
Constructing the Energy Landscape for Genetic
Switching System Driven by Intrinsic Noise
Cheng Lv1., Xiaoguang Li2., Fangting Li1,3*, Tiejun Li2,4*

1 School of Physics, Peking University, Beijing, China, 2 LMAM and School of Mathematical Sciences, Peking University, Beijing, China, 3 Center of Quantitative Biology,

Peking University, Beijing, China, 4 Beijing International Center for Mathematical Research, Beijing, China

Abstract

Genetic switching driven by noise is a fundamental cellular process in genetic regulatory networks. Quantitatively
characterizing this switching and its fluctuation properties is a key problem in computational biology. With an
autoregulatory dimer model as a specific example, we design a general methodology to quantitatively understand the
metastability of gene regulatory system perturbed by intrinsic noise. Based on the large deviation theory, we develop new
analytical techniques to describe and calculate the optimal transition paths between the on and off states. We also
construct the global quasi-potential energy landscape for the dimer model. From the obtained quasi-potential, we can
extract quantitative results such as the stationary distributions of mRNA, protein and dimer, the noise strength of the
expression state, and the mean switching time starting from either stable state. In the final stage, we apply this procedure to
a transcriptional cascades model. Our results suggest that the quasi-potential energy landscape and the proposed
methodology are general to understand the metastability in other biological systems with intrinsic noise.
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Introduction

Stochasticity is an inherent property of living cells. Especially

when the low copy number of species like the DNA and mRNA

are taken into account, stochastic fluctuations can become

significant and may qualitatively affect the behavior of the whole

system [1,2]. To deal with these fluctuations, cells have evolved

many mechanisms, of which genetic switch is a typical example.

Cellular systems performing genetic switches usually consists of

one positive feedback or double negative feedbacks [3,4].

Depending on the robustness of the feedbacks, cells can perform

switches either spontaneously or on call [5].

Previous kinetic studies about cellular stochasticity have been

formulated by using the generating function [6], system size

expansion [7,8], large deviation theory (LDT) [9–13], or by

employing WKB approximation to the chemical master equations

(CMEs) [14,15], etc. However, only few of them take transcrip-

tional noise into account explicitly. Some recent studies have

shown that correlations between mRNA and protein levels do not

always perform equally well in revealing genetic regulatory

relationships [16,17], and the involvement of mRNA has a large

effect on the switching times [18,19]. On the other hand, ever

since Waddington’s ‘‘epigenetic landscape’’ proposed in 1957 [20],

the energy landscape have been widely used to provide intuitive

illustration of the dynamics and evolution of genetic regulatory

systems [1,11,21]. Thus it is important and desired to have an

approach which can effectively determine the key features of a

noisy gene expression system, such as constructing the corre-

sponding ‘‘Waddington potential’’, identifying the transition paths

between metastable states and computing the transition rates, etc.

In this paper, we present a methodology to understand the

metastability of the genetic switches in gene expression driven by the

intrinsic noise based on LDT for Markov processes [22–24]. By

explicitly taking mRNA noise into account, we obtain the most

probable transition paths for off-to-on and on-to-off genetic switches

through the geometric minimum action method (gMAM) [25].

Furthermore, we construct the global quasi-potential energy

landscape, which is the rationalized version of the Waddington

potential in this context. Based on the obtained quasi-potential, we

obtain quantitative results for transition rates between metastable

states and the intrinsic noise strength of gene expression state. We

also consider the reduction of redundant dimensions if we are only

interested in the energy landscape for partial components of the

whole system. We successfully apply this methodology to a

transcriptional cascades model. The relation between our and

other approaches in literature is also discussed. From the authors’

opinion, this framework is generally applicable for studying

transitions between stable-saddle-stable fixed points with jump type

noise generated by Gillespie type birth-death dynamics [26]. The

quasi-potential energy landscape will be a powerful tool to unravel

the metastable properties in more general biological processes.

Models and Methods

We illustrate our method through a specific two-state gene

expression model in Fig. 1. We will refer to it as the ‘‘dimer
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model’’ throughout the remainder of this paper. In this model, the

gene at the active state transcribes mRNA with a much larger rate

than it at the inactive state. Proteins translated from mRNA can

aggregate into dimers that bind to the promotor site of the gene via

a positive feedback. All of the processes are modeled as elementary

reactions and all reaction rates are rescaled by protein decay rate

(i.e. we will set cn~1 unless stated otherwise). Here we assume that

the reaction rates of dimer binding and dropping from DNA are

much larger than the other reactions.

Classical Methods and Issues
The deterministic mean-field description of this dimer model

through quasi-steady state approximation (QSSA) yields the

ODEs.

dM

dt
~

a0c0zak0D

c0zk0D
{cmM,

dN

dt
~bM{cnN{2k1N2z2c1D,

dD

dt
~k1N2{c1D,

where M, N and D are the mean number of the mRNA, protein

and dimer respectively, and the parameters are shown in Fig. 1.

This system has two stable fixed points and one saddle in

physically reasonable parameter regime (see Text S1:I). These two

stable fixed points correspond to the expressed and unexpressed

states at which the copy number of proteins is at high or low state,

respectively. With this deterministic description, once the system

settles in one of its two attractive fixed points, it will stay there

forever. However, in the presence of intrinsic noise, the system will

fluctuate around its attractive fixed points and switch between

these two metastable states on a large timescale. This type of

switching among metastable states under small perturbations is

exactly the rare events studied in the literature. The large

deviation theory (LDT) is an appropriate tool to quantitatively

describe the rare transitions [23,25,27]. Roughly it tells that when

the system size K is sufficiently large, the probability that the

trajectory of the stochastic dynamics X (t) stays in a small d-

neighborhood around a specific path Q can be given as

P sup
0ƒtƒT

X (t)

K
{Q(t)

����
����§d

� �
& exp ({KIT (Q)), ð1Þ

where IT (Q)~
Ð T

0
L(Q, _QQ)dt is called the rate functional. Thus the

most probable transition path can be obtained by minimizing

IT (Q) associated with the Lagrangian the L. Our task is to find the

L for specific models. For Gillespie type birth-death dynamics, L

has no closed form and only its dual Hamiltonian can be obtained

in the large volume limit K??, i.e. the number of all types of

molecules goes to infinity. However, this approach encounters

difficulty if we take the DNA switching into consideration since

there is only one DNA copy in the considered model. Thus the

straightforward utilization of the existed Hamiltonian in the large

volume limit is invalid here.

Large Deviation Theory
To solve this issue, we develop the LDT directly for this specific

system following the way in [28] with further extension. The

biologically relevant choice of parameters in our model suggests

the scaling c0,a,a0*O(K), k1*O(1=K) and the others are O(1),
where K is the system size which is usually chosen as the typical

number of proteins in the expressed state. This is also the correct

scaling under which the mean field limit of the CMEs gives the

ODE system derived from QSSA (see Text S1:I). Define the

rescaled concentration variable x~(x,y,z) where (x,y,z)~
(m,n,d)=K and (m,n,d) is the state vector for the number of

mRNAs, proteins and dimers. Correspondingly define

~cc0~c0=K ,~aa~a=K,~aa0~a0=K and ~kk1~k1K to transform all the

parameters to O(1) magnitude. However for notational simplicity

we will drop the tilde symbol on these parameters in the rest of the

paper. It turns out that the Lagrangian of our model has the form.

L(x,q)~ inf
m

(L1(x,q,m)zL2(x,m)) ð2Þ

which combines the LDT result for large volume limit as shown in

(1) and the Donsker-Varadhan type LDT result [22,29] for DNA

fast switching. Here q~ _xx resembles the velocity in classical

mechanics, m~(m(0),m(1)) is a probabilistic 2-vector describes the

residence distribution of DNA at the inactive or active state.

Let us illustrate the construction of (2) via an intuitive way as

follows. The net effect of the fast switching of DNA induces a

residence distribution m with components m(0) and m(1) charac-

terizing the probability of DNA staying at the inactive and active

states, respectively. Whenever DNA is at the inactive or active

state, we can apply the traditional LDT result in the large volume

limit. This leads to the first part L1(x,q,m) in (2). The second part

describes how the visiting distribution induced by the random fast

switching of DNA is close to a prescribed residence distribution m
given the current state x. This is exactly what the Donsker-

Varadhan type LDT gives [22,29], which is described by L2(x,m).
Since we are only interested in the LDT for the state variable x,

the overall Lagrangian should be taken infimum with respect to all

of the possible residence distributions m. All of the statements will

be made clear in the continued paragraphs.

Figure 1. The autoregulatory dimer model with positive
feedback. Promoter transitions are regulated by the dimerized
transcription factor with rate k0 and r0 . a is the transcription rate of
active promotor, with a very small transcription rate of inactive
promotor a0 . b is kinetic rate of translation, cm and cn are degradation
rates of mRNA and protein, k1 and c1 are the rates of dimerization and
de-dimerization. All the processes are modeled as elementary reactions
and all reaction rates are rescaled by the protein decay rate (i.e. cn~1
unless stated otherwise).
doi:10.1371/journal.pone.0088167.g001

Constructing Energy Landscape for Genetic Switch

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e88167



Similar as the case in the large volume limit, it is not feasible to

get the explicit form of the Lagrangian L(x,q) in general, but its

dual Hamiltonian H(x,p) can be available, where p is the

generalized momentum conjugate to x as in classical mechanics.

They are connected via the Legendre transform.

H(x,p)~ sup
q

Sq,pT{L(x,q)ð Þ

~ sup
q

Sq,pT{ inf
m

(L1(x,q,m)zL2(x,m))

� �

~ sup
q

sup
m

Sq,pT{L1(x,q,m){L2(x,m)ð Þ

~ sup
m

sup
q

Sq,pT{L1(x,q,m){L2(x,m)ð Þ

~ sup
m

H1(x,p,m){L2(x,m)ð Þ: ð3Þ

For the Gillespie type birth-death process with M reaction

channels and the propensity function aj(x) and stoichiometric

vector nj for j~1,2, . . . M, the existed LDT result gives the

Hamiltonian [23].

H(x,p)~
XM
j~1

aj(x)(enj
:p{1): ð4Þ

Specifically in our model we have.

H1(x,p,m)~m(0)Hoff (x,p)zm(1)Hon(x,p) ð5Þ

with the Hamiltonian

Hoff (x,p)~a0(epx{1)zA(x,p) ð6Þ

when the DNA is at the inactive state and

Hon(x,p)~a(epx{1)zA(x,p) ð7Þ

when the DNA is at the active state. Here p~(px,py,pz) and

A(x,p)~cmx(e{px {1)zbx(epy {1)zcny(e{py {1)zk1y2(e{2pyzpz{1)

zc1z(e2py{pz{1) corresponds to the part of the Hamiltonian for

the gene expression, i.e. the transcription and translation

processes. On the other hand, the famous Donsker-Varadhan

LDT gives the Lagrangian

L2(x,m)~{ inf
u

X
s[f0,1g

(Lxu)(s)

u(s)
m(s), ð8Þ

where u~(u(0),u(1)) is any 2-vector and Lx is the infinitesimal

generator for the DNA two-states jumping process at a given state

x defined as

Lx

u(0)

u(1)

� �
~

{k0z k0z

c0 {c0

� �
u(0)

u(1)

� �
: ð9Þ

The direct calculation shows that

L2(x,m)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0zm(0)

p
{

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c0m(1)

p� 	2

: ð10Þ

Combining Eqs. (3), (5), (6), (7) and (10), we obtain the final

explicit Hamiltonian by optimization.

H(x,p)~½asza0(1{s)�(epx{1){(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0z(1{s)

p
{

ffiffiffiffiffiffi
c0s
p

)2zA(x,p),
ð11Þ

where s~1=2zt=(2
ffiffiffiffiffiffiffiffiffiffiffi
t2z4
p

) and t~(k0zc0){1=2½(a{a0)(epx{1)
zk0z{c0�. This derivation can be easily extended to similar

problems.

It is worth noting that one can show the Hessian of H(x,p) with

respect to p has the form.

+2
pH~

d1 0 0

0 d2z4d3 {2d3

0 {2d3 d3

2
664

3
775

~

d1 0 0

0 d2 0

0 0 0

2
664

3
775zd3

0

2

{1

2
664

3
775 0 2 {1½ �,

ð12Þ

where d1~2(a{a0)2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0zc0(t2z4)

q
epxz(a0(1{s)zas)epxz

cmxe{px , d2~bxepyzcnye{py and d3~k1y2e{2pyzpzz

c1ze2py{pz : Since d1,d2,d3 are positive when x,y,z are positive,

the decomposition in (12) shows that the Hessian is positive

definite. This means the Hamiltonian is convex with respect to p in

physically meaningful domain. It is quite different from that

obtained by WKB asymptotics [15] (See Text S1: II). The

convexity of the Hamiltonian is testified to be essential for the

robustness and efficiency of the numerical algorithm [25] both

theoretically and practically. It can be rigorously proved that it is a

natural by-product from the LDT analysis.

Quasi-Potential and Optimal Transition Path
With the obtained LDT, we can get the optimal transition path

through variational optimization. Moreover, we can define the

local quasi-potential S(x; x0) with respect to a meta-stable state x0

as.

Constructing Energy Landscape for Genetic Switch
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S(x; x0)~ inf
Tw0

inf
Q,Q(0)~x0,Q(T )~x

ðT

0

L(Q, _QQ)dt: ð13Þ

From classical mechanics, the local quasi-potential S(x; x0)
satisfies a steady-state Hamilton-Jacobi equation characterized by

the Hamiltonian shown in Equation (11).

H(x,+xS)~0: ð14Þ

The LDT also confirms the equilibrium distribution of the

system through a global quasi-potential function S(x).

p(x) � expf{KS(x)g, ð15Þ

where the symbol � means the equality relation on a logarithmic

scale, and S(x) can be obtained from its local version S(x; x0) by a

suitable sticking procedure which we will describe in the next

subsection. This function S(x), which naturally serves as a

rationalized version of the Waddington potential, is one main

point of this article.

The classical Hamilton-Jacobi theory enables one to solve the

local quasi-potential S(x; x0) satisfying (14) with variational

methods. Here we employ the powerful geometric minimum

action method (gMAM) proposed in [25] to compute S by

minimizing the action functional with a prescribed Hamiltonian

(11). The key idea of gMAM is essentially the Maupertuis principle

in classical mechanics, which reformulates the action functional on

the space of curves with intrinsic parameter, thus frees the time

variable in the minimization process and still keeps its efficiency in

high dimensions. This approach also resolves the issue of the

singular boundary value problem by solving Hamilton’s equations

directly [15,30]. Specifically after each run of gMAM with fixed

starting and ending points, one obtains the minimized action S

and the corresponding optimal path. The readers may be referred

to Text S1:IV for more details.

It is worth asking whether the choice of the large parameter K
affects the final results since any choice is artificial in practice. An

affirmative answer is given in Text S1:III that only the scaling

matters and the final systems are equivalent with respect to

different choices of the large parameter K .

Construction of Global Quasi-Potential Energy Landscape
Based on the obtained local quasi-potential S(x) starting from

the on and off states, we may construct the global quasi-potential

energy landscape for genetic switching model by sticking them

together. The system with only two metastable states and one

saddle point, as our dimer model, can be handled conveniently as

the way shown below. The readers may refer to [24] for systematic

methods of sticking the global quasi-potential for more complex

systems.

In our dimer model, we first compute the local quasi-potential

S(x; x0) starting from two metastable states x0~xon and x0~xoff .

We define Son~S(xs; xon) and Soff~S(xs; xoff ), where xs is the

saddle point. Denote DS~jSon{Soff j. Suppose SonwSoff , then

the global quasi-potential S(x) is given by.

S(x)~ minfS(x; xon),S(x; xoff )zDSg, ð16Þ

otherwise S(x) has the form

S(x)~ minfS(x; xon)zDS,S(x; xoff )g: ð17Þ

It is not difficult to observe that sticking the two local quasi-

potential via the linking saddle xs is the key point in this

construction.

In most cases, the considered system is in high dimensions while

we are only interested in partial variables which is in low

dimensions. This is also the case in our dimer model. Although the

global quasi-potential S(x) is in three dimensions, we are mainly

interested in its 2D configuration in the mRNA-Protein plane. So

we need to reduce the redundant dimension z to obtain a 2-D

potential S(x,y). We proceed with the following arguments.

According to the LDT analysis (15), we obtain.

P(x,y,z) � exp ({KS(x,y,z)): ð18Þ

With the same reason, we have

P(x,y) � exp ({KS(x,y)) ð19Þ

where P(x,y) is the reduced distribution for mRNA and protein.

By definition, this distribution is given by

P(x,y)~

ð
P(x,y,z)dz �

ð
exp ({KS(x,y,z))dz: ð20Þ

From the Laplace asymptotics [29] we get a simple reduction

strategy.

S(x,y)~ min
z

S(x,y,z): ð21Þ

This argument is general for any high dimensional situations

and indeed it is also applied to the noise cascading model

considered in our later text.

Results

Optimal Transition Path
The large-deviation theory predicts that when events with little

likelihood occurs, they will follow the optimal transition path

which minimizes the action (13) with high probability. The

probability of those paths deviated from the optimal one will decay

exponentially. By choosing two stable states as the starting and

ending points respectively, we obtained the switching path from

either of the two states (see Fig. 2). For the convenience of

visualization, we project the transition paths onto the mRNA-

protein plane.

Figure 2 shows clearly that when switch occurs, the trajectory

prefers to be around the most probable path characterized by the

Hamiltonian (11). The fact that the off-to-on and on-to-off paths

are not identical agrees with the previous studies that the switching

process is irreversible. The irreversibility is fundamental in

chemical reaction kinetics due to the non-gradient nature of the

considered system and can be considered as a form of hysteresis.

However, in contrast with the previous study [11], our results

indicate that when the noise level goes to zero, both optimal

transition paths pass through the same bottleneck, i.e. the saddle

point obtained from the corresponding deterministic model. This

suggests that the saddle point has the lowest barrier height along its

Constructing Energy Landscape for Genetic Switch
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stable manifold and is in accordance with the energy landscape

shown later.

Global Quasi-potential Energy Landscape
Applying the method of constructing global quasi-potential, we

can compute the 2-D potential S(x,y) for our dimer model. The

result is shown in Fig. 3.

In Fig. 3, we observe that the on and off states correspond to

two local minimum on the quasi-potential energy landscape, the

saddle of the deterministic dynamical system exactly corresponds

to the saddle point on the quasi-potential energy landscape too.

The flatness along the mRNA direction keeps in good accordance

with the large fluctuation observed in the reactive trajectories.

To further characterize the switching path, we denote the first

half (i.e. the part between the starting point and the saddle point)

as the uphill path and the latter half as the downhill path. One

may note that the transition path is also given by the Hamilton’s

equations _xx~+pH , _pp~{+xH . Therefore based on the fact

H(x,0):0, we obtained +xH:0 when p~0. At the saddle point

in any transition path, we have p~0 [25], and thus p:0 along the

whole downhill path. With this result we obtain the downhill

equations _xx~+pH(x,0), which exactly corresponds to the

corresponding deterministic dynamics. This fact explains that

after climbing the saddle point the biological system relaxes to its

attracting state fast without costing any action. This fact was also

pointed out in [30–32].

On the other hand, the Hamilton-Jacobi theory also yields the

uphill dynamics.

_xx~+pH(x,+xS): ð22Þ

It is difficult to give a thorough understanding about the whole

uphill path because of the general nonlinearity of H . However, an

analysis around the critical points is instructive. Based on the fact

p~0 at critical points (i.e. the metastable states and saddle), we

have by Taylor expansion.

Figure 2. Switching paths (A) from off to on state (purple solid curve) and (B) from on to off state (red solid curve) and MC
simulations for both switching trajectories. We take the two stable fixed points in the deterministic dynamics as the starting and ending points.
Darkness of the shading points represents the number of visits for reactive trajectories with smoothing. (C) Averaged switching trajectories from MC
simulation. For each number of protein, we average in the mRNA dimension using probability as weight. Here the statistical results around each
stable state is not shown because of the restrictions by our MC simulation algorithm (see Text SI:VI-A). The results are obtained from 1000
independent long time MC simulations. The parameters here are k0~1, c0~50, a0~0:4, a~400, b~40, cm~10, cn~1, k1~0:0002, and c1~2:
doi:10.1371/journal.pone.0088167.g002

Figure 3. Quasipotential energy landscape of the whole genetic switching system with (A) two and (B) three dimensional view as
well as switching paths between two stable fixed points. Each path passes through the saddle point. Here, the parameters are the same as in
Fig. 2.
doi:10.1371/journal.pone.0088167.g003
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_xx&+pH(x,0)z+2
pH(x,0):+xS: ð23Þ

Recall that +pH(x,0) corresponds to the deterministic mean

field ODEs, the equation (23) is exactly the uphill path of a

chemical Langevin dynamics [33] (See more details in Text

S1:VI). However, this chemical Langevin dynamics is not a

straightforward generalization from the mean field ODEs like the

usual large volume limit. Indeed, this reflects the specialty in our

model setup which is related to the DNA fast switching. To see this

more concretely, we have the approximated uphill dynamics for

the x-component in our dimer model as.

_xx~
a0c0zak0z

k0zzc0

{cmxz
a0c0zak0z

k0zzc0

z
2(a{a0)2

k0zzc0

" #
Sx

zcmxSx:

ð24Þ

The corresponding effective Langevin dynamics for the X -

component reads.

_XX~
a0c0zak0Z

k0Zzc0

{cmXz
ffiffiffiffiffiffiffiffiffiffi
âa(Z)

p
g1{

ffiffiffiffiffiffiffiffiffi
cmX

p
g2, ð25Þ

where g1 and g2 are two standard temporal Gaussian white noise

with mean Egi(t)~0 and covariance E(gi(t)gj(s))~dijd(t{s), and

âa(z)~(a0c0zak0z)=(k0zzc0)z2(a{a0)2=(k0zzc0): It is re-

markable that besides the mean field transcription rate

(a0c0zak0z)=(k0zzc0), we have an additional term

2(a{a0)2=(k0zzc0) in âa. This is quite different from the usual

chemical Langevin equations where for the j-th reaction the

diffusion term
ffiffiffiffiffiffiffiffiffiffi
aj(x)

p
nj has the same form as its corresponding

drift part aj(x)nj except a square root operation. The additional

term in âa makes that the fluctuation of the transcription is larger

than that in gene expression processes without DNA switching, yet

has the same mean field transcription rate

(a0c0zak0z)=(k0zzc0): This observation coincides with the

theoretical analysis in [34] although no feedback is considered

there.

The quasi-potential energy landscape not only provides the

pictorial illustration for the dynamical transitions, it also contains

many quantitative information to understand the metastability in

genetic switching models. Once the global energy landscape is

obtained, one can get the stationary distribution of the whole

system via Eq. (15). Furthermore, it is very easy to calculate two

main characteristic quantities used to describe a genetic switching

system through only small amount of computational efforts. One is

the transition rates, corresponding to the lowest barrier heights

between two metastable states, and the other is the noise strength,

corresponding to the steepness of quasi-potential around each

metastable state.

Global Property: Mean Switching Time (MST)
The transition rate of switching systems is often characterized

by Mean Switching Time (MST). We can compute the MST from

either metastable state in the dimer model. For example,

according to [24], the MST ton from on-to-off transition can be

estimated from an asymptotic analysis.

ton&ToneKDSon : ð26Þ

Here Ton is a prefactor, and the quasi-potential energy barrier is

DSon~S0{Son, where S0 and Son are the action values at the

saddle and on states, respectively. The result for the MST of off-to-

on transition toff is similar. Although for one dimensional system

the prefactor of MST can be obtained [31], there are no available

results in high dimensions because of the geometry problem and

the non-gradient nature of the system [35,36]. Fortunately, the

prefactor varies slowly in many cases, therefore we can compare

the MC simulations with the exponential time part and adjust the

prefactor Ton to fit the numerical results.

The sensitivity of both MSTs, ton and toff , to the change of

transcription rate a and mRNA decay rate cm are investigated and

compared with MC simulations in Fig. 4A and Fig. 4B, where the

prefactors of off-to-on and on-to-off transitions are estimated as

2300 and 29, respectively. It can be observed that the MST is

excellently predicted by Eq. (26) up to a slowly varying prefactor.

And it is worth noting that when the MST becomes very large, the

efficiency of the classical MC simulations gets extremely low while

it is well kept in our approach.

The positive feedbacks in genetic circuit usually provide cellular

memory or all-or-none switch. The results in Fig. 4 reveal the

robustness and sensitivity of the dimer model to the change of

different kinetic parameters. In Fig. 4A and Fig. 4B, the promoter

transition rates k0~1, c0~50. When the transcription rate a
increases from 360 to 420, the MST from on-to-off states ton

increases exponentially, while the MST of off-to-on transition toff

decreases slowly; it means the on-state becomes more stable while

the off-state can still keep its stability. Therefore when the

transcription rate a is increased, our genetic dimer circuit with

positive feedback provides a stable cellular memory at the on state,

but the off state remains its stability. Thus the system can not

switch from the off state to the on state effectively.

How to turn on the genetic switch? The results in Fig. 5 provide

two possible effective choices. The first choice is to pose an

additional source of the mRNA production, which we call as the

trigger signal. We denote the additional mRNA production rate as

Strigger. If Strigger increases from 0 to 20, then MST of off-to-on

transition toff will decrease exponentially and the genetic switch is

turned on. We also show how the global energy landscape changes

with different trigger rate Strigger~5 in Fig. 5C and Strigger~10 in

Fig. 5D. It is evident to see from the figures that when the trigger

signal increases, the barrier height from off-state to on-state

decreases, which is in accordance with the MST of off-to-on

transition toff . The relevant biological switch can be found in the

start point of budding yeast cell cycle process, where the additional

trigger signal in G1 cyclin Cln3 causes the activation of G1

transcription factor SBF and MBF [37]. The second possible

choice is to decrease the degradation rate of protein cn. When the

degradation rate of protein cn decreases from 1 to 0.5 in Fig. 5B,

MST from off-to-on transition toff will also decrease exponentially

from 106 to 104 and turn on the genetic switch. This is the case in

Bacillus subtilis, where the transitions into competent state is caused

by decreasing the degradation rate of protein ComK [38]. All the

other relative parameters are listed in the caption of Figures.

Furthermore, we calculate the MST of both from off to on and

on to off states in the different promoter transition rates. We show

the results with the fast rates (k0~5, c0~250) in Fig. 4C and slow

rates (k0~0:2, c0~10) in Fig. 4D. These results indicate that the

system with slow promoter transition rates tend to have short MST
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of off-to-on transition (red dashed lines) while fast rates lead to long

MST of off-to-on transition (red dash-dotted lines). This is due to

the reason that faster promoter transition rates lead to smaller

mRNA and protein noise strength (see Fig. 6 for more detailed

information). Ignoring the difference of the mechanism of initial

transcription between prokaryotes and eukaryotes, in the simple

case, the faster promoter transition rates correspond to the gene

expression process in prokaryotes, and the slower promoter

transition rates correspond to the slow chromatin remodeling

process in eukaryotic case [39]. The results suggest that

prokaryotes may have stronger cellular memory than eukaryotes.

Local Property: Fluctuation Around Stable States
Another quantitative information that quasi-potential energy

landscape can provide is the noise strength of stable states. Here

we use the coefficient of variation (CV, i.e. the standard deviation

over the mean) to measure the strength of fluctuation instead of

the Fano factor, for the system here has positive feedback thus

deviates far from Poisson statistics. Notice that the stationary

distribution p(x) � expf{KS(x)g, we can expand S(x) in the

vicinity of high stable state xon up to second order thus get the

Gaussian approximation.

p(x)^
1

(2p)
3
2jSj

1
2

expf{ 1

2
(x{m)S{1(x{m)Tg: ð27Þ

Here, x~(x,y,z),m~(xon,yon,zon), S~(Sij)3|3, and jSj is the

determinant of matrix S. Eq. (27) holds only in the vicinity of the

on state with standard deviations sm~(K(S00yyS00zz{S002yz )=jSj)1
2,

sn~(K(S00xxS00zz{S002xz )=jSj)1
2 and sd~(K(S00xxS00yy{S002xy)=jSj)1

2.

With the sm, sn and sd above, we can easily obtain the CV as

shown in Fig. 6.

Figure 6 demonstrates that when the average expression levels

increase, the noise strength of mRNA and protein decreases in our

positive feedback model. The fluctuation of mRNA is usually

larger than that of protein. Furthermore, the noise level with slow

promoter transition rates is almost always larger than the one with

fast promoter transition rates. This is in accordance with the

results of MST that the system with long MST has small noise and

vise versa. The inconsistent portion between analytical and

simulation results (the left part of the line with slow promoter

transition rates in Fig. 6B) is due to the inapplicability of Eq. (27)

Figure 4. The mean switching time (MST) and quasipotential energy landscape as a function of parameters. (A) and (B): MST as a
function of transcription rate a. Promoter transition rates k0~1, c0~50, the gMAM results with numerical prefactor of off-to-on transition (red solid
line) and on-to-off transition (blue dashed line), compared with MC simulations (.) and (0), respectively. (C) and (D): The gMAM results with different
promoter transition rates of off-to-on transition (red) and on-to-off transition (blue), where solid line with k0~1, c0~50 is same as (A) and (B), the
faster transition rate in dashed line with k0~5, c0~250, the slower transition rate in dotted line with k0~0:2, c0~10. Other parameters are
a0~0:4, b~40, cn~1, k1~0:0002, c1~2; in (A,C), cm~10 and (B,D) a~400:
doi:10.1371/journal.pone.0088167.g004
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during the low barrier crossing process for the on state. More

details may be referred to Text S1:V.

Application in Transcriptional Cascades
To further illustrate the power of quasi-potential energy

landscape and the abundant quantitative information it contains,

we apply our methodology to a transcriptional cascades model

based on the previous work of S. Hooshangi et al. [40]. In their

work, S. Hooshangi et al. synthesized transcriptional cascades

comprised of one, two, and three repression layers and analyzed

the sensitivity and noise propagation as a function of network

complexity. They used different concentrations of anhydrotetra-

cycline (aTc) as inducer and measured the fluorescence intensities

of protein eyfp (the last layer of each cascade) by the flow

cytometer.

Here we simplify the 3-layer cascades as x?y1 a y2 a y3,

where x denotes the concentration of aTc as inducing signal and

y1, y2, y3 denote the output of proteins in different layers

respectively. Then we directly construct the quasi-potential energy

landscape for each layer and obtained the normalized probability

distribution of the output to certain signal x from Eq. (15). The

dose response curves to increasing signal x are shown in Fig. 7,

which are consistent well with the previous experimental results.

Further more, two features of transcriptional cascades can be

observed. Firstly, the more layers the transcriptional cascades

have, the sharper the response curves are (as the Hill coefficient of

the 3-layer cascades is 2.00, 3.15 and 4.08 respectively). Thus the

sensitivity is increased in the cascades. Secondly, the fluctuation of

output can be described by the spreading width of its distribution,

so more layers of cascades amplify the cell-cell variability (see Fig.

S2). In short, when a cascade has more layers, its response curve

gets steeper with a wider probability distribution and thus larger

fluctuations. The straightforward calculation of CV based on Fig. 7

has been done and it agrees well with the MC simulations (see

Text S1:VI and Figure S2).

Limitations of The Study, Open Questions, and Future
Works

We have already illustrated a general methodology based on

LDT to quantitatively understand the metastability in gene

expression processes perturbed by the intrinsic noise and applied

it to a dimer auto-regulatory circuit model. It is clear that this

methodology can be extended to more general systems, provide

one can explicitly write down the Hamiltonian of the system. If all

of the considered species have relatively large numbers, the

Hamiltonian is simply the Eq. (4). For the case where the large

volume limit fails to be true, our method is also applicable under

an additional assumption that the low copy number of species

reach their stationary distribution much faster than the others.

This is the situation that we treat DNA in our dimer model.

However, we would like to mention the limitations of our work,

which of course motivates us for future studies.

The main limitations or the corresponding open questions can

be summarized into the following three aspects:

1. The case where the large volume limit and the fast switching

mechanism are both invalid. This prevents us to construct the

LDT for the considered system. Thus there is no Hamiltonian

and the current methodology fails. How to quantitatively study

such systems and define the proper Waddington energy

landscape is an issue.

Figure 5. The mean switching time (MST) of off-to-on transition as a function of (A) trigger signal strength that transcribes mRNA at
constant rate and (B) degradation rate of protein cn. (C) and (D): Quasipotential energy landscape with different trigger strength. Strigger~5 in
(C), and Strigger~10 in (D). Other parameters are a0~0:4, a~400, b~40, c1~1, k1~0:0002, cm~10; cn~1 in (A,C,D), and Strigger~0 in (B).
doi:10.1371/journal.pone.0088167.g005
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2. The curse of dimensionality. When the problem is extended to

high dimensions, although the computation of optimal

transition path and the analysis of MST and CV can be

achieved with a reasonable cost, constructing the whole global

energy landscape is not feasible in general. However as we have

argued before, the whole energy landscape is even not

necessary since we are only interested in its configuration for

partial components. How to extract these information directly

from the Hamiltonian by smart utilization of Eq. (21) is what

we are trying to do.

3. Transition rate formula in the high dimensional case. Despite

the transition rate formula, i.e. the Arrhenius type formula, for

the equilibrium models are well developed [41], there is no

complete answer for the non-equilibrium case. The rate with

form R � exp ({KDS) has long been established in [24], but

the prefactor is not known. In one dimensional case, partial

result is given [31]. But its high dimensional form is still an

open question.

To understand the transition behavior for more general

biological systems driven by noise, the above open problems

should be overcome in the future studies.

Conclusion and Discussion

In this paper, we have presented a methodology to construct

the quasi-potential energy landscape of genetic switching system

while explicitly taking mRNA noise into account. This global

potential, which is a rationalized version of Waddington

potential, can provide a quantitative tool to understand the

metastability in more general biological processes with intrinsic

noise. The results also provide some insights in gene-expression

switching circuit with positive feedback, especially the robustness

and sensitivity of the genetic switching system under different

promotor transition rates.

For the connection with previous general methodology in

literature [11], we focus more on the energy landscape and

metastability properties for systems with intrinsic noise. Although

one can principally compute the stationary distribution by solving

a steady state chemical master equation on a truncated domain,

our approach sufficiently utilizes the special structure of the

system. Indeed, the global quasi-potential S(x) employed in this

paper connects with the potential defined in [11] through

S(x)~{ limK?? K{1 ln pss(x), which is independent of K .

The reason we can do this is simply because the system size K

is large enough here.

Figure 6. The coefficient of variation (CV) versus mean number of (A) mRNA and (B) protein induced by varying transcription rate a
with different promoter transition rates. The lines and discrete dots correspond to analytical results and MC simulations, respectively. The
results with fast promoter transition rates are shown in blue dash-dotted line and %, medium rates in red solid line and 0, and slow rates in magenta
dashed line and . The parameters here are the same as in Fig. 4 (A,C).

Figure 7. The dose response curves and probability distribution of the output protein in the 3-layer cascades (denoted by y1,y2,y3)
as a function of inducing signal x, 1-layer in (A), 2-layer (B) and 3-layer (C). The probability distribution can be directly obtained from Eq.
(15) after normalization. The Hill coefficient for each cascade is fitted as 2.00, 3.15 and 4.08 respectively.
doi:10.1371/journal.pone.0088167.g007
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With regard to the WKB and reduction approach in [15], we

obtain a convex Hamiltonian based on rigorous mathematical

analysis and explicitly take mRNA noise into account through the

gMAM method. The convexity proves to be essential for the

computational efficiency and robustness. Our derivations can be

also easily extended to similar problems.

Overall, the quasi-potential energy landscape and the proposed

methodology can serve as a useful tool to explore the gene

expression process with intrinsic noise. Further developments such

as high dimensionality issue and its applications to other biological

systems like complex cellular decision making and the develop-

mental process of cells are deserved to be investigated. The

biological meaning of optimal transition path and transition states

remains to be uncovered in the future studies.
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