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We present an analytical framework describing the steady-state distribution of protein concentration in
live cells, considering that protein production occurs in random bursts with an exponentially distributed
number of molecules. We extend this framework for cases of transcription autoregulation and noise
propagation in a simple genetic network. This model allows for the extraction of kinetic parameters of
gene expression from steady-state distributions of protein concentration in a cell population, which are
available from single cell data obtained by flow cytometry or fluorescence microscopy.
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Gene expression, the flow of information from nucleic
acids to proteins, consists of a set of biochemical reactions
that occur stochastically inside living cells due to the small
copy numbers of molecules involved. Consequently, the
abundance of a given protein varies within a population of
genetically identical cells growing in the same environ-
ment [1–3]. Stochasticity in gene expression has been
studied theoretically since 1970s [4]. Recent advances in
experimental methods allow direct observations of both
real-time fluctuation in gene expression levels in individual
live cells and their steady-state variations across a cell
population [5–11]. It is conceivable that the two measure-
ments are related, analogous to the ergodic principle in
statistical physics. Here, we present a theoretical model
that reconciles the time-resolved and population measure-
ments based on the underlying mechanism of protein
production.

We start with the simplest model shown in the kinetic
scheme in Fig. 1(a). The protein is produced in bursts, in
which an mRNA molecule is translated into a few protein
molecules before its degradation. Assuming the lifetime of
mRNAs is short compared to the lifetime of the protein, as
in the case of bacteria or yeast, fluctuations in the mRNA
level can be integrated out and proteins can be considered
to be produced in random uncorrelated events, where each
event results in an exponentially distributed number of
proteins, as observed experimentally [10,11]. Protein pro-
duction is then characterized by two parameters: the mean
number of bursts per cell cycle, which we define as a �
k1=�2, and the mean number of protein molecules pro-
duced per burst, b � k2=�1. Here, k1 is the rate of tran-
scription of a gene into mRNA, k2 is the rate of translation
of mRNA into protein, and �1;2 are the rates of degradation
of the mRNA and protein, respectively, [Fig. 1(a)]. In
addition, we consider the concentration of a given protein
in a cell, x�t�, to be a continuous random variable that
changes abruptly in time when a production burst occurs.
Given this kinetic scheme of protein production, the dis-
tribution of a protein in a population of cells, p�x�, satisfies

a continuous master equation [12]

 

@p�x�
@t

�
@
@x
��2xp�x�� � k1

Z x

0
dx0w�x; x0�p�x0�: (1)

Here, x � n=V is the concentration of a protein of interest
in a cell, where n is the number of molecules of that protein
inside a cell and V is the cell volume. The first term on the
right-hand side of Eq. (1) describes decrease in the con-
centration of protein molecules, either due to dilution
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FIG. 1 (color online). Analytical solution to stochasticity in
gene expression. (a) Kinetic scheme for describing noise in gene
expression. (b) Distribution of protein concentration in a cell
population. Simulation parameters are biologically relevant for
bacteria: �1 � 0:01 s�1, �2 � 4� 10�4 s�1, V0 � 1:7 fl A:
a � 0:5, b � 30 ln2; B: a � 5, b � 30 ln2; C: a � 50, b �
3 ln2; D: a � 50, b � 30 ln2. Simulations include random
(binomial) partitioning of protein molecules during cell division
and exponential growth in cell volume. Gamma distribution
[lines, Eq. (5)] matches stochastic stimulation results (dots)
well over a large range of parameter values. (c),(d) Simulation
and analytic results for a < 1 and a > 1, corresponding to curves
A, B of (b), respectively. In the first case, p�x� peaks at x � 0,
regardless of the value of b. In the second case, p�x� peaks at
x > 0. Insets show typical simulated trajectories.
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during cell growth and division, or due to protein degra-
dation. In general, �2 � �ln2=T � ln2=T1�, with T the
protein half-life time and T1 the cell cycle time, in which
the cell volume doubles. The second term describes protein
production in bursts. w�x; x0� � w�xjx0� � ��x� x0�, with
w�xjx0� the conditional probability that the protein concen-
tration in a cell will be x after a protein production burst,
given that the concentration was x0 before the burst. The �
function conserves the total probability density by account-
ing for the loss of density at existing protein concentration
as a result of a burst away from x. We next assume that the
burst size (x� x0) is independent of the current protein
concentration, x0, and that it follows some characteristic
distribution, ��x� x0�. Under these assumptions,
w�x; x0� � w�x� x0� � ��x� x0� � ��x� x0�. At steady
state, the concentration of a given protein per cell reflects
the balance between production of new proteins and dilu-
tion or degradation of existing ones: @p�x�=@t � 0. Noting
that with the above form of w�x; x0� the creation term in
Eq. (1) becomes a convolution integral, we can write

 �
@
@x
�xp�x�� � aw 	 p�x�; (2)

with the convolution integral denoted by: w 	 p �R
x
0 w�x� x

0�p�x0�dx0. The Laplace transform of Eq. (2)
yields a first order ordinary differential equation:

 s
@p̂
@s
� aŵ p̂ : (3)

Here, s is the Laplace space variable, while ŵ, p̂ denote the
Laplace transforms of w�x�, p�x�, respectively. Next, we
note that the burst size distribution is given by an expo-
nential distribution: ��x� � �1=b� exp��x=b�, with an av-
erage burst size b. This burst size distribution was recently
measured experimentally in E. coli cells [10,11]. The
corresponding Laplace transform of w�x� is ŵ�s� �
�s=�s� �1=b��. With this, Eq. (3) can be solved to give:

 p̂�s� � �s� �1=b���a: (4)

Transforming back to real space gives the solution for the
steady-state distribution:

 p�x� �
1

ba��a�
xa�1e�x=b: (5)

This is the Gamma distribution, with � denoting the
Gamma function. We note that since the above derivation
takes into account explicitly the exponentially distributed
burst size without making the Gaussian noise approxima-
tion, the resulting Gamma distribution captures the asym-
metry of experimentally observed distributions [7,13,14].
This functional form is the continuous equivalent of the
Negative-Bionomial distribution derived by Paulsson et al.
[15] using a discrete master equation.

The Gamma distribution is defined by the two parame-
ters a and b, establishing a direct correspondence between

the steady-state distribution and the kinetic parameters that
describe protein expression. The two parameters are re-
lated to the mean, hxi and the standard deviation, �, of
p�x�: the Fano factor, �2=hxi � b is an estimator for
average burst size relating to translation, and �2=hxi2 �
1=a estimates the average time between bursts, relating to
transcription. We note that, due to the continuous variable
approximation, this result deviates from �2=hxi � b� 1
as derived using a discrete master equation [15,16].
However, for b > 1, the deviation is small and majority
of genes falls into this category [17].

We numerically simulated the reactions shown in
Fig. 1(a) using Gillespie’s algorithm [18] for various values
of the rate constants. In those stochastic simulations, we
assume a stable protein (T 
 T1), and include random
partitioning of proteins between daughter cells after cell
division according to Binomial distribution, as well as an
exponential growth in cell volume, which is doubled dur-
ing a time T1. The protein concentration is given by x�t� �
n�t�=V0 exp��ln2��t=T1�� with V0 the cell volume just after
cell division. Figure 1(b) shows that there exists an excel-
lent agreement between the simulated protein concen-
tration distribution and the corresponding Gamma dis-
tribution, with a � k1=�2 and b � �k2=�1�=hV�t�i �
�k2=�1� ln2, where the average of V�t� is taken over a
cell cycle. We observe that, under almost all circumstan-
ces, the discreteness of the number of molecules does not
lead to a significant difference between simulations and
analytical results for n � 1. From this comparison, we
conclude that the parameters a, b, which characterize the
process of protein production, can be extracted from a
protein concentration distribution with good accuracy, de-
spite the simplifications used in the derivation. These
simplifications are useful in gaining an intuitive view of
the process and allow for extension of the model to more
complex cases, as discussed below.

The parameter a determines two different regimes of
Eq. (5). For a < 1, corresponding to less than one burst
event per cell cycle on average, p�x� peaks at zero. In this
case, a large fraction of cells do not contain even a single
copy of the protein of interest, regardless of the burst size
b. For a > 1, p�x� peaks at a nonzero x and most cells
contain the protein at some level. These two cases are
illustrated in Fig. 1(c) and 1(d), respectively.

In addition to the burstlike production of proteins, tran-
scriptional bursts have also been observed recently [9]. The
number of mRNA molecules produced per burst has been
observed to be exponentially distributed. In this case, it can
be shown that the number of proteins produced per tran-
scriptional burst remains exponentially distributed. Thus,
the steady-state protein distribution is still described by a
Gamma distribution, even with mRNA produced in bursts.
In a more general setting, transcription occurring in a time
window with exponential dwell time, such as the on-off
models of chromatin remodeling or transcriptional reini-
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tiation [6,8], also produces distribution that can be well
described by the Gamma distribution. In these cases, the a
and b values extracted from the distribution can be gener-
alized to denote the number of ‘‘on’’ windows per cell
cycle and the number of proteins produced during each
window, respectively.

An advantage of this analytical framework is that it can
be extended to analytically describe the steady-state pro-
tein distribution for various cases of biological interest, as
we demonstrate with the examples below. Many transcrip-
tion factors—proteins that regulate the expression level of
other genes—also regulate their own transcription [19].
Assuming that rates of transcription factor binding to (kon)
and unbinding from (koff) the promoter are fast, autoregu-
lation can be added to the model by allowing the burst rate
to depend on the current level of x, by multiplying a with a
response function c�x�. At steady state, the master equation
is now modified:

 �
@
@x
�xp�x�� � a

Z x

0
dx0w�x� x0�c�x0�p�x0�: (6)

The Laplace transform of Eq. (6), assuming the same form
of w�x� x0� as above, is

 

@p̂
@s
� �

a
s� �1=b�

�ĉ 	 p̂�: (7)

Multiplying both sides by [s� �1=b�] and inverse Laplace
transform yield @�xp�=@x� xp=b � acp, which can be
solved to give p�x� in the presence of autoregulation:

 p�x� � Ax�1e�x=bea
R
dxc�x�=x (8)

with A being a normalization factor. For a response in the
form of a Hill function c�x� � kH=�kH � xH� � ", p�x�
can be integrated:

 p�x� � Axa�1�"��1e�x=b�1� �x=k�H��a=H: (9)

Here, k � koff=kon is the equilibrium binding constant of
the transcription factor to its DNA binding site, and " �
k"=k1 is a small leakiness of the promoter, with k" the
leakage transcription rate (See Fig. 2 for the corresponding
kinetic scheme used in the stochastic simulations). A Hill
coefficient H > 0 corresponds to negative feedback, and
H < 0 to positive feedback.

Figure 2(a) shows that the calculated steady-state distri-
bution of protein concentrations with negative feedback is
squeezed compared to that without feedback. The calcu-
lated distribution with positive feedback may give rise to
bistability as shown in Fig. 2(b). Both results are consistent
with experimental observations [20]. As with the simpler
case of Fig. 1, the agreement between the stochastic nu-
merical simulations and the analytical model is good, again
with no fitting parameters. We note that a bimodal popu-
lation occurs in a narrow range of the parameter k. Outside
this range, the population is unimodally distributed either
at the low or high state, leading to a sharp switch, as shown

in Fig. 2(c). Such sharp switches may exist in nature, where
the binding constant of an activator to DNA changes in
response to a signal, e.g., the concentration of a specific
small molecule substrate.

From the analytical form of Eq. (9) it is seen that
bistability can occur not only for H <�1, but also for
the case H � �1 [Fig. 2(b)], which is not predicted by the
deterministic rate equation without noise [21]. The ana-
lytical form of Eq. (9) facilitates calculations of moments
of p�x� as a function of a changing parameter. This is
demonstrated in Fig. 2(c) and 2(d), where hxi, � and the
Fano factor are plotted as a function of the binding constant
k, for positive autoregulation.

We now extend the model to describe noise propagation
in a simple genetic network—a repressor, R, that regulates
gene x. We calculate the joint distribution p�R; x� in a cell
population, accounting for fluctuations in R and their effect
on fluctuations in x. Here, the burst rate for producing x is
dependent on the concentration of the repressor R and
equals axc�R�. In the limit where fluctuations in R are
fast compared with the rate of transcription of x, those
can be averaged out, and the joint probability density of R,
x is given by,

 p�R; x� � p�R�p�x� � Bp�R�xaxhc�R�i�1e�x=bx : (10)

Here, p�R� is given by Eq. (5), ai, bi (i � x, R), are burst
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FIG. 2 (color online). Autoregulation. (a) Dots show simu-
lated distribution of protein concentration without (curve A) and
with (B) negative feedback. Lines are analytical solutions
[Eq. (9)]. Parameters: a � 10, b � 20, k � 70 nM, " � 0:05,
H � 1. (b) Same as (a), for positive feedback. Inset: kinetic
scheme. X: the autoregulated transcription factor, m: corre-
sponding mRNA. Parameters: as in (a) except for : H � �1
(C, cyan) and H � �4, " � 0:2 (D, magenta). In this case, a" >
1 resulting in low peak at x > 0. (c) Mean of x as a function of k
calculated from Eq. (9), for positive autoregulation (black
curve). Parameters are as in [(b), curve C)]. Circles: values
calculated from stochastic simulations. Representative distribu-
tions p�x� are shown in insets. (d) Standard deviation of x vs k
[(parameters as in (c)]. Inset: the Fano factor, �2=hxi, peaking at
the transition region.

PRL 97, 168302 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
20 OCTOBER 2006

168302-3



parameters describing production of the two proteins x and
R, respectively, and B is a normalization factor. If fluctua-
tions in R are slow, the joint distribution is given by Bayes
rule:

 p�R; x� � p�R�p�xjR� � Bp�R�xaxc�R��1e�x=bx : (11)

The numerical simulation and analytical solution for this
scenario are illustrated in Fig. 3. Again, no fitting parame-
ters are used, and the analytical form captures the features
of the numerical result. This is an example of extrinsic
noise, where fluctuations in an upstream regulator R con-
tribute to the noise measured in x. Note that the analytical
form shows that the effect of extrinsic noise in this case is
asymmetric, increasing p�x� mainly for small values of x
[see p�x� in top-left panel of Fig. 3]. Similar joint distri-
butions were recently measured in live cells [22].

We have recently shown experimentally that dynamic
information about the protein production process is pre-
served in, and can be extracted from the steady-state
distribution [10]. Hence, this analytical framework can
facilitate comparison of experimental data with suggested
microscopic models. Because of the availability of whole-
genome fluorescent protein fusion libraries and ease of
scaling up flow cytometry studies [13,14], this analytical
model provides a framework for extracting quantitative

information on transcription and translation processes for
genes in the whole genome from measured protein con-
centration distributions. It may be possible to tabulate a
and b values from such data sets and identify common
genetic regulatory elements in genes with similar noise
behaviors. In addition, the ability to calculate analytically
the shape of the protein distribution facilitates the under-
standing of stochasticity in biological decision making
processes, such as developmental switches.
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FIG. 3 (color). Joint distribution of a repressor, R, and a
regulated gene, x. Contour plots of steady-state distributions
obtained by analytic solution [Eq. (11), top row] and by numeri-
cal stochastic simulation (bottom row) for a case when fluctua-
tion in the repressor is slow. Distributions are shown for 2
average values of repressor concentration. The black dashed
line represents the deterministic steady-state solution for x�R�.
Averages of the distributions are marked (X). The distribution
p�x� is shown on the right (blue line), compared to the case of
fast repressor fluctuations [dashed-red line, Eq. (10): negligible
extrinsic noise]. Parameters: �1x, �2x, V: as in Fig. 1(b); k �
20 nM, k1x � 0:01 s�1, k2x � 0:4 s�1, (ax � 25, bx � 40);
�1R � 0:02 s�1, �2R � �2x, k2R � k2x, (bR � 20); left: k1R �
4� 10�5 s�1 (aR � 0:1), right: k1R � 4� 10�3 s�1 (aR � 10).
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