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ANALYSIS OF EXPLICIT TAU-LEAPING SCHEMES FOR
SIMULATING CHEMICALLY REACTING SYSTEMS∗
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Abstract. This paper builds a convergence analysis of explicit tau-leaping schemes for simulat-
ing chemical reactions from the viewpoint of stochastic differential equations. Mathematically, the
chemical reaction process is a pure jump process on a lattice with state-dependent intensity. The
stochastic differential equation form of the chemical master equation can be given via Poisson ran-
dom measures. Based on this form, different types of tau-leaping schemes can be proposed. In order
to make the problem well-posed, a modified explicit tau-leaping scheme is considered. It is shown
that the mean square strong convergence is of order 1/2 and the weak convergence is of order 1 for
this modified scheme. The novelty of the analysis is to handle the non-Lipschitz property of the
coefficients and jumps on the integer lattice.
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1. Introduction. Traditional modeling of chemical reactions is based on the
deterministic formulation, that is, the ordinary differential equations (ODEs) of the
species concentration with the reaction rates as parameters. But this approach en-
counters difficulties when the number of some species is very small such that the
stochastic effect plays a crucial role in some biological processes [2, 18, 19, 32]. In
order to capture the correct stochasticity, Gillespie first proposed a stochastic simula-
tion algorithm (SSA) for simulating the spatially homogeneous or well-stirred chemical
systems [21, 22]. It was improved numerically in the next reaction method by Gibson
and Bruck [20] in 2000, while a recent study by Cao, Li, and Petzold [13] shows that
an optimized direct SSA is more efficient, and it is announced as the best way to
implement SSA for large systems. The SSA is considered to be exact because it is rig-
orously based on the same microphysical principles that underlie the chemical master
equation (CME). In condensed matter physics, there is a similar algorithm called the
kinetic Monte Carlo method or BKL algorithm. It was proposed by Bortz, Kalos, and
Lebowitz [4] (see also [31]) for simulating spin dynamics and crystal growth in 1975.

Though SSA simulates the discrete stochastic microscopic model exactly, it is
inefficient when some of the reactions fire frequently and the number of molecules is
in the intermediate scale. Since in SSA each chemical reaction event is stimulated one
at a time, the simulation of frequent firing will be quite time-consuming. Gillespie
realized that it was possible to construct an approximate scheme which could advance
the process with a deterministic time stepsize, instead of sampling each reaction. He
introduced the following leap condition:

“Leap Condition: Require the leap time τ to be small enough that the change
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in the state during [t, t+τ) will be so slight that no propensity function will suf-
fer an appreciable (i.e., macroscopically noninfinitesimal) change in its value.”

All of the nomenclatures here will be made precise in the next section. Based on
the above idea, Gillespie proposed his ingenious “tau-leaping” scheme [24] in 2001.
This scheme consists of finding an appropriate leaping time stepsize τ and then sam-
pling the number of reactions for each chemical reaction channel with independent
Poisson random variables. The method is much more efficient than the direct SSA,
according to the numerical simulations in [24]. Furthermore, the tau-leaping method
provides a natural bridge from the SSA in the discrete stochastic regime, to the chem-
ical Langevin equation in the kinetic regime, and to the reaction rate equation in the
continuous deterministic regime [24]. Thus it could be used to build seamless mul-
tiscale methods for simulating chemically reacting systems. Many papers followed
after it was proposed. For example, Cao, Gillespie, and Petzold have developed more
robust and efficient leaping time stepsize selection strategies [12, 25]. The implicit
tau-leaping method [36] and nested SSA method [16, 17] are introduced for stiff re-
acting systems. The hybrid simulations are introduced for diffusion approximation of
some fast reaction channels [33]. The theoretical analysis of the tau-leaping method
is also investigated by Rathinam et al. [37] in 2005. Some rigorous analysis related to
the multiscales in chemical reaction networks is presented in [3].

Since the tau-leaping scheme has so many applications, its rigorous mathematical
analysis is important. So far, there are at least two explicit fundamental mathematical
problems:

• Is there a stochastic differential equation (SDE) form for a chemically reacting
system? What is the relation between the tau-leaping scheme and this SDE
form? SDE is a basis for developing more advanced numerical schemes.
What we have now is the CME, the forward Kolmogorov equation. It is not
a natural one for designing schemes. In this aspect, we should remark that
this problem has been partially answered in [33].

• What about the strong convergence and weak convergence of the tau-leaping
scheme? There is no result on strong convergence, and the weak convergence
was proved only for linear propensity functions [37].

The aim of this paper is to address these two questions. We first formulate an
SDE form via Poisson random measures for jump processes. This is the same as that
obtained in [33]. Then we found that the tau-leaping scheme is just the explicit Euler
scheme for this SDE. Based on this form, different types of tau-leaping schemes can be
proposed quite naturally, such as the implicit schemes, trapezoidal schemes, Runge–
Kutta schemes, and so on. In order to make the problem well-posed, we modify the
explicit tau-leaping scheme by setting the values of propensity functions with negative
populations to zero. We prove that the strong convergence of the modified scheme is
of order 1/2 and the weak convergence is of order 1 for general nonlinear propensity
functions through the backward Kolmogorov equation. We should comment that our
result does not include the open system case like ∅ → S since we make assumptions
that the total states are finite.

We hope that this is a bridge step towards finally building the rigorous mathe-
matical foundation of tau-leaping schemes. Compared to the previous convergence
analysis specific to tau-leaping by Rathinam et al. [37], they proved that both explicit
and implicit tau-leaping methods converge weakly in the sense of moments under the
same assumption of a closed system and the extra assumption of linear propensity
functions. But through a totally different strategy from stochastic analysis, we prove
the weak convergence for general nonlinear propensity functions and, more impor-
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tantly, the mean square strong convergence. However, our method is limited only to
the explicit tau method. To further advance the result, we would consider the analysis
for the implicit method and the analysis of tau-leaping schemes based on the binomial
distribution [15, 41] or some acceptance-rejection strategy. There is also potential to
construct new methods with the current SDE formulation. In this regard, we would
like to comment that an accelerated leap method based on the ideas from SDE driven
by Poisson noise was recently proposed in [8], which is quite related to this paper.

This paper is organized as follows. In section 2, the background of the tau-leaping
scheme and the SDE formulation of the reacting system are introduced. In sections
3 and 4, we give the strong and weak convergence proof for the explicit tau-leaping
scheme. Numerical experiments are shown in section 5, and, finally, we add some
conclusions.

2. Mathematical formulation of tau-leaping scheme. Consider a well-
stirred system of N molecular species {S1, S2, . . . , SN} interacting through M chem-
ical reaction channels {R1, R2, . . . , RM}. The state of the system is described by the
vector

(2.1) Xt = (X1
t , X

2
t , . . . , X

N
t ).

Each reaction channel Rj is characterized by its propensity function aj(x) and its
state change vector

(2.2) νj = (ν1
j , ν

2
j , . . . , ν

N
j ),

where aj(x) ≥ 0 for physical states. Here aj(x)dt gives the probability that the system
will experience an Rj reaction in the next infinitesimal time dt when the current state
Xt = x. νij is the change in the number of Si molecules caused by one Rj reaction.

Let us define Z
+
0 = N∪{0} to be the set of nonnegative integers. Mathematically,

well-stirred chemical reaction system can be accurately described by a discrete state
continuous time jump process on the lattice (Z+

0 )N . The conditions on the propensity
functions aj(x) must be supplemented to prevent the physically meaningless nega-
tive population of molecules. In this regard we will adopt Remark 1 in [37]. These
conditions are automatically satisfied in real applications.

Define the transition probability P (x, t|x0, t0) that the state variable Xt will
equal x, given that Xt0 = x0. The CME for the system is

(2.3) ∂tP (x, t|x0, t0) =

M∑
j=1

aj(x− νj)P (x− νj , t|x0, t0) −
M∑
j=1

aj(x)P (x, t|x0, t0).

This is also the forward Kolmogorov equation or Fokker–Planck equation for transition
probability function. For simulation, define p(τ, j|x, t) as the probability density, given
Xt = x, that the next reaction in the system will occur after τ and will be an Rj

reaction. Then we have

p(τ, j|x, t) = aj(x) exp(−a0(x)τ)

=
aj(x)

a0(x)
· a0(x) exp(−a0(x)τ)(2.4)

through analysis in [23], where a0(x) =
∑M

j=1 aj(x). This induces the so-called SSA.
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• Step 1: sampling the waiting time τ as an exponentially distributed random
variable (R.V.) with rate a0(Xt);

• Step 2: sampling an M point R.V. k with probability
aj(Xt)
a0(Xt)

for the jth
reaction;

• Step 3: update Xt+τ = Xt + νk; then return to Step 1.
Let us first observe that Xt is actually a compound Poisson process with state-

dependent intensity. While Lévy processes have been intensively investigated in prob-
ability theory, the formulation of CME drives us to find its SDE counterpart. This
can be realized via Poisson random measure, which has been obtained in [33]. Further
theory about Lévy processes may be referenced in [1].

Given any initial state X0 ∈ (Z+
0 )N , we define the set ΩX0

as all of the possible
physical states generated from X0

(2.5) ΩX0 =
{
Y

∣∣∣ Y ∈ (Z+
0 )N , Y = X0 +

M∑
j=1

kjνj , kj ∈ Z
+
0

}
,

and the set Ωt
X0

as all of the possible states generated from X0

(2.6) Ωt
X0

=
{
Y

∣∣∣ Y ∈ Z
N , Y = X0 +

M∑
j=1

kjνj , kj ∈ Z
+
0

}
.

We have Xt ∈ ΩX0 for the exact solution but Xn ∈ Ωt
X0

for the tau-leaping scheme.
For most of the chemically reacting systems, we can make the following assumptions.

Assumption 2.1 (condition on propensity functions). The propensity function
aj(x) ≥ 0 for all x ∈ ΩX0

, and aj(x) = 0 if x ∈ ΩX0
but x + νj /∈ ΩX0

.
This assumption is natural. Otherwise the negative states will appear in the

physical process!
Assumption 2.2 (bound on Xt). The number of elements in ΩX0

is finite; i.e.,
Xt is in a bounded lattice.

This assumption is reasonable because the number of the molecules could not be
arbitrary large in realistic chemical reactions.

In order to perform the analysis, we make the following assumption on aj(x).
Assumption 2.3 (local Lipschitz condition on aj(x)). The function aj(x) is

Lipschitz continuous in a bounded domain. That is, |aj(x) − aj(y)| ≤ Lj |x − y| for
any bounded x and y, where L is a fixed positive real number.

Define the upper bound of total propensity

(2.7) A = max
{
a0(x), x ∈ ΩX0

}
.

Suppose that S = R
+ × (0, A] equipped with Borel σ-algebra B(R+ × (0, A]), and

define the reference Poisson random measure as λ(dt× da) associated with a Poisson
point process (qt, t ≥ 0) taking values in (0, A]. That is,

(2.8)

∫ t

0

∫
B
λ(dt× da) = #{0 ≤ s < t; qs ∈ B},

where B is a Borel set in (0, A]. And we assume λ(dt × da) has Lebesgue intensity
measure m(dt × da) = dt × da. Then we define the following thinning of measure λ
with acceptance-rejection strategy:

(2.9) μ(dt) =

∫ A

0

1{0<a≤a0(Xt−)}λ(dt× da),
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where Xt− = lims→t−0 Xs.
Proposition 2.1 (Poisson random measure with state-dependent intensity).

The random measure μ(dt) defined above is a Poisson random measure with state-
dependent intensity measure

(2.10) a0(Xt)dt.

Proof. The proof is a simple consequence of Theorem 3.1 in [34]. An elementary
argument is as follows. Suppose that a0(Xt) is a constant, and consider a sequence
of jumps

J1, J2, . . . , JN

with constant jump intensity A at time τ1, τ2, . . . , τN . Then τ1, τ2− τ1, . . . , τN − τN−1

are independently, identically, and exponentially distributed random variables with
rate A. We have τN , a Gamma-distributed random variable, and the probability
density function is

AN tN−1

Γ(N)
e−At.

Here Γ(N) = (N − 1)!. A successful jump after acceptance-rejection strategy will
make the distribution density of the waiting time be

∞∑
N=1

(1 − η)N−1η · A
N tN−1

Γ(N)
e−At = ηAe−ηAt.

In our case, η = a0(Xt)
A according to the uniform distribution. Thus the new process

is again a Poisson process with rate a0(Xt).
Furthermore, in order to describe M chemical reactions, we define the function

(2.11) cj(a;Xt) =

{
1 if a ∈ (hj−1(Xt), hj(Xt)],
0 otherwise,

j = 1, 2, . . . ,M,

where

(2.12) hj(Xt) =

j∑
i=1

ai(Xt), j = 0, 1, . . . ,M.

Then we have the SDE form for the CME

(2.13) dXt =

M∑
j=1

∫ A

0

νjcj(a;Xt−)λ(dt× da).

It is worth noting that the jump adapted version of (2.13) is just the SSA [6].
Remark 2.1. Note that the coefficient cj(a;X) is not Lipschitz in X, which is

different from the assumptions made in [5, 6].
Lemma 2.2. Under Assumption 2.1, the SDE (2.13) is well-posed in the sense

that there exists a unique physical solution Xt ∈ ΩX0
in [0,+∞).

Proof. The idea of the proof is obtained through the SSA simulation directly.
That is the essence of the proof in [34]. Let us first define processes

(2.14) N j
t =

∫ t

0

∫ A

0

cj(a;Xt−)λ(dt× da), j = 1, 2, . . . ,M.
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Define a sequence of processes Xn
t , stopping times Tn, and indices In (n = 0, 1, . . .)

as X0
t = X0, T

0 = 0, I0 = 1, and

Xn+1
t = X0 +

n∑
i=1

νIi1{t≥Ti},(2.15)

Tn+1 = min
{

inf{t : N j
t (Xn+1) > N j

Tn(Xn+1)}, j = 1, 2, . . . ,M
}
,(2.16)

In+1 = Index j ∈ {1, 2, . . . ,M} such that ΔN j
Tn+1(X

n+1) = 1,(2.17)

where the symbol “Δ” is defined in (3.1). It is easy to find that under Assumption 2.1
Xn

t stays in ΩX0 all the time. Xn
t = Xn−1

t in [0, Tn−1), and the stopping time Tn

can be extended to ∞. The rest is similar as that in [34], and this ends the proof.
From the computational point of view, we can take another form of (2.13):

dXt =

M∑
j=1

∫ A

0

νjcj(a;Xt−)m(dt× da)(2.18)

+

M∑
j=1

∫ A

0

νjcj(a;Xt−)(λ−m)(dt× da)

= P 1 + P 2.

Actually we have

(2.19) P 1 =

M∑
j=1

νjaj(Xt−)dt.

And we can observe that P 2 is a martingale with mean zero. We will call P 1 the
drift term, and P 2 is the jump term later.

In the explicit tau-leaping scheme, it is assumed that in each time step, the
variation of propensity function aj(x) can be ignored. This is equivalent to an explicit
Euler discretization of (2.18). We have

Xn+1 = Xn +

M∑
j=1

∫ tn+1

tn

∫ A

0

νjcj(a;Xn)m(dt× da)

+

M∑
j=1

∫ tn+1

tn

∫ A

0

νjcj(a;Xn)(λ−m)(dt× da)(2.20)

= Xn +

M∑
j=1

νjaj(Xn)δtn +
( M∑
j=1

νjP(aj(Xn)δtn) −
M∑
j=1

νjaj(Xn)δtn

)

= Xn +

M∑
j=1

νjP(aj(Xn)δtn),(2.21)

where δtn = tn+1 − tn, and P(aj(Xn)δtn) is a Poisson random variable with mean
and variance aj(Xn)δtn.

Furthermore, we can define the semi-implicit tau-leaping scheme which is implicit
for the drift term and explicit for the jump term
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Xn+1 = Xn +

M∑
j=1

∫ tn+1

tn

∫ A

0

νjcj(a;Xn+1)m(dt× da)

+

M∑
j=1

∫ tn+1

tn

∫ A

0

νjcj(a;Xn)(λ−m)(dt× da)

= Xn +

M∑
j=1

νjaj(Xn+1)δtn +
( M∑
j=1

νjP(aj(Xn)δtn) −
M∑
j=1

νjaj(Xn)δtn

)
.(2.22)

This is nothing but the implicit method proposed in [36]. Similarly we have the
stochastic theta-methods for the tau-leaping scheme as the numerical solution of SDE

Xn+1 = Xn +

M∑
j=1

νj

(
θaj(Xn+1) + (1 − θ)aj(Xn)

)
δtn

+
( M∑
j=1

νjP(aj(Xn)δtn) −
M∑
j=1

νjaj(Xn)δtn

)

= Xn +

M∑
j=1

θνj

(
aj(Xn+1) − aj(Xn)

)
δtn +

M∑
j=1

νjP(aj(Xn)δtn),(2.23)

where θ ∈ [0, 1]. This parameter may be used to control the balance between the
instability caused by the explicit scheme and the damping effect caused by the implicit
scheme. Different kinds of tau-leaping schemes could be constructed similarly with
the numerical solution of SDEs, for example, the trapezoidal methods [14], Runge–
Kutta methods [10, 9], and so on. A recipe for the numerical methods of SDE may
be referenced in Schurz [39].

Remark 2.2. An important numerical issue must be addressed is that all of
the numerical schemes proposed so far are of first order weak convergence [9, 11, 37].
This can be explained as follows. Now all of the methods take Runge–Kutta-type form.
From the results for SDEs driven by Wiener process in [7, 38], the mean square strong
order barrier is 0.5 for the schemes taking only the single integral of white noise in
general. If the multiple integral is taken into account, the convergence order could be
raised. If we extend their results to SDEs driven by Poisson noise here, we may expect
that the Milstein-type scheme will give higher order methods. This will be done in a
future work.

Remark 2.3. In writing (2.21), (2.22), and (2.23), we have implicitly assumed
the following condition:

(2.24) aj(x) ≥ 0 ∀ x ∈ Ωt
X0

and max
{
a0(x), x ∈ Ωt

X0

}
≤ A,

which is not satisfied for almost all realistic applications. For example, for the de-
caying-dimerizing reaction cited in section 5, a2(x) = c2

2 x1(x1 − 1) will be infinitely
large as x1 tends to −∞. Violation of this condition will not give the discretization
form (2.21), (2.22), and (2.23) because some parts of hj(Xn) will exceed the prescribed
upper bound A. Since the tau-leaping algorithm may generate arbitrarily large Poisson
random variables, the violation of condition (2.24) seems inevitable. This dilemma
can be resolved in the following key redefinition of propensity functions.

Proposition 2.3 (redefinition of aj(x)). We define the modification of aj(x) as
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(2.25) ãj(x) =

{
aj(x), x ∈ (Z+

0 )N ,

0, x ∈ Z
N\(Z+

0 )N .

We have

(2.26) |ãj(x)− ãj(y)| ≤ Lj |x−y| ∀ x,y ∈ Ωt
X0

∪
(
Z
N\(Z+

0 )N
)
, j = 1, 2, . . . ,M.

Proof. The condition (2.26) holds because we consider only the finite set ΩX0 and
the set of negative populations, in which the propensity function has been redefined
to zero. The local Lipschitz condition on aj(x) (Assumption 2.3) gives the results
immediately. In addition we have Lj ≤ 2A. This ends the proof.

Applying this redefinition to the statement before, we actually consider a modified
tau-leaping scheme. Suppose the state is Xn at time tn, and the next state is a
nonphysical state Xn+1 with negative populations. Since ãj(Xn+1) = 0, the tau-
leaping scheme will give

Xn+k = Xn+1 ∀ k ∈ N.

This means the modified tau-leaping scheme permits the appearance of negative states
but freezes them afterward. We will show that this scheme also has strong and weak
convergence in this paper.

We will still denote ãj(x) as aj(x) in the continuing text for simplicity.

3. Strong convergence. We will prove the strong convergence of the modified
scheme (2.20) in this section. First, we establish some technical lemmas.

Define the jump operator

(3.1) ΔXt = Xt −Xt−;

the following lemma describes the jumps of Xt.
Lemma 3.1. For any fixed s > 0, ΔXs = 0 (a.s.).
Proof. The Poisson random measure λ(dt × dx) is generated through a Poisson

point process qt. From the definition of Xt in (2.13), ΔXs 
= 0 implies Δqs 
= 0, while
from the properties of the Lévy process (see Applebaum [1, page 86]), Δqs = 0 (a.s.).
This ends the proof.

For the deterministic integral, we may obtain the following lemma.
Lemma 3.2. For any continuous function a(x) and two positive reals d > c, we

have

(3.2)

∫ d

c

Δa(Xt)dt = 0.

Proof. We know Xt is a càdlàg process (continuous on the right and always
having the limit on the left). Thus the set of jump sites

S =
{
t | t ∈ [c, d], Δa(Xt) > 0

}
is at most countable (see Klebaner [29, page 3]). This means the integrand in (3.2) is
zero, except a set with Lebesgue measure 0. Hence the integral must be zero.

For notational convenience, we define Lipschitz constant L =
∑M

j=1 Lj and

(3.3) K = max{ |νj |, j = 1, 2, . . . ,M }.
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Now suppose the tau-leaping scheme is posed in a time interval [0, T ] with NT steps:

0 = t0 < t1 < · · · < tNT
= T.

We have the following strong convergence theorem.
Theorem 3.3 (mean square convergence). With Assumptions 2.1–2.3 and Propo-

sition 2.3 we have

(3.4) sup
n≤NT

E|Xn −Xtn |2 ≤ Cτ,

where τ = maxn δtn, and C is a constant that depends on L, K, T , M , and A.
Proof. In order to prove the strong convergence of the explicit tau-leaping scheme,

we integrate both sides of (2.18) from tn to tn+1:

Xtn+1 = Xtn +

M∑
j=1

∫ tn+1

tn

νjaj(Xt−)dt

+

M∑
j=1

∫ tn+1

tn

∫ A

0

νjcj(a;Xt−)(λ−m)(dt× da)

= Xtn +

M∑
j=1

∫ tn+1

tn

νjaj(Xtn−)dt

+

M∑
j=1

∫ tn+1

tn

∫ A

0

νjcj(a;Xtn−)(λ−m)(dt× da)

+ R1 + R2,(3.5)

where

R1 =

M∑
j=1

∫ tn+1

tn

νj

(
aj(Xt−) − aj(Xtn−)

)
dt,

R2 =

M∑
j=1

∫ tn+1

tn

∫ A

0

νj

(
cj(a;Xt−) − cj(a;Xtn−)

)
(λ−m)(dt× da)

are remainder terms. Furthermore, we have

R1 =

M∑
j=1

∫ tn+1

tn

νj

(
aj(Xt) − aj(Xtn)

)
dt + R̃1

=

M∑
j=1

∫ tn+1

tn

νj

(
aj(Xt) − aj(Xtn)

)
dt,(3.6)

where

(3.7) R̃1 =

M∑
j=1

∫ tn+1

tn

νjΔaj(Xtn)dt−
M∑
j=1

∫ tn+1

tn

νjΔaj(Xt)dt.

From Lemma 3.1, we know the first part of R̃1 is zero a.s. This result holds for finite
time steps. From Lemma 3.2, we know the second part of R̃1 is zero, too. Combining
these gives (3.6).
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Now we subtract (3.5) and (2.20). Define the error

En = Xtn −Xn.

Then we get

En+1 = En +

M∑
j=1

∫ tn+1

tn

νj

(
aj(Xtn−) − aj(Xn)

)
dt

+

M∑
j=1

∫ tn+1

tn

∫ A

0

νj

(
cj(a;Xtn−) − cj(a;Xn)

)
(λ−m)(dt× da) + R1 + R2

= En + P 3 + P 4 + R1 + R2.(3.8)

Squaring both sides of (3.8) we obtain

E2
n+1 = E2

n + P 2
3 + P 2

4 + R2
1 + R2

2 + 2
(
En · P 3 + En · P 4 + En ·R1 + En ·R2

+ P 3 · P 4 + P 3 ·R1 + P 3 ·R2 + P 4 ·R1 + P 4 ·R2 + R1 ·R2

)
.(3.9)

We will consider each term in what follows.
By Proposition 2.3 and Lemma 3.1 we have

(3.10) EP 2
3 ≤ K2L2δt2nEE2

n.

By Itô’s isometry of stochastic integral for Lévy processes [1] and Lemma 3.1, we get

E

(∫ tn+1

tn

∫ A

0

(
cj(a;Xtn−) − cj(a;Xn)

)
(λ−m)(dt× da)

)2

= E

∫ tn+1

tn

∫ A

0

(
cj(a;Xtn−) − cj(a;Xn)

)2

m(dt× da)

≤ δtnE

(
|hj−1(Xtn−) − hj−1(Xn)| + |hj(Xtn−) − hj(Xn)|

)
= δtnE

(
|hj−1(Xtn) − hj−1(Xn)| + |hj(Xtn) − hj(Xn)|

)
≤ 2LδtnE|En|.(3.11)

Here the term E|En| reflects the non-Lipschitz nature of this state-dependent intensity
problem. A coarse estimate

E|En| ≤ (E|En|2)
1
2

suggests that the scheme may not be convergent. To circumvent this issue, it is
enough to observe that the processes Xt and Xn are on lattice Z

N . We have

(3.12) either |En| = 0 or |En| ≥ 1,

which means that

(3.13) |En| ≤ |En|2.
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From the estimate (3.13) and Cauchy’s inequality we obtain

(3.14) EP 2
4 ≤ M2K2 · 2LδtnE|En| ≤ 2M2K2LδtnE|En|2.

From Itô’s formula for jump SDE (see Lemma 4.4.5 on page 223 of [1]), we have

R1 =

M∑
j=1

∫ tn+1

tn

νj

(
aj(Xt) − aj(Xtn)

)
dt

=

M∑
j=1

νj

∫ tn+1

tn

∫ t

tn

∫ A

0

(
aj

(
Xs− +

M∑
k=1

νkck(a;Xs−)
)
− aj(Xs−)

)
λ(ds× da)dt

=

M∑
j=1

νj

∫ tn+1

tn

∫ t

tn

∫ A

0

(
aj

(
Xs− +

M∑
k=1

νkck(a;Xs−)
)
− aj(Xs−)

)
m(ds× da)dt

+

M∑
j=1

νj

∫ tn+1

tn

∫ t

tn

∫ A

0

(
aj

(
Xs− +

M∑
k=1

νkck(a;Xs−)
)
− aj(Xs−)

)

· (λ−m)(ds× da)dt

= R11 + R12.

From Assumption 2.3 we have

(3.15) ER2
11 ≤ A2K4L2δt4n

and

E|R12|2 ≤ MK2δt2n

M∑
j=1

E

[∫ tn+1

tn

∫ A

0

Lj

∣∣∣∣∣
M∑
k=1

νkck(a;Xs−)

∣∣∣∣∣(λ−m)(ds× da)

]2

≤ AMK4δt3n

M∑
j=1

L2
j .(3.16)

Combining (3.15) and (3.16) we obtain

(3.17) ER2
1 ≤ C1δt

3
n,

where C1 is a bounded constant that depends on K, L, A, and M .
For R2, we have by Itô’s isometry

E

(∫ tn+1

tn

∫ A

0

(
cj(a;Xt−) − cj(a;Xtn−)

)
(λ−m)(dt× da)

)2

= E

∫ tn+1

tn

∫ A

0

(
cj(a;Xt−) − cj(a;Xtn−)

)2

m(dt× da)

≤
∫ tn+1

tn

E

(
|hj−1(Xt−) − hj−1(Xtn−)| + |hj(Xt−) − hj(Xtn−)|

)
dt

≤ L

∫ tn+1

tn

E|Xt− −Xtn−|dt = L

∫ tn+1

tn

E|Xt −Xtn |dt(3.18)

≤ L

∫ tn+1

tn

E|Xt −Xtn |2dt(3.19)
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≤ L

∫ tn+1

tn

E

∣∣∣∣∣
∫ t

tn

∫ A

0

M∑
k=1

νjck(a;Xs−)λ(ds× da)

∣∣∣∣∣
2

dt

≤ 2L

∫ tn+1

tn

E

∣∣∣∣∣
∫ t

tn

∫ A

0

M∑
k=1

νjck(a;Xs−)m(ds× da)

∣∣∣∣∣
2

dt

+ 2L

∫ tn+1

tn

E

∣∣∣∣∣
∫ t

tn

∫ A

0

M∑
k=1

νjck(a;Xs−)(λ−m)(ds× da)

∣∣∣∣∣
2

dt

≤ 2LA2K2δt3n + 2LAK2δt2n.(3.20)

In estimate (3.18), we have used Lemmas 3.1 and 3.2. And we apply a similar trick
in (3.13) to (3.19). Thus we obtain

(3.21) E|R2|2 ≤ C2δt
2
n.

For En · P 4, we have

EEn · P 4 = EΔXtn · P 4 + E(Xtn− −Xn) · P 4

=

M∑
j=1

E

∫ tn+1

tn

∫ A

0

(Xtn− −Xn)

· νj

(
cj(a;Xtn−) − cj(a;Xn)

)
(λ−m)(dt× da)

= 0

because of Lemma 3.1 and the independence between Xtn−, Xn, and the Poisson
random measure λ in [tn, tn+1] × [0, A]. A similar idea applies to En ·R2. That is,
EEn ·R2 = 0.

For the other terms, we have

EEn · P 3 ≤
(
EE2

n · EP 2
3

) 1
2 ≤ C3δtnEE2

n,

EEn ·R1 ≤ δtnEE2
n +

1

4δtn
ER2

1 ≤ δtnEE2
n + C4δt

2
n,

EP 3 · P 4 ≤ 1

2
(EP 2

3 + EP 2
4), EP 3 ·R1 ≤ 1

2
(EP 2

3 + ER2
1),

EP 3 ·R2 ≤ 1

2
(EP 2

3 + ER2
2), EP 4 ·R1 ≤ 1

2
(EP 2

4 + ER2
1),

EP 4 ·R2 ≤ 1

2
(EP 2

4 + ER2
2), ER1 ·R2 ≤ 1

2
(ER2

1 + ER2
2).

Finally we have the following energy estimate:

(3.22) EE2
n+1 ≤ EE2

n + CδtnEE2
n + Cδt2n.

The discrete Gronwall inequality shows that

(3.23) sup
n≤NT

E|Xn −Xtn |2 ≤ Cτ
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immediately. That ends the proof of Theorem 3.3.
Remark 3.1. The estimates (3.13) and (3.19) are essential for the convergence

analysis. It sufficiently utilizes the property of integer jump size. If there is no (3.13),
it might not be convergent. If there is no (3.19), the convergence order would be 1

4 .
This case can be easily generalized into the jump process on a scaled version of the
integer lattices with finite M . But it is still a problem on how to prove the mean
square convergence for the unrounded implicit tau-leaping scheme [37] and the jump
diffusion process with evolving intensity.

4. Weak convergence. The weak convergence of Euler discretization for some
types of Lévy processes has been considered in [35, 27]. Our result here for the explicit
tau-leaping scheme has much fewer restrictions on the coefficients and function g(x)
(see Theorem 4.3) because of its particularity. The basic idea is the same as that
in [35] and that for the weak convergence of numerical SDEs [30, 40] through backward
equations. We should comment that our method cannot deal with the convergence for
semi-implicit discretization, while the weak convergence was proven for both explicit
and implicit tau-leaping methods under linear propensity assumptions in [37]. The
analysis of the implicit tau method for general nonlinear propensity functions is still
an issue.

We have the backward equation for P (x, t|x0, t0) from the Chapman–Kolmogorov
equation of the Markov process

P (x, t|x0, t0) =

M∑
j=1

P (x, t|x0 + νj , t0 + dt) · aj(x0)dt

+
(
1 −

M∑
j=1

aj(x0)dt
)
P (x, t|x0, t0 + dt).(4.1)

Subtracting P (x, t|x0, t0 + dt) from both sides, dividing dt, and taking dt to 0, we
obtain

(4.2) −∂t0P (x, t|x0, t0) =

M∑
j=1

aj(x0)
(
P (x, t|x0 + νj , t0) − P (x, t|x0, t0)

)
.

Actually, the operator on P (x, t|x0, t0) on the right-hand side is the adjoint operator
that appeared in the CME.

From the backward equation (4.2), we have the infinitesimal generator of this
process:

(4.3) Af = lim
t→0

E
xf(Xt) − f(x)

t
=

M∑
j=1

aj(x)
(
f(x + νj) − f(x)

)
,

where E
x is the conditional expectation started from X0 = x.

Define the operator L as

(4.4) Lv(t,x) = ∂tv(t,x) + Av(t,x);

then it is straightforward to have the following lemma by Dynkin’s formula.
Lemma 4.1. For any continuous function v(t,x),

(4.5) Ev(t,Xt) = Ev(0,X0) + E

∫ t

0

Lv(s,Xs)ds.
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Given g : R
N → R define the function

(4.6) u(t,x) = E
xg(XT−t);

then we have

(4.7) Lu = 0, u(T,x) = g(x).

Furthermore, we have the following lemma on the well-posedness of u(t,x) on Z
N .

Lemma 4.2. If g(x) is locally bounded in R
N , then for any x ∈ Z

N\(Z+
0 )N ,

u(t,x) = g(x). And for any x in lattice (Z+
0 )N , T > 0, there exists a unique

(4.8) u(t,x) ∈ C1[0, T ]

such that u(t,x) is the solution of (4.7). For x ∈ (Z+
0 )N , define

Ωx + νj :=
{
y + νj , y ∈ Ωx

}
and Ωs

x =

M⋃
j=1

{
Ωx + νj

}
;

then we have the following estimate:

(4.9) max
y∈Ωx

|u(t,y)| ≤ (AMT + 1) max
y∈Ωx∪Ωs

x

|g(y)| exp(2AMT ), t ∈ [0, T ].

Proof. At first it is straightforward to observe that

(4.10) u(t,x) = g(x) for x ∈ Z
N\(Z+

0 )N , t ∈ [0, T ],

because aj(x) is zero.
For any fixed x in lattice (Z+

0 )N , (4.7) may be viewed as an infinite linear ODE
system on Ωt

x with each u(t,x) being a function only of t and x being just a label.
But it is lucky to have condition (2.25) after the redefinition of aj(x), which means
the real dynamics is on Ωx with only finite equations. It is a trivial result for the
existence of the solution for a finite linear ODE system.

In order to prove (4.9), we define ũ(t,x) = u(T − t,x). It is enough to observe
that we have

max
y∈Ωx

|ũ(t,y)| ≤ max
y∈Ωx

|g(y)| + AMt max
y∈Ωs

x

|g(y)| + 2AM

∫ t

0

max
y∈Ωx

|ũ(s,y)|ds

from (4.7). The Gronwall inequality gives the desired estimate.
In order to prove weak convergence for the tau-leaping scheme, we define a path-

wise continuous time extension X̄t of Xn as

(4.11) X̄t = Xn +

M∑
j=1

∫ t

tn

∫ A

0

νjcj(a;Xn)λ(ds× da), t ∈ [tn, tn+1),

and so we have X̄tn+1 = Xn+1.
Theorem 4.3 (weak convergence). Under Assumptions 2.1–2.3 and Proposi-

tion 2.3, for any continuous function g(x) satisfying exponential growth condition

|g(x)| ≤ CgB
|x|, x ∈ R

N , Cg, B > 0,
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we have

(4.12)
∣∣∣Eg(XNT

) − Eg(XT )
∣∣∣ ≤ Cτ,

where T = tNT
, τ = maxn δtn, and C is a constant that depends on A, M , K, T , B,

and Cg.
Proof. Consider u(t,x) as that in (4.7); then from Lemma 4.1 we have

Eg(XNT
) − Eg(XT ) = Eu(T,XNT

) − Eu(T,XT ) = Eu(T,XNT
) − Eu(0,X0)

=

NT−1∑
n=0

(
Eu(tn+1,Xn+1) − Eu(tn,Xn)

)

=

NT−1∑
n=0

(
Eu(tn+1, X̄tn+1) − Eu(tn, X̄tn)

)

=

NT−1∑
n=0

E

∫ tn+1

tn

Lnu(t, X̄t)dt.(4.13)

Here the tau-leaping backward operator

(4.14) Lnu(t,x) = ∂tu(t,x) +

M∑
j=1

aj(Xn)
(
u(t,x + νj) − u(t,x)

)
.

We have

E

∫ tn+1

tn

Lnu(t, X̄t)dt = E

∫ tn+1

tn

(
Lnu(t, X̄t) − Lu(t, X̄t)

)
dt

=

M∑
j=1

E

[∫ tn+1

tn

aj(Xn) ·
(
u(t, X̄t + νj) − u(t, X̄t)

)
dt

−
∫ tn+1

tn

aj(Xn) ·
(
u(t,Xn + νj) − u(t,Xn)

)
dt

+

∫ tn+1

tn

aj(Xn) ·
(
u(t,Xn + νj) − u(t,Xn)

)
dt

−
∫ tn+1

tn

aj(X̄t) ·
(
u(t, X̄t + νj) − u(t, X̄t)

)
dt

]
.(4.15)

Define h1(x) = u(t,x+νj)−u(t,x) and h2(x) = aj(x) · (u(t,x+νj)−u(t,x)); then
for h2 we have

E

(
h2(X̄t) − h2(Xn)

)
=

M∑
j=1

E

(∫ t

tn

aj(Xn)
(
h2(X̄s + νj) − h2(X̄s)

)
ds

)

by Lemma 4.1. From Proposition 2.3, h2(x) 
= 0 if and only if x ∈ ΩX0 . Thus we
have

(4.16)
∣∣∣E(h2(X̄t) − h2(Xn)

)∣∣∣ ≤ 4MA2Cuδtn,
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where Cu = max |u(t,x)|, x ∈ ΩX0
∪ Ωs

X0
, and t ∈ [0, T ]. It is straightforward that

Cu depends on A, M , T , and g from the estimate (4.9) in Lemma 4.2.
For h1, we have

E

∫ tn+1

tn

aj(Xn) ·
(
h1(X̄t) − h1(Xn)

)
dt

= E

(
E

(∫ tn+1

tn

aj(Xn) ·
(
h1(X̄t) − h1(Xn)

)
dt
∣∣∣Xn

))

= E

(∫ tn+1

tn

aj(Xn) · E
(
h1(X̄t) − h1(Xn)

∣∣∣Xn

)
dt

)
(4.17)

and
(4.18)

E

(
h1(X̄t) − h1(Xn)

∣∣∣Xn

)
=

M∑
j=1

E

(∫ t

tn

aj(Xn)
(
h1(X̄s + νj) − h1(X̄s)

)
ds
∣∣∣Xn

)
.

Because h1(x) may be unbounded, we have to estimate its expectation. We have

E

(
|h1(X̄s)|

∣∣∣Xn

)

≤ 2Cu +

∞∑
k1,k2,...,kM=0

2CgB
|Xn+

∑M
j=1 kjνj | (Aδtn)k1

k1!

(Aδtn)k2

k2!
· · · (Aδtn)kM

kM !

≤ 2Cu + 2CgB
|Xn|

M∏
j=1

( ∞∑
kj=0

(BKAδtn)kj

kj !

)

= 2Cu + 2CgB
|Xn| exp

(
MABKδtn

)
.(4.19)

Here Xn ∈ ΩX0
; otherwise aj(Xn) = 0.

Combining (4.13), (4.15), (4.16), (4.17), (4.18), and (4.19), we obtain the final
convergence result:

(4.20) |Eg(XNT
) − Eg(XT )| ≤ Cτ,

where C depends on A, M , K, T , B, and Cg. This ends the proof of weak conver-
gence.

Remark 4.1. The assumption made on g(x) in Theorem 4.3 is not restricted
in real applications. In most cases, one is interested in computing the finite order
moments of Xt. It is satisfied with the exponential growth condition.

5. Numerical experiments. We will consider two examples to compare the
numerical results and the theoretical analysis. Because the weak convergence of mean
and variance of tau-leaping schemes has been tested in [37], we will demonstrate only
the strong convergence of the scheme here. The results show the sharpness of half
order convergence.

Example 5.1 (isomerization reaction). The chemical reaction is

X −→ ∅,

with the propensity function a(x) = cx, X(0) = X0 in the time interval [0, T ]. We
choose c = 0.1, X0 = 100, and T = 1 in the following.
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Fig. 1. The log-log plot of the mean square error versus time stepsize τ and linear fitting in the
explicit tau-leaping scheme for the isomerization process. The dashed line is numerical results. The
solid line is the linear fitted result. This fitted line has slope 0.61, which is a little larger than 0.5
in the theoretical analysis.

For this process, we take A = 10 in (2.7). Because the Poisson random measure
λ(dt × dx) has intensity measure dt × dx = Adt · 1

Adx, we generate the independent
random increments (Δtn,Δxn) such that Δtn is exponentially distributed with rate
A, and Δxn is uniformly distributed in [0, A]. We take the uniform time stepsize
τ = 1, 1

2 , . . . ,
1
28 in the tau-leaping scheme and approximate the mean square error(

E|XNT
− XT |2

) 1
2 with the Monte Carlo method. The sampling size is 1000. The

log-log plot of the error versus τ is shown in Figure 1. We may observe that the fitted
line has slope 0.61, which is a little larger than 0.5 in the theoretical analysis. We
speculate that the numerical higher order arises from fluctuations. This verifies that
the strong order is at least 0.5 in the mean square sense.

Example 5.2 (decaying-dimerizing reaction). The chemical reaction is

S1 −→ ∅,
S1 + S1 −→ S2,

S2 −→ S1 + S1,
S2 −→ S3,

with the propensity functions

a1(x) = c1x1, a2(x) =
c2
2
x1(x1 − 1), a3(x) = c3x2, a4(x) = c4x2

and X(0) = X0 in the time interval [0, T ]. We choose

c1 = 1, c2 = 0.002, c3 = 0.5, c4 = 0.04, X0 = (1000, 0, 0)

and T = 1 in the following.
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Fig. 2. The log-log plot of the mean square error versus time stepsize τ and linear fitting in
the explicit tau-leaping scheme for the decaying-dimerizing process. The dashed line is numerical
results. The solid line is the linear fitted result. This fitted line has slope 0.4958.

For this process, we take A = 10000 in (2.7). The independent random increments
(Δtn,Δxn) are similarly generated as in Example 5.1. We take the uniform time
stepsize τ = 0.1× 1

29 , 0.1× 1
210 , . . . , 0.1× 1

214 in the tau-leaping scheme and approximate

the mean square error
(
E|XNT

−XT |2
) 1

2 with the Monte Carlo method. The sampling
size is 1000. The log-log plot of the error versus τ is shown in Figure 2. We observe
that the fitted line has slope 0.4958, which is quite close to 0.5 in the theoretical
analysis. This further verifies that the strong order is at least 0.5 in the mean square
sense.

6. Conclusion. This paper builds a convergence analysis of explicit tau-leaping
schemes for simulating chemical reactions from the viewpoint of SDEs. Mathemat-
ically, the chemical reaction process is a pure jump process on a lattice with state-
dependent intensity. The SDE form of the CME can be given via Poisson random
measures. Based on this form, different types of tau-leaping schemes can be proposed
similar to the construction of numerical methods for SDE driven by Brownian mo-
tion. For the theoretical analysis, a modified explicit tau-leaping scheme is considered
in order to make the problem well-posed. It is shown that the mean square strong
convergence is of order 1/2 and the weak convergence is of order 1 for the modified
scheme. This result generalizes the weak convergence analysis in [37]. The analysis
depends heavily on that it is a pure jump process on lattice (Z+

0 )N . It would be very
interesting to investigate the convergence result in the jump-diffusion case. In this
regard, the paper [28] might be helpful. Furthermore, the current scheme permits the
appearance of the nonphysical states, which is not satisfactory in some aspects. To
analyze a tau-leaping scheme avoiding negative populations will be our next step.
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