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A brief history is presented, outlining the development of rate theory during the past century.
Starting from Arrhenius #Z. Phys. Chem. 4, 226 !1889"$, we follow especially the formulation of
transition state theory by Wigner #Z. Phys. Chem. Abt. B 19, 203 !1932"$ and Eyring #J. Chem.
Phys. 3, 107 !1935"$. Transition state theory !TST" made it possible to obtain quick estimates for
reaction rates for a broad variety of processes even during the days when sophisticated computers
were not available. Arrhenius’ suggestion that a transition state exists which is intermediate between
reactants and products was central to the development of rate theory. Although Wigner gave an
abstract definition of the transition state as a surface of minimal unidirectional flux, it took almost
half of a century until the transition state was precisely defined by Pechukas #Dynamics of Molecu-
lar Collisions B, edited by W. H. Miller !Plenum, New York, 1976"$, but even this only in the realm
of classical mechanics. Eyring, considered by many to be the father of TST, never resolved the
question as to the definition of the activation energy for which Arrhenius became famous. In 1978,
Chandler #J. Chem. Phys. 68, 2959 !1978"$ finally showed that especially when considering con-
densed phases, the activation energy is a free energy, it is the barrier height in the potential of mean
force felt by the reacting system. Parallel to the development of rate theory in the chemistry
community, Kramers published in 1940 #Physica !Amsterdam" 7, 284 !1940"$ a seminal paper on
the relation between Einstein’s theory of Brownian motion #Einstein, Ann. Phys. 17, 549 !1905"$
and rate theory. Kramers’ paper provided a solution for the effect of friction on reaction rates but
left us also with some challenges. He could not derive a uniform expression for the rate, valid for
all values of the friction coefficient, known as the Kramers turnover problem. He also did not
establish the connection between his approach and the TST developed by the chemistry community.
For many years, Kramers’ theory was considered as providing a dynamic correction to the thermo-
dynamic TST. Both of these questions were resolved in the 1980s when Pollak #J. Chem. Phys. 85,
865 !1986"$ showed that Kramers’ expression in the moderate to strong friction regime could be
derived from TST, provided that the bath, which is the source of the friction, is handled at the same
level as the system which is observed. This then led to the Mel’nikov–Pollak–Grabert–Hänggi
#Mel’nikov and Meshkov, J. Chem. Phys. 85, 1018 !1986"; Pollak, Grabert, and Hänggi, ibid. 91,
4073 !1989"$ solution of the turnover problem posed by Kramers. Although classical rate theory
reached a high level of maturity, its quantum analog leaves the theorist with serious challenges to
this very day. As noted by Wigner #Trans. Faraday Soc. 34, 29 !1938"$, TST is an inherently
classical theory. A definite quantum TST has not been formulated to date although some very useful
approximate quantum rate theories have been invented. The successes and challenges facing quan-
tum rate theory are outlined. An open problem which is being investigated intensively is rate theory
away from equilibrium. TST is no longer valid and cannot even serve as a conceptual guide for
understanding the critical factors which determine rates away from equilibrium. The nonequilib-
rium quantum theory is even less well developed than the classical, and suffers from the fact that
even today, we do not know how to solve the real time quantum dynamics for systems with “many”
degrees of freedom. © 2005 American Institute of Physics. #DOI: 10.1063/1.1858782$

Rate theory provides the relevant information on the
long-time behavior of systems with different metastable
states and therefore is important for the understanding of
many different physical, chemical, biological, and techni-
cal processes. Einstein indirectly contributed to this
theory by clarifying the nature of Brownian motion as
being caused by the thermal agitation of surrounding
molecules on an immersed small particle. Kramers later

pointed out that the thermally activated escape from a
metastable state is nothing else but the Brownian motion
of a fictitious particle along a reaction coordinate leading
from an initial to a final locally stable state. In order to
overcome the energetic barrier separating the two states,
the particle has to “borrow” energy from its surround-
ings, an extremely rare event if as is usually the case the
activation energy is much larger than the thermal energy.
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So, many attempts will take place until the particle has
overcome the barrier separating the two states. During
these many unsuccessful events, the particle completely
loses any memory on how it had come to its initial state.
Due to this loss of memory, the waiting time in the initial
well will be random with an exponential distribution
whose average coincides with the inverse of the decay
rate. In this article the historical development of rate
theory is outlined, the concepts are discussed, and present
day generalizations to quantum nonequilibrium systems
are presented. Our review ends with a brief summary of
some challenges facing rate theory which remain open
even a century after Einstein’s seminal paper.

I. RATE THEORY IN THE FIRST HALF OF THE 20TH
CENTURY: ARRHENIUS, WIGNER, EYRING
AND KRAMERS
A. Arrhenius and activated molecules

The father of reaction rate theory is Arrhenius who in his
famous 1889 paper1 investigated the temperature dependence
of the rates of inversion of sugar in the presence of acids. As
noted by Hänggi et al.,2 Arrhenius himself cites van’t Hoff3
as the person who suggested an e−A/T temperature depen-
dence of reaction rates. However, Arrhenius is the father of
rate theory since he postulated that this relationship indicates
the existence of an “activated sugar” whose concentration is
proportional to the total concentration of sugar, but is expo-
nentially temperature dependent.

But perhaps there is another reason why Arrhenius is so
highly respected by the physical chemistry community. In
1911 he traveled to the United States and gave there a series
of lectures, summarized in his book Theories of Solutions.4
In the Introduction he made the following observations:
“Chemistry works with an enormous number of substances,
but cares only for some few of their properties; it is an ex-
tensive science. Physics on the other hand works with rather
few substances, such as mercury, water, alcohol, glass, air
but analyzes the experimental results very thoroughly; it is
an intensive science. Physical chemistry is the child of these
two sciences; it has inherited the extensive character from
chemistry…it has its profound quantitative character from
the science of physics.” He ends his Introduction by noting
that, “The theoretical side of physical chemistry is and will
probably remain the dominant one.”

It is this theoretical side which lies at the heart of this
review. We will try briefly to follow the history of the devel-
opment of rate theory in chemistry and physics, its impact on
present day science, and its prospect for the 21st century—is
there still anything that can be added to it?

B. Wigner and Eyring: The transition state method

Arrhenius’ idea of an activated intermediate was ampli-
fied upon by a number of authors during the next 35 years.
Christiansen and Kramers5 were able to provide a rationale
for the Arrhenius form based on the kinetic theory of gases.
They realized already in 1923 that the activation energy
could be understood by assuming that a minimum amount of
energy is needed before reaction could occur. The probability

for attaining this energy is given by the canonical distribu-
tion and thus one obtains the Arrhenius factor. They then
provided a heuristic estimate for the magnitude of the
prefactor.

In 1935, Eyring published a paper titled “The Activated
Complex in Chemical Reactions.”6 By this time, it was well
established that reaction rates !k" should be written in the
form

k = !e−E/kBT, !1.1"

where ! is a prefactor with the dimensions of 1 /s for unimo-
lecular reactions and 1/ !s ·cm3" for bimolecular reactions.
Eyring proposed a method by which one could calculate the
“absolute reaction rate.” Eyring, though a devout Mormon,
probably did not really mean “absolute” in the divine sense,
rather his claim to fame at this point was that he wrote down
a formula for the rate which allowed one to estimate the
prefactor in the rate expression. While most previous works
dealt with the relative rates of reactions, in which the
prefactor would be eliminated, Eyring gave a heuristic deri-
vation of an expression for the prefactor based on the as-
sumption of an equilibrium between the activated complex
and reactants. To obtain the time constant, he postulated, that
at the saddle point, any quantum state perpendicular to the
reaction coordinate reacts with the same universal time con-
stant kBT /2"#. The rate is then given by the product of this
universal time constant with the ratio of the partition func-
tion of the activated complex !which has one degree of free-
dom less than the reactants" to the partition function of the
reactants. Eyring’s formulation, in terms of partition func-
tions allowed a heuristic quantum mechanical formulation
for the rate constant and indeed in his 1935 paper he used
quantum mechanical partition functions.6

Noteworthy also is the work of Farkas7 and Szilard !who
was credited by Farkas, but a specific citation was not given"
who realized and implemented the flux over population defi-
nition of the rate constant. This was then picked up by Pelzer
and Wigner in their 1932 paper8 in which they estimated the
rate of conversion of parahydrogen into normal hydrogen. In
this very early paper one may find all the elements of much
more sophisticated work which abounded in the second half
of the 20th century. They adapt the Eyring–Polanyi
representation9 of the ground Born–Oppenheimer potential
energy surface for the motion of the nuclei, even showing a
fictitious trajectory leading from reactants to products. They
estimate the effect of electronically nonadiabatic interactions
and show that they are negligible.

To compute the reaction rate, they use a thermal equilib-
rium distribution in the vicinity of the saddle point of the
potential energy surface and estimate the unidirectional clas-
sical flux in the direction from reactants to products. Already
here, they note that they ignore the possibility of recrossings
of the saddle point, pointing out that their probability at room
temperature would be rather small. To get the rate they use
the flux over population method after harmonically expand-
ing the potential energy surface about the saddle point. The
Pelzer and Wigner paper8 is the very first use of transition
state theory to estimate reaction rates. It is however written
in a rather specific form, as applied to the hydrogen ex-
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change reaction. Eyring’s later paper of 19356 provides gen-
eral formulas which were then applied to many different ac-
tivated reactions.

In 1932 Wigner10 made an additional seminal contribu-
tion to rate theory by providing an estimate for the tunneling
contribution to the thermal flux of particles crossing a bar-
rier. Using the same parabolic barrier expansion as in the
work with Pelzer and his recently formulated quantum dis-
tribution function in phase space, he derives a series in #2 for
the thermal tunneling corrections. His derivation is heuristic,
he uses quantum mechanics for the thermal density of par-
ticles but treats the motion across the barrier as classical.

The competition between Wigner and Eyring seems to
have reached a head at a Faraday discussion, the papers of
which were published in 1938. Wigner11 and Eyring12 had
back-to-back papers; Wigner’s was titled “The Transition
State Method,” Eyring used “The Theory of Aboslute Reac-
tion Rates.” Wigner notes here that the transition state
method is inherently a classical theory, since the uncertainty
principle forbids the simultaneous determination of a divid-
ing surface and the sign of the momentum across the surface.
Eyring ignores this, and uses his heuristic thermodynamic
formulation within a quantum mechanical context, applying
the theory to the reaction of NO with O2.

One of the most interesting aspects of this Faraday meet-
ing was the emerging ambiguity with respect to the definition
of the “activated complex.” In Wigner’s approach it is de-
fined through the dividing surface. However, when using
equilibrium thermodynamics as a basis for the theory, ambi-
guities arise. Evans13 in his paper titled “Thermodynamical
Treatment of the Transition State” defines it as “The least
probable configuration along the reaction path” but does not
really define this probability. Guggenheim and Weiss in their
paper “The Application of Equilibrium Theory to Reaction
Kinetics”14 are very forthcoming: “We are not always quite
sure whether the expression the activated complex refers to
A! !an energetic molecule" or A* !a reacting molecule" or to
something intermediate between the two.”

This ambiguity continues for three more decades. In a
symposium held in Sheffield, in April 1962 a lively discus-
sion takes place between G. Porter and Eyring.15 Porter asks:
“May we begin by making sure that we know what we are
talking about? In the papers presented at this
meeting…potential-energy and free energy maxima are used
rather indiscriminately to define the transition state…. Would
Professor Eyring give us a rigorous definition to the transi-
tion state?” Eyring’s answer is “the concept of an activated
complex…provides us with the same theoretical tools for
discussing reaction kinetics that have been so successfully
used in discussing the equilibrium constants. The current lit-
erature is an eloquent testimonial to the fecundity of the
concept.”

It is noteworthy, that this kind of discussion did not arise
through Wigner’s work. Wigner’s approach was based on
classical mechanics. Early on, Wigner realized that classical
transition state theory provides an upper bound for the clas-
sical canonical net flux going from reactants to products. In
his 1937 paper16 he used this property to derive an upper
bound to the rate of association reactions, using a dividing

surface in energy rather than in configuration space. The up-
per bound leads to the variational property, which says that
the best dividing surface is that which minimizes the unidi-
rectional flux from reactants to products. With this definition,
there is no ambiguity. The classical formulas for estimating
this unidirectional flux are identical to the classical limit of
the formulas used by Eyring and the chemistry community,
this is not an accident, we remember that Pelzer and Wigner8
had already given the foundations for the transition state
theory !TST" method in their 1932 paper and that Eyring
made sure that his formulation would correctly reduce to
theirs. Wigner’s interest in the TST method waned after
1938. In a personal meeting with him in the early 1980s, he
showed no further interest in the issue.

C. Kramers–Brownian motion in a field of force

Kramers, whose earlier paper on rate theory was with
Christiansen5 as mentioned above, published a seminal paper
of his own in 1940 titled “Brownian Motion in a Field of
Force and the Diffusion Model of Chemical Reactions,”17
which may be thought of as the direct descendent of Ein-
stein’s famous paper of 1905. Although he does not provide
a citation to Einstein’s work18 he does note, “A theory of
Brownian motion on the Einstein pattern can be set up…”
under appropriate conditions. Using the Langevin equation
as a model in which a particle is moving under the influence
of a field of force and a frictional force characterized by a
damping coefficient $ he derives a Fokker–Planck equation
in phase space !known also as the Kramers equation" for the
motion.

Kramers then proceeds to use the flux over population
method to derive the rate of passage over a barrier in three
limits—weak damping, intermediate, and strong damping.
He derives the famous prefactor for the rate which is valid
for the intermediate to strong damping regimes and indepen-
dently a different prefactor, obtained by deriving a diffusion
equation in energy in the underdamped limit, where the re-
action rate is limited by the rate of flow of energy from the
surrounding to the particle. Kramers notes that the interme-
diate friction range is the one in which one obtains the tran-
sition state limit for the rate. His paper also presented a
challenge—deriving a uniform expression for the rate valid
for all values of the friction, known as the turnover problem.

Kramers realized that in the intermediate friction range
his expression for the rate is identical to the ones derived by
Pelzer and Wigner8 and Eyring6 and cites them accordingly.
He considers his derivation as support for the transition state
method, noting that “the transition state method gives results
which are correct, say within ten percent in a rather wide
range of % !friction coefficient" values.” However, Kramers
does not state nor does he derive any formal equivalence
between his results and transition state theory. Moreover, he
refers to the ambiguity of choice of transition state, noting
that for small friction it should be a state of definite energy
while for larger friction it is characterized by the spatial co-
ordinate.

His work which was used by the physics community for
the next four decades or so, evolved independently of the
TST approach to rate theory used by the chemistry commu-
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nity. Kramers’ equation was put to use for solving a variety
of problems, and was even generalized to include quantum
effects such as tunneling by Caldeira and Leggett in 1983.19

Kramers himself considered his model as having no room for
quantum mechanical effects such as tunneling.

Kramers’ rate theory was generalized by a number of
groups mainly in the 1970s and 1980s to systems with more
than one degree of freedom20,21 and to systems with memory
friction in the moderate to strong friction regime22–24 and in
the weak friction regime.25 These authors determined the rate
by a flux over population expression where the flux is con-
sidered as the number of particles per unit time crossing a
conveniently chosen hypersurface in the phase space of the
system that divides between reactants and products. The
population is by definition the density of reactants. The flux
and the population are calculated for a stationary distribution
in which those particles that have escaped from the state of
reactants through the separating hypersurface are replen-
ished. The validity of this method is based on the assumption
that the reinjected particles thermalize before they escape the
next time. This requires that the reactants are separated from
the products by a barrier that is substantially higher than the
thermal energy. The necessary minimal barrier height for the
flux over population method to hold strongly depends on the
considered system. In the presence of a slow degree of free-
dom which is different from the reaction coordinate the true
rates may be strongly suppressed compared to the classical
Kramers–Langer–Grote–Hynes expression.26–29

Another approach that basically gives the same rate ex-
pressions as the flux over population method relies on the
determination of the mean time that the reactants need to
transform into the activated complex, or more precisely, on
the mean first passage time of trajectories leading from the
reactant state to the separating hypersurface. Elaborate
asymptotic methods have been developed30–32 for the calcu-
lation of the mean first passage time.

In passing we note that any inverse mean first passage
time which results from a Fokker–Planck equation can for-
mally be represented as a flux over population expression.2,33

Recently the same result was obtained for mean first passage
times of any time-homogeneous process.34 Yet there are con-
ceptual differences between the two methods. For the mean
first passage time, trajectories arriving at the considered
separating surface are immediately stopped. Consequently
any recrossings of this surface are strictly excluded from the
corresponding formal rate. This is quite in contrast to the
Kramers flux over population expression which allows for
recrossings of the barrier. Absorption only takes place be-
yond the barrier from where it is most likely that reaction
will be completed before any eventual back reaction takes
place. In simple cases, the effect of recrossings can be incor-
porated in the rate resulting from a mean first passage time
by a numerical factor which is 1 /2 if the separating surface
coincides with the so-called stochastic separatrix.35–37 In
these works it was also shown that the stochastic separatrix
coincides with the usual, deterministic separatrix in the limit
of infinitely high barriers. On the other hand, the recrossings
become immaterial for mean first passage times of a separat-

ing surface that is sufficiently close to the final product state.
In general, however, there is no easy way to infer the true
rate from a mean first passage time.38–41

II. RATE THEORY IN THE SECOND HALF OF THE
20TH CENTURY
A. Variational transition state theory

The next milestone in the development of rate theory is
what is termed variational transition state theory !VTST".
Keck42 used the ideas of Marcelin,43 Wigner,10,11,16 and
Horiuti44 and in his definitive review of 196745 presented the
systematic application of the variational property to activated
chemical reactions.

In VTST one varies a surface that divides between reac-
tants and products so as to minimize the unidirectional flux
through the surface. Considering that the rate is given by the
ratio of the reactive flux and the population of reactants one
has that “such a calculation gives an upper limit to the true
reaction rate since passage at least once through the trial
surface is a necessary condition for reaction.” Keck specifi-
cally shows that VTST reduces to Eyring’s TST under appro-
priate conditions. For Keck, as for Wigner and Horiuti, there
is no ambiguity in the definition of the activated complex, it
is the solution of the variational minimization problem. If the
activation energy is large as compared with kBT then natu-
rally this surface will be in the vicinity of the barrier and will
be very close to the surface perpendicular to the unstable
mode at the saddle point.

Keck had an additional contribution. The chemistry
community became interested not only in thermal reaction
rates but also in energy dependent microcanonical rates. For
this purpose, he formulated a statistical theory of reaction
rates46 which could be considered as an adaptation to mo-
lecular dynamics of the statistical theories of nuclear reaction
rates47 developed earlier in the physics community.

Rate theory and especially TST became an object of
quantitative studies with the introduction of computers. In
the early 1960’s people started using them to solve numeri-
cally the classical motion of atoms and molecules evolving
on a single Born–Oppenheimer potential energy surface.
They were able to compute numerically exact reaction rates
and compare them with theory. One of the interesting results
was that microcanonical TST gave energy dependent reac-
tion probabilities that were greater than unity.48 This problem
was actually realized already back in the Faraday discussion
by Hinshelwood.49 It usually does not arise in practice in
activated reactions for which the barrier height is much
larger than kBT, but it is striking when considering microca-
nonical reaction rates.

This difficulty was also resolved through use of VTST.
The variational dividing surface which truly minimizes the
reactive flux will never lead to reaction probabilites that are
greater than unity. Only when one uses a “bad” dividing
surface for which there are many recrossings does one en-
counter the problem. When accounting for recrossings, it was
shown50 that the unidirectional flux across any dividing sur-
face is identical to the average number of recrossings of the
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dividing surface. This average number can of course be
greater than unity. When it is less than unity, it gives a non-
trivial upper bound on the reaction rate.

B. What is the activated complex?

In pioneering work, De Vogelaere and Boudart realized
that periodic orbits play a special role in collinear atom dia-
tom reactions.51 In 1976, Pechukas52 resolved the mystery by
noting that classically, the solution to microcanonical varia-
tional TST is a classical bound state embedded in the con-
tinuum. For a system with N degrees of freedom, it is a phase
space manifold with dimensionality 2& !N−1" and so it is
truly an intermediate entity between reactant and products.
For a system with two degrees of freedom the energy depen-
dent activated complex is a periodic orbit dividing surface,
named a pods,53,54 moving between the two equipotential
energy surfaces. One can also show that the optimal canoni-
cal dividing surface in two degrees of freedom is a trajectory
embedded in the continuum, however it moves on an effec-
tive temperature dependent surface.55

For reactive systems with two degrees of freedom, one
typically finds that for a small energy range above the saddle
point energy, there exists only one pods between reactants
and products. In this energy region, there are no recrossings
and TST is exact.56 When more than one pods exists, the flux
through the pods leads to both upper and lower bounds to the
microcanonical reaction probability.57 The activated complex
is by definition the pods with the minimal unidirectional flux
through it.

The identity of the activation energy in the Arrhenius
expression was resolved in 1978 by Chandler.58 He presented
a formal derivation of the classical transition state theory
expression for the rate of reaction in liquids. Using the re-
gression hypothesis, he identified the rate as the time rate of
change of the reactants density autocorrelation function
which can be expressed as the ratio of the “reactive flux” to
the density of reactants. Then he noted that classical TST
gives an upper bound to the reactive flux and used the uni-
directional flux of TST to obtain the TST expression for the
rate. His innocuous looking one-dimensional TST result is
obtained by hiding the condensed phase in a one-
dimensional potential of mean force. The activation energy
in his expression is now a free energy, answering the 50-
year-old question as to whether it is the energy or the free
energy.

C. Unification of the TS method with Kramers’
Brownian motion theory and solution of the Kramers
turnover problem

Originally, Kramers’ prefactor for the rate was consid-
ered as a dynamic friction induced correction to TST. Only in
1986 was it demonstrated that Kramers’ result for the
moderate-to-strong damping regime may be derived from
classical variational transition state theory.59 Until then, ev-
eryone used the “simple” dividing surface perpendicular to
the system coordinate q. The identity between variational
TST and Kramers’ result was derived by !a" using the well-
known identity of the Langevin equation with a Hamiltonian

in which the system is bilinearly coupled to a harmonic
bath,60 and then !b" allowing the dividing surface to be per-
pendicular to a collective mode reaction coordinate ' which
is a linear combination of the system and harmonic bath
modes. The coefficients of the linear combination are deter-
mined by minimizing the unidirectional flux. For a parabolic
barrier potential this exactly gives the Kramers result. In fact,
the ratio of the “standard” TST result based on use of the
dividing surface perpendicular to the system q coordinate
and Kramers’ expression is just a reflection of the large num-
ber of times that trajectories recross the “standard” dividing
surface. For the parabolic barrier, the optimized collective
mode ' is separable from all other modes, trajectories cross
the surface perpendicular to it only once and VTST is exact.

In the underdamped energy diffusion limited regime, a
variational TST approach shows that the dividing surface is
now in energy space,65 similar to the dividing surface used
by Wigner in his treatment of three-body dissociation.16
However, it is not possible to construct a simple surface
which would totally eliminate the recrossings of this energy
dividing surface.

The observation that in dissipative systems one should
use collective mode reaction coordinates then led to a flurry
of activity, culminating by a two step solution to the old
Kramers’ turnover problem. Mel’nikov and Meshkov
showed how one could derive a uniform expression for the
rate which covered the underdamped-to-moderate damping
limit.66 Pollak, Grabert, and Hänggi then used Mel’nikov and
Meshkov’s formalism but adapted it to the collective mode to
derive an expression which is valid for all values of the
damping as well as memory friction.67

D. Quantum TST?

Another question which remains open even today is that
of a quantum mechanical analog to TST. One can follow
Eyring’s approach6 and replace classical partition functions
with quantum partition functions, make a separable approxi-
mation about the saddle point, and use it to treat the unstable
mode quantum mechanically thus introducing tunneling cor-
rections. This “engineering” approach was used rather suc-
cessfully by Truhlar et al.,68,69 who devised strategies for
calculating quantum reaction rates in rather complex sys-
tems. Although useful in practice, and typically accurate to
within an order of magnitude and often much less, this ap-
proach remains unsatisfying due to its ad hoc nature.

A serious attempt to formulate a quantum mechanical
TST comes in 1974 with the paper of McLafferty and
Pechukas.70 They demonstrated that although one could de-
rive upper bounds of a TST form to the reaction rate the
bounds were not very good even for a free particle or a
parabolic barrier potential. The quantum upper bound prop-
erty remained a topic of active research for the next two
decades71–74 however the quantum upper bounds to the rate
are not as useful as in the classical theory. For deep tunneling
they go as the amplitude of the tunneling, instead of the
amplitude squared and for above barrier activation, they are
not accurate enough to justify the numerical effort needed in
computing them.
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Classical canonical transition state theory relies on ther-
modynamic averages, so that the search for a quantum tran-
sition state theory is really a search for a rate theory which
relies only on imaginary time data. An important milestone
in this direction was the centroid based approximation for the
rate developed during the past 15 years.75–77

In this approach, the rate expression is approximated as a
product of a centroid density containing all closed paths with
centroid at the transition state, multiplied by a thermal veloc-
ity factor. The centroid expression for the rate is exact for a
parabolic barrier. However, due to the intuitive derivation,
centroids do not give upper bounds to the rate and so the
location of the transition state in asymmetric systems can
become quite a problem. The centroid TST has been im-
proved upon by employing centroid dynamics.78,79

The great advantage of the centroid approach is that it
can be computed for many dimensional systems, however,
the lack of a derivation from first principles leaves one with
an uneasy feeling. At this point, the search for a rigorous
expansion, in which the centroid based formulas would be
the first term in a series is open. Just as the Wigner ansatz for
the tunneling correction was a wonderful guess, so is the
centroid approach. But one should keep in mind that even to
date, it is more of an ansatz than a theory.

The centroid approach served though as an impetus for
other approximate thermodynamic rate expressions. Pollak
and Liao80 followed an earlier idea of Voth et al.81 and re-
placed the exact projection operator appearing in the rate
expression with two choices, one being the parabolic barrier
projection operator in phase space, this approximation was
termed by them as quantum TST, the other using classical
mechanics to compute the projection operator.80,82 This
mixed quantum classical theory was rederived by Wang and
coworkers83 and termed the linearized approximation, since
it also comes about from linearization of the action appearing
in the path integral about the classical dynamics. The formal
advantage of these two methods over the centroid method is
that one can at least in principle write down quantum correc-
tion terms. In practice, although demonstrated to be useful
for a one-dimensional symmetric Eckart potential,82 no one
has attempted to compute these correction terms for reac-
tions with two or more degrees of freedom.

A different thermodynamic approach was suggested by
Hansen and Andersen84 who noted that the first few initial
time derivatives of the flux flux correlation function involve
only thermodynamic averages. They used various extrapola-
tion formulas to bridge the gap between the initial time and
final time and thus derive a thermodynamic rate theory. Here
too though, the extrapolation is fraught with danger, and it is
difficult to obtain systematic corrections and convergence to-
ward an exact result.85

In the early 1970s Miller86 showed that semiclassically
the tunneling rate is determined by a periodic trajectory mov-
ing on the upside down potential energy surface, with period
# /kBT. The physics community, rediscovered this same
object87,88 and named it the instanton. In a seminal paper,
Caldeira and Leggett derived the formulas for the instanton
in the case of a particle moving under the influence of dissi-
pation, introduced by coupling the system bilinearly to a har-

monic bath. In fact, for many years, starting with Kramers’
paper of 1940, the physics community was interested in re-
action rates in condensed matter and modeled the “bath” in
terms of the Langevin equation, which had its roots in Ein-
stein’s paper of 1905. It was though only in 1983 that Cal-
deira and Leggett applied the Feynman–Vernon influence
functional approach89 to a quantum system bilinearly
coupled to a harmonic bath to derive an instanton based rate
expression for tunneling in the presence of dissipation. Their
theory became the standard model of quantum friction,
which continues to be a subject of intense study to this very
day due to its applicability as a model for a broad variety of
physical phenomena. In particular, the influence of tempera-
ture and friction on quantum rates has been studied exten-
sively by means of this theory. For a review we refer to
Hänggi et al.2

Originally, the concept of the instanton came from semi-
classics. Only lately Miller and coworkers have managed to
formulate a quantum mechanical object which in the semi-
classical limit reduces to the instanton.90 This quantum me-
chanical instanton turns out to be an extremum of the off
diagonal matrix elements of the Boltzmann operator
%q&e−(H&q!' with respect to the positions q and q!. They then
use the quantum instanton coupled with the short time
Laplace inversion method of Plimak and Pollak91 to obtain a
new rate expression. Although the tests on this quantum in-
stanton theory were rather successful,92 this approach too
suffers from the fact that it is not a theory in the sense of a
set of approximations that converge towards the correct an-
swer.

E. Reactive flux method

One of the central difficulties in computing reaction rates
for large systems is the rare sampling of events that lead to
reaction. Especially if the barrier height is large compared to
kBT the probability of finding an initial condition which will
lead to barrier crossing becomes small and the computational
cost high. To overcome this problem, Chandler58 used On-
sager’s regression hypothesis93 to derive a reactive flux for-
mula whose great advantage was that it provided a technique
in which one could sample the phase space in the vicinity of
the barrier to reaction instead of reactants, thus leading to an
enormous saving in computational effort.94 This approach
later led to more sophisticated methods for identifying the
barriers to reaction in multidimensional systems.95,96 The re-
active flux method which originally was restricted to pro-
cesses with a well-defined velocity, was later also general-
ized to jump and diffusion processes.97

The reactive flux method also served as the basis for the
application of variational TST to condensed phases,29,55,98,99
as the reactive flux is bounded from above by the unidirec-
tional flux. By varying the dividing surface one could im-
prove upon the Kramers–Grote–Hynes estimate of the rate in
the spatial diffusion limit and obtain temperature dependent
corrections.100 The same corrections were also found in the
framework of the Fokker–Planck description of thermally
activated escape.101
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One has to keep in mind though that any meaningful rate
description is based on the assumption that the time scale on
which the reaction takes place must be well separated from
other time scales that describe the relaxation to, say, products
once the separating barrier was crossed, and vice versa to
reactants from the other side of the barrier. The time-scale
separation is determined by the height of the separating bar-
rier as seen from the reactants side. Recently Drozdov and
Tucker102 determined the lowest nonvanishing eigenvalue of
the Fokker–Planck equation and the reactive flux rate in a
numerical study of an overdamped bistable Brownian oscil-
lator. The lowest eigenvalue describes the asymptotic expo-
nential approach to equilibrium and therefore can be identi-
fied with the equilibrium rate constant. If the rate picture
holds, the equilibrium rate should agree with twice the reac-
tive flux rate. For reduced barrier heights )V /kBT smaller
than 5 the deviation exceeds 1% and grows rapidly for lower
barriers. For too low barriers the time scales start to merge
and consequently the reactive flux rate no longer displays a
pronounced plateau as a function of time because the popu-
lation of reactants no longer can be considered as constant. If
the correct time dependence of the reactant population is
included the reactive flux rate converges to a plateau
value.103

F. Numerically exact quantum methods

The short paper by McLafferty and Pechukas70 also pro-
vided the formulation of a precise quantum mechanical ex-
pression for the reactive flux as

Flux = Tr#j!x"P+e−(H$ !2.1"

with j!x" being the standard quantum mechanical current op-
erator. An important construct here is the projection operator
P+ which projects onto the scattering wave functions with
the appropriate boundary conditions. At the same time Miller
was interested in a semiclassical version of reaction rate
theory and transition state theory. He too wrote down a quan-
tum expression for the reactive flux which was identical to
that of Pechukas and McLafferty, and then proceeded to es-
timate it semiclassically.104 It took almost another decade
until in 1983 Miller, Schwartz, and Tromp105 formulated the
exact quantum reaction rate in terms of flux correlation func-
tions, which turned out to be generalizations of Yamamoto’s
expressions for reaction rates106 which were based on linear
response theory. McLafferty and Pechukas70 and Miller and
coworkers105 used the known scattering theory expressions
for the rate and rewrote them as a reactive flux divided by the
density of reactants. It cannot be overstressed that the scat-
tering theory based expression is correct. As discussed be-
low, it has also been adapted to reactions in condensed
phases where the boundary conditions differ from scattering
boundary conditions. The formal proof of the validity of the
flux–flux correlation function formalism for the quantum
!and even classical mechanics" rate of reaction in condensed
phases remains open to date, see also below.

Topaler and Makri,107 in their ground breaking quantum
numerical computations, used the reactive flux methodology
to compute the numerically exact quantum rate in a symmet-
ric double well potential coupled bilinearly to a harmonic

bath using what they called the quasiadiabatic path integral
method. Their computations then served as benchmarks for
many other approximate quantum theories. At the end of the
day, we do not know whether the formal rate expression used
by Topaler and Makri is exact. The reduced barrier height
used in their computations was )V /kBT=5, where we al-
ready know classically that the reactive flux over population
method starts to deviate from the lowest nonzero eigenvalue
of the Kramers equation. Quantum rate theory in condensed
phases remains an open problem.

Enormous progress has been made toward solution of
the scattering dynamics of molecule-molecule collisions. Re-
viewing the molecular scattering theory literature is beyond
the scope of the present review, suffice it to note that the
present day state of the art is a full quantum mechanical
solution for systems with up to seven degrees of freedom.108
The limitation is that even the most sophisticated method
relies on using grids in configuration space and their dimen-
sionality grows exponentially with the number of degrees of
freedom. It is therefore virtually impossible even with
present day computers to go with these methods beyond at
most ten dimensions.

The evident strategy to overcome the dimensionality
problem is to resort to path integral methods. These are pro-
hibitive for real time because of the sign problem, the inte-
grand in the real time path integral is too oscillatory. How-
ever when considering imaginary time path integrals, the
exponent is real and negative and so there is no serious con-
vergence problem. Imaginary time path integrals have been
computed for systems with more than 100 dimensions.109
The natural extension of rate theory was then to attempt to
devise a quantum mechanical framework which would rely
only on imaginary time data. One natural choice is to use the
inverse Laplace transform to get the real time results.110–112
The inverse Laplace transform is though ill behaved, the
noise in the Monte Carlo estimates is typically too large to
allow more than short time inversion and this is just not
sufficient, even when using sophisticated numerical methods
such as maximum entropy inversion.112

G. Rates in nonequilibrium systems

Thermal equilibrium is of eminent importance for the
understanding of many processes in physics and chemistry
but, in many other cases, as for example in living matter,
fluxes of energy and matter prevent a system from approach-
ing a thermal equilibrium state. Time and space dependent
structures may then persist in the asymptotic long-time be-
havior of such a nonequilibrium system. In general, the pres-
ence of fluxes in nonequilibrium systems breaks the micro-
scopic reversibility and consequently these systems do not
obey the principle of detailed balance.93,113 Yet different lo-
cally stable states may coexist. Ubiquitous thermal or possi-
bly also external noise will generally induce transitions be-
tween these states. The determination of the respective
transition rates though is hampered by the fact that the
asymptotic distribution of the system is not known in most
cases due to the lack of detailed balance. Often, numerical
simulations of the stochastic dynamics114,115 of the consid-
ered system are the only possible approach.
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Before discussing some of the available approximate
methods we note that a general distinction can be made be-
tween systems that are driven out of equilibrium by station-
ary fluxes of matter and energy and others on which time-
dependent external forces act preventing the system from
reaching equilibrium. In the first case the system’s dynamics
is still autonomous and, in presence of noise, a stationary
probability distribution will be approached asymptotically at
large times. In the second case, asymptotically, the probabil-
ity distribution will still depend on time. Accordingly, differ-
ent methods are needed to determine transition rates in these
cases.

For autonomous nonequilibrium systems, in principle,
both the flux over population method and the mean first pas-
sage time approach can be used to determine the rate. For
each method, the asymptotic probability distribution is re-
quired, but most often is not known. In particular cases, per-
turbational treatments about known stationary distributions
are feasible.116–119 For weak noise, a singular perturbation
theory30,120,121 which is analogous to WKB theory in quan-
tum mechanics, can be employed to first find the stationary
distribution and then the transition rates. Within this ap-
proach, the stationary probability distribution contains an ex-
ponentially leading part exp(−*!x" /+) where + denotes the
noise strength, *!x" is a generalized potential, and x a point
in the respective state space. The generalized potential is a
continuous function of x but may show discontinuities of its
derivatives. These singularities must be compensated by a
preexponential factor to assure that a smooth probability dis-
tribution results. Decay rates of metastable states were deter-
mined for special two-dimensional Fokker–Planck cases for
which the generalized potential is sufficiently smooth122 and
also for simple one-dimensional noisy maps.123,124 In the lat-
ter case, as a consequence of the singularities of the gener-
alized potential, the prefactor of the rate depends on the
noise strength in a nonanalytical way.

In the presence of time dependent driving, noise induced
transitions give rise to important effects which are strictly
absent in equilibrium systems. These effects comprise sto-
chastic resonance,125,126 and resonance activation127,128 as
well as the rectification of noise in ratchets or Brownian
motors.129,130 In general, the time-dependent forcing leads to
time-dependent rates, considerably complicating any analyti-
cal description. For a periodically driven bistable system
time-dependent rates as well as the time averaged rates were
determined in the limit of weak noise by means of the path
integral representation of the transition probability from one
locally stable state to the moving separatrix.131 For the same
type of systems a different limit results if the noise strength
is small but fixed and the external driving is much slower
than the intrawell relaxation. The time dependent rate is then
given by the adiabatic expression for the frozen force. For
this approximation to hold, no further restriction is to be
imposed on the period of the driving force which may still be
larger or smaller than the resulting transition time. This kind
of kinetic description has been applied to describe a large
variety of phenomena132–134 but only recently a strict deriva-
tion from a Fokker–Planck model was provided.135

III. FUTURE: OPEN PROBLEMS
A. Classical rate theory at equilibrium

Pechukas52 gave a clear identification for the activated
complex in terms of a hypersurface of classical bound states
embedded in the continuum. For closed systems with two
degrees of freedom, the fixed energy surface is well charac-
terized as a periodic orbit dividing surface. However for sys-
tems with more than two degrees of freedom, the nature of
this surface remains elusive. It can no longer be considered
as a dividing surface in configuration space, one must con-
sider it as a dividing surface in phase space.136 The study of
variational dividing surfaces in systems with more than two
degrees of freedom remains a topic of active research even to
date137 as the classical dynamics of such nonlinearly coupled
systems is rather complicated.

We also noted that for canonical systems, the activated
complex is identifiable as a pods with infinite period moving
on an effective temperature dependent potential energy
surface.55 Although Miller gave a general formal solution to
the problem104 the actual solution for systems with more than
two degrees of freedom remains an open problem.

B. Classical rate theory away from equilibrium

As detailed in this paper, equilibrium rate theory is by
and large well understood. However, as also outlined above,
classical rate theory for systems outside of equilibrium is
poorly understood. There is not any clear characterization of
the structures that determine the flow such as the pods in the
equilibrium case. The variational minimum principle of
Wigner no longer exists and except for numerical simula-
tions, we do not have any good theory of reaction rates away
from equilibrium except in a few particular limiting cases.
The key information that in most cases is missing is the
asymptotic probability distribution in the state space of the
considered system. Once this distribution is known one fur-
ther has to identify the relevant transition regions corre-
sponding to the saddle points in the free energy landscape in
equilibrium problems, and has to determine the local dynam-
ics in these regions. In principle, this then would allow one
to estimate the rate by means of the flux over population
expression, or by a conveniently defined mean first passage
time. A further complication may arise from the fact that the
topology of the energy landscape may be very complicated
as, for example, for glass-forming liquids,138 or for the mo-
tion and folding of proteins.139 In such cases the resulting
relaxational dynamics is no longer governed by an exponen-
tial decay law, but by some slower, possibly stretched expo-
nential or even algebraic law.

Another question that only recently has been posed is
related to the influence of a possibly non-Gaussian, algebra-
ically correlated, random force on the escape dynamics from
a metastable state. Apart from numerical simulations, frac-
tional Fokker–Planck equations might prove to be a conve-
nient starting point for such investigations.140
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C. Quantum equilibrium rate theory

At this point, there are a few benchmark computations of
numerically exact quantum rates for dissipative systems. One
of the promising routes is the use of stochastic Schrödinger
equations.141–143 However, even the best of available results
runs into problems when the barrier crossing dynamics is not
rapid on the molecular time scales. It is very difficult to
obtain long real time quantum mechanical data. Various au-
thors have been suggesting methods for overcoming this
problem. We note especially the recent multiconfiguration
time-dependent Hartree method144 which claims to give nu-
merically exact results for dissipative systems with up to
1000 bath modes.

A different approach is based on the semiclassical initial
value series representation of the exact propagator.145 Instead
of using the path integral, one uses a semiclassical propaga-
tor, which is a leading order term in a series expansion. Since
one knows all the terms in the expansion, one can now com-
pute them one by one to obtain the exact propagator. Expe-
rience with some model systems shows that the series con-
verges rapidly146 so that it can be used to generate
numerically exact real time quantum data using a classical
trajectory based Monte Carlo algorithm.

When considering dissipative systems, it is very appeal-
ing to attempt and derive reduced equations of motion for the
system. A recent review of these may be found in Ref. 147.
In the weak damping regime, these lead to Redfield
theory148–150 and there have been attempts at solution for
quantum reaction rates using these equations. In the strong
friction limit, Ankerhold151 has derived low temperature ex-
tensions of the Caldeira–Leggett reduced equation of
motion.19 An application of these reduced equations of mo-
tion to quantum barrier crossing problems has recently been
carried out.152 The resulting rate coincides with the large
friction limit of Wolynes’ rate expression.153

D. Quantum rate theory away from equilibrium

This is perhaps the most open problem remaining today.
Again, as for classical systems, one may distinguish between
systems that are driven out of equilibrium by external time
dependent fields and systems with different reservoirs main-
taining currents of energy and matter in the system. Very
little is known about this latter case in general, see also the
article by Hänggi and Ingold61 in this Focus Issue. The brute
force numerical approach, which allows one to get insight
into the classical problem is not available. In the presence of
time-dependent forcing, the Zwanzig–Caldeira–Leggett har-
monic oscillator bath model19 and the related spin-boson
model154 can be extended to include the forcing.155 Within
this framework particular aspects of quantum stochastic
resonance126,156 and quantum ratchets129,157 have been inves-
tigated. But a comprehensive theoretical understanding is
still lacking. A serious general problem in the field of open
quantum systems is that seemingly harmless and even plau-
sible approximations may entail inconsistencies with general
statistical mechanical laws158 and may introduce Maxwell
demons that survive even in thermal equilibrium.159

E. Concluding remarks

This paper attempted to provide some insight into the
development of rate theory. It is though limited, due to the
strict length limitations set by the editors of this Focus Issue
and the probably subjective point of view of the authors. We
have brought almost no formulas, instead pointed out to the
interested reader what we believe are the “important” refer-
ences. The paper is not comprehensive; for example, we
have not discussed the rates of electron transfer reactions,
where much remains for future work, especially when con-
sidering molecular electronics or electron transfer in biologi-
cal systems. We have not provided a detailed history of the
development of quantum scattering theory. Here too,
progress has been made in inventing algorithms which allow
extension of the computational horizon to increasingly larger
systems, though as already noted, the largest to date is with
seven degrees of freedom. The theory of surface diffusion,
surface reactions, and catalysis which is closely related to
rate theory has also been left out. We also have not consid-
ered the coherent control of rate processes,160 a topic of in-
tensive activity and interest, whose details are becoming
clearer as people devise better quantum methods for dealing
with multidimensional systems.

Another “hot topic” having to do with classical-quantum
correspondence and the influence of classical chaos on quan-
tum dynamics has also been set aside.161 Interesting phenom-
ena such as quantum tunneling in multidimensional systems
and its relationship to the underlying real time classical dy-
namics, or the effects of external fields on quantum tunneling
rates have also not been included in this review.

Our central purpose was to point out some of the impor-
tant milestones in the development of rate theory and to en-
courage a new generation to continue the study of rate
theory. Due justice to the many people who have contributed
significantly to the theory and from whose knowledge we
have all gained would probably be only possible if one
would write up a comprehensive book on rate theory.
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