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We construct a statistical theory of reactive trajectories between two pre-specified sets
A and B, i.e. the portions of the path of a Markov process during which the path makes
a transition from A to B. This problem is relevant e.g. in the context of metastability,
in which case the two sets A and B are metastable sets, though the formalism we
propose is independent of any such assumptions on A and B. We show that various
probability distributions on the reactive trajectories can be expressed in terms of the
equilibrium distribution of the process and the so-called committor functions which give
the probability that the process reaches first B before reaching A, either backward or
forward in time. Using these objects, we obtain (i) the distribution of reactive trajectories,
which gives the proportion of time reactive trajectories spend in sets outside of A and
B; (ii) the hitting point distribution of the reactive trajectories on a surface, which
measures where the reactive trajectories hit the surface when they cross it; (iii) the last
hitting point distribution of the reactive trajectories on the surface; (iv) the probability
current of reactive trajectories, the integral of which on a surface gives the net average
flux of reactive trajectories across this surface; (v) the average frequency of reactive
trajectories, which gives the average number of transitions between A and B per unit
of time; and (vi) the traffic distribution of reactive trajectories, which gives some
information about the regions the reactive trajectories visit regardless of the time they
spend in these regions.

KEY WORDS: Transition path theory; transition state theory; transition path sampling;
matastability; reactive trajectories; transition pathways.

The dynamical behavior of many systems arising in physics, chemistry, biology,
etc. is dominated by rare but important transition events between long lived states.
Understanding the mechanism and computing the rate of these transitions is a
topic that has attracted a lot of attention for many years. Most of the theoretical
and computational approaches to this problem (see e.g. Ref. 9 for a review) rely
on the separation of time scales between the fast evolution of the system within
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the long lived states and the slow transition events between these states. In specific
situations when this separation of time scales can be explicitly linked to the
existence of a small parameter in the system, like e.g. a small noise amplitude in
a system whose evolution is governed by a gradient flow with a smooth potential
plus noise, a fairly complete mathematical theory can be developed based e.g. on
Freidlin-Wentzell theory of large deviations for stochastic differential equations(8)

(see also Refs. 1–3, 10, 13, 14, 16, 17 for some specific developments in the context
of metastable systems). In practice, however, it may be difficult or impossible to
identify such a small parameter explicitly and verify whether the system at hand
satisfies the assumptions underlying this theory. Therefore, it is suitable to develop
a framework for the description of transition events which does not explicitly rely
on the separation of time scales even if the aim is to apply this framework to
situations with time scale separation. The classical transition state theory (TST)
(see e.g. Ref. 18 for a review and Refs. 20 and 21 for a modern account of
the theory) can be viewed as the first attempt in this direction. TST gives the
exact average frequency of transitions across an arbitrary dividing surface, which
corresponds to the situation when the (two) long lived states are extended so as
to exactly partition state-space into two sets with the dividing surface in between.
The problem with TST is that its predictions rely heavily on the choice of dividing
surface, and in any event it gives minimal information about the mechanism
of transition—TST tells where the system crosses the dividing surface, but the
theory cannot give a more global picture of the transition mechanism between
two separated sets in state-space. A pioneering development in the direction of
such a global picture is the theoretical background of the transition path sampling
(TPS) technique introduced by Bolhuis, Chandler, Dellago, and Geissler.(4) The
main idea behind TPS is to use a path integral formulation to assign probabilistic
weights to transition paths (or reactive trajectories) between any two predefined
sets in the state-space of the system. This approach is mostly useful when these
sets are long lived states, but it does not rely on this assumption. TPS leads to
a description of the mechanism of transition in path-space. One may, however,
find it more interesting to have an understanding of this mechanism in the actual
state-space of the system, and ask for instance about the regions that the reactive
trajectories are likely to visit; what the dynamical bottlenecks, or transition state
regions, are between the long lived states; etc. Extracting this information from the
TPS path ensemble is not straightforward (for some developments in this direction
see Refs. 11, 12). In this paper, we propose a framework complementary to that
of TPS and construct a state-space based statistical theory of transition pathways.
This framework underlies an efficient numerical technique, the so-called finite
temperature string method (FTS), for the actual identification of the transition
pathways,(6, 7, 15) but here we shall focus on the theory.

Specifically we shall consider a diffusion process with generator

L = b(x) · ∇ + a(x) : ∇∇ (1)
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where b : ! ⊆ Rn → Rn is C1 and a : ! ⊆ Rn → Rn × Rn is C2 and satisfies
〈ξ, a(x)ξ 〉 > 0 for all ξ ∈ Rn , x ∈ !. Equipped with Neumann boundary condi-
tions on ∂!, (1) defines a strong Markov process with continuous path taking
value in ! with reflection at the boundary. Assume that b and a are such that
the process is ergodic with respect to the probability distribution (measure) µ(·)
which is absolutely continuous with respect to the Lebesgue measure:

dµ(x) = m(x) dx, (2)

for some C2 probability density function m(x) > 0, and denote by {Xt }t∈R an
equilibrium path of the process in a given realization. Let A ⊂ ! and B ⊂ !

be two µ-measurable open subsets of ! which we assume to be disjoint, with
a smooth boundary, but not necessary connected (which eventually allows to
consider situations with more than two connected sets, {A j } j=1,..,n , by iteration:
for k = 1, . . . , n, take A = Ak , B = ∪ j +=k A j ). Since the process is ergodic, the
path {Xt }t∈R makes transitions between A and B infinitely often. The question
we are interested in is: How do these transitions occur? Clearly given any open
µ-measurable set C ⊂ ! \ (A ∪ B), the proportion of time the process spends in
C while it is not in A ∪ B is

µ(C)/µ(!AB) where !AB = ! \ (A ∪ B). (3)

However, this ratio does not give the proportion of time the process spends in C
while making a transition from A to B since it may happen, for example, that the
process leaves A, enters C , then returns to A before visiting B.

To make things more precise, let us define the ordered family of times
{t−j , t+

j } j∈Z such that

Xt−j
∈ ∂ A, Xt+

j
∈ ∂ B, ∀t ∈ (t−j , t+

j ) : Xt ∈ !AB . (4)

Then

Definition 1. (AB-reactive trajectories) We call AB-reactive trajectory each
portion of the trajectory {Xt }t∈(t−j ,t+

j ), j ∈ Z, during which the process makes a
transition from A to B. The set

⋃

j∈Z
{Xt }t∈(t−j ,t+

j ) ≡ {Xt }t∈R with R :=
⋃

j∈Z
(t−j , t+

j ) (5)

is called the set of AB-reactive trajectories.

B A-reactive trajectories can be defined similarly by interchanging the roles of A
and B in the definition. We now ask: What is the probability distribution µAB

supported on !AB such that the AB-reactive trajectories are ergodic with respect
to µAB? In other words, the probability distribution µAB must be such that for any



506 E and Vanden-Eijnden

µ-measurable open set C ⊂ !AB , we have

lim
T→∞

∫
R∩[−T,T ] 1(Xt ∈ C) dt

|R ∩ [−T, T ]|
= µAB(C). (6)

where 1(Xt ∈ C) is the indicator function of the set {t : Xt ∈ C}, and |R ∩
[−T, T ]| is the length of the set R ∩ [−T, T ].

The distribution µAB is given in Proposition 2 below. To prepare for this
Proposition, let

t+
A (t) = inf{t ′ ≥ t : Xt ′ ∈ Ā}, t+

B (t) = inf{t ′ ≥ t : Xt ′ ∈ B̄}, (7)

be the first entrance times after time t in Ā or B̄, respectively, and

t−A (t) = sup{t ′ ≤ t : Xt ′ ∈ Ā}, t−B (t) = sup{t ′ ≤ t : Xt ′ ∈ B̄}, (8)

be the last exit times before time t from Ā or B̄, respectively.(19) Define

q+(x) = Px {t+
B (t) < t+

A (t)}, q−(x) = Px {t−B (t) < t−A (t)} (9)

where Px denotes the probability conditional on Xt = x . q+(·) and q−(·) map ! to
[0, 1]: q+(x) is the probability conditional on Xt = x that the process will reach
first B before reaching A in the future of time t . Similarly, the function q−(x) is
the probability conditional on Xt = x that the process left last A rather than B in
the past of time t . We call q+(·) and q−(·) the forward and backward committor
functions, respectively (these functions are also called capacitors in the probability
literature(19)). These functions satisfy the backward Kolmogorov equations

{
0 = b · ∇q+ + a : ∇∇q+,

q+|∂ A = 0, q+|∂ B = 1, ∂n̂q+|∂! = 0,
(10)

and 



0 = −b · ∇q− + 2

m
div(am) · ∇q− + a : ∇∇q−,

q−|∂ A = 1, q−|∂ B = 0, ∂n̂q−|∂! = 0,
(11)

Here ∂n̂ denotes the normal derivative on ∂!, and the operator at the right hand-side
of (11) is the generator of the time-reversed process associated with (1):

L R := −b · ∇ + 2
m

div(am) · ∇ + a : ∇∇ (12)

For time-reversible processes, −bm + div(am) = 0 and L R ≡ L .
We have

Proposition 2. (Distribution of AB-reactive trajectories) The distribution µAB

defined in (6) is given by

dµAB(x) = Z−1
AB q+(x)q−(x)m(x) dx (13)
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where

Z AB =
∫

!AB

q+(x)q−(x)m(x) dx

Proof: The ratio in the limit at the left-hand side of (6) can be written as
∫

R∩[−T,T ] 1(Xt ∈ C) dt

|R ∩ [−T, T ]|
=

∫ T
−T 1(Xt ∈ C)1(t+

B < t+
A )1(t−B < t−A ) dt

∫ T
−T 1(Xt ∈ !AB)1(t+

B < t+
A )1(t−B < t−A ) dt

Taking the limit as T →∞ and using the ergodicity together with the strong
Markov property, we deduce that

µAB(C) =
∫

C Px {t+
B < t+

A and t−B < t−A }m(x) dx
∫
!AB

Px {t+
B < t+

A and t−B < t−A }m(x) dx

By Markovianity Px {t+
B < t+

A and t−B < t−A } = q+(x)q−(x) and this completes the
proof. !

Example 1. Consider the process generated by the stochastic differential equation

d Xt = −∇V (Xt ) dt +
√

2 dWt (14)

on Rn . Here Wt is a Wiener process, and V (·) is a C2-function which grows at
infinity sufficiently fast so that

Z :=
∫

Rn
e−V (x)dx <∞ (15)

(14) defines a process {Xt }t∈R with generator L = −∇V · ∇ + $ which is ergodic
with respect to the distribution

dµ(x) = Z−1e−V (x) dx (16)

Thus Proposition 2 applies to (14). Since the process {Xt }t∈R is also time-
reversible, i.e. {Xt }t∈R and {X−t }t∈R are statistically equivalent, we have that
q+(x) = 1− q−(x) ≡ q(x), where q(·) solves the backward Kolmogorov equa-
tion(5)

0 = −∇V · ∇q + $q, q|x∈A = 0, q|x∈B = 1, (17)

The probability density function associated with µAB in the case when

V (x1, x2) = 5
2

(
1− x2

1

)2 + 5x2
2

A = {x1 < −0.8}, B = {x1 > 0.8}
(18)
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Fig. 1. The level sets of the equilibrium probability density function Z̄−1e−V (x1,x2) associated with (14)
with the parameters as in (18) (this density is shown normalized in R2/(A ∪ B), i.e. Z̄ = Z̄1 Z̄2, with

Z̄1 =
∫ 0.8
−0.8 e−

5
2 (1−x2

1 )2
dx1 and Z2 =

∫
R e−5x2

2 dx2). The left white strip shows part of A = {x < −0.8},
the right white strip shows part of B = {x > 0.8}. The level sets of the density coincide with the level
sets of V (x1, x2). This graph shows that, when the trajectory leaves the sets A and B, it preferably
visits regions near the two minima of V (x1, x2) located at (x1, x2) = (±1, 0). Of course most of these
excursions out of A and B do not lead to transitions between A and B.

is shown in Fig. 2. Here q+(x1, x2) = 1− q−(x1, x2) ≡ q(x1) with

q(x1) =
∫ x1

−0.8 e
5
2 (1−z2)2

dz
∫ 0.8
−0.8 e

5
2 (1−z2)2 dz

(19)

The density associated with µAB is to be compared with Z̄−1e−V (x1,x2) where
Z̄ = Z̄1 Z̄2 with Z̄1 =

∫ 0.8
−0.8 e−

5
2 (1−x2

1 )2
dx1 and Z2 =

∫
R e−5x2

2 dx2 shown in Fig. 1.

Example 2. Consider the process generated by
{

d Xt = Ut dt,

dUt = −∇x V (Xt ) dt −Ut dt +
√

2 dWt
(20)

on (x, u) ∈ Rn × Rn (x is referred to as the configuration, u as the velocity).
Assuming that V (·) is C2 and grows sufficiently fast at infinity so that (15) is
satisfied, the process generated by (20) is ergodic with respect to

dµ(x, u) = Z−1
H e−H (x,u) dx du (21)
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where H (x, u) = 1
2 |u|2 + V (x) and Z H =

∫
Rn×Rn e−H (x,u) dx du. Since the gen-

erator associated with (20), L = u · ∇x − ∇x V · ∇u − u · ∇u + $u , is degenerate,
we need to take some care in applying Proposition 2. To avoid difficulties, we will
assume that the sets A and B are defined as follows. First, we define two open
connected C1-sets A′ ⊂ Rn and B ′ ⊂ Rn in configuration space. Then we extend
them in the full state-space as

A = {(x, u) : x ∈ A′, H (x, u) ≤ minx∈∂ A′ V (x)},

B = {(x, u) : x ∈ B ′, H (x, u) ≤ minx∈∂ B ′ V (x)}. (22)

It can be checked that Proposition 2 applies in this case. Since {Xt , Ut }t∈R is statis-
tically equivalent to {X−t ,−U−t }t∈R, it follows that q+(x, u) = 1− q−(x,−u) ≡
q(x, u) and (13) reduces to

dµAB(x, u) = Z̄−1
ABq(x, u)(1− q(x,−u))e−H (x,u) dx du, (23)

where Z̄ AB =
∫
!AB×Rn q(x, u)(1− q(x,−u))e−H (x,u) dx du and q(·) satisfies(5)

{
0 = u · ∇x q −∇x V · ∇uq − u · ∇uq + $uq,

q|(x,u)∈∂ A = 0, q|(x,u)∈∂ B = 1.
(24)

The probability distribution µAB gives the information about the proportion
of time AB-reactive trajectories spend in any given subset of !AB . If A and
B are metastable sets, i.e. sets with small volumes that concentrate most of the
probability, there must be some dynamical bottlenecks between these sets where
the AB-reactive trajectories are likely to spend most of their time—in the exam-
ple shown in Figs. 1 and 2 the dynamical bottleneck is the region near the saddle
point (x1, x2) = (0, 0) where the distribution µAB does indeed concentrate. Thus
Proposition 2 allows one to identify these dynamical bottlenecks or transition state
regions. On the other hand, it may be useful to identify the regions the reactive
trajectories are likely to visit regardless of the amount of time these trajectories
spend in these regions. To help characterize these regions, we introduce several
objects. First in Proposition 3, we introduce the hitting point distribution of AB-
reactive trajectories which tells where the AB-reactive trajectories hit a surface S
when they cross that surface. Next in Proposition 4 we show that, provided that
S is a level set of q+(·), the hitting point distribution of AB-reactive trajectories
is also the last hitting point distributions of AB-reactive trajectories, which tells
where the AB-reactive trajectories last leave this surface. In Proposition 5, we
identify the probability current of AB-reactive trajectories, the integral of which
on any surface S gives the net average flux of AB-reactive trajectories across
this surface. In Proposition 6, we derive the average frequency of AB-reactive
trajectories, which gives the average number of transitions from A to B per unit
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Fig. 2. The level sets of the equilibrium probability density function Z−1
ABq(x1)(1− q(x1))e−V (x1,x2)

associated with distribution of AB-reactive trajectories µAB in the example of (14) with the parameters
as in (18). Here µAB = µB A by time reversibility and q(x1) is given in (19). Notice that the density
concentrates around the saddle point (x1, x2) = (0, 0) of V (x1, x2). This graph shows that during the
transitions, the reactive trajectories spend most of their time in the region around the saddle point. This
region is the dynamical bottleneck of the reaction and therefore qualifies as the transition state region.

of time. Finally in Proposition 8 we derive the AB-traffic distribution which gives
a measure of the regions that the AB-reactive trajectories visit irrespective of the
time they spend in these regions.

To begin, let S be a piecewise C1 surface of co-dimension 1 contained in
!AB , and let dσS(x) be the surface element (Lebesgue measure) on S. Denote by

dνS(x) = C−1
S m(x) dσS(x) with CS =

∫

S
m(x) dσS(x), (25)

the distribution supported on S induced by µ. The distribution νS tells where the
trajecory (not just the reactive portions of it) hit S when it crosses this surface.
The following proposition gives the corresponding distribution νS,AB which tells
where the AB-reactive trajectories hit S when they cross this surface

Proposition 3. (Hitting point distribution of AB-reactive trajectories) The
distribution of hitting points on S by the AB-reactive trajectories is

dνS,AB(x) = C−1
S,ABq+(x)q−(x)m(x) dσS(x) (26)
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where

CS,AB =
∫

S
q+(x)q−(x)m(x) dσS(x) (27)

Proof: Use the identity

νS,AB(C ∩ S)

= lim
d→0+

lim
T→∞

∫ T
−T 1(Xt ∈ C ∩ Sd )1(t+

B < t+
A )1(t−B < t−A ) dt

∫ T
−T 1(Xt ∈ Sd )1(t+

B < t+
A )1(t−B < t−A ) dt

where C ∈ !AB is any µ-measurable subset and Sd is the slab of thickness d
around S: Sd := {x : dist(x, S) < d}. Proceeding as in the proof of Proposition 2,
we deduce that

νS,AB(C ∩ S) = lim
d→0+

∫
C∩Sd

q+(x)q−(x)m(x) dx
∫

Sd
q+(x)q−(x)m(x) dx

=
∫

C∩S q+(x)q−(x)m(x) dσS(x)∫
S q+(x)q−(x)m(x) dσS(x)

,

consistent with (26). !

The distribution νS,AB gives more than the hitting point distributions if one
uses a special class of surfaces S, namely the level sets of q+(x) which we denote
as:

S+(z) = {x : q+(x) = z}, (z ∈ (0, 1)). (28)

Since q+(·) is C1 by assumption, S+(z) is a C1 surface of co-dimension 1 which
partitions ! into two sets, one containing A and the other containing B. The family
{S+(z)}z∈(0,1) defines a co-dimension 1 foliation of !AB , i.e.

S+(z) ∩ S+(z′) = ∅ if z += z′,
⋃

z∈(0,1)

S+(z) = !AB .

The foliation {S+(z)}z∈[0,1] is also called the reaction coordinate associated with
the function q+(·) (and, by extension, we sometimes refer to q+(·) itself as the
reaction coordinate).

Given an AB-reactive trajectory {Xt }t∈(t−j ,t+
j ), define the last hitting point on

S+(z) as the point x ∈ S+(z) such that

Xt'
j (z) = x (t'

j (z) ∈ (t−j , t+
j )), ∀t ∈ (t'

j (z), t+
j ) : Xt ∈ {x : q+(x) > z} (29)

Define also the distribution of last hitting point of the AB-reactive trajectories as
the distribution νz,AB supported on S+(z) such that for any µ-measurable subset
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C ∈ !AB , we have

νz,AB(C ∩ S+(z)) = lim
N→∞

1
2N + 1

N∑

j=−N

1(Xt'
j (z) ∈ C ∩ S+(z)) (30)

Then

Proposition 4. (Last hitting point distribution of AB-reactive trajectories)
For each z ∈ (0, 1), the last hitting point distribution νz,AB defined in (30) coincides
with the distribution νS,AB defined in (26) evaluated on S ≡ S+(z), i.e

νz,AB ≡ νS+(z),AB

Since by definition q+(x) = z is constant on S+(z), on this surface the distribution
νS+(z),AB ≡ νz,AB reduces to

dνz,AB(x) = C−1
AB(z)q−(x)m(x) dσz(x) (31)

where dσz(x) is the surface element on S+(z), dσz ≡ dσS+(z), and

CAB(z) =
∫

S+(z)
q−(x)m(x) dσz(x). (32)

Proof: Let

t+
!+(z) = inf{t ′ ≥ t : Xt ′ ∈ !+(z)}, !+(z) = {x : q(x) ≤ z}.

and for x ∈ !AB \ !+(z), define

q̂+(x) = Px {t+
B < t+

!+(z)}.

q̂+(x) is the probability conditional on Xt = x that the process will reach first
B before reaching !+(z) in the future of time t . By strong Markovianity the
probability to reach first A before reaching B starting from x (which is 1− q+(x))
is the probability to reach first !+(z) before reaching B starting from x (which is
1− q̂+(x)) times the probability to reach first A before reaching B starting form
S+(z) (which is 1− z). Therefore

1− q+(x) = (1− q̂+(x))(1− z) ⇔ q̂+(x) = q+(x)− z
1− z

(33)

(This identity can also be derived by noting that q̂+(·) satisfies (10) on !AB \
!+(z) with boundary conditions q̂+|S+(z) = 0, q̂+|∂ B = 1, ∂n̂ q̂+|∂! = 0.) For any
surface S ⊂ !AB \ !+(z), by a straightforward generalization of Proposition 3,
we can define the distribution of hitting points on S of the tails of AB-reactive
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trajectories on (t'
j (z), t j ), {Xt }t∈∪ j (t'

j (z),t+
j ), during which they never revisit !+(z).

This distribution is (26) with q+(x) replaced by q̂+(x), i.e. using (33)

d ν̂S,AB(x) = Ĉ−1
S,AB(q+(x)− z)q−(x)m(x) dσS(x),

where

ĈS,AB =
∫

S
(q+(x)− z)q−(x)m(x) dσS(x)

In particular, if S ≡ S+(z′) with z′ > z, we have ν̂S+(z′),AB ≡ νz′,AB with the distri-
bution νz,AB given in (31). The proposition then follows by letting z′ → z, since
in this limit the only hitting points on S+(z′) by {Xt }t∈(t'

j (z),t+
j ) are the last hitting

points. !

Next, we consider the probability current of AB-reactive trajectories. To
motivate this concept, consider the evolution equation






∂m̂
∂t

= −∇ · (b(x)m̂(x, t)− div(a(x)m̂(x, t)))

m̂(·, t)|∂ A = m(·), m̂(·, t)|∂ B = 0 ∂n̂ m̂(·, t)|∂! = 0,

(34)

for some initial condition at t = −T . This equation described the evolution of
the probability density m̂(·, ·) : !AB × [−T,∞) → R+, of a process kept at equi-
librium on ∂ A and absorbed on ∂ B. Such a process allows one to focus on the
transitions from A to B of the original process and ignore the transitions from B
to A. (34) can be written in conservation form as

∂m̂
∂t

= −div J (x, t) where J (x, t) = b(x)m̂(x, t)− div(a(x)m̂(x, t)). (35)

We claim that m̂(·, t) assumes the following stationary value as the initial condition
is pushed back towards the infinite past:

m(·, t) → m(·)q−(·) as T →∞. (36)

This equation follows from the strong Markov property and expresses the fact
that at equilibrium, the probability density that the process associated with (35)
be at position x is proportional to the probability density that the original process
be at x (which is m(x)) times the probability that it came from A rather than B
(which is q−(x)). Notice that q+(·) does not appear in (36) because the process
whose density obeys (37) is not constrained to go to A after leaving B and instead
may return to B before reaching A. When m̂ → mq−, J → JAB , the probability
current of AB-reactive trajectories. Therefore
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Proposition 5. (Probability current of AB-reactive trajectories) The vector
field JAB : !AB → Rn given by

JAB(x) = b(x)m(x)q−(x)− div(a(x)m(x)q−(x)) (37)

is the probability current of AB-reactive trajectories.

In other words, given any piecewise C1 surface S ⊂ !AB of co-dimension 1,

(S,AB =
∫

S
n̂S(x) · JAB(x) dσS(x) (38)

gives the average net flux of AB-reactive trajectories across S. Here n̂S(x) is the
unit outward pointing normal to S and dσS(x) is the surface element on S.

We shall give an alternative proof of Proposition 5 based on a direct definition
of the probability current of AB-reactive trajectories (see (50) below). Since this
proof is somewhat tedious and rather technical, we defer it till the end of the
paper. Notice that for time-reversible processes for which q+ = 1− q− ≡ q and
bm = div(am) the probability current reduces to

JAB(x) = m(x)a(x)∇q(x). (39)

Notice also that Proposition 5 implies that the net average flux across any surface
defined as the boundary of a region in !AB (i.e. a region which does not contain A
nor B) is zero, (∂C,AB = 0 if C ⊂ !AB . This follows from the fact that probability
current in (37) is divergence free:

div JAB(x) = q−(x)(L∗m)(x) + m(x)(L Rq−)(x) = 0. (40)

and that (38) can by expressed as (using Gauss’ theorem):

(∂C,AB =
∫

∂C
n̂∂C (x) · JAB(x) dσ∂C (x) =

∫

C
div JAB(x) dx = 0, (41)

Therefore (38) is especially useful if S is any dividing surface between A and B,
i.e. a surface such that A is on one side of it and B on the other (in this case we
must take n̂S(x) pointing toward B). In this case indeed (S,AB is independent of the
particular dividing surface we pick and is the average frequency of AB-reactive
trajectories, which gives the averaged number of transitions from A to B per unit
of time. We shall show that it can also be expressed as:

Proposition 6. (Average frequency of AB-reactive trajectories) The average
number of transitions from A to B per unit of time is given by:

kAB =
∫

!AB

〈∇q+, a∇q+〉mdx =
∫

!AB

〈∇q−, a∇q−〉mdx (42)
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Notice that the average number of transitions from A to B is the same as
the average number of transitions from B to A since we are at equilibrium, i.e.
kAB = kB A, and it is also half the average number of transitions between A and B.

Proof: If S is any piecewise C1 dividing surface in !AB , we have that kAB ≡
(S,AB . Therefore, using S ≡ S+(z) in (38) and the co-area formula,

dσz(x) = |∇q+(x)|δ(q+(x)− z) dx,

the average frequency can be expressed as

kAB =
∫

S+(z)
n̂S+(z) · (mq−b − div(amq−)) dσz(x)

=
∫

!AB

∇q+ · (mq−b − div(amq−))δ(q+(x)− z) dx .

Integrating by part the second term in the integral and using (10) we deduce that

kAB =
∫

!AB

mq−(b · ∇q+ + a : ∇∇q+)δ(q+(x)− z) dx

+
∫

!AB

mq−a : ∇q+∇q+δ′(q+(x)− z) dx

= − d
dz

∫

!AB

mq−a : ∇q+∇q+δ(q+(x)− z) dx .

Integrating both term of this equality on z from z to 1 using the fact that kAB is
independent on z and q− = 0 on ∂ B (i.e. when z = 1) this gives

(1− z)kAB =
∫

!AB

mq−a : ∇q+∇q+δ(q+(x)− z) dx .

Integrating again on z from 0 to 1, we arrive at

1
2

kAB =
∫

!AB

mq−a : ∇q+∇q+dx .

Since kAB = kB A, and kB A is given by a similar expression with q± replaced by
1− q±, we also have

1
2

kAB =
∫

!AB

m(1− q−)a : ∇q+∇q+dx .

which can be added to the previous expression to give the first equality in (42).
The second equality follows by repeating the proof using the time-reversed
process. !

The probability flux amplitude, |JAB(·)|, can in principle be taken as a mea-
sure of the regions that the AB-reactive trajectories are likely to visit regardless of
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the amount of time they spend in these regions. For convenience, we shall however
characterize these transition regions (or transition tubes) by introducing instead yet
another object, called the AB-traffic distribution. This distribution has the advan-
tage over |JAB(·)| that it explicitly depends only on the equilibrium density, m(·),
and the committor functions, q±(·), and not on the actual drift b(·) and diffusion
tensor a(·) of the process. Therefore, it may be more convenient to use in situation
when m(·) and q±(·) are extracted from a time-series whose underlying b(·) and a(·)
may not be explicitly known (as is often the case in applications). We will introduce
the AB-traffic distribution by appropriately extending the family of last hitting
point distributions {νz,AB}z∈(0,1) to a distribution on !AB . To this end, let us define

Definition 7. (Pruned AB-reactive trajectories) For each j ∈ Z, the subset
{Xt'

j (z)}z∈(0,1) consisting of the sequence of last hitting points from S+(z), z ∈ (0, 1)
of the j th AB-reactive trajectory is called the pruned AB-reactive trajectory. The
set

{Xt'
j (z)} j∈Z,z∈(0,1) (43)

is called the set of pruned AB-reactive trajectories.

For each j ∈ Z, Xt'
j (z) viewed as a function of z, Xt'

j (·) : (0, 1) → !AB , gives
the succession of last hitting points of the j th AB-reactive trajectory on S+(z)
when z varies from 0 to 1.

The natural way to associate a distribution to the pruned AB-reactive trajec-
tories is by looking for the distribution µF

AB such that for any µ-measurable subset
C ∈ !AB , we have (compare (30))

µF
AB(C) = µ̃F

AB(C)/µ̃F
AB(!AB) (44)

where

µ̃F
AB(C) = lim

N→∞

1
2N + 1

N∑

j=−N

∫ 1

0
1
(

Xt'
j (z) ∈ C

) dz
∣∣∇q+

(
Xt'

j (z)

)∣∣
. (45)

To justify (45), note that for each j ∈ Z, {Xt'
j (z)}z∈(0,1) consists of the subset of

the j th AB-reactive trajectory pruned of the loops where this trajectory revisit
regions it already visited (which by Proposition 4 introduces no bias). The factor
1/|∇q+(Xt'

j (z))| is included to make (45) less sensitive to the actual parametriza-
tion of the pruned trajectories in terms of z. In fact, it is easy to see that this
factor makes (45) is gauge invariant, in the sense that it is left invariant by any
transformation z → z′ = f (z), q(·) → q ′(·) = f (q(·)), where f : (0, 1) → (0, 1)
is a strictly monotone function. Thus µF

AB indeed measures which regions the
AB-trajectories visit regardless of the time they spend in these regions. We call
this distribution the AB-traffic distribution. We have
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Proposition 8. (AB-traffic distribution) The AB-traffic distribution defined
in (45) is

µF
AB(dx) = C−1C−1

AB(q+(x))q−(x)m(x) dx . (46)

where

C =
∫

!AB

C−1
AB(q+(x))q−(x)m(x) dx (47)

Proof: Notice first that 1(Xt'
j (z) ∈ C) = 1(Xt'

j (z) ∈ C ∩ S+(z)) since Xt'
j (z) ∈

S+(z). Therefore, using (30), (45) can be written as

µ̃F
AB(C) =

∫ 1

0
C−1

AB(z)
∫

C∩S+(z)
q−(x)m(x)

dσz(x)
|∇q+(x)|

dz.

Using the co-area formula, we deduce that

µ̃F
AB(C) =

∫ 1

0
C−1

AB(z)
∫

C
q−(x)δ(q+(x)− z)m(x) dxdz

=
∫

C
C−1

AB(q+(x))q−(x)
( ∫ 1

0
δ(q+(x)− z) dz

)
m(x) dx

=
∫

C
C−1

AB(q+(x))q−(x)m(x) dx,

which, using (44), is consistent with (46). !

For time-reversible processes such that {Xt }t∈R and {X−t }t∈R are statistically
equivalent and q+(x) = 1− q−(x) ≡ q(x), from (32) we have

CAB(z) =
∫

q(x)=z
(1− q(x))m(x) dσz(x)

= (1− z)
∫

q(x)=z
m(x) dσz(x)

As a result µF
AB reduces to

dµF
AB(x) = C−1

F (q(x))m(x) dx ({Xt }t∈R
d= {X−t }t∈R) (48)

where

CF (z) =
∫

q(x)=z
m(x) dσz(x). (49)

The distribution µF
AB corresponding to (14) with the parameters as in (19) is

shown in Fig. 3. Note that contrast to the distribution µAB shown in Fig. 2 which
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Fig. 3. The level sets of the probability density function associated with the traffic distribution
µF

AB in the example of (14) with the parameters as in (18). In this example, this density is sim-

ply 5
8 Z̄−1

2 e−5x2
2 . Notice that the density is concentrated on the channel around the x1-axis con-

necting A to B. This region qualifies as the transition path region. The probability current in this

example is JAB (x) = Z−1 Z̄−1
1 e−5x2

2 ê1, where e1 is the unit vector in the x1-direction. The current
is concentrated in the transition path region, and the flow lines of the current are parallel to the
level set of the probability density function associated with µF

AB . The average frequency is given by

kAB = Z̄1 Z−1
1 =

∫ 0.8
−0.8 e−

5
2 (1−x2

1 )2
dx1/

∫
R e−

5
2 (1−x2

1 )2
dx1 ≈ 0.32.

is concentrated in the region near the saddle point (x1, x2) = (0, 0) (which is here
the transition state region), µF

AB is concentrated on a channel centered around the
x1-axis and connecting A to B: this channel is the transition paths region in this
example.

We conclude this paper with a proof of Proposition 5.

Proof of Proposition 5. The average net flux across any surface in !AB (not
necessarily a dividing one) can be expressed as the difference between the fluxes
across dividing surfaces which have common portions. Therefore, by Gauss’
theorem and since the candidate probability current JAB is divergence free by (40),
it suffices to verify that (38) holds with the probability current in (37) for any
dividing surface. Let S be a piecewise C1 dividing surface of co-dimension 1 in
!AB and denote by !A the closed set which contains S and all the portion of ! on
the side of S which contains A. The average net flux of AB-reactive trajectories
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across any such S can be expressed as the limit

(S,AB = lim
τ→0+

1
τ

lim
T→∞

1
2T

∫ T

−T
1(Xt ∈ !A)1(t−B (t) < t−A (t))

× 1(Xt+τ ∈ !c
A)1(t+

B (t + τ ) < t+
!A

(t + τ )) dt (50)

where !c
A = ! \ !A is the complement of !A in ! and

t+
!A

(t) = inf{t ′ ≥ t : Xt ′ ∈ !̄A}.

By ergodicity and strong Markovianity, (50) is

(S,AB = lim
τ→0+

1
τ

∫

!A

m(x)q−(x)
∫

!c
A

px
τ (y)q̂+(y) dydx . (51)

Here

q̂+(x) = Px {t+
B (t) < t+

!A
(t)} (52)

and px
τ (y) is the transition probability density function of the process: for all

µ-measurable set C ⊂ !, Px {Xt ∈ C} =
∫

C px
t (y) dy. To compute the limit as

τ → 0+ in (51) use:

Lemma 9. As τ → 0+, we have

1
τ

∫

!c
A

px
τ (y)q̂+(y) dydx → 〈n̂S(x), a(x)q̂+(x)〉dσS(x) (53)

in the sense of distributions, where n̂S(x) is the unit normal to S pointing outward
of !A and dσS(x) is the surface element (Lebesgue measure) on S.

The distribution on S at the right hand-side of (53) is related to the so-called
equilibrium distribution introduced in potential theory.(19)

Proof: Use
∫

!

px
τ (y) f (y) dy = f (x) + (L f )(x)τ + o(τ )

to deduce that
∫

!c
A

px
τ (y)q̂+(y) dy = q+(x)1(x ∈ !c

A) + τ L
(
q̂+(x)1

(
x ∈ !c

A

))
+ o(τ ).

For x ∈ !A, the first term is zero which implies that

1
τ

∫

!c
A

px
τ (y)q̂+(y) dydx → L

(
q̂+(x)1

(
x ∈ !c

A

))
dx (x ∈ !A)



520 E and Vanden-Eijnden

as τ → 0+. Since for all test function f : !→ R (using integration by parts),
∫

!

f (x)∇
(
1
(
x ∈ !c

A

))
dx = −

∫

!c
A

∇ f (x) dx

=
∫

S
f (x)n̂S(x) dσS(x)

we have the distribution identity ∇(1(x ∈ !c
A)) dx = n̂S(x) dσS(x). Similarly

a(x) : ∇(q̂+(x)∇1(x ∈ !c
A)) dx = 0 since (using integration by parts and q̂+ = 0

on S)
∫

!

f (x)a(x) : ∇
(
q̂+(x)∇1

(
x ∈ !c

A

))
dx

= −
∫

!

q̂+(x)
〈
div(a(x)∇ f (x)),∇1

(
x ∈ !c

A

)〉
dx

= −
∫

S
q̂+(x)〈div(a(x)∇ f (x)), n̂S(x)〉dσS(x) = 0.

Therefore by expansion we arrive at

L
(
q̂+(x)1

(
x ∈ !c

A

))
dx = (Lq̂+)(x)1

(
x ∈ !c

A

)
dx + q̂+(x)〈n̂S(x), b(x)〉dσS(x)

+ 〈n̂S(x), a(x)∇q̂+(x)〉dσS(x)

+ a(x) : ∇
(
q̂+(x)∇1

(
x ∈ !c

A

))
dx

= 〈n̂S(x), a(x)∇q̂+(x)〉dσS(x).

since Lq̂+ = 0 in !c
A and q̂+ = 0 on S, and this concludes the proof of the

Lemma.
Going back to the proof of Proposition 6, using (53) in (51), we have

(S,AB =
∫

S
m(x)q−(x)〈n̂S(x), a(x)∇q̂+(x)〉dσS(x).

This is true for any piecewise C1-surface S. Now take S ≡ S+(z). Then by (33),
q̂+(x) = (q+(x)− z)/(1− z), and

(S+(z),AB =
∫

S+(z)

m(x)q−(x)
1− z

〈n̂S+(z)(x), a(x)∇q+(x)〉dσz(x). (54)

By construction (S+(z),AB must be the same for all {S+(z)}z∈(0,1). This can be
checked explicitly upon noting that

(S+(z),AB = B(z)/(1− z) (55)
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where (using the co-area formula)

B(z) =
∫

S+(z)
m(x)q−(x)〈n̂S+(z)(x), a(x)∇q+(x)〉dσz(x)

=
∫

!AB

m(x)q−(x)〈∇q+(x), a(x)∇q+(x)〉δ(q+(x)− z) dx (56)

Therefore (using the identity ∇q+(x)δ′(q+(x)− z) = ∇δ(q+(x)− z), integration
by parts and a : ∇∇q+ = −b · ∇q+)

B ′(z) = −
∫

!AB

m(x)q−(x)〈∇q+(x), a(x)∇q+(x)〉δ′(q+(x)− z) dx

= −
∫

!AB

m(x)q−(x)a(x) : ∇q+(x)∇δ(q+(x)− z) dx

=
∫

!AB

∇ · (m(x)q−(x)a(x)∇q+(x))δ(q+(x)− z) dx

=
∫

!AB

(div(a(x)m(x)q−(x)) · ∇q+(x)

+ m(x)q−(x)a(x) : ∇∇q+(x))δ(q+(x)− z) dx (57)

=
∫

!AB

(div(a(x)m(x)q−(x)) · ∇q+(x)

−m(x)q−(x)b(x) · ∇q+(x))δ(q+(x)− z) dx

=
∫

S+(z)
n̂S+(z) · (div(a(x)m(x)q−(x))− m(x)q−(x)b(x)) dσz(x).

But this means that (denoting by !z,z′ the region between S+(z) and S+(z′) and
using Gauss’ theorem)

B ′(z) =
∫

S+(z′)
n̂S+(z) · (div(a(x)m(x)q−(x))− m(x)q−(x)b(x)) dσz′ (x)

+
∫

!z,z′

∇ · (div(a(x)m(x)q−(x))− m(x)q−(x)b(x)) dx

= B ′(z′),

where we used the divergence free property in (40). It follows that B ′(z) = cst , and
since B(1) = 0 from (56), we must have B(z) = C(1− z) where the constant C
must be (S+(z),AB by (55), i.e. we have the identity

(S+(z),AB = −B ′(z).
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From the last equality in (57) it follows that

(S+(z),AB =
∫

S+(z)
n̂S+(z) · (m(x)q−(x)b(x)− div(a(x)m(x)q−(x))) dσz(x)

≡
∫

S+(z)
n̂S+(z) · JAB(x)dσz(x).

Since JAB is divergence free, this expression is in fact valid for any dividing
piecewise C1 surface S and not only S+(z) by Gauss’ theorem, which terminates
the proof. !
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