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A new algorithm to compute long time molecular dynamics trajectories is presented. The technique
is based on the stochastic path integral of Onsager and Machlup. Trajectories of fixed length of time
are computed by path optimization between two end points. Modes of motion with periods shorter
than the discrete time step are automatically filtered out, making the trajectories stable for almost an
arbitrary time step. Several numerical examples are provided, including motions on the Mueller
potential and a conformational transition in alanine dipeptide. Paths similar to the usual molecular
dynamics trajectories are obtained, employing time steps 100 times larger than those used in
straightforward molecular dynamics. ©1996 American Institute of Physics.
@S0021-9606~96!51043-3#

I. INTRODUCTION

Molecular dynamics~MD! simulations are a standard
tool in computational studies of biological macromolecules.1

Thermodynamical variables, as well as time correlation func-
tions and other average dynamical properties can be ex-
tracted from the simulations providing valuable atomic infor-
mation on the system of interest.

It is therefore a misfortune that the time scale of the
simulations is severely limited. Nowadays there are clear
limits on the dynamics that we can explore, as well as on the
conformational space that can be sampled in a single run. For
systems of more than 1000 atoms, the present limit is a few
nanoseconds. This is a serious drawback considering the
typical time scales of motions in proteins. For example, the
subnanosecond time scale accessible to atomically detailed
simulations covers only extremely rapid processes~e.g.,
geminate recombination of a ligand and a protein2! which are
only a small fraction of biochemical phenomena. Allosteric
transitions in proteins occur on a time scale of
microseconds,3 and folding of a protein can last for seconds.4

Another related limitation of the molecular dynamics
field is the necessity of doing the computations precisely,
even if high precision is not required nor warranted. It is not
possible to use molecular dynamics approximately, while
still maintaining the complete atomic level picture of the
system. In contrast, electronic structure calculations suggest
a hierarchy of techniques that differ in their accuracy~the
simplest example is the variation in the size of the basis set!.
The hierarchy makes it possible to investigate the molecular
system at the desired level of accuracy.

A number of models of proteins that enable the compu-
tation of long time dynamics have emerged in the last few
years.5 However, without exception, these models give up on
the atomic resolution of the protein and of the solvent. To
understand biological processes such as enzymatic
reactions,6 or processes involving specific interactions of a
few amino acids, atomic models are required. Therefore,

there is a need for approximate methodologies that do not
reduce the number of degrees of freedom.

Another approach to study ‘‘dynamics’’ is the reaction
path method~RP!. There, one seeks a low energy path con-
necting reactants and products. The calculated path provides
a qualitative description of the structural changes as a func-
tion of the reaction progress. We define ‘‘reaction progress’’
as a coordinate displacement along the reaction path from
reactants to products~figure 1!. The reaction path is also
useful in computations of rates that are based on statistical
approaches such as the transition state theory~TST!.7

The reaction path approach does not suffer from the time
scale limitation of molecular dynamics, since explicit time is
not employed. The computational effort is determined prima-
rily by the roughness of the energy surface and by the coor-
dinate curvature. The lower the roughness and the curvature
of the computed path, the larger the change in the structure
that we can examine in a single step.

The potential energy is expected to be a slowly varying
function of the reaction coordinate~at least compared to
other degrees of freedom in the system!. It is therefore ex-
pected that the energy roughness along the reaction path is
much lower than the roughness sampled by a regular MD
trajectory. Hence, the ‘‘step’’ in RP, in which the fast mo-
tions are damped, can be larger than in MD.

The obvious drawback of the reaction path approach is
the indirect connection to the real motions of the system and
to the rate. One commonly used approach to connect the RP
to the rate of the process is the transition state theory7 that
was mentioned earlier. In practical applications of the TST,
we have to rely on the assumption that real trajectories pass
in the neighborhood of the reaction path and to further rely
on statistical estimates of the weights of different configura-
tions. In other words, we have to assume local equilibriumat
leaston a surface dividing reactants and products. This is a
strong assumption that is hard to justify in the general case,
e.g., in systems that react far from equilibrium.

Moreover, an application of the reaction path approach
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and the transition state theory~TST! in condensed phase
problems must address an additional problem of path multi-
plicity. In condensed phases many minimum energy paths
leading from reactants to products are possible. It is likely
that many of these are relevant and contribute significantly to
the rate of the process. Searching and identifying the differ-
ent paths can be a significant computational burden.8 It is not
at all obvious that different paths are in thermal equilibrium
with each other on the time scale of the reaction. Rapid ex-
change between paths is assumed, at least implicitly, when a
single reaction coordinate is employed.

To summarize the discussion up to now, atomic detailed
simulations of biological macromolecules can be pursued to-
day either by computing molecular dynamics trajectories or
by computation of reaction paths. Molecular dynamics tra-
jectories are severely restricted in their length of time~to a
few nanoseconds!, and computed reaction paths are difficult
to interpret and to convert to experimentally accessible infor-
mation. It is therefore desirable to have a computational
technique that could, in some way, benefit from the advan-
tages of both, providing plausible paths of slow processes
with a direct estimate of the time of the trajectory~i.e., pro-
viding the coordinates as a function of time!.

In the present paper an approximate computational tech-
nique that computes molecular dynamics trajectories for long
times is suggested. The proposed algorithm employs compu-
tational techniques similar to the approach which was devel-
oped by Czerminski and one of the authors to calculate re-
action coordinates.9 The computational algorithm is also
similar in spirit to the work of Gillianet al.10 and Cho
et al.11 In a related protocol it uses optimization of function-
als to compute classical trajectories. However, our functional
is different, and~as we shall argue!, more useful for extend-
ing time scale of simulations.

This paper is organized as follows. In the next section
the Onsager-Machlup~OM! action12 is reviewed and re-
derived in the context of the present application. The OM
action is the base for the suggested computational method.
The numerical implementation of the OM action, formal
properties of the algorithm, and its dependence on the time

step are described in section III. Numerical examples are
found in section IV, and conclusions and final remarks in
section V.

Throughout, the following notations are used: A vector
is denoted by a bold face and a matrix by an underline.
Differentiation with respect to a vector denotes the corre-
sponding gradient. Higher order differentiation corresponds
to the appropriate tensor of derivatives.

II. THEORY

We consider a trajectory for which the total time —
tend— and the starting and the ending positions are known
and are denoted by the vector coordinatesR~ti! and R~tf!
~tf2ti5tend!. R~t!, the path that connects the two end points,
is the target of the calculations. This is different from what is
usually done in molecular dynamics simulations, in which
the coordinates and the velocities are specified at some initial
time.

If the starting and the ending points of the process are
known, then there is no reason not to use this information~if
we knew how!. The known final point can add significantly
to the stability and to the accuracy of the computed trajec-
tory. We are not aware of a known way of using this infor-
mation in molecular dynamics trajectories to obtain time de-
pendent data. It is difficult, if not impossible, to ‘‘hit’’ a
desirable product using a condensed phase MD trajectory.
Examples of cases in which starting and ending points are
known include ordinary chemical reactions with pre-
specified reactants and products, and conformational changes
within a single molecule.

On the other hand, when the end points are not known
molecular dynamics is the prime choice. An example of a
problem that is difficult to investigate by a boundary value
formulation is that of protein folding.

Given that a formulation as a boundary value problem is
suitable, the dynamics of the system is conveniently de-
scribed in terms of a conditional probability. That is, if the
starting point is at the coordinate vectorR~ti!, we ask: What
is the probability of ending at the coordinate vectorR~tf!
after time tend? The answer — the conditional probability —
is denoted by P~R~ti!uR~tf!;tend!. Questions that are related to
the rate can be addressed by computations employing the
above conditional probability. Appropriate formulae and nu-
merical examples will be described in forthcoming publica-
tions. In this paper we focus on finding a trajectory or tra-
jectories that maximize the above probability. Hence, the
goal of the research is to find most probable trajectories that
start and end at given positions and also have a fixed length
of time — tend.

It will be shown how a time step which is larger by
orders of magnitude than the time step employed by ordinary
molecular dynamics can be implemented in the scheme. The
inevitable result of such a large time step is an approximate
trajectory. Nevertheless, we shall demonstrate that the trajec-
tory is stable and quite accurate. This is in contrast to regular
MD trajectories that rapidly loose precision and stability as
the time step increases~see also figure 4!.

FIG. 1. A schematic presentation of a reaction coordinate~thick line with
arrows! between reactant~R! and product~P!. The Mueller potential energy
surface~Ref. 22! is used in this example.
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As a result of a finite~and large! time step that is used in
the numerical integration, the solution of the trajectory is not
exact. For special cases it is possible to estimate the errors in
the trajectory by comparing approximate solutions to the ex-
act answer. In Appendix A we provide such an estimate for
the harmonic oscillator. This estimate is useful in establish-
ing a certain weight or a probability for a given approximate
trajectory.

Alternatively, it can be argued that the approximate tra-
jectories generated by the numerical computations do not
satisfy exactly thedifferential equations of motion. We
therefore write for the approximate solution of Newton’s
equations

MI d2Rapp/dt
21dU/dRapp5«~ t!, ~1!

whereRapp~t! is the approximate solution of the trajectory
R~t!, U is the potential energy function, and« is a vector of
error components for each of the individual coordinates. MI is
the diagonal mass matrix.

The essential hypothesis of the present study is that the
errors«~t! are sampled in time from identical and uncorre-
lated Gaussian distributions. The width of the Gaussian de-
creases as the time step is reduced. The Gaussian hypothesis
is an ad-hoc assumption which we cannot and do not attempt
to justify for the general case. Nevertheless, we shall show
that this assumption can carry us quite far. The first two
moments of the error distribution are given by

^«~ t!&50;^«~ t!–«~ t8!&5s2d~ t2t8!, ~2!

where^...& denotes an ensemble average,d~t2t8! is the Dirac
delta function, ands2 is the standard deviation of the distri-
bution of the errors.

In the limit of small deviations from the exact trajectory,
a quadratic expansion~and the Gaussian! is the leading term.
The Gaussian distribution is widely used for the estimation
of errors, especially when additional information is not avail-
able.

We obviously would like to computeRapp in the best
way that we can. When we make the hypothesis about the
errors, there is clear danger that the choice of errors will
influence the quality of the solution. It is therefore important
to provide information comparing the properties ofRapp to
the exact trajectory. We shall do it later in this paper.

The same functional form of the conditional probability
density of trajectories would have been obtained if we had
used the Langevin equation. In the Langevin equation, and in
the limit of short times, the random force gives rise to a
Gaussian distribution around the exact trajectory. In spite of
the apparent similarity to the Langevin equation, we empha-
size that the formalism described below does not have an
explicit randomness or phenomenological stochastic term as
in the Langevin equation. Rather, Newton’s equations of mo-
tion are directly used. Our errors are assumed to be a result
of the discretization of the trajectory, and they can be esti-
mated by direct comparison to an exact trajectory~see Ap-
pendix A!.

Returning to the approximate solution of the differential
equations of motion, the computation of ‘‘short time’’ dy-

namics is considered. To construct a ‘‘short time’’ trajectory,
it is separated into two components: a deterministic part
which is our zero order guess of where the system would like
to go, and a random component sampled from a Gaussian
distribution of errors. Since the discrete time step leads to an
approximate solution, a volume of uncertainty is added to the
neighborhood of the computed new location. The size of the
volume should reflect and be proportional to an estimate of
the errors in our integrator.

The first component of the solution after a time stepDt is
Rg~ti1Dt!. Rg~ti1Dt! is obtained fromR~ti! in a deterministic
calculation, i.e.,Rg is the guessed coordinate vector at the
center of the Gaussian. It is the solution when« is zero,
where« is the error vector that was defined in equation~2!.
In a discrete time representation, the error correlation@equa-
tion ~2!# is approximated by

^«~ ti!–«~ tj!&5s2d~ ti2tj!' s2d ij /Dt. ~3!

The next expression of interest is the probability of ending
after a time intervalDt at R~ti1Dt!, if at time ti the system
was atR~ti!. The above inquiry defines a conditional prob-
ability which for the problem at hand can be written as

P~R~ti!uR~ti1Dt!;Dt!

5@1/~2p^«2&!#d/2 exp@2 ~R~ti1Dt!2Rg~ti1Dt!!2/~2^«2&!#.

~4!

The difference vectorR~ti1Dt!2Rg~ti1Dt! is exactly«
~d is the system dimensionality!. The term in the exponent is
therefore proportional toDt @see equation~3!#.

A long time solution can be obtained by multiplying
many short time conditional probabilities and summing up
over all the intermediate positions. Since tf is the final time
of the desired trajectory—tf5ti1NDt, we write

P~R~ti!uR~tf!;NDt!

5E$)
j
dRj% $)

k
P~R~tk!uR~tk1Dt!;Dt!%. ~5!

In the limit in which the number of points approaches
infinity andDt is infinitesimal we obtain a path integral.13 It
is also convenient to accumulate all the Gaussians into a
single exponential function, that is,

)
i
P~R~ti!uR~ti1Dt!;Dt!

} expF2~Dt/2s2!(
j

~R~ tj1Dt!2Rg~ tj1Dt!!2G
'expF2~1/2s2!E dt«~ t!2G . ~6!

The above result is quite striking, representing the
weight of a trajectory~or the probability that it is correct! as
the square of the amplitude of the transient noise. It is, of
course, not surprising that the trajectory is most accurate
when the noise is zero. The real question is how to proceed
from this point in order to get the desired trajectory.
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The above formula of the weight of an individual trajec-
tory was derived by Onsager and Machlup12 in the context of
irreversible thermodynamics and stochastic trajectories. The
most probable trajectory is found when the transient noise is
zero, everywhere along the trajectory. This means that the
usual deterministic equations of motions are satisfied every-
where in time and that they are ‘‘error free.’’ In the present
case these are Newton’s equations of motion. Hence, the
weight for asingle trajectory can be also written based on
equation~4! as

P~R~ ti!uR~ tf!;R~ t!!

} expF2 1/~2s2!E dt~MI d2R/dt2 1dU/dR!2G . ~7!

To obtain the above equation,«~t! in equation~6! was
replaced by the left hand side of equation~1!. Note, that if
the precision was infinite~s250!, only a single trajectory
would remain. If the complete conditional probability with
pre-determineds2 is desired, then all possible trajectories
must be summed up to obtain a path integral13

P~R~ti!uR~tf!;tf2ti!

}EDR~t!expF2 1/~2s2!E dt~MI d2R/dt21dU/dR!2G
5EDR~t!exp$2 1/~2s2! S@R~t!#%, ~8a!

S@R~t!#[Edt~MI d2R/dt21dU/dR!2, ~8b!

where DR~t! denotes path integral summation,13 and
S@R~t!# is the Onsager-Machlup action,12 a functional of the
pathR~t!. The most probable trajectory is obtained, when the
Onsager-Machlup action is minimal. In this paper we suggest
that optimization of S can be employed to compute molecu-
lar dynamics trajectories.

Before analyzing further the properties of the Onsager-
Machlup action, it is useful to discuss alternatives. The
Onsager-Machlup~OM! action is one of the possible func-
tionals from which one may compute molecular dynamics
trajectories. One may ask what is the advantage of the
present formulation. Consider the well known classical ac-
tion

Scl5E@1/2~dR/dt!MI ~dR/dt!2U~R!#dt. ~9!

Here a classical trajectory is the pathR~t! for which S is
stationary.14 This is already a difficulty, since a stationary
solution can also be a maximum or a saddle point, which are
unstable with respect to small perturbations. It is consider-
ably more difficult to locate a saddle point than to identify a
minimum. In the optimization of the OM action we seek a
minimum; the minimum corresponding to a trajectory with
the highest conditional probability. Furthermore, the OM ac-
tion is a non-negative functional which is bound by zero.

This bound makes the identification of the global minimum
easier, since the lowest possible value of the OM action is
zero.

A second point, why the OM numerical computations
are advantageous compared to calculations that employ the
classical action, is related to the representation of the time
integral and to its stability upon optimization. The simplest
approach~which we employed to deal with systems with
many atoms! is to use a discrete time step. For the classical
action we have

Scl5(
i

Dt@1/~2Dt2 !~Ri112Ri21!MI ~Ri112Ri21!2U~Ri!#,

~10!

where the indices refer to the discrete time. Numerical opti-
mization of Scl is with respect to all its independent variables
Rj . That is, we search for a minimum of Scl along the gra-
dient of Scl , $]Scl /]Rj%. To demonstrate the computational
difficulties associated with a large time step~in the frame-
work of the classical action optimization! consider the one
dimensional harmonic oscillator

Scl5(
i

Dt@~1/2m!~Xi112Xi!
2/Dt221/2 kXi11

2 #, ~11!

where X is the displacement from the equilibrium position,
m the oscillator mass and k the force constant. At a finite
Dt the distance between sequential points in time is deter-
mined by opposing factors. The kinetic energy term is hold-
ing Xi11 and Xi together while the potential energy term is
an inverted parabola which upon minimization pushes the
points away. It is therefore evident that asDt increases, Scl
changes from a function with a minimum to a function with
a maximum, making a stable calculation for a variety of time
steps more difficult.

In contrast, the Onsager-Machlup action, even in its dis-
crete form, is non-negative. It therefore has a minimum re-
gardless of the size of the time step

S5(
i

Dt@~MI /Dt2!~Ri111Ri2122Ri !2dU/dRi#
2. ~12!

Caution must be exercised when comparing the classical
and the OM action. At the first glance it seems that both
formulations lead to Newton’s equations of motion. This is
not exactly so. For analysis purpose~as opposed to the com-
putational goal of the present manuscript! it is useful to con-
sider now the functional variation of either of the actions—
S or Scl—with respect to the path—R~t!, that is,dS/dR~t!.15

Following the well known Euler-Lagrange procedure,
the classical action provides Newton’s equations of motion14

MI d2R/dt21dU/dR50 ~13!

while the equations of motion that are derived from the OM
action in a similar fashion are of higher order

MI d4R/dt412MI ~d2U/dR2!d2R/dt21MI ~d3U/dR3!

3~dR/dt!21~d2U/dR2!~dU/dR!50. ~14!
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The connection between equations~13! and ~14! can be
demonstrated with the help ofQ defined below

Q5MI d2R/dt21dU/dR. ~15!

Equation~14! is now decomposed into two more instruc-
tive equations

MI d2R/dt21dU/dR5Q, ~16a!

MI d2Q/dt21 ~d2U/dR2!Q50. ~16b!

It is therefore evident that the OM equations are more
general than Newton’s equations of motion. Only in the spe-
cial case in whichQ is identically zero@and therefore also
S is zero, see equation~17! below#, the two equations of
motion coincide. The OM calculation requires more bound-
ary conditions than are required by the classical equations of
motion ~after all it is a fourth order differential equation!.
The boundary conditions that we employed are of fixed end
points and of zeroQ at the edges of the path.

In order to develop some understanding of equation~14!,
it is useful to return to the good old one dimensional har-
monic oscillator. The fourth order differential equation
yields four solutions. The two solutions obtained whenQ is
set identically to zero are also the solutions of Newton’s
equations of motion:R15A cos(vt) andR25B sin(vt). The
other solutions are for non-zeroQ and are obtained by solv-
ing forQ first @equation~16b!#. Since~d2U/dR2! is a constant
for the harmonic oscillator, the two solutions forQ are simi-
lar to the above solution toR, Q15A8 cos(vt) and
Q25B8 sin(vt).

Substituting forQ in equation~16a! we find that the
solutions forR are therefore those of a forced harmonic os-
cillator with a driving force exactly in resonance. These so-
lutions are required if the boundary conditions do not con-
serve energy and it is necessary to feed energy into the
system in order to satisfy the boundary conditions. In this
case, the errors~andQ! fulfill a similar role to the random
force of the Langevin equation that heats up the system.

Note that the OM action can also be written as

S5Edt~Q–Q! ~17!

where– denotes a scalar product. Clearly, whenQ is zero,
the value of S is minimal, and we avoid picking the second
solution that does not conserve the energy. Therefore, sig-
nificant effort must be devoted to find the lowest minimum
of S that money~and computer time! can buy.

As discussed above, the goal which we keep in mind is
the possibility of computing trajectories with a very large
time step. Equation~12! is the discretized form employed in
the calculations. While it is stable for an arbitrary time step,
it is nevertheless rather primitive, and uses a simple finite
difference formula to estimate the time derivatives. The ob-
vious questions are how accurate is it for different time steps,
and can one get an idea on the type and the order of magni-
tude of the errors and their dependence on the time step. The

discussion below attempts to address this point by examining
the effects of the approximations used on the exact represen-
tation of the coordinate evolution in time.

As the discussion continues, it will become evident that
an exact and analytical estimate of the errors for an arbitrary
potential is not available. However, we gained some under-
standing of the characteristics of motions that are eliminated
when the large time step is employed. At the end of Appen-
dix A it will be outlined how the ideas discussed next can be
used in numerical estimates ofs2.

We consider an exact expansion of the coordinate as a
function of time in the interval@0,dt#

R~t!5a1bt11/2ct21(
k
dk sin~vkt!; ~vk5kp/dt!, ~18!

wherea, b, andc are used in a three point expansion of the
path to be described below.t is the time variable. The Fou-
rier expansion in the sine functions describes the deviations
of the exact path from the three point expansion. Only the
sine expansion~no cosine! is used sincea, b, andc satisfy
the boundary condition of the coordinates

R~dt!5Ri11; R~0!5Ri21. ~19!

Hence, it is possible to writeR~0!5a and R~dt!
5a1bdt11/2cdt2.

For the derivation below it is convenient to set the
boundary conditions as close as possible to our three point
interpolation. The change in the velocity during the above
interval is set to:DV5cdt. The last equation adds a condition
on thedk2s as follows: The magnitude~and the change! of
the velocity are estimated employing also the coordinate at
dt/2—R~dt/2!5Ri : V~dt/4!>2~Ri2Ri21!/dt and V~3dt/4!
>2(Ri112Ri!/dt. An estimate for the acceleration is there-
fore: 2DV/dt5c5~Ri211Ri1122Ri!/~dt/2!2. In the spirit of
the three point approximation the condition becomes

DV52~Ri211Ri1122Ri !/dt. ~20!

For the above to be exact~i.e., when the sine series is
also included! another condition must be met

(
k
dkvk@cos~vkdt!2 cos~0!]50, ~21!

(k51,3,5,...dk~kp/dt!50 ~i.e., the sum is over odd elements
only!. The analysis of the accuracy of the solution is now
continued. It is divided into two steps: First, the time integral
using the exact expansion of the coordinates in time is per-
formed. Second, the action S is minimized as a function of
all the coefficients—$dk%—in an attempt to estimate their
values. Clearly, the larger their values, the poorer the ap-
proximation used.

In the integration, an approximation is employed which
is consistent with the above three points expansion of the
path. The force is set to a constant throughout the interval.
The approximate integration and the following analysis sug-
gest how the approximation used behaves numerically. The
analytical integration of the forces in time is not possible and
therefore less useful. It is the question of the consequence
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of this approximation which is our prime interest here. So, in
that sense, the calculations below are not a ‘‘true’’ error
estimate.

In principle, it is possible to go beyond the constant
force approximation~see Appendix B!. The expressions are
likely to be useful for further analytical studies, and for the
derivation of an approximate long time conditional probabil-
ity. The formulae are rather messy and are therefore placed
in Appendix B. The basic idea, however, is rather simple and
is outlined below: The ‘‘fixed force’’2dU/dRi is replaced
by a linear expansion of the force with the path,
i.e., 2dU/dR'2dU/dRi2d2U/dRi

2~R~t!2Ri!, where
d2U/dRi

2 is the second derivative matrix of the potential com-
puted atRi . Since the integrals are~at most! quadratic with
R~t!, they are doable analytically, as is shown in Appendix
B.

However, for calculations of asingle optimal trajectory
the computations are complex and numerically intensive.
Therefore, the correction terms were not employed in the
numerical computations described in section IV. Rather than
using higher order expansion of the integrand, the properties
of the solution as a function of the size of the time step and
the number of grid points were examined.

The exact action integral is written below~by notation,
vectors on the left of the matrix are row vectors!

S5E
0

dt

dt~MI d2R/dt21dU/dR!2

5Edt@~d2R/dt2!MI #@~MI d2R/dt2!#

12Edt@~d2R/dt2!MI #@dU/dR#

1Edt@dU/dR#@dU/dR#. ~22!

The first integral on the right hand side can be evaluated
exactly

E dt@~d2R/dt2!MI #@~MI d2R/dt2!#

5cMI MI cdt1(
k
dkMI MI dk~kp/dt)4. ~23!

The other two integrals cannot be solved in a closed form for
a general potential. However, employing the same approxi-
mation as the one used in our numerical calculations, i.e.,
dU/dR'dU/dRi , the second integral becomes 2cMI ~dU/dRi!
and the third is~dU/dRi!

2dt. Within our approximation, only
the first integral depends ondk . The contribution is also non
negative. That is, a minimum of S with respect to all the
dk is when]S/]dk50, which corresponds todk50. This so-
lution also satisfies the boundary condition~19! and it is
therefore the lowest action solution for our problem.

The sine series was employed to capture the motions
with frequencies higher than'1/dt. If we approximate the

forces by a constant in this interval, then the solution elimi-
nates~in an automatic way! all these high frequency mo-
tions.

Elimination of rapid motions~such as bond stretching! to
make study of long time processes possible, has been the
target of many algorithms, for example, SHAKE,16

RATTLE,17 or the Back Euler~BE!18 algorithms. The first
two approaches are conceptually different from the OM pro-
tocol. In the RATTLE or the SHAKE algorithm, a decision
of which are the fast and which are the slow coordinates
must be made prior to the beginning of the computations.
The OM automatically finds the fast and the slow coordi-
nates compared to the time stepdt. The BE algorithm re-
moves energy from the fast modes and in that sense it is
similar to the optimization of the OM action. However, since
the BE is formulated as an initial value problem~as opposed
to a boundary value problem in the OM!, the gain from the
increase in the time step is much smaller in BE than in the
OM protocol.

It is the removal of rapid motions that makes the OM
action an especially stable algorithm. It is nevertheless clear
that as the time step is increased, accuracy is lost. Rigorous
estimates of the errors are difficult to make. In Appendix A
we consider the error for the simple example of the harmonic
oscillator. As the time step increases and passes a critical
value, the oscillations are frozen and the errors become the
motions that were eliminated. This is in contrast to the mo-
lecular dynamics approach, in which large time steps can
lead to unbound, exponentially growing errors~see also fig-
ure 4!.

This concludes the more formal discussion of the paper,
that is aimed at introducing a new numerical algorithm.

III. THE NUMERICAL ALGORITHM

In order to compute and to optimize the Onsager-
Machlup action, the simplest possible discretization scheme
already outlined in equation~12! is employed. S is a function
of N intermediate coordinate vectors$Ri%. It is minimized
using a variety of options, such as the conjugate gradient
algorithm with the restart option of Powell19 and simulated
annealing.20 Multigrid techniques are also applied.21

The initiation of the optimization process requires a
starting path for the optimization, i.e., a starting set of$Ri%.
The simplest starting path which we used at the beginning of
this research and also in past reaction path calculations9 is
the straight line interpolation. This initial guess is the limit of
very high kinetic energy in which the system ‘‘travels’’ at a
constant speed over the potential energy surface. In this
limit, the potential energy surface is irrelevant. This is the
expected solution in the limit of a short trajectory time and
relatively large distances to be traveled.

Clearly, for sufficiently large number of points~or a suf-
ficiently small time step! we should converge to the ‘‘right’’
answer. However, some care must be exercised since the
optimization of the trajectory is a global optimization prob-
lem. The most probable trajectories are the ones with the
globally lowest S.
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In practice, the straight line interpolation leads, many
times, to local minima of the action S. One phenomenon for
which we were not able to provide detailed theoretical analy-
sis is the existence of ‘‘fixed’’ points along the path. There
are relatively high energy configurations at which the mini-
mized path is ‘‘trapped.’’ The path cannot get away from
such a coordinate set by a straightforward conjugated gradi-
ent minimization~figure 2!. There is no reason for a complex
function such as Snot to have fixed coordinates~i.e., a co-
ordinate set$Ri% for which dS/dRi50, and therefore in direct
minimizationRi will not change!. It is therefore important to
employ global optimization techniques that are able to get
out from a local minimum.

Three different computational setups were tried in order
to obtain better paths than those obtained in the calculations
that use conjugate gradient and straight line interpolation.
The first approach was to use a global minimizer, i.e., simu-
lated annealing. This attempt failed. Simulated annealing
was successful in locating different local minima of S. How-
ever, it was difficult to ‘‘convince’’ the algorithm to look for
the minimum with the lowest value of S. Reasonable varia-
tions in the length of the simulations and in the cooling pro-
tocols were not successful.

In the second trial, different initial conditions for the
paths were employed. Rather than a straight line interpola-
tion, we equally divide the intermediate points between the
minimum of the reactants and the minimum of the products.
In contrast to the straight line interpolation in which the
forces component of the action is highly excited in the initial
path, in the last setup the time derivative part of the action
requires significant relaxation.

In practice, the last protocol produces, many times, low
energies and low S paths. It successfully avoids the difficulty
of high energy fixed points that was mentioned above. How-
ever, using more than one initial guess is a good idea, since
the optimization results strongly depend on the underlining

energy surface. There is no general ‘‘best’’ initial guess for
the trajectory.

Another approach that was employed to identify better
local minima of the OM action is multigrid.21 This is an
exceptionally important protocol for large systems with dif-
ferent time scales. Multigrid makes it possible to recover the
correct behavior of different modes efficiently, in separate
calculations. It was found to be most important for the com-
putational example of alanine dipeptide.

The straightforward approach to optimize S is to repre-
sent it by a set of N discrete points and to minimize the
discrete representation of the functional. In multigrid, a se-
quence of different grid approximations to the functional are
optimized keeping the total trajectory time fixed. Each rep-
resentation is most effective in recovering part of the modes.
For example, when the grid includes only a small number of
points, low frequency modes are computed most effectively.
The solution of one grid is used to initiate the computation of
the next grid.

There is considerable mathematical literature proving
that the sequence of optimizations using different grids con-
verges much faster that the optimization of a single grid.21

The so-called ‘‘V cycle’’ was employed in the OM compu-
tations. The beginning is a path with high resolution and
many grid points which is the upper left corner of the letter
‘‘V.’’ This path is optimized until the convergence rate be-
comes slow.

Next, a path with a lower resolution is constructed from
the optimized solution. This is done by selecting~for ex-
ample! each second grid point. The lower resolution path is
optimized and the solution is employed in yet another path
with even smaller number of grid points. This process con-
tinues until the path with the lowest resolution of the cycle
~the lower corner of the ‘‘V’’! is reached.

At this point the ‘‘right arm’’ of the V is investigated.
The resolution is increased in an inverse sequence to the
decrease in the resolution. The new coordinate sets are con-
structed by a linear interpolation between two ‘‘old’’ coor-
dinate sets. At each step the time integral is optimized and
employed to initiate the next step. The final solution is ob-
tained from the optimization of the upper right corner of the
‘‘V.’’

There is still considerable room for improvement in the
application. Improvement can be made in the design of better
and more effective grids, and development of different tran-
sition protocols between the grids. Computational enhance-
ments may include automated algorithms to modify the grid
whenever difficulty is encountered. These are topics of future
work.

In the next section, a number of numerical examples that
differ in their complexity and relevance to biological systems
are provided. The numerical calculations are employed to
illustrate the analytical properties of the algorithm that were
discussed previously, as well as the promise of the algorithm
in producing very long time trajectories.

FIG. 2. An example for a local minimum with a high value for the Onsager-
Machlup action. A conformational transition in alanine dipeptide is consid-
ered. The initial guess for the path was a straight line interpolation from
reactants to products. The initial guess was minimized directly using a con-
jugate gradient protocol. The local minimum that was obtained includes
significant delay of the system in the neighborhood of the transition state,~a
fixed point!, in addition to the more intuitive delays at the different minima.
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IV. NUMERICAL EXAMPLES

A. A one dimensional harmonic oscillator

It does not come as a surprise that the harmonic oscilla-
tor can be solved analytically also in the Onsager-Machlup
framework~see section II!. It is therefore convenient to com-
pare the exact solution of the harmonic oscillator to numeri-
cally derived approximations. We present the solution as a
function of time in figure 3. The units of time are such that
v51, the mass was set to one, and the boundary coordinates
are at610. Throughout the computations presented below
the value ofQ at the boundaries is zero. The initial guess for
the path in this case is irrelevant since there is only one
solution once four boundary conditions are specified.

As anticipated from our previous analysis of the high
frequency modes, when the time step is such thatDt.p/v
the oscillations die out. This behavior is not surprising con-
sidering the analytical proof we provided in section II. Nev-
ertheless, it is a demonstration of one of the most important
features of the OM algorithm, filtering out high frequency
motions with periods smaller than the time step employed.

The argument above suggests that the algorithm will be
stable underall conditions. This is not precisely so and in-
stabilities are possible for a limited range ofDt values.
Rarely, we encountered the instabilities in computations. The
existence of problematicDt’s can be demonstrated as fol-
lows: For the harmonic oscillator the discretized version of
the Onsager-Machlup action is quadratic, i.e., S can be writ-
ten as S5(~aijRiRj!. The aij ’s are determined by opposing
factors—the time derivatives and the potential derivatives.
For a smallDt the time derivatives ‘‘win’’ and for a large
Dt the potential derivatives are larger. At some intermediate
Dt they cancel each other leading to a flat surface of S and
possible numerical instabilities. Computations should there-
fore avoid this narrow window of a time step.

It is of interest to examine at this point the behavior of
usual integrators~we employed the velocity Verlet! for time
steps that are of the same order as the oscillation period
~figure 4!. As is evident from the figure, the integrator looses
its stability and provides a useless trajectory. This is in con-
trast to the OM optimization that overdamps modes which it
cannot possibly follow.

B. A two dimensional harmonic oscillator

A better way of demonstrating the effectiveness of the
optimization in filtering outonly the high frequency compo-
nents is to examine a two dimensional harmonic oscillator.
We consider an oscillator with two well separated
frequencies —v151 and v255, i.e., U~x ,y!
51/2~x2125y2!.

In the computed time interval~figure 5!, the slow oscil-
lator finishes 3.5 cycles while the fast oscillator completes
17.5 oscillations. If 500 grid points are employed~excluding
the end points!, there are about 28 points to describe a fast
oscillation, which is more than enough. The fast oscillations
are reasonably described. When the number of grid points is
reduced to 20~about 1 point per fast cycle and about 6 points
for a slow oscillation! the fast motions are eliminated and
only the slow oscillations remain.

As mentioned in section II, the OM action filtering out
high frequency motions is a physically appealing approxima-
tion. In bond stretching, for example, the spatial deviation of
bonds from their equilibrium position is not large. Some
quantitative changes in the properties of the trajectories are
expected, however, many properties remain unchanged and
the computed approximate trajectories are qualitatively simi-
lar.

The OM optimization automatically eliminatesall of the
components with frequencies which are larger than 1/Dt.

FIG. 3. Optimization of the Onsager-Machlup action for the harmonic os-
cillator using different time steps. The total time considered includes 10.5
periods of oscillations and different number of grid points were employed to
approximate the trajectory. Below, we exclude from the number of configu-
rations the two fixed end points. Thus only the intermediate points are
counted: 200 grid points~solid line!, 100 grid points~dotted dashed line!
and 20 grid points~dotted line!. The 200 grid points provide a solution that
is essentially exact. Note the complete ‘‘annihilation’’ of the oscillation
amplitude once the number of points is reduced to 20.

FIG. 4. The stability of the solutions of the OM action optimization and of
the Verlet algorithm. The trajectory of the harmonic oscillator is examined
as a function of the time step. Three and a half oscillations are considered.
The exact solution~dotted line!, an OM solution with 11 grid points
~Dt52.2, solid line! and a solution with the Verlet algorithm~Dt52.04,
dashed line! are shown. For the Verlet algorithm the initial coordinate is the
same as in the OM and the initial velocity is set to zero. Attempts to use a
time step for the Verlet algorithm which is larger than 2.04 failed. The
solution ‘‘explodes’’ immediately.
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This is advantageous, since we are not required to identify
the fast motions prior to the beginning of the computations.
Other features of the dynamics that are difficult to follow
using a large time step are rapid jumps between minima and
fast passage over barriers. To demonstrate the difficulties and
to further advance our understanding of the approximations
involved we consider next trajectories on the Mueller poten-
tial.

C. The Mueller potential (Ref. 22)

A more ambitious two dimensional model is the Mueller
potential ~figure 6!. It was invented as a nontrivial test for

reaction path algorithms since the intrinsic reaction coordi-
nate and the saddle points are somewhat difficult to locate.
The Mueller potential is also helpful in demonstrating nu-
merical properties of the Onsager-Machlup optimization pro-
tocol for highly anharmonic systems: information that is im-
possible to obtain from the previous examples. Here we are
interested in trajectories between the two extreme minima on
the energy surface.

To start the optimization of the path, half of the grid
points ~the time intermediates! are placed at the upper left
minimum ~labeled A in figure 6! and the rest of the points at
the lower right minimum~labeled C!. At the boundaries,Q
was set to zero. The optimizations were pursued directly by
conjugate gradient minimizations.

In figure 7 we demonstrate the effects of filtering that
may occur on a highly anharmonic energy surface. The com-
putations are for a particle with mass 1. Trajectory~a! is a
detailed computation with 1000 intermediate points. The par-
ticle remains most of the trajectory at the minimum in which
it was initiated and the transition between the minima occurs
rapidly ~see also figure 7~c! in which the different degrees of
freedom are plotted as a function of time!.

We identify two types of rapid motions in the system.
One type corresponds to the vibrations in the wells and the
second type to the transition over the barrier. In figures 7~b!
and 7~d!, we examine the changes in the trajectory after the
time step is increased by a factor of four. The size of the new
time step is similar to the period of the rapid oscillations in
the narrower directions of the two minima and to the time
scale required to pass the barrier. The changes in the trajec-

FIG. 5. Optimization of the Onsager-Machlup action for the two dimen-
sional harmonic oscillator. The potential energy employed is U~x,y!
51/2~x2125y2!, the mass is 1 and 3.5 slow oscillations are considered. The
boundary conditions are x(0)52x~tend!5210 and y~0!52y~tend!525.
Two trajectories are shown. The first consists of 500 intermediate points
~dotted lines! which provide an essentially exact solution. The x component
corresponds to the slower and larger amplitude motion. The second trajec-
tory employed only 20 intermediate points~solid lines!. Note that for the 20
points the fast oscillations are overdamped and frozen while the slow oscil-
lations are reasonably well reproduced.

FIG. 6. A contour plot of the Mueller potential~Ref. 22! that we employed
as one of the tests of the OM calculations. The potential is of the form:
U~x,y!5(i51,...,4Ai exp@ai~x2xi!

21bi~x2xi!~y2yi!1ci~y2yi!
2#, where the

parameters are A5~2200,2100,2170,15!, a5~21,21,26.5,0.7!,
b5~0,0,11,0.6!, c5~210,210,26.5,0.7!, x5(1,0,20.5,21),
yi5~0,0.5,1.5,1! The three local minima are labeled A, B and C. The sepa-
ration between the contour lines is 15.

FIG. 7. Onsager-Machlup optimal trajectories on the Mueller potential. The
mass was set to 1. The total time of the trajectories was 10 and two different
time steps were considered: 0.01 and 0.04. The initial guess for the path was
half of the points in minimum A and half of the points in minimum C. The
final optimized actions are not zero but equal 136 and 2150, respectively.~a!
A display of the OM trajectory with a time step of 0.01 on the contour plot.
~b! A display of the OM trajectory with a time step of 0.04 on the contour
plot. ~c! The x and y coordinates of trajectory~a! as a function of time.~d!
The x and y coordinates of trajectory~b! as a function of time.
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tory are evident when examining the new motion on the two
dimensional energy surface@figures 7~a! and 7~b!#. The os-
cillations in the direction that corresponds to more rapid mo-
tions in the well are factored out.

In figures 7~c! and 7~d! the time dependence of the x and
the y coordinates is shown. The vibrations in the minimum at
the lower right corner can be decomposed~approximately! to
oscillations along the x axis~slow! and the y axis~fast!. As
expected from the description above and from the display of
the trajectory on the energy surface@figure 7~b!#, the fast y
motions are almost completely overdamped. The oscillations
along the x axis remain similar.

This brings us to the behavior of the oscillations at the
second minimum at the upper left corner of the energy sur-
face~labeled A!. The upper minimum is narrow similarly to
the lower minimum with one slow and one fast direction. In
contrast to the lower minimum discussed above, the fast and
the slow modes do not follow the x or the y axes. Therefore,
the apparent narrowing of the trajectory on the energy sur-
face is harder to detect in the time dependent plot. Both thex
and the y coordinates have a component of the slow motion
that is not overdamped when the time step is increased.
Some degradation in the amplitude is therefore observed, but
not annihilation of the vibrations as for the y direction in the
lower minimum~labeled C!.

The last piece of the trajectory that changes its shape
when the fast motions are filtered out is the passage over the
barrier. This motion is, of course, not a bound vibration,
however, it is executed over a short time interval which is
difficult to follow using a large time step. The time depen-
dent plot shows that the time required to jump over the bar-
rier is somewhat shorter when a large time step is used. The
spatial description emphasizes the abrupt characteristic of the
jump which is represented by a small number of points
~four!.

An example that is going to the extreme is the use of a
time step which is larger thanany time scale in the system.
In figure 8 we show the time dependent of the barrier cross-
ing in this case. In this trajectory nothing moves until the
time to jump to the other side~which is arbitrary! arrives.
After the jump occurs the system returns to absolute rest.

In the above example it was shown that the OM per-
forms as expected from the theoretical analysis. Rapid oscil-
lations are filtered out, producing a trajectory with slow com-
ponents only. Nevertheless, it is worth emphasizing that the
characteristics of theslowdegrees of freedom, e.g., the typi-
cal frequencies and amplitudes, exemplified by the time de-
pendent plots, are similar to the ‘‘exact’’ trajectories.

If a fast and rare movement, such as barrier crossing, is
of interest it is possible to use multilevel time grids and to
describe this motion in more detail. Computationally this re-
finement involves two steps: First, the identification that a
rapid jump indeed occurred must be made. This can be done
by searching for unusually large changes in structure over a
few time steps. The second step is interpolation of the time
interval of interest with more time points. Such a refinement
is straightforward to do using the OM action, however, it is
beyond the scope of the present paper.

The rapid passage over a barrier presents a significant
challenge to the OM protocol. Nevertheless, the OM algo-
rithm has a significant advantage in the study of barrier
crossing as compared to regular MD. In the OM algorithm a
boundary value problem is solved. It is therefore possible to
compute asingle trajectory that will pass the barrier. It is
difficult to guarantee a crossing trajectory in MD employing
a room temperature condensed phase simulation.

To focus our attention on different types of barrier cross-
ing in the OM we return next to a simple one dimensional
model, i.e., a double well system.

D. Double well potential

In this section trajectories are computed using only a
small time step. Such a step is appropriate for the investiga-
tion of rapid barrier crossing. Instead of focusing on the de-
pendence of the solution on the size of the time step@as was
done in sections IV A–IV C#, emphasis is made on the pos-
sibility of multiple solutions.

It was emphasized that the conjugate gradient optimiza-
tion of the Onsager-Machlup action finds thelocalminimum
which is the closest to our initial guess. The OM optimiza-
tion may have numerous solutions for systems with non-
linear potentials. This makes the OM path optimization a
global optimization problem which, in spite of recent ad-
vances in the field, is a complex problem with no general
solution.

Demonstration of path multiplicity is better done by a
simple model system, and for that purpose a double well
potential is considered. It is shown that markedly different
solutions may be obtained by using different initial guesses
to start the optimization.

The details of the calculations are provided in the legend
of figure 9. Two different paths were employed as initial
guesses for the trajectory: The first is a straight line connect-
ing the two end points: R~t!5R~0!22R~0!t/tend
~tend547.86! and the second is the solution of the harmonic
part of the potential R~t!5R~0!cos(2pt/T), where T is the
period of the corresponding classical trajectory. The different

FIG. 8. The time evolution of the x and y coordinates on the Mueller
potential@the same as figures 7~c! and~d!#, this time with a time step of 0.2.
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guesses were optimized and the solutions are presented in
figure 9. Which of the different optimized paths is correct, or
more correct? One possible approach is to examine the value
of the action. The value of the action for the classical trajec-
tory is 1028 while the value of the action of the second
trajectory is 2.4. Hence, the classical path is to be preferred.

The path with the lower value of the action is the clas-
sical Newtonian trajectory, however, the other trajectory is
meaningful too. It is a trajectory that is trapped in one well
and is provided with the required additional energy to pass
the barrier by the ‘‘errors’’ in the solution. Alternative inter-
pretation follows the Langevin equation in which the errors
are associated with the random force and the fluctuations of
the environment that ‘‘kick’’ the system over the barrier. If
the time step is large, the accuracy is reduced and the total
energy is not known precisely, it becomes more difficult to
distinguish between the two solutions and both trajectories
are possible. Of course, ifs2 is very small only the classical
trajectory will have significant probability

E. Alanine dipeptide

The last numerical example considered is of a larger
system: a conformational transition in alanine dipeptide. The
system includes 12 particles and therefore 36 degrees of free-
dom ~all the CHn groups are modeled as spheres!. The sig-
nificant increase in complexity and the existence of multi-
time scales in the system is, of course, of prime interest. The
use ~and the need! of an additional path optimization tool
~the multigrid scheme21! will be demonstrated. In spite of the
additional complexity, alanine dipeptide is simple enough, so
detailed analysis of the characteristics of the solution can be
made.

In figure 10 we show a plot of alanine dipeptide. It in-
cludes two blocked amide planes and a single side
chain—CH3 ~Cb! branched from the Ca position. There are
two soft degrees of freedom in this molecule that determine
its conformational state. These are thef and thec dihedral
angles~figure 10!. The rest of the internal degrees of free-
dom are relatively rigid, making only small deviations from
their equilibrium values.

It is therefore useful to consider a two dimensional pro-
jection of the energy surface of this molecule. A two dimen-
sional adiabatic energy map~figure 11! is constructed. The

FIG. 9. The minimization of paths using the OM action for the double well
potential U~R!51/2~R21A exp(2aR2)2B), where B5 1/a @log(aA)11],
A580 and a50.04375. The boundary conditions are such that
R~0!52R~tend!, with R~0! satisfying U~R~0!!520 and Q~0!5Q~tend!50.
The barrier height of the potential defined above is about 14.3. The dotted
line is the solution obtained from a straight line interpolation between the
end points as an initial guess. The solid line is the optimized solution when
the initial guess is R~t!5R~0!cos(2pt/T), where T is the period of the New-
tonian trajectory~'8.7!. In both cases the path has 500 intermediate points,
the mass is one and the total length of time is 5.5 periods. The correspond-
ing actions were 1028 ~solid line! and 2.4~dotted line!.

FIG. 10. Sticks and balls picture of alanine dipeptide. Note the two soft
degrees of freedom—f and c—that determine the conformation of the
chain backbone.

FIG. 11.f andc adiabatic energy map of alanine dipeptide. For each fixed
value of the pair of the torsion angles the energies of the rest of the degrees
of freedom are fully minimized. The energies are in kcal/mol. Here we
focused on the computations of trajectories from the equatorial conforma-
tion ~the minimum atf567 andc5255! to the axial conformation~the
minimum atf5284 andc568!.
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adiabatic map is generated by minimizing the energy for all
degrees of freedom excluding the fixedf andc. The corre-
sponding energies are displayed on a contour plot. We com-
pute the trajectory using~of course! all the degrees of free-
dom, however, it is convenient to represent the trajectory and
to analyze it using the two degrees of freedom that dominate
the motions.

All the computations~including the optimization of the
OM action! were performed using a modifiedMOIL
program.23 MOIL is a general purpose public domain molecu-
lar dynamics package for biomolecules developed in our
group. It is also a library of routines, that allows easy patch-
ing or addition to the package of a new code. The potential
energy inMOIL is the combination of AMBER24 and OPLS25

implemented in a reasonably flexible database, making it
possible to add or to modify the energy function. The calcu-
lations were done without van der Waals or electrostatic cut-
offs and with 1–4 factors~8 for van der Waals and 2 for
electrostatic! appropriate for theAMBER/OPLS force field.

Suppose that a molecular dynamics trajectory is com-
puted using a standard integrator such as Verlet.26 If this MD
trajectory is now used to initiate OM computations, are we at
a local minimum of the action? This is a non-trivial question
since in the OM investigations a much larger time step~com-
pared to MD! is employed.

In figure 12 the trajectory computed with the Verlet al-
gorithm ~dotted line! is shown. A typical time step of 1 fs
was used. The bond lengths were fixed using the RATTLE
algorithm.17 It is difficult to increase the time step to more
than 4 fs using standard tools. Significantly larger computa-
tional effort must be devoted to the calculation of asingle
step in time if a largerDt ~in the framework of molecular
dynamics! is desired.18,28

The segment of the trajectory that describes a transition

from the conformation C7 equatorial to C7 axial is of a total
length of 10 ps. The molecular dynamics simulation was
much longer than the above mentioned segment. However,
most of the time the trajectory spent in the C7 equatorial
minimum without executing ‘‘exciting’’ motions.

From the segment of 8.34 ps of the simulation with a
time step of 1 fs, a ‘‘lower resolution’’ trajectory was con-
structed. A single point was picked each 100 fs, creating a
new trajectory with a time step of 0.1 ps. The new set of
structures was given as input to the OM algorithm, and an
optimized value of the action~and an optimal trajectory!
were computed using the conjugate gradient procedure. The
conjugate gradient is an effective algorithm to find the near-
est local minimum.

In figure 12 we compare the optimized trajectory~solid
line! with the original. We show the time dependence of the
soft degrees of freedom—f andc. In spite of the increase in
the time step by a factor of 100, the resulting trajectory is
remarkably similar to the original. Of course, smaller time
steps provide even better results. One factor that works for us
in this case is the clear separation of time scales between the
rest of the degrees of freedom and the soft degrees of free-
dom. The short time step is essential to follow the vibrations
of the bonds. However, it cannot be the whole story since
SHAKE or RATTLE, that forces bonds to their equilibrium
positions, do not support a step increase to more than a factor
of 2 or 3. The OM path remains in the neighborhood of the
exact solution for significantly larger time steps than ordi-
nary MD of biomolecules can accommodate.

The dipeptide system includes many modes that differ
considerably in their time scales. Bond stretching~femtosec-
onds! is the most rapid and the conformational transitions of
the dihedral angles the slowest. The last are not only slow
but also rare. As was argued in section III that dealt with the
numerical algorithm, to find a good optimum for a system
with multiple time scales, multigrid approach is a very sug-
gestive technique. The principles of the multigrid technique
were briefly described in section III and can also be found
elsewhere.21 Therefore, we restrict the discussion below to a
report of the optimization parameters and the results.

In figure 13 we show a direct minimization of a 5 ps OM
trajectory between the C7 equatorial and the C7 axial confor-
mations. The calculation setup is described in the legend.
The shape of the trajectory on the two dimensional energy
surface seems quite ordinary for the trained eye of the mo-
lecular dynamicist. This remains so when examining the time
dependence of the soft degrees of freedom@figure 13~b!#.

Hence even in the first trial~without multigrid optimiza-
tion!, a reasonable description of the motion of the soft de-
grees of freedom is obtained. However, the value of the po-
tential energy as a function of time reveals that the
configurations sampled are not fully relaxed since the energy
reaches high values~see figure 16, dotted line!. We therefore
continue with the application of multigrid relaxation.

To improve the present trajectory the so-called ‘‘V
cycle’’ procedure of the multigrid algorithm21 was em-
ployed. The first run was done with 401 grid points with a
time step of 0.0125 ps~figure 13!. In the next step of the

FIG. 12. The dihedral angles—f andc—as a function of time. The dotted
line is a 10 ps segment of a molecular dynamics trajectory. The trajectory,
computed with a 1 fstime step, jumps from the equatorial conformation to
the axial conformation. The RATTLE algorithm~Ref. 17! was employed to
fix the bond length during the MD simulation. The solid line is an optimized
Onsager-Machlup~OM! trajectory. For the initial guess of the OM optimi-
zation we used structures from the molecular dynamics trajectory separated
by 0.1 ps. The final optimized result is similar to the original, in spite of the
significantly larger time step that was employed in the OM calculation.
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optimization we doubled the time step to 0.0250 ps maintain-
ing the same length of trajectory. The total number of points
was therefore reduced to 201. Using each second point of the
previous optimized solution, we initiated a new optimization
with lower time resolution that provided us with a qualita-
tively similar trajectory.

We continued to the next cycles of 101 and 51 grid
points, re-optimizing in each time resolution the final path of
the previous run. The optimization for each size of the grid is
continued~in general! until the convergence is significantly
slowed down. The last trajectory of the series of computa-
tions was the lower part of the ‘‘V’’ cycle. We then returned
to the upper resolution of 401 points by increasing the time
step in a similar series of optimizations. The same sequence
of calculations as the one employed in the forward direction
was used.

An important lesson from the cycle~beside the improve-
ment in the final results described below! is that the qualita-
tive shape of the trajectory and the motion of the soft degrees
of freedom is reasonably well reproduced even with only 51
grid points~figure 14!.

In figure 16, we show all the potential energies of the
paths at the extrema of the ‘‘V’’ cycle of the multigrid opti-
mization. The significant improvement and the success of the

multigrid procedure are apparent. The new trajectory has po-
tential energy variations comparable to the barrier height
separating the two minima in the map. The application of
multiple grids also reduced the value of the S from 2.5 to 1.6
~compare figure 13 and figure 15!. S is in the usualMOIL
units of distance in angstrom, masses in gram/mol and en-
ergy in kcal/mol. We therefore note that the relative variation
in S can be small. It is therefore useful to examine the po-
tential energy along the trajectory as well, selecting paths
that are energetically less demanding.

In figures 14 and 15 we have shown the trajectory of the
slow coordinates—f andc—which remains essentially un-
changed after the last modifications of the time step.

This summarizes the numerical examples of this paper.
The examples aim to demonstrate that the computations are
doable, but also include non-trivial difficulties that must be
considered. The most important problem is of global optimi-
zation of the path. Nevertheless, we showed the significant
stability of the algorithm and its relative accuracy for mo-
tions with time scales significantly longer than the numerical
time step.

FIG. 13. Minimization of the OM trajectory from the equatorial to the axial
conformation of alanine dipeptide. 401 grid points were employed. The time
step was 0.0125 ps and the total time was 5.0 ps. The final action was 2.5.
~a! The trajectory on the adiabatic map.~b! The time evolution of the two
relevant backbone torsion angles. This run was the first in the multigrid
cycle.

FIG. 14. The same as figure 13, but this time at the lowest corner of the
multigrid ‘‘V’’ ~i.e., the lowest resolution representation that was employed
in the multigrid cycle!. The time step is 0.1 ps and only 51 grid points are
employed. Note the significant similarity of the time evolution of thef and
thec dihedral angles in figures 14~b!, 13~b!, and 15~b!, demonstrating that
the time evolution of the slow degrees of freedom is affected only slightly
by the different resolutions employed in the calculations.
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V. CONCLUSIONS AND FINAL REMARKS

We proposed a new technique for calculating molecular
dynamics trajectories. The computational method proposed
is different from ordinary molecular dynamics integrators in
several respects. First, we consider boundary value problems

instead of initial value problems. That is, the two end points
and the length of the trajectory must be determined prior to
the calculations. Second, we do not solve differential equa-
tions, rather we optimize a target function which is a discrete
representation of the Onsager-Machlup action. It is a func-
tional of the whole trajectory.

In assessing the numerical properties of the new algo-
rithm we note that for the same accuracy the present ap-
proach is significantly more expensive than ordinary molecu-
lar dynamics. This is since the complete trajectory is
considered at once, in contrast to ordinary MD in which a
single structure is followed at a time. In this paper we fo-
cused on the comparison of the OM with MD and detailed
analysis of the solution accuracy. We did not exploit yet the
possibilities of pursuing very long time dynamics and fo-
cused instead on times that are covered by both, the MD and
the OM protocols.

The advantage of the OM protocol is the systematic and
the stable way in which the time step can be increased. Mak-
ing the time step larger results in filtering out the motions
with periods faster than the time step. The filtering maintains
the stability of the solution for almostan arbitrary time step.
An estimate for the magnitude of the errors~see Appendix
A! suggests that they are approximately bound by the ampli-
tude of the rapid motions that were factored out. An alterna-
tive way to estimate the errors and the action ‘‘width’’—
s—~Appendix B! can be therefore based on the prior knowl-
edge of the number of fast oscillations in the system~e.g.,
from normal mode analysis!. Accordingly, a plausible ap-
proach of estimating the missing part of the trajectory is to
assume that the amplitudes of the fast modes can be com-
puted in the harmonic approximation, assuming a state of
equilibrium.

Where do we expect the OM action to be more useful
and where do we expect it to fail? The answer to the above
question is related to the characteristics and the relative num-
ber of the fast modes. The OM filters out oscillations with
periods smaller than the time step. It is necessary to keep the
time step sufficiently short, so that the relevant motions in
the system will remain. This is perhaps one of the reasons
that makes the OM action optimization an attractive method
for proteins. The very broad range of different time scales
observed in protein dynamics1 makes the systematic screen-
ing protocol a potentially useful approach. For proteins, it is
anticipated that time steps different by orders of magnitude
could be employed and significant motions will remain.

We have preliminary and encouraging results for the
R→T transition in hemoglobin and the folding of C peptide.
The optimization of trajectories for larger systems corre-
sponds~of course! to a larger minimization problem. These
are nevertheless doable calculations since the extensive
range of time scales in proteins makes it possible to use a
larger time step, reducing the system dimensionality and
making it possible to focus on the slow motions that remain.
Conformational transitions in C peptide were investigated
using 1 ns time step. The time step employed in the study of
the R→T transition in hemoglobin was 100 ns.

As a rule of thumb, many degrees of freedom and many

FIG. 15. The same as figures 13 and 14 but this time for the upper right
corner of the ‘‘V’’ cycle that was used in the multigrid calculations. The
time step is the same as in figure~13!, i.e., 0.0125 ps.

FIG. 16. The potential energy function~in kcal/mol! as a function of time
for the paths in figures 13~401 grid points—dotted line!, 14 ~51 grid
points—dashed line! and 15~401 grid points—solid line!. The paths are the
solution at the vertices of the ‘‘V’’ multigrid scheme. Note that in addition
to the above three runs we also employed computations with 201 and 101
points.
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modes are an advantage in an attempt to cover the missing
motions. This is evident already in the dipeptide in which the
f andc movements are well described even with only 51
grid points ~Dt50.1 ps!. In that sense, the examples pre-
sented in here are more demanding. Of course, to test differ-
ent features of the new technique it is useful to start with
simple model systems, as we did. Nevertheless, the present
methodology is both more suitable and more useful for much
larger systems. The overall success of the examples in repro-
ducing essential features of the dynamics,in small systems,
is therefore encouraging.

The double well system is one of the more stringent tests
of the proposed protocol. There are essentially two rapid
motions, one for the motion in the well and the second is for
the transition above the barrier. Once the time step is larger
than these two rapid motions the system is frozen in one of
the wells and ‘‘tunnels’’~in a single step! to the other mini-
mum. It is not possible to obtain a detailed picture of the
dynamics unless a small time step is employed. This effect
was demonstrated for motions on the Mueller potential.

Nevertheless, as was mentioned in the numerical ex-
amples, the OM protocol has another feature that is missing
from ordinary molecular dynamics. The OM trajectories are
computed between fixed end points. Hence, it is possible to
force the system to execute certain movements which are
significantly more difficult to sample using ordinary molecu-
lar dynamics. For example,~going back to the barrier cross-
ing problem mentioned above! it is possible to use two end
points, one before and one after the barrier, and to compute a
crossing trajectory. Of course due to the rapid nature of the
motions it will be necessary to employ a small time step.
However, the probability of getting such a crossing trajectory
will be one in the OM protocol and may be practically zero
in MD.

Finally we add to the conclusions two more comments
that were not discussed in detail in the present work but have
significant implications on future work.

This paper is focused on the computations of individual
trajectories. Nevertheless, we do appreciate the need to av-
erage over an ensemble of trajectories in order to get an
estimate of the conditional probability@equation ~8!# and
eventually the rate. To compute thermal properties of an en-
semble of trajectories, the weight of the trajectory should
include the Boltzmann factor of the initial coordinates, i.e.,

P~R~ti!,R~tf!;tf2ti!5P~R~ti!!P~R~ti!uR~tf!;tf2ti!

} exp~2Ei /kBT!exp~2 S/2s2!, ~24!

where P~R~ti!,R~tf!;tf2ti! is the joint probability of observing
R~ti! at ti andR~tf! at tf ~note the difference between the joint
and the conditional probability which we used before!.
P~R~ti!! is the probability of observing the initial conforma-
tion and Ei is its total energy~including the kinetic energy!.
Hence, to maximize the weight of the trajectories it is impor-
tant to seek the paths with low initial energies in addition to
the lowest possible S.

On the computational side we also note that the algo-
rithm is simple to parallelize.27 The path is divided between

the processors and the communication needed is for the es-
timates of time derivatives. The communication required is
very small and is restricted to nearest neighbors only. We
have a code working on a cluster of workstations using PVM
and a code running on the IBM SP2 using MPI.29 In both
cases, the communication overhead was found to be negli-
gible. Parallel and distributed computers are therefore ex-
tremely efficient for OM computations. These advanced
computers are considerably less effective for ordinary MD
computations in which the forces are parallelized. There, the
communication overhead is more significant. Moreover, the
performance of MD degrades very rapidly with the number
of processors, making it impossible to take advantage of
massively parallel or distributed machines.
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APPENDIX A: AN ESTIMATE OF THE ACTION
‘‘WIDTH’’— s

It was argued that each trajectory has a weight of
exp(2S/2s2). Finding the minimum of S is independent of
the value ofs2, which is a constant. However, in order to
assess the accuracy of the computed trajectory and to com-
pute the conditional probability it is useful to have an esti-
mate of whats2 might be.

In many respects this is still an open problem: One em-
pirical approach to this problem is presented here. The nu-
merical solution for the harmonic oscillator is considered. As
the time step is increased, the computed optimal trajectory
becomes different from the exact trajectory~see figure 3!.

Let us denote the numerical solution for the path by
Rnum~t! and the exact solution byRexa~t!. We further denote
by Snum and Sexa the numerical approximation and the exact
value of S, respectively. Snum is at a minimum atRnum~t! and
Sexa is at a minimum atRexa~t!. Typically, only Snum and
Rnum~t! are available, but for the special case of the harmonic
oscillator we have both. It is therefore possible to ask: What
should be the value ofs2, such that the exact trajectory
Rexa~t! will have a weight of 1/e when substituted into
Snum, i.e., the action width is defined as 2s2

5~Snum@Rexa~t!#2Sexa@Rexa~t!#!. Since Sexa@Rexa~t!# is zero for
the harmonic oscillator, we have 2s25Snum@Rexa~t!#. In fig-
ure 17 we estimate the value of the action width as a function
of the time step. Since the solution becomes flat for time
steps above a certain range, the error becomes constant
above that value.

The idea is to use the asymptotic value of the errors in
estimating how the trajectory is affected and the validity of
the approximations. Clearly, motions with typical periods
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faster than the time step are missing. These faster motions
will be added as ‘‘noise’’ once the width of the action is
taken into account. The amplitude of the fast motions, to be
substituted in Snum@Rexa~t!# can be estimated in several ways.
We first note that Snum@Rexa~t!# can be expanded in the neigh-
borhood ofRnum~t!, yielding

Snum@Rexa~t!#' 1/2~Rexa~t!2Rnum~t!!@d2S/dRnum
2 ~t!#

3~Rexa~t!2Rnum~t!!. ~A1!

Hence, by comparing the difference between exact trajecto-
ries ~i.e., usual MD that includes fast modes! with trajecto-
ries for which the fast modes were eliminated, it is possible
to obtain an idea of how far we are from the exact trajectory.
This approach is feasible since it is not difficult to get rea-
sonable statistics for fast modes.

Another way of estimating the contribution of the fast
degrees of freedom is via normal mode analysis and formula
~A1!. Normal mode analysis provides the period of the mo-
tion in addition to the coordinate. Therefore, for a given time
step we can immediately identify which are the modes that
will survive, and which of the modes will be eliminated. We
assume that the fast~and frozen! modes add to the errors in
the OM procedure amplitudes—A—that can be estimated
from thermal consideration. In one dimension we have
1/2Mv2A25kBT.

APPENDIX B: BEYOND THE CONSTANT FORCE
APPROXIMATION FOR THE SHORT TIME
PROPAGATOR

Here a formula for the short time OM action is provided
that includes the first order correction to the constant force
approximation. The starting point is the exact expression of
S @equation~8b!#:

S5E
0

d t

~MI d2R/dt21dU/dR!2dt

5E
0

d t

~MI d2R/dt2!2dt12E
0

dt

~MI d2R/dt2!~dU/dR!dt

1E
0

d t

~dU/dR!2dt5I01I11I2, ~B1!

where I0 was already computed analytically in the body of
the paper. Therefore, the two remaining integrals are the fo-
cus of this appendix. The relevant variables are now defined.
For completeness some of the definitions that were given in
the body of the paper are repeated. The path is separated into
a parabolic componentR0 ~which is used to estimate the
second derivatives in time! and a sine series that accounts for
the difference between the exact solutionR and R0. This
difference is denoted byR1

R5R01R1; R05a1bt11/2ct2;

R15(
k
dk sin~vkt!; ~B2!

vk5pk/d t,

where the relation between the vectorsa, b and c and the
coordinate vectorsRi21, Ri andRi11 is given in formulae
~19! and~20!. The forces are approximated in the time inter-
val of interest by

dU/dR'dU/dRi 1~d2U/dRi
2 !~R2Ri![a1bI ~R01R1!,

~B3!

a5 dU/dRi 2~d2U/dRi
2
…Ri ; bI 5d2U/dRi

2.

Note thata andbI are a time independent vector and a time
independent matrix, respectively. They are evaluated at the
intermediate coordinateRi . All that is left at present is to
substitute the expressions in I11I2, and to integrate the ex-
pressions. Here is the final lengthy result

FIG. 17. An example for the estimate of the errors in the evaluation of the
Onsager-Machlup action for the harmonic oscillator. The error is computed
as a function of the time step—Dt—which is used in the numerical optimi-
zation of the trajectory. The time is dimensionless and denoted by the num-
ber of points per cycle. The error is normalized per cycle. Note that the error
is bound and is stabilized near an asymptotic value. Note also the singular
points of significantly larger errors. They correspond to the accidental
matching of the time interval and the extrema of the cycle of the oscillator.
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I11I252cMI adt12cMI bI ~adt1 bdt2/21 cdt3/6!18cMb (
k odd

dk /vk1(
k

~21!kdkMbvkdt@2b1cdt#2(
k
dkMbdkvk

2dt1a2dt

12abI @adt1 1/2bdt211/6cdt322(
k odd

dk /vk#1abI bIadt1abbbdt21abbctdt3/31bbbbdt3/31bbbcdt4/4

1cbbcdt5/2014(
k odd

abbdk/vk22(
k
bbbdk/vk~21!kdt24(

k odd
cbbdk/vk

32(
k
cbbdk/vk~21!kdt2

11/2(
k
dkbbdkdt. ~B4!

The notation that a vector on the left of a matrix is a row
vector is used and we further employed the symmetry of the
matrices.

The expression is quadratic indk . It is therefore possible
to obtain a set of linear equations fordk after differentiating
the approximate S with respect to these variables. The opti-
mal dk will no longer be identically zero. This expression is
likely to be useful in analytical estimates of the conditional
probability. There, an approximate summation of all paths
~integration over all thedk! is of significant interest.

However, we did not employ the above expression in the
present work since it is expensive to compute and does not
suggest a computational advantage for the study of a single
optimal trajectory.
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