dynamics integrators inquestion is related to the characteristics and the relative num-
several respects. First, we consider boundary value probleniger of the fast modes. The OM filters out oscillations with

periods smaller than the time step. It is necessary to keep the

time step sufficiently short, so that the relevant motions in
100 the system will remain. This is perhaps one of the reasons

* that makes the OM action optimization an attractive method

for proteins. The very broad range of different time scales
observed in protein dynamitsnakes the systematic screen-
ing protocol a potentially useful approach. For proteins, it is
anticipated that time steps different by orders of magnitude
could be employed and significant motions will remain.

We have preliminary and encouraging results for the
R—T transition in hemoglobin and the folding of C peptide.
The optimization of trajectories for larger systems corre-
sponds(of course to a larger minimization problem. These
are nevertheless doable calculations since the extensive
range of time scales in proteins makes it possible to use a
larger time step, reducing the system dimensionality and
FIG. 16. The potential energy functigin kcal/mo) as a function of time ~ Making it possible to focus on the slow motions that remain.
for the paths in figures 18401 grid points—dotted line 14 (51 grid  Conformational transitions in C peptide were investigated

points—dashed lineand 15(401 grid points—solid ling The paths are the ; ; ; ;
solution at the vertices of the “V” multigrid scheme. Note that in addition using 1 ns time step. The time step employed in the StUdy of

to the above three runs we also employed computations with 201 and 10f1€ R=T transition in hemoglobin was 100 ns.
points. As a rule of thumb, many degrees of freedom and many
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modes are an advantage in an attempt to cover the missirte processors and the communication needed is for the es-
motions. This is evident already in the dipeptide in which thetimates of time derivatives. The communication required is
¢ and ¢y movements are well described even with only 51very small and is restricted to nearest neighbors only. We
grid points (At=0.1 p9. In that sense, the examples pre- have a code working on a cluster of workstations using PVM
sented in here are more demanding. Of course, to test diffeend a code running on the IBM SP2 using MPIn both
ent features of the new technique it is useful to start withcases, the communication overhead was found to be negli-
simple model systems, as we did. Nevertheless, the presegible. Parallel and distributed computers are therefore ex-
methodology is both more suitable and more useful for muchremely efficient for OM computations. These advanced
larger systems. The overall success of the examples in repregemputers are considerably less effective for ordinary MD
ducing essential features of the dynamicssmall systems computations in which the forces are parallelized. There, the
is therefore encouraging. communication overhead is more significant. Moreover, the
The double well system is one of the more stringent testperformance of MD degrades very rapidly with the number
of the proposed protocol. There are essentially two rapidf processors, making it impossible to take advantage of
motions, one for the motion in the well and the second is formassively parallel or distributed machines.
the transition above the barrier. Once the time step is larger
than these two rapid motions the system is frozen in one OACKNOWLEDGMENTS

the wells and “tunnels”(in a single stepto the other mini- Thi h db ; he | |
mum. It is not possible to obtain a detailed picture of the IS research was supported by grants irom the Israe

dynamics unless a small time step is employed. This effecls‘CienC(.a Foundation anq from the Israel Scienpe Ministry.
was demonstrated for motions on the Mueller potential. | e Fritz Haber center is supported by the Minerva fund.
Nevertheless, as was mentioned in the numerical eXl_\/lost of the computations were performed at the Wolfson

amples, the OM protocol has another feature that is missin§enter for applied structural biology and some were ex-
from ordinary molecular dynamics. The OM trajectories areccuted at the High Performance Computing Unit of Israel.
computed between fixed end points. Hence, it is possible the thank P Won_nes,_B. E|s_enberg and D. Thirumalai for
force the system to execute certain movements which argUmerous interesting discussions.

significantly more difficult to sample using ordinary molecu-

lar dynamics. For examplégoing back to the barrier cross- APPENDIX AZ AN ESTIMATE OF THE ACTION

ing problem mentioned aboyé is possible to use two end "WIDTH"— &

points, one before and one after the barrier, and to compute a |t was argued that each trajectory has a weight of
crossing trajectory. Of course due to the rapid nature of th@xp(—S/20?). Finding the minimum of S is independent of
motions it will be necessary to employ a small time step.the value ofo?, which is a constant. However, in order to
However, the probability of getting such a crossing trajectoryassess the accuracy of the computed trajectory and to com-
will be one in the OM protocol and may be practically zero pute the conditional probability it is useful to have an esti-
in MD. mate of whats? might be.

Finally we add to the conclusions two more comments  |n many respects this is still an open problem: One em-
that were not discussed in detail in the present work but havgirical approach to this problem is presented here. The nu-
significant implications on future work. merical solution for the harmonic oscillator is considered. As

This paper is focused on the computations of individualthe time step is increased, the computed optimal trajectory
trajectories. Nevertheless, we do appreciate the need to agecomes different from the exact trajectdsge figure B
erage over an ensemble of trajectories in order to get an et us denote the numerical solution for the path by
estimate of the conditional probabiliyiequation(8)] and R, (t) and the exact solution biRe.4t). We further denote
eventually the rate. To compute thermal properties of an enpy S, . and S, the numerical approximation and the exact
semble of trajectories, the weight of the trajectory shouldvalue of S, respectively.,S,is at a minimum aR,,(t) and
include the Boltzmann factor of the initial coordinates, i.e., 5. is at a minimum atR,Jt). Typically, only S, and
Rnum(t) are available, but for the special case of the harmonic

P(R(t),R(ty);t—t)=PRE)PR(G) [ R(t):t—t) oscillator we have both. It is therefore possible to ask: What

« exp(— E /KgT)exp( — S/202), (24)  should be the value of?, such that the exact trajectory

Rexdt) will have a weight of 1/e when substituted into

where RR(t;),R(t;);t;—t,) is the joint probability of observing S,,m, i.€., the action width is defined as 02
R(t) at § andR(t;) at t (note the difference between the joint = (S ] Rexd)]—Sexd RexdD)])- Since S, Rexdt)] is zero for
and the conditional probability which we used before the harmonic oscillator, we havar2= S, ,[Rexdt)]. In fig-
P(R(t;)) is the probability of observing the initial conforma- ure 17 we estimate the value of the action width as a function
tion and Eis its total energyincluding the kinetic energy  of the time step. Since the solution becomes flat for time
Hence, to maximize the weight of the trajectories it is impor-steps above a certain range, the error becomes constant
tant to seek the paths with low initial energies in addition toabove that value.
the lowest possible S. The idea is to use the asymptotic value of the errors in

On the computational side we also note that the algoestimating how the trajectory is affected and the validity of
rithm is simple to paralleliz&’ The path is divided between the approximations. Clearly, motions with typical periods
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APPENDIX B: BEYOND THE CONSTANT FORCE
o ; APPROXIMATION FOR THE SHORT TIME
PROPAGATOR

Here a formula for the short time OM action is provided
that includes the first order correction to the constant force
. approximation. The starting point is the exact expression of
- o S [equation(8b)]:

400

o Jcycle

200

ot
S= J (Md?R/d7 + dU/dR)?dr
0

1 2
t/T=(n-1/cycle)” St ot
=| (MdR/dA)2dr+2| (Md?R/dA)(dU/dR)dr
FIG. 17. An example for the estimate of the errors in the evaluation of the 0 0
Onsager-Machlup action for the harmonic oscillator. The error is computed St
as a function of the time stepAt—which is used in the numerical optimi- 24
zation of the trajectory. The time is dimensionless and denoted by the num- + 0 (dU/dR)"d7=lo+11+12, (B1)
ber of points per cycle. The error is normalized per cycle. Note that the error
is bound and is stabilized near an asymptotic value. Note also the singular
points of significantly larger errors. They correspond to the accidental
matching of the time interval and the extrema of the cycle of the oscillator. . .
where | was already computed analytically in the body of
the paper. Therefore, the two remaining integrals are the fo-
cus of this appendix. The relevant variables are now defined.
For completeness some of the definitions that were given in
the body of the paper are repeated. The path is separated into
faster than the fi N o Th tast i a parabolic componerR® (which is used to estimate the
a’TI er than the mle S e[?' are mls;]smg.. hesfe has er 'mo !0'?econd derivatives in timend a sine series that accounts for
will be added as “noise” once the width of the action is e gitference between the exact solutiBnand R°. This
taken into account. The amplitude of the fast motions, to b&itference is denoted bR
substituted in §,,] Rexdt)] can be estimated in several ways.

We first note that §,,[Rexdt)] can be expanded in the neigh-

borhood ofR,,,(1), yielding R=R4RL RO=atbrt 1/2c2
SnurfRexd 8= 12(Rord) Ry ) [FSIRZ 0] RY=2, dy sin(y7); B2)
X(Rexa(t)_Rnum(t))- (Al)
wy= 7K/ S5t,

Henqe, by comparing th? difference betweer_1 exa(?t traleCtov_vhere the relation between the vectasb and c and the
ries (i.e., usual MD that includes fast modesith trajecto-

coordinate vector®R;_;, R; and R, is given in formulae

ries for which the fast modes were eliminated, it is possible(lg) and(20). The forces are approximated in the time inter-
to obtain an idea of how far we are from the exact trajectory, 4| of interest by

This approach is feasible since it is not difficult to get rea-
sonable statistics for fast modes.

Another way of estimating the contribution of the fast dU/dR ~ dU/dR; +(d?U/dR?)(R—R)=a+B(R°+R?Y),
degrees of freedom is via normal mode analysis and formula (B3)
(Al). Normal mode analysis provides the period of the mo- ) P )
tion in addition to the coordinate. Therefore, for a given time®— dU/dR; —(d"U/dRP)R;; - = d“U/dR.
step we can immediately identify which are the modes that
will survive, and which of the modes will be eliminated. We Note thata andIB are a time independent vector and a time
assume that the fasand frozen modes add to the errors in independent matrix, respectively. They are evaluated at the
the OM procedure amplitudes—A—that can be estimatedntermediate coordinat®;. All that is left at present is to
from thermal consideration. In one dimension we havesubstitute the expressions ipHl,, and to integrate the ex-
1/2Mw?A2=KgT. pressions. Here is the final lengthy result
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11+ 1,= 2cM adt+ 2cM B(adt+ b &2+ cat’/6)+ 8cM ,Bk%d dy /oy + ; (—1)*d M By S 2b+ c&]—; d M Bdw?st+ o2t
+2apadt+ 1/2b&t>+ 1/6c5t3—2k%d d/w ]+ aBBadt+appb s>+ apBctdt®/3+ b BBb &3+ bBBcoY 4
+cBBCAI20+ 4%(1 aBBdy/ vy — 2; bR/ w(— 1kst— 4%(1 BB i — g ¢BBd/w,(— 1)Kt

+ 1/2§k‘, d,8Bd, . (B4)
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