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THE HETEROGENEOUS MULTISCALE METHODS∗

WEINAN E† AND BJORN ENGQUIST‡

Abstract. The heterogeneous multiscale method (HMM) is presented as a general methodology
for the efficient numerical computation of problems with multiscales and multiphysics on multigrids.
Both variational and dynamic problems are considered. The method relies on an efficient coupling
between the macroscopic and microscopic models. In cases when the macroscopic model is not
explicitly available or invalid, the microscopic solver is used to supply the necessary data for the
macroscopic model. Scale separation can be exploited to considerably reduce the complexity of
the microscopic solver. Besides unifying several existing multiscale methods such as the ab initio
molecular dynamics [13], quasicontinuum methods [73, 69, 68] and projective methods for systems
with multiscales [34, 35], HMM also provides a methodology for designing new methods for a large
variety of multiscale problems. A framework is presented for the analysis of the stability and accuracy
of HMM. Applications to problems such as homogenization, molecular dynamics, kinetic models and
interfacial dynamics are discussed.

1. Introduction
Many problems in nature involve multiple active scales. For example, chemical

reactions may take seconds or hours, while the vibration of chemical bonds occurs
at the time scale of femtoseconds (10−15s). The time scales for the internal motion
of proteins and nucleic acids typically span from 10−14 seconds to seconds. Vortical
structures in the atmosphere may range from meters to thousands of kilometers. If
we want to understand in a reasonable detail the dynamics of dislocations that result
in plastic deformation of a material, we face the task of studying the structure of
dislocation cores at the scale of angstroms, to the collective dynamics of entangled
dislocation loops at the scale of the size of the whole material [60].

With few exceptions, the traditional approach for such problems is to obtain ei-
ther analytically or empirically explicit equations for the scale of interest, eliminating
other scales in the problem. These equations are the basis for computer simulations.
Indeed an impressive array of techniques have been developed to accomplish this
task, including averaging methods in classical mechanics [4], homogenization theory
[8], equilibrium statistical mechanics [47], WKB methods, nonequilibrium thermody-
namics [20], kinetic theory [47], transition state theory [42], turbulence models, etc.
This approach has been both successful, in fact it has so far dominated much of science
and engineering, and necessary because of our restricted computational capabilities.
A typical example of this approach is the Navier-Stokes equation in fluid mechanics,
in which the microscopic processes are represented by an equation of state and the
linear constitutive equations. It is quite impressive that general macroscopic conser-
vation laws combined with empirical linear constitutive relations describe so well the
dynamics of simple liquids in almost all situations.

Despite all its success, this approach also forces us to introduce empirical closures
for other systems that are not always justified or understood. As a result, the suc-
cess of such phenomenological equations is much less spectacular for a large class of
complex systems. Typical examples of such a situation are found in complex fluids,
plasticity, fracture dynamics, and important regimes of turbulent flows.

∗Received: April 15, 2002; Accepted (in revised version): August 26, 2002.
†Department of Mathematics and PACM, Princeton University, USA, and School of Mathematics,

Peking University,China.
‡Department of Mathematics and PACM, Princeton University,USA, and Department of Mathe-

matics, University of California, Los Angeles,USA.

87



88 THE HETEROGENEOUS MULTISCALE METHODS

A new approach, the “first principle” based approach, has emerged in recent
years and has quickly attracted a great deal of attention. The aim of this approach
is to model the theoretical input to a coarse-grained model from a more detailed mi-
croscopic model, bypassing the necessity of empirical modeling. Examples of such an
approach include the ab initio molecular dynamics [13] in which empirical potentials in
molecular dynamics are replaced by “on the fly” electronic structure calculations, qua-
sicontinuum method in which the stored-energy functional in nonlinear elasticity the-
ory is replaced by molecular potentials [73], and coupled kinetic-hydrodynamic models
of complex fluids in which constitutive relations are replaced by kinetic models for the
conformation of macromolecules [33, 48, 80]. Such a coupled multiscale, multiphysics
approach is discussed in many papers [11, 1, 2, 14, 26, 27, 73, 69, 63, 62, 12, 35, 19]
and is a central theme of the present paper. In a different direction, numerical meth-
ods that are based on partially resolving the relevant dynamical variables have been
discussed thoroughly in [15, 16].

In what follows we will concentrate on two types of multiscale problems:
A. A macroscopic description is known but ceases to be valid in a localized region
in space and/or time, and where the microscopic description has to be used instead.
B. A macroscopic model may not be explicitly known or too expensive to obtain, but
is known to exist; i.e., there exists a set of macroscopic variables obeying a closed
macroscopic model.

Problems of Type A include defects in crystals where atomistic descriptions have
to be used near the defects, and continuum theories are valid away from the defects
[73]; contact line dynamics [21, 61]; turbulent flame fronts [59]; and chemical systems
with localized chemical reactions where quantum mechanics has to be used in the
chemically active regions, and classical mechanics can be used elsewhere. Problems of
Type B are found in transport through inhomogeneous media such as porous medium
flows and effective properties of composite materials [8], complex fluids, and plasticity.
In principle there is also a class of problems, say of Type C, which combines the
characteristics of Types A and B, namely that the macroscopic model is not explicitly
known and ceases to be valid near defects. This type of problem can be dealt with by
combining the techniques for problems of Types A and B.

In this paper, we present a general framework for designing and analyzing numer-
ical methods that deal with problems of Type A and Type B. The main motivation
behind this framework is to make efficient usage of both the macroscopic and micro-
scopic formulations even in cases when the macroscopic equations or models are not
explicitly known. Our goal is to introduce a framework and analysis that cover many
of the existing methods but also derives new techniques from the general formulation.

We will work with the following basic set-up. We have a microscopic process,
such as molecular dynamics or quantum mechanics, that describes the microscopic
state variable u which is defined on a microscopic domain D. We also have a macro-
scopic process that describes the macroscopic state variable U which is defined on a
macroscopic domain D. The two processes and state variables are related to each
other by compression and reconstruction operators denoted by Q and R respectively:
Qu = U, RU = u, with the property QR = I where I is the identity operator. For
example, if the microscopic process is described by kinetic theory, and the macro-
scopic process is described by hydrodynamics, then the compression operator maps
the one-particle phase-space distribution function to the conserved mass, momentum,
and energy densities. The reconstruction operator does the opposite and is, in gen-
eral, not unique. Our interest is to resolve the macroscale behavior. In doing so, we
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sometimes have to make direct use of the microscale models. How that can be done
efficiently is precisely the issue we address here.

Our aim is to accurately approximate the macroscopic state of the system. We
do so by working with a macroscopic grid that resolves the large scale of the problem.
There are two main components in the procedure. The first is to select a conventional
macroscale scheme. The second is to estimate the necessary data for the macroscale
scheme from the microscale model. The selection of the macroscale scheme depends
on what we know about the macroscale model; e.g., whether it is a variational prob-
lem, whether it is conservative. When the macroscopic model is not fully known
explicitly, we provide a general and efficient procedure for supplementing the missing
data from microscopic models. For example, if the macroscopic problem is variational,
and we use a standard finite element method, the task reduces to approximating the
effective stiffness matrix for the macroscopic problem. This is done by solving the
microscopic problem locally on a reduced computational domain. For dynamic prob-
lems, the missing data can be the macroscopic forces or fluxes or part of the forces or
fluxes as the eddy viscosity terms in turbulence models. We estimate them using a
generalization of the classical Godunov scheme for gas dynamics [38], namely at each
macroscopic time step, we first reconstruct the microscopic state of the system from
the known macroscopic state. We then evolve the microscopic process on a micro-
scopic time scale until the desired macroscopic forces or fluxes reach a quasisteady
value. We then use this estimated value to update the macroscopic state to the next
macroscopic time step. In this way, we guarantee that the numerical results have
a comparable accuracy to a full microscopic model. This procedure also sets up an
approximation to the macroscopic model even though it is not explicitly used.

For problems of Type A, we simplify this algorithm by replacing the above pro-
cedure with a standard macroscopic solver in regions where the explicit macroscopic
model is known and is known to be valid.

We call these methods the heterogeneous multiscale methods, abbreviated HMM,
to emphasize the fact that different physical models and numerical techniques are used
at different scales and different grids. In contrast, standard multigrid techniques are
“homogeneous” in the sense that they employ the same physical model on different
scales and are aimed at efficiently resolving the microscopic details [12, 40].

The key to the efficiency of such an approach is the possibility of reducing the
temporal and state-space complexity of the microscopic model by exploiting scale
separation. Such ideas can already be found in the literature; for example, for stiff
ODEs in [39, 49, 5, 41, 34], and for kinetic schemes in gas dynamics in [79]. Our
current work draws inspiration from the recent work of Kevrekidis and coworkers
[34, 35]. Closely related ideas are also found in [78].

This paper is written in a pedagogical style. In Section 2 we discuss the relations
between macroscopic and microscopic models, the compression and reconstruction op-
erators linking these models, and we give many examples. In Section 3 we discuss the
overall scheme for HMM which contains two main ingredients: An overall macroscale
scheme and the estimation of missing macroscale data from microscale models. In
Section 4 we discuss how the microscopic models can be used efficiently to supple-
ment the missing data for the macroscopic models. Stability and accuracy issues are
discussed in Section 5. Algorithmic improvements are discussed in Section 6. Final
conclusions are made in Section 7. Even though our emphasis is the overall frame-
work, we also present new numerical techniques as well as some numerical results and
analytical proofs.
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2. The Macroscopic and Microscopic Models

2.1. The Compression and Reconstruction Operators. It is convenient
to think of the macroscopic and microscopic models as being defined on different do-
mains with different state spaces linked by compression and reconstruction operators,
as we discuss below.

Let {U} be the set of macroscopic state variables that we are interested in, de-
fined on a macroscopic computational domain (MCD) D. Denote by {u} the set of
microscopic state variables defined on the microscopic computational domain (mcd)
D. It is convenient to think of D as being a fiber bundle over D. We will denote
by Dx the fiber over x ∈ D. We note that to be precise, the notion of fiber bundle
has to be extended in an obvious way in order to accommodate the generality of our
framework. Examples of the fibers will be given below. We will denote by Ω and ω the
appropriate function spaces for the macroscopic and microscopic states respectively.

The macroscopic and microscopic state variables are related to each other by the
compression and reconstruction operators, denoted by Q and R respectively:

Qu = U, RU = u (2.1)

Of course Q and R should satisfy

QRU = U (2.2)

Even though Q and R may be nonlinear operators, in the following exposition we will
treat Q as if it is linear. In general there is no unique way of defining R.

For the most part, we will concentrate our discussions on problems of Type B;
i.e., problems for which there is a well-defined macroscopic model even though it may
not be known explicitly. In the following, we will discuss how the macroscopic models
are related to the microscopic models.

2.2. Variational Problems. Consider a microscopic minimization problem:

min
u∈ω

e(u). (2.3)

Let Q be an appropriately chosen compression operator:

min
u

e(u) = min
U

( min
u:Qu=U

e(u))

If we define

E(U) = min
u:Qu=U

e(u). (2.4)

on Ω, then the macroscopic variational problem corresponding to (2.3) is given by

min
U∈Ω

E(U). (2.5)

Let us consider a few examples.
Consider the variational problem

min
u∈H1

0 (D)





1
2

∫

D

∑

i,j

ai,j

(
x,

x

ε

) ∂u

∂xi

∂u

∂xj
dx−

∫

D

fudx



 , (2.6)

where a(x, y) is smooth and periodic in y with period I = [0, 1]d, f is smooth. There
are two ways to look at this problem. The first is a numerical one. Consider a regular
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finite element triangulation of D, denoted by TH , with mesh size H that resolves the
variations of D and f , and the slow variables of a, but H À ε. Let VH ⊂ H1

0 (D) be
the standard piecewise linear finite element space, and let Ω = VH , ω = H1

0 (D). For
u ∈ H1

0 (D) define Qu = U ∈ VH , if
∫

D

∇u · ∇V dx =
∫

D

∇U · ∇V dx (2.7)

for all V ∈ VH . It is easy to see that this uniquely defines Q. Now for U ∈ Ω = VH ,
let

Aε(U,U) = min
u∈H1

0 (Ω),Qu=U

∫

D

∑

i,j

ai,j

(
x,

x

ε

) ∂u

∂xi

∂u

∂xj
dx, (2.8)

then (2.6) is reduced to a problem on Ω = VH :

min
U∈VH

{
1
2
Aε(U,U)−

∫

D

fU dx

}
. (2.9)

The second way to think about this problem is to use homogenization theory. It
is well known [8] that as ε → 0, the solution uε of (2.6) converges to the solution U
of the following problem:

min
U∈H1

0 (D)





1
2

∫

D

∑

i,j

Ai,j(x)
∂U

∂xi

∂U

∂xj
dx−

∫

D

fU dx



 , (2.10)

where

Ai,j(x) =
∫

I

∑

k,l

ak,l(x, y)
(

δki − ∂χi

∂yk

)(
δlj − ∂χj

∂yl

)
dy. (2.11)

Here, for each fixed x, χj(x, y) (j = 1, . . . , d) is the solution of the cell problem

∇y · (a(x, y)(∇yχj + ej)) = 0 (2.12)

with periodic boundary condition on I and ej = (0, . . . 1, . . . 0).
Now we can view (2.10) as our macroscopic problem with state space Ω = H1

0 (D).
The macroscopic domain is D. The connection to the microscopic problem is via
(2.11) where the microscopic state space ω = H1

0 (D× I), and the microscopic domain
is D = D × I with Dx = I, for x ∈ D.

It is important to note that macroscopic variational problems may also result
from other types of microscopic models such as the ensembles averages in statistical
physics:

〈g〉 =

∫
ω

g(u)e−βh(u)du∫
ω

e−βh(u)du
. (2.13)

This is an important line of research that we will pursue in the future.

2.3. Dynamic Problems. We will assume that the macroscopic model gives
rise to a well-defined evolutionary process characterized by the solution operators
{S(t)} which form a semigroup: U(t) = S(t)U(0), where t ∈ I, and I is an index set,
I = an interval for continuous processes, and I = ∆tZ for discrete processes. Here Z
is the set of integers. The semigroup might be generated by a differential equation

Ut = F (U), (2.14)
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where F (U) is in general a nonlinear operator on U , or a discrete evolutionary equation

Un+1 = Un + ∆t F (Un), (2.15)

or a set of transition rules

Prob (U → U ′) = P (U,U ′) (2.16)

as in a kinetic Monte Carlo scheme. Likewise, the microscopic model is also assumed
to give rise to a semigroup of solution operators denoted by {s(t)}, which might be
generated by a differential equation

ut = f(u) (2.17)

where f(u) is, in general, a nonlinear operator on u, or a discrete evolutionary equation

un+1 = un + δt fn(un), (2.18)

or a set of transition rules

Prob (u → u′) = p(u, u′). (2.19)

We emphasize that the microscopic model is always assumed to be explicitly known.
Consider that there are two basic time scales of interest, a macroscopic time scale

tM and a relaxation time scale for the microscopic process tR. Assuming tR << tM ,
our basic idea is to approximate S(t) for tR << t << tM by

S(t)U = Qs(t)RU

for suitable reconstructions R. Knowing S(t), we may find the effective macroscopic
model through

F (U) =
1

∆t
(S(∆t)U − U)

for suitably chosen ∆t such that tR << ∆t << tM . Next we give a few examples to
illustrate these concepts.

2.3.1. Stiff ODEs. Consider the system

ut = f(u, v) (2.20)

vt =
1
ε
(g(u)− v)

where ε is small. In this case the macroscopic (slow) variable is u : U = u, Q(u, v) =
u = U . The macroscopic equation is explicitly known in this case: Ut = f(U, g(U)).

In the general case when the slow and fast variables are not explicitly separated,
we then have a slow manifold Ω in the state space ω. In this case, the macroscopic
equation may not be explicitly known.

2.3.2. Kinetic equations. We will use the classical Boltzmann equation as an
example for illustration. But the ideas apply equally well to other kinetic models.

Consider the Boltzmann equation

∂f

∂t
+ (v · ∇x)f =

1
ε
B(f, f) (2.21)

where f = f(x,v, t) is the phase-space one-particle distribution functions and ε is the
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Knudsen number which is proportional to the mean free path between collisions. The
collision operator at the right-hand side of (2.21) describes binary collisions between
particles. The detailed form of B is not important. What is crucial are the following
properties satisfied by B:

∫

R3
B(f, f)(v)ϕ(v)dv = 0, ϕ(v) = 1,v, |v|2 (2.22)

and
∫

R3
B(f, f)(v) log f(v)dv ≤ 0. (2.23)

Consequently, (2.21) admits a five-parameter family of equilibrium states,

M(ρ,u, T )(v) =
ρ

(2πT )3/2
exp

(
−|v − u|2

2T

)
, (2.24)

where ρ,u, T are the density, mean velocity, and temperature of the system, given by

ρ =
∫

R3
f(v)dv, u =

1
ρ

∫

R3
f(v)vdv, T =

1
3ρ

∫

R3
f(v)|v − u|2dv. (2.25)

In the hydrodynamic limit as ε → 0, one obtains the following compressible Euler’s
equation for the conserved densities:

∂ρ

∂t
+∇ · (ρu) = 0

∂

∂t
(ρu) +∇ · (ρu⊗ u) +∇p = 0 (2.26)

∂

∂t
E +∇ · ((E + p)u) = 0

where p = ρT , E = 1
2ρ|u|2 + 3

2ρT .
In this example, (ρ,u, T ) are the macroscopic variables that we are interested in,

and f is the microscopic state variable. Qf = (ρ,u, T ). The macroscopic domain is
the physical domain, denoted by D, and the microscopic domain is D = D×R3,Dx =
{x} ×R3, the momentum space.

2.3.3. Diffusion via random walks. Consider an ensemble of independent
random walkers on a domain D. Let U be the ensemble-averaged density of the
random walkers; {u(t, y, w)} be the position of the random walkers where y ∈ D is the
initial position of the random walkers; and w ∈ Ω̃, the probability space of ensembles.
U = Qu =< u >=

∫
Ω̃

u(t, y, w)dP (w). For this problem D = D × Ω̃,Dx = Ω̃.

2.3.4. Langevin equations and the kinetic Monte Carlo method. Con-
sider a system of stochastic differential equations

dxj

dt
= − ∂

∂xj
V + εḂj(t), j = 1, . . . , N (2.27)

where V (x1, . . . , xN ) is the potential energy associated with the system and the Ḃj(t)s
are independent Gaussian white noise. For small ε, the system spends most of its time
near the local minima of V , with rare and sudden transitions between different local
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minima. In such a situation, one can effectively approximate the dynamics of the full
system by a Markov process whose state space is the set of local minima of V . The
transition rates between different local minima can be obtained from the microscopic
process (2.27) using the transition state theory [42]. An efficient numerical method
for implementing this is discussed in [29].

In this example, the microscopic process is a set of ODEs and the macroscopic
process is a discrete Markov process. For x ∈ RN , Qx = x∗ if x is in the domain of
attraction of the local minimum x∗.

2.3.5. Molecular dynamics for fluids and solids. Consider a system of
identical particles interacting via a short-ranged potential U . Their dynamics are
described by Newton’s law:

d

dt
qj(t) = pj(t)

d

dt
pj(t) = −

∑

i6=j

∇U(qj(t)− qi(t))

j = 1, · · ·N . The corresponding Hamiltonian is

H =
N∑

j=1

1
2
p2

j +
1
2

∑

i6=j

U(qi − qj). (2.28)

Such a model is now used to simulate a very wide range of problems, from protein
folding pathways, to crystal growth, defect dynamics in solids, complex fluids, etc. We
will discuss the situation when molecular dynamics is used to model the macroscopic
behavior of a system. We will first discuss the example of fluid flow.

In continuum theory, the state of a fluid is described by its density, velocity,
and temperature fields, denoted by ρ,u, and T respectively. In most situations,
neglecting dissipative effects, (ρ,u, T ) obey the compressible Euler’s equation (2.26),
where p = p(ρ, T ) is the pressure, e = e(ρ, T ) is the internal energy density, and
E = 1

2ρu2 + e is the total energy density.

The microscopic and macroscopic state variables are related in the following way.
Given the microscopic state of the system {qj(t),pj(t)}j=1,··· ,N , we define the follow-
ing empirical distributions:

ρ̃(x, t) =
∑

j

δ(qj(t)− x)

m̃(x, t) =
∑

j

pj(t)δ(qj(t)− x) (2.29)

Ẽ(x, t) =
∑

j





1
2
pj(t)2 +

1
2

∑

i 6=j

U(qi(t)− qj(t))



 δ(qj(t)− x).

(ρ̃, m̃, Ẽ) are the empirical density, momentum, and total energy fields from the mi-
croscopic model. They obey the equations
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∂

∂t
ρ̃ +∇ · jρ(x, t) = 0,

∂

∂t
m̃ +∇ · τ(x, t) = 0, (2.30)

∂

∂t
Ẽ +∇ · jE(x, t) = 0,

where the current densities are given by

jρ(x, t) =
∑

j

pj(t)δ(qj(t)− x)

ταβ(x, t) =
∑

j

pjα(t)pjβ(t)δ(qj(t)− x)

+
1
2

∑

i,j

Fα(qj(t)− qi(t))(qj(t)− qi(t))β

∫ 1

δ(λqj(t) + (1− λ)qi(t)− x)dλ

jE(x, t) =
∑

j

pj(t)





1
2m

pj(t)2 +
1
2

∑

i 6=j

U(qj(t)− qi(t))



 δ(qj(t)− x)

+
1
2

∑

i 6=j

1
2
[(pj(t) + pi(t)) · F(qj(t)− qi(t))](qj(t)− qi(t))

×
∫ 1

0

δ(λqj(t) + (1− λ)qi(t)− x)dλ (2.31)

where F = −∇U . Ensemble or local time averages of the empirical conserved densities
and currents give macroscopic fields and fluxes in the compressible Euler’s equation.

For this problem Q{qj ,pj} = (〈ρ̃〉, 〈m̃〉, 〈Ẽ〉) where (ρ̃, m̃, Ẽ) are defined in (2.29),
and 〈 〉 denotes ensemble or spatial/temporal averaging. The fibers are either the
probability space or the local spatial/temporal domains over which averaging is taken.

For solids it is customary to work with the Lagrangian coordinates. Let y(x, t)
be the deformed position of a material point whose undeformed position is x, and
T0 be the Piola-Kirchoff stress tensor, and let ρ0(x) be the density of the material
before deformation, and q0 be the heat flux. The macroscopic state variables are the
displacement field y, and the total energy density E = 1

2ρ0|ẏ|2 + e where e is the
internal energy density. The macroscopic equations take the form

ρ0ÿ = ∇ · T0

Ė = ∇ · (T0ẏ)−∇ · q0

For simplicity of notations, we will work with the one-dimensional situation. Gen-
eralization to higher dimensions is straightforward. Taking an arbitrary interval of
macroscopic size (A,B], we have

d

dt

∑

A<xj≤B

q̇j(t) = −
∑

A<xj≤B

∑

k

∇U(qj − qk).
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Here we have used xj to denote the initial position of the j-th particle. Notice that
there are some cancellations in the last expression, which actually is equal to

−
∑

A<xj≤B

xk∈̄(A,B]

∇U(qj − qk).

Define the empirical stress T̃0 by

T̃0(x, t) =
∑
xj<x

xk≥x

∇U(qj − qk)

we then have

d

dt

∑

A<xj≤B

q̇j(t) = −(T̃0(B, t)− T̃0(A, t)).

In the same fashion, let

EA,B =
∑

A<xj≤B

1
2
pj(t)2 +

1
2

∑

A<xj≤B,k

U(qj(t)− qk(t)).

We then have
d

dt
EA,B = −1

2

∑
A<xj≤B

xk∈̄(A,B]

(q̇j + q̇k)∇U(qj − qk)

= −(J̃E(B, t)− J̃E(A, t))

where

J̃E(x, t) =
1
2

∑
xj<x

xk≥x

(q̇j + q̇k)∇U(qj − qk).

Let q(x, t) be the position of the particle whose initial position is nearest to x. We
can write J̃E as

J̃E(x, t) = q̇(x, t)T̃0(x, t) +
1
2

∑
xj<x

xk≥x

(q̇j + q̇k − 2q̇(x, t))∇U(qj − qk)

= q̇(x, t)T̃0(x, t)− q̃(x, t).

The last equation defines q̃ which is the discrete analog of heat flux.
Define the empirical distributions Ỹ , Ẽ through

∫ B

A

Ỹ (x, t)dx =
∑

A<xj≤B

qj(t)

∫ B

A

Ẽ(x, t)dx =
∑

A<xj≤B

1
2
pj(t)2 +

1
2

∑

A<xj≤B,k

U(qj(t)− qk(t))
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Then we have

Ỹtt +∇ · T̃0 = 0

Ẽt +∇ · J̃E = 0

where T̃0 and J̃E are the microscopic currents defined above. The macroscopic
conserved densities and fluxes are related to the microscopic densities and currents
through ensemble or spatial/temporal averaging. Q{qj , pj} = (〈Ỹ 〉, 〈Ẽ〉).

2.3.6. Interfacial dynamics. For simplicity, we will concentrate on the Ginz-
burg-Landau equation

uε
t = ∆uε +

1
ε2

uε(1− (uε)2) (2.32)

with ε ¿ 1. One can think of this as a reaction-diffusion equation with fast reaction.
Solutions to (2.32) are closely approximated by the constant equilibrium values u =
±1, except at the interfacial region of thickness O(ε) where transition between the
two equilibrium values takes place. The small scale in this problem corresponds to the
internal structure of the interfacial region. The large scale corresponds to the overall
shape of the interface.

The fast process in this problem is the reaction term, which vanishes at three
points u = −1, 0, 1. These three points define the slow manifold: Given a function
u(x), the slow component of u is the level set of u at values u = −1, 1, and 0. Of
particular interest is the level set {u = 0}. Therefore given u, we define

Qu =





1 if u > 0
0 if u = 0

−1 if u < 0.
(2.33)

The dynamics of the macroscopic component of uε then reduces to the dynamics of
its level set {uε = 0}, denoted by Γ.

2.3.7. Carleman equations. Our next example is the Carleman equation,
which is a simple kinetic model. Later on we will use this example to present variations
and limitations of HMM and to illustrate the importance of different scales.

∂u

∂t
+

∂u

∂x
= v2 − u2 (2.34)

∂v

∂t
− ∂v

∂x
= u2 − v2

The initial values are assumed to be oscillatory,

u(x, 0) = a(x, x/ε)
v(x, 0) = b(x, x/ε)

with a(x, y), b(x, y) smooth and 1-periodic in y.
There exists a well-understood homogenization theory for this problem by Tartar,

[74].
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∂ũ

∂t
+

∂ũ

∂x
=

∫ 1

0

ṽ(x, y, t)2dy − ũ2 (2.35)

∂ṽ

∂t
− ∂ṽ

∂x
=

∫ 1

0

ũ(x, y, t)2dy − ṽ2 (2.36)

ũ(x, y, 0) = a(x, y)
ṽ(x, y, 0) = b(x, y).

The two formulations both represent the microscale problem. In (2.34) the oscil-
lations are given as a function of x and t. In (2.35) the ε-scale is less explicit and only
represented by its local distribution in the new independent variable y. Compare the
discussion of fibers above. From [74] we have

lim
ε→0

(∣∣∣∣u(x, t)− ũ

(
x,

x− t

ε
, t

)∣∣∣∣ +
∣∣∣∣v(x, t)− ṽ

(
x,

x + t

ε
, t

)∣∣∣∣
)

= 0.

The natural macroscale variables are the weak limits of the full microscale solutions
and Q is now defined as follows.

U(x, t) =
∫ 1

0

ũ(x, y, t)dy = lim
δ→0

(
lim
ε→0

∫
Kδ(x− z)u(z, t)dz

)

V (x, t) =
∫ 1

0

ṽ(x, y, t)dy = lim
δ→0

(
lim
ε→0

∫
Kδ(x− z)u(z, t)dz

)
.

The kerned Kδ is compactly supported in (−δ, δ) with
∫ δ

−δ

Kδ(x)dx = 1.

We will see in Section 5 that the reconstruction must contain some information of the
microscale oscillations for HMM to be effective.

The relation between the macroscopic and microscopic models is illustrated in
Figure 1. In this figure, the macroscopic model is defined in the x space. The mi-
crostructures are defined on the y space, the fibers. As we discussed above, the fibers
can be the momentum space for the kinetic model, the periodic cell for the homoge-
nization problems, the probability space of ensembles, etc.

3. The Structure of HMM
There are two main components in the heterogeneous multiscale method: An

overall macroscopic scheme for U and estimating the missing macroscopic data from
the microscopic model.

3.1. The Overall Macroscopic Scheme. The right overall macroscopic
sche- me depends on the nature of the problem, and typically there is more than one
choice. For variational problems, we may use the standard finite element method. In
fact, our examples in the next section use the standard piecewise linear finite element
method. For dynamic problems that are conservative, we may use the methods devel-
oped for nonlinear conservation laws (see, e.g., [51]). Examples include the Godunov
scheme, Lax-Friedrichs scheme, and the discontinuous Galerkin method. For dynamic
problems that are nonconservative, we may simply use a standard ODE solver such
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as the forward Euler or the Runge-Kutta method, coupled with the force estimator
that we discuss below.

y2

y2

2

y1

x

x

Fig. 1. Illustration of the macroscopic and microscopic computational domains. The

y-spaces are the fibers representing the microstructures.

3.2. Estimation of the Macroscopic Data. After selecting the overall
macroscopic scheme, we face the difficulty that not all data for the macro scheme
are available since the underlying macro model is not explicitly known. The next
component of HMM is to estimate such missing data from the microscopic model.
This is done by solving the micro model locally, subject to the constraint that Q̃u = U
where Q̃ is the approximation to Q and U is the current macro state. For example,
for the variational homogenization problem, the missing data is the stiffness matrix
for the macro model. As we explain in the next section, this data can be estimated
by solving the original microscopic variational homogenization problem on a unit cell
in each element of the triangulation, subject to the constraint that Q̃u = U . For
dynamic problems, such data can be estimated from a Godunov procedure, namely,
that we first reconstruct the micro state from U , and evolve the micro state subject
to the constraint that Q̃u = U , and then estimate the missing data from u. Such
a reconstruction/micro evolution/data-processing procedure is very much analogous
to the reconstruction/evolution/cell-averaging procedure in Godunov scheme. The
missing data can be either the forces or fluxes or a part of the forces or fluxes such as
the eddy viscosity term in a turbulence model. We also have the option of carrying
out a number of such microscopic calculations (e.g. with different reconstruction or
different realization of the randomness) and extract a more accurate estimate from
the collection of microscopic calculations.

3.3. Examples. To illustrate the selection of the macroscale scheme and the
estimation of missing macroscale data from microscale models, we will discuss some
examples in more detail.

3.3.1. Variational problems. Examples include:
1.

min
u∈H1

0 (D)

∫

D





1
2

∑

i,j

aε
i,j(x, u)

∂u

∂xi

∂u

∂xj
− f(x)u(x)



 dx
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where the multiscale nature of the problem is contained in the tensor aε(x, u) =
(aε

i,j(x, u)) which can be of the form
(a) aε(x, u) = a

(
x, x

ε

)
, where a(x, y) is smooth and periodic in y with period

[0, 1]d. This is the classical homogenization problem we discussed earlier.
(b) aε(x, u) = a

(
x, x

ε

)
, where a(x, y) is random and stationary in y. This can be

used to model random medium.
(c) aε(x, u) = a

(
x, u, x

ε

)
, where a(x, u, y) is smooth. The dependence on u makes

this problem nonlinear. The dependence on y can be either periodic or random
stationary.

The macroscale problem is of the type

min
U∈H1

0 (D)

∫

D

{
1
2
A(x,U,∇U)− f(x)U(x)

}
dx.

2. Atomistic models of crystalline solids:

min
{xj}

∑

yi,yj∈D

V (xi − xj)

subject to loading conditions, where V is a pairwise atomistic potential, xi = yi+ui,yi

is the position of the i-th atom before deformation, ui is the displacement of the i-th
atom. The macroscale problem is of the type considered in nonlinear elasticity

min
U

∫

D

f(∇U)

where U is the macroscale displacement field.
For these problems, we can choose the macroscale scheme to be the standard

finite element method over a macroscale triangulation. The macroscale data that we
need to estimate is either

∫
D

A(x,U,∇U)dx or
∫

D
f(∇U)dx for U ∈ VH , the finite

element space. These can be approximated via the following steps.
1. For each element K, approximate

∫
K

A(x,U,∇U)dx or
∫

K
f(∇U)dx by a

quadrature formula.
2. For each quadrature nodes xi ∈ K, approximate A(x, U,∇U)(xi) or

f(∇U)(xi) by minimizing the original microscale problem over a microcell ∆xi , sub-
ject to the constraint that

∫
∆xi

u(x)dx =
∫
∆xi

U(x)dx,
∫
∆xi

∇u(x)dx=
∫
∆xi

∇U(x)dx,
with appropriate changes for the atomistic problem. For the periodic homogenization
and crystalline solids problems, ∆xi can be chosen to be a unit cell around xi, if
we replace the constraint by a periodic boundary condition or the Cauchy-Born rule,
as we explain in the next section. For the stochastic homogenization problem, ∆xi

should be larger than the correlation length. In this case, it may also be advantageous
to perform ensemble averages over several realizations of a

(
x, x

ε

)
.

3.3.2. Dynamic Problems of Conservative Type. Examples include
1.

∂tu
ε = ∇ · (aε(x, u)∇uε)

where {aε(x, u)} is as discussed above.
2.

∂tu
ε +∇ · (aε(x)u) = 0

where aε(x) = a
(
x, x

ε

)
, a(x, y) can either be periodic or stochastic stationary in y.
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3. Kinetic models such as the Boltzmann or BGK equations.
4. Molecular dynamics of the type discussed in Section 2.
5. Spin-exchange models via Kawasaki dynamics [71].
Other examples may include models of phase segregation, mixtures of binary

fluids, elastic effects, etc. The macroscale models are of the type

Ut +∇ · J = 0 (3.1)

where U is, in general, a vectorial macroscale variable, J may depend on x,U,∇U ,
etc.

The macroscale scheme can be either a finite volume method such as the Godunov
scheme or a finite element method such as the discontinuous Galerkin method. We
will discuss here the finite volume method. HMM based on the discontinuous Galerkin
method is considered in [25].

The missing macroscale data for a finite volume method for (3.1) is the macroscale
flux J at the cell boundaries, denoted by {Jj+ 1

2
}. They can be estimated by the

following “Godunov-like” procedure:
1. Select a microcell ∆j+ 1

2
around the cell boundary at xj+ 1

2
.

2. From {Un
j }, reconstruct the microstates {ũ} on {∆j+ 1

2
}. ũ should be consistent

with {Un
j } in the sense that Q̃u = Un, where Q̃ is the approximation of Q restricted

to {∆j+ 1
2
}.

3. Evolve the microstate u(t) using the microscale model inside {∆j+ 1
2
}, with

initial state {ũ}, and subject to the constraint that

Q̃u(t) = U.

4. Evaluate the macroscale flux {Jj+ 1
2
} using {u(t)}.

The constraint Q̃u = U requires some additional comment. Take the example
of molecular dynamics. If we would like to capture the macroscale behavior at the
level of Euler’s equations, the constraint is simply that the average mass, momentum,
and energy should be given by the prescribed macroscale values given by {Un}. If we
would like to capture the viscous or higher order effects, we also need to constrain the
system such that the average density, momentum, and energy gradients be given by
the macroscale values.

The rules for selecting {∆j+ 1
2
} are the same as for the variational problems. As

usual for periodic homogenization and crystalline solids problems, ∆j+ 1
2

can be chosen
to be the unit cell.

3.3.3. Dynamic problems of nonconservative type. Examples include:
1.

∂tu
ε =

∑

i,j

aε
i,j(x, u)

∂2u

∂xi∂xj

where {aε(x, u)} is as discussed before.
2. Spin flip models [36] that lead to Ginzburg-Landau type of equations.
In this case, we write the macroscale model as

Ut = F (U)

where F (U) can be a nonlinear operator acting on U . For the macroscale scheme, we
choose an ODE solver on a grid, such as forward Euler or Runge-Kutta, and we need
to estimate F (U) on the macro grid.
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For each macro gridpoint xj , we again select a microcell ∆j around xj . The
principle for selecting ∆j is the same as before. From {Un

j }, we construct a piecewise
polynomial of k-th order in ∆j denoted by Un

j (x). The rest of the steps are the same
as that for the conservative systems. We note that the constraint Q̃u = U can be
interpreted as

∫

∆j

(u(x)− Un
j (x))xmdx = 0

for 0 ≤ m ≤ k.

3.3.4. Macroscale markov chains. When the macroscale process is a Markov
chain, it is natural to use a kinetic Monte Carlo method as the macro scheme. The
missing data might be the transition rates between macro states. Estimating such
data is a rather nontrivial task. It is discussed in [29].

4. Estimating the Macroscale Data
In this section, we discuss in some detail the estimation of the missing macroscale

data by solving local microscale problems. There are two main issues. For consistency
and accuracy, the microscale problems have to be reformulated correctly by adding
constraints such as Q̃u = U or boundary conditions. For efficiency, we have to exploit
possible reduction of the complexity of the microscale problems. This can be done
by either reducing the size of the computational domains for the microscale problem
through compression or a semi-empirical method as we explain later in this section.

4.1. Compressed Microscopic solvers. The key idea for the efficiency of
the proposed method is that of compression; i.e., to reduce the computational com-
plexity of the microscopic problem through a reduction of the size of the microscopic
computational domain (mcd) by exploring the separation of the macroscopic and the
microscopic scales. Other compression techniques are found in, e.g., [31].

4.1.1. Variational problems. Again it is best to illustrate the main ideas
with a few examples. We will first discuss the classical homogenization problem
discussed in Section 2.2.

For u ∈ H1(D), let

aε(u, u) =
1
2

∫

D

∑

i,j

aε
i,j(x)

∂u

∂xi

∂u

∂xj
dx. (4.1)

Define the compression operator Q as in Section 2.2, then

Aε(U,U) = min
u∈H1

0 (D),Qu=U
aε(u, u) (4.2)

for U ∈ VH . Aε is often not explicitly known. It is needed in evaluating the stiffness
matrix for the macroscale finite element method. For this problem, the approximate
macroscopic solver reduces to an approximate evaluation of the stiffness matrix asso-
ciated with Aε(U,U).

First we consider the case when aε(x) = a
(
x, x

ε

)
, where a(x, y) is periodic in y

with period I = [0, 1]d. To obtain an approximation of Aε(U,U), we consider, on each
triangle K, the solution of a “cell problem”

∇ · (a
(
x,

x

ε

)
∇uK(x)) = 0 (4.3)
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on xK + εI, where xK is an interior point of K, subject to the condition that

uK(x)− U(x) is periodic. (4.4)

Let

Ã(U,U) =
∑

K

|K|
εd

∫

xK+εI

∑

i,j

ai,j

(
x,

x

ε

) ∂uK

∂xi

∂uK

∂xj
dx (4.5)

where |K| denotes the volume of K. We define this to be the approximation to
Aε(U,U) needed to assemble the stiffness matrix for the macroscopic problem.

In the general case when aε does not have the form a
(
x, x

ε

)
, we define ÃK by

ÃK(U,U) = min
u

1
|K̃|

∫

K̃

∑

i,j

aε
ij(x)

∂u

∂xi

∂u

∂xj
dx (4.6)

subject to the condition
∫

K̃
∇udx =

∫
K̃
∇Udx, where K̃ is some appropriately chosen

subdomain of K. We then let

Ã(U,U) =
∑

K

|K|ÃK(U,U) (4.7)

and use Ã as an approximation to Aε. A good example of such a situation is when
a(x, y) is random and stationary in y; in this case, the size of such approximate cell
problems (4.6) has to be larger than the local correlation length of a.

This method is based on the strategy of solving directly the macroscopic prob-
lems and approximate the macroscopic stiffness matrices by solving “the microcell
problems.” The computational complexity of this method does not increase as ε is
decreased. Furthermore, as we show below, it extends easily to nonlinear and timede-
pendent problems. In contrast, the method proposed in [7] was based on the idea
of replacing the finite element basis functions with functions having the correct mi-
crostructures. This has the disadvantage that the basis functions are expensive to
compute. It is particularly difficult to extend such methods to nonlinear problems,
or problems for which the microstructure evolves in time. [45] extends the method of
[7] to high dimensions. For other related work, see [46, 66, 67].

The quasicontinuum method can be formulated in the same way. Here our prob-
lem is to simulate the nonlinear elastic behavior of crystalline solids without using
a stored-energy functional, and we base our simulation on the molecular potential
V (x1, . . . xN ) where the {xj}’s are the positions of the atoms. As before, we start
with a macroscopic triangulation of the sample and denote by VH the standard (vec-
torial) piecewise linear finite element space. The microscopic state variable is now the
positions of the atoms u = {x1, . . . xN}. We say Qu = U ∈ VH , if the average strain
between the atoms on the triangle K is equal to the average strain of U on K for each
K. The reduced macroscopic energy functional E(U) should be given by

E(U) = min
u,Qu=U

e(u)

where e(u) is the total potential energy associated with the configuration u. The
quasicontinuum method approximates E(U) using the Cauchy-Born rule. For each
triangle K, let EK(U) be the potential energy of a unit cell subject to the constant
strain ∇U on K, and let

Ẽ(U) =
∑

K

nKEK(U)
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where nK is the number of unit cells in K. Ẽ(U) is the quasicontinuum approximation
of E(U) [73, 69, 68].

The quasicontinuum method developed by Tadmor et al. has an additional impor-
tant twist allowing it to deal with problems of Type C. In this case, quasicontinuum
method provides the option of returning to a full-atom computation for E(U) near
defects where the local strain varies on an atomic scale.

In summary, the basic strategy for compressing the state space complexity of the
microscale model is to reduce the computation on each macroscale cell to a basic micro-
scopic unit. Such microscopic units are the single period in a periodic homo-genization
problem, a unit cell in crystalline materials [73], or a block of size comparable to the
correlation length of the medium in porous medium flows.

4.1.2. Dynamic problems. For concreteness, let us assume that the macro-
scopic model takes the form of a differential equation Ut = F (U). Given U , we would
like to estimate F (U) from a microscopic model, say (2.17).

Our basic assumption is that the local relaxation time of the microscopic process
is much shorter than typical time scales for the macroscopic process: tR ¿ tM . Our
starting point is the following generalization of the gas-kinetic scheme [79] for the
approximation of F (U) (see also [35]).

Given Un, F (U) is estimated via the following steps:
1. Reconstruction: Reconstruct the microscopic state ũ from Un, ũ = RUn.
2. Microscopic evolution: Evolve the microscopic process on a reduced computa-

tional domain up to some appropriate time α∆t, u(t) = s(t)ũ, tn ≤ t ≤ tn + α∆t.
3. Force estimation: Obtain an approximation to F (U) by compression of the

microscopic forces. If the microscopic process has the form of a differential equation
ut = f(u), then we can write

F (Un) = Q̃{f(u(t)) : tn ≤ t ≤ tn + α∆t} (4.8)

where Q̃ is a space-time compression operator.
4. Macroscopic evolution: Having an estimation of F (Un), we can then compute

Un+1 using standard ODE solvers.
(4.8) is called an F -estimator.
In practice, Step 3 should proceed simultaneously with Step 2. The value of α is

determined by when the F -estimator reaches a nearly stationary value.
If the macroscopic process is a kinetic Monte Carlo type of Markov process, the

force estimation is replaced by estimating the transition probabilities between macro-
scopic states. Such a P -estimator is discussed in [29].

It remains to discuss three specific details of the above algorithm.
1. Reconstruction.
2. Compression; i.e., reduction of the computational complexity of the micro-

scopic solver by reducing the size of the computational domain.
3. Force estimation. The data from the microscopic solver has to be processed in

order to provide an accurate estimation of the macroscopic forcing term.
These three issues are related. We will center our discussion on compression. We

will discuss two aspects of compression: compression in space and compression in
time.

The basic principle for compression in space is the same as for the variational
problems; i.e., by reducing the computation on each macroscopic cell to a “microscopic



WEINAN E AND BJORN ENGQUIST 105

unit.” For the homogenization problems,

∂tu
ε = ∇ ·

(
a

(
x,

x

ε

)
∇uε

)
(4.9)

∂tu
ε +∇ ·

(
a

(
x,

x

ε

)
uε

)
= 0 (4.10)

this leads to the following algorithms for approximating the local averages of uε on a
macroscopic grid:

1. Reconstruction. From {Un
j }, construct a piecewise polynomial Un(x). The

order of the polynomial depends on what problem we solve. It should be at least
piecewise quadratic for (4.9), and piecewise linear for (4.10). We will return to this
issue in Section 5 when we discuss the accuracy of this method.

2. For each macroscopic cell ∆, solve (4.9) or (4.10) on x∆ + εI subject to the
boundary condition that u(x, t)− Un(x) is periodic with period εI.

3. Let Fn
j be the average on x∆j

+ εI of the right-hand side of (4.9) or (4.10).
4. Compute {Un+1

j } using standard ODE solvers and the F -estimator {Fn
j }.

The quasicontinuum method also has a natural extension in the same fashion to
dynamic problems. The easiest setting for doing so is the finite element method. We
would like to solve the elastic wave equation

∂2(U(t), V )
∂t2

= −
(

∂E

∂U
(U(t)), V

)

where U(t), V ∈ V∆ and the functional E(U) is defined through molecular potentials,
via the Cauchy-Born rule, in exactly the same way as was done in quasicontinuum
method.

We next turn to compression in time. By resorting to the microscopic model in
order to simulate the macroscopic dynamics, we are forced to resolve the microscopic
time scales which are not of interest. This is particularly expensive if tR ¿ tM . How-
ever, in this case we can explore this time scale separation to reduce the computational
cost in the temporal domain.

Let us express the F -estimator in the form

F̃ (U) = Q

k∑

j=1

ψjf(uj)

where the weights {ψj} should satisfy

k∑

j=1

ψj = 1.

uj is the computed microscopic state at microscopic time step j. It is helpful to distin-
guish two different scenarios by which relaxation to local equilibrium takes place. For
some problems, such as the parabolic homogenization problem (4.9) and the Boltz-
mann equation, we have strong convergence to equilibrium. No temporal or ensemble
averaging is necessary for the convergence of the physical observables. For other
problems, such as the advection homogenization problem and molecular dynamics,
convergence to equilibrium is in the sense of distributions; i.e., physical observables
converge to their local equilibrium values after time or ensemble averaging. The
selection of the weights in the F -estimator crucially depends on the nature of this



106 THE HETEROGENEOUS MULTISCALE METHODS

convergence. In particular, we note two special choices. The first is: ψk = 1 and
ψj = 0 for j < k. This is suitable when we have strong convergence to equilibrium.
The second choice is: ψj = 1

k , for 1 ≤ j ≤ k. This is more suited for the case when
we have weak convergence to local equilibrium. More accurate choices of the weights
are discussed in [23].

The time interval on which the microscopic model has to be solved depends on
how fast the transient introduced by the reconstruction step dies out. This is best
illustrated by examples. Consider the parabolic homogenization problem

uε
t = ∇ · (a

(
x,

x

ε

)
∇uε) (4.11)

on D, with Dirichlet boundary condition uε|∂D = 0. To approximate the macroscopic
behavior of uε, we will work with a macroscopic grid of size (∆x,∆t). Let U = Quε

be the moving cell averages of uε over a cell of size ∆x. Let R be the piecewise
linear reconstruction. In one dimension, this is RU(x) = Uj + Uj+1−Uj

∆x (x − xj), for
x ∈ [j∆x, (j + 1)∆x]. With this reconstruction, we proceed with the microscopic
solver. Asymptotic analysis suggests that the relaxation time for this problem is
O(ε2) [8]. We plot in Figure 2 a typical behavior of the microscopic flux jε(x, t) =
a

(
x, x

ε

)∇uε(x, t) at a cell boundary over the time interval [tn, tn + ∆t] as a function
of the micro time steps. It is quite clear that jε(x, t) quickly settles down (after about
35 micro time steps) to a quasistationary value after a rapid transient. We obtain an
efficient numerical scheme if we select this value as the macroscopic flux and use that
to evolve U over a much larger time step ∆t.
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Fig. 2. Computed flux τε(x, t) = a
�
x, x

ε

�∇uε(x, t) as a function of the micro time step

over one typical macro time step, for the parabolic homogenization problem with a
�
x, x

ε

�
=

2+sin 2π x
ε
. The bottom figure is a detailed view of the top figure for small time steps. Notice

that jε(x, t) quickly settles down (after about 35 micro time steps) to a quasistationary value

after a rapid transient.

Our next example is the advection homogenization problem

uε
t +∇ · (a

(
x,

x

ε

)
uε) = 0 (4.12)

in one dimension. We assume a(x, y) > a0 > 0. We proceed as before except that
we take a piecewise constant reconstruction. In contrast to the previous example, the
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temporal oscillations in the solutions of (4.12) do not die out. This is reflected in
Figure 3 where we plot the microscopic flux jε(x, t) = a

(
x, x

ε

)
uε(x, t) over the time

interval [tn, tn +∆t] as a function of the microscale time steps. jε remains oscillatory
throughout the time interval. Nevertheless, if we plot the time average

j̄(x, t) =
1
t

∫ tn+t

tn

K
(
1− τ

t

)
jε(x, τ)dτ, K(τ) = 1− cos 2πτ (4.13)

as shown in Figure 3, we see that it settles down to a quasistationary value on a time
scale of O(ε).

The fact that the microscopic process only has to be evolved on time scales com-
parable to tR leads to other possibilities of state space compression by neglecting the
part of the state space which does not contribute significantly to the F -estimator.

Truncation of the mcd introduces artificial numerical boundaries where boundary
conditions have to be imposed. We suggest either periodic or free boundary conditions
subject to the constraint that Q̃u = U . Ideally one should apply the absorbing bound-
ary conditions that aim at eliminating the spurious effect of the artificial boundary.
Such boundary conditions were proposed in the context of wave equations in [18, 32],
and for molecular dynamics in [26, 27]. However, extending them to general situations
does not seem to be a simple task, and we will take it up in future work.
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Fig. 3. Top figure: Computed flux jε(x, t) = a
�
x, x

ε

�
uε as a function of the micro time

step over one macro time step for the convection homogenization problem (4.12). Bottom

figure: Time-averaged flux j̄(x, t) as a function of the micro time step.

In summary, we can express the F -estimator at time t as

F ε(U, t) = Q̃∆t{f(ũ(τ)), t ≤ τ ≤ t + ∆t, ũ(t) = RU}, (4.14)

where R denotes some reconstruction operator, ũ(t) is the solution of the compressed
microscopic model (possibly over a truncated computational domain) with initial data
ũ(t) = RU, Q̃∆t is the numerical approximation of the compression operator. Typi-
cally Q̃∆t has the form

Q̃∆t = QeQxQt, (4.15)
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where Qe, Qx, Qt denote the compression operators over the probability, spatial and
temporal spaces respectively. Having F ε(U, t), the macroscopic state variables can
be updated using standard ODE solvers. The simplest example of the forward Euler
scheme gives

Un+1 = Un + ∆tF ε(Un, tn). (4.16)

4.2. Simplifications. In many situations, we can simplify the compres-
sion techniques further by replacing the compressed microscale solver by explicit
macroscale models. The parameters in the macroscale models can be either ana-
lytically computed or numerically fitted using the microscale model. This technique
is particularly useful for Type A problems which are characterized by the fact that
such techniques are applicable over most of the computational domain.

4.2.1. Traditional approach: Explicit macroscopic models. When an
explicit macroscopic model is known and known to be valid, the compressed micro-
scopic solver discussed above can be replaced by the traditional approach of using the
explicit macroscopic models. This is particularly useful for problems of Type A. In
such cases, an adaptive model selection is needed. See, [26].

4.2.2. Semi-empirical methods. This method is a compromise between
the explicit macroscopic models and the compressed microscopic models. We assume
that the macroscopic model takes a specific form but the coefficients involved might
be unknown or change with the environment, and we estimate these coefficients using
data obtained from the microscopic models. Such ideas are used extensively as a pre-
processing step to calibrate the input data and simulation parameters for macroscopic
models. We propose to incorporate such ideas in HMM.

As an example, we discuss the parabolic homogenization problem considered ear-
lier. Even though the macroscale equation for U = Qu might be difficult to obtain
explicitly, it must take the form

Ut = ∇ · (A(x)∇U). (4.17)

Our task is to find the tensor A(x). In Figure 4, we plot, for a simple one-dimensional
problem with a(x, y) = 2 + sin 2πy, the computed macroscopic flux (which should be
an approximation to A(x)∇U) using the compressed microscopic model as a func-
tion of ∇U . We see a clean, straight line whose slope gives an estimate of A(x).
Therefore in an actual computation, for each unknown entry of A at a cell boundary,
the compressed microscopic solver has to be used only twice at that macroscopic cell
boundary to give us an estimate of that entry of A.

Other examples of a similar spirit include the dynamic subgrid models of Moin
et al. [55] for large eddy simulation of turbulent flows; the work of Vanden-Eijnden
on numerical solutions of multiscale stochastic differential equations [78], and model
reduction techniques in control theory.

4.2.3. Type A problems. The additional twist for Type A problems is an
adaptive procedure that decides on each macroscopic computational element whether
the known explicit macroscopic model can be used. We will postpone general discus-
sions on such adaptive procedure to a later publication.
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Fig. 4. Empirically computed macroscopic flux as a function of the macroscopic gradi-

ent, showing in “×.” The line is the exact homogenized flux for the parabolic homogenization

problem. This figure illustrates the semi-empirical method. Knowing the form of the macro-

scopic equation, the unknown coefficients can be empirically estimated with small cost.

It may also happen that near defects or singularities, tR becomes comparable to
tM . In this case, it may no longer be advantageous to use the compression techniques
discussed earlier. Consequently, the compression and reconstruction operators are
unnecessary, and the microscopic state should be kept to the next macroscopic time
step. This is the case for example in the method proposed in [65] which couples kinetic
Monte Carlo and continuum models for epitaxial growth.

4.3. Galerkin formulation. For many problems in applications, it is much
more convenient to work with the Galerkin formulation. In this section, we will discuss
the extension of HMM to Galerkin formulation. For simplicity we will assume that
the fibers satisfy Dx = D0; i.e., they are independent of x.

4.3.1. Variational problems. Let a(u, v) be a bilinear form on an appropri-
ate function space H on the microscopic domain D = D×D0 satisfying the standard
requirements such as continuity and ellipticity. Consider a problem of the form: Find
u ∈ H, such that

a(u, v) = (f, v) (4.18)

for all v ∈ H. Here, f is a given continuous functional on H. The version of HMM
that we discuss below will be based on a splitting of this problem into two pieces:

1. Let U be a macroscopic state. Denote by R∗U the solution of the problem:
Find u such that Qu = U and

a(u, v) = 0 (4.19)

for all v satisfying the constraint Qv = 0.
2. Let R̃ be a fixed reconstruction operator, and define a macroscopic bilinear

form A by

A(U, V ) = a(R∗U, R̃V )
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Then the macroscopic problem is

A(U, V ) = (f, R̃V ) (4.20)

It is easy to see that if U is a solution to (4.20), then R∗U is an approximate
solution to (4.18) since

a(R∗U, R̃V + v) = (f, R̃V ) ≈ (f, R̃V + v) (4.21)

For what follows, it is convenient to take the example of the homogenization
problem, for which

a(u, v) =
∫

D

∑

i,j

aij

(
x,

x

ε

) ∂u

∂xi

∂v

∂xj
dx (4.22)

for u, v ∈ H = H1
0 (D). In this case D0 = D. We emphasize that the methodology

applies to general situations. Let TD and Tf be finite element triangulations of D and
D0 respectively. Standard Galerkin methods based on the microscopic formulation
would proceed directly with a finite element space over TD × Tf , denoted by V m

H . In
contrast, HMM proceeds in two steps.

Let VH be a standard (e.g. piecewise linear) finite element space over TD. We
define Q as before: Qu = U ∈ VH , if

∫
D
∇u∇V dx =

∫
D
∇U∇V dx, for all V ∈ VH .

For U ∈ VH , denote by R∗U the solution of the problem: Find u ∈ V m
H , Qu = U and

a(u, v) = 0

for all v ∈ V m
H satisfying Qv = 0. The second step is to solve for U from

a(R∗U, V ) = (f, V )

for all V ∈ VH .
The key to the efficiency of HMM comes again from the possibility to approximate

efficiently a(R∗U, V ). The idea is completely analogous to that of the variational
problems. For each H ∈ TD let xK be an interior point of K and let

aK(u, v) =
∫

xK+εI

∑

i,j

ai,j

(
x,

x

ε

) ∂u

∂xi

∂v

∂xj
dx.

Given U ∈ VH , let uK be the solution to the problem

aK(u, v) = 0

for all v ∈ H1(xK + εI), satisfying the constraint that v is periodic with period εI.
uK is also required to satisfy the boundary condition that uK(x) − U(x) is periodic
with period εI. Define

Ã(U, V ) =
∑

K

|K|
εn

∫

xK+εI

∑

i,j

ai,j

(
x,

x

ε

) ∂uK

∂xi

∂V

∂xj
dx

We then approximate A(U, V ) by Ã(U, V ). Finally, the macroscale problem is

Ã(U, V ) = (f, V )

for all V ∈ VH .
This method is closely related to the analytic tool of two-scale convergence in

homogenization theory [3, 22, 56]. There the idea is to use oscillatory test functions of
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the form ϕ
(
x, x

ε

)
in order to probe both the macroscopic behavior and the oscillations

in the unknowns. Here we split this into two steps: We probe the oscillations in the
first step when we compute uK , and in the second step we find the approximation to
the macroscopic behavior.

4.3.2. Dynamic problems. The set up is similar to that of the variational
problem. Consider now a dynamic problem of the form

d

dt
(u, v) = a(u, v) (4.23)

with a corresponding macroscopic model

d

dt
(U, V ) = A(U, V ) (4.24)

or a time-discretized version

(Un+1, V )− (Un, V ) =
∫ tn+∆t

tn

A(U(t), V )dt (4.25)

for V ∈ VH . To evaluate A(U, V ) from microscopic models, we proceed in the following
steps:

1. Reconstruction: ũ = RUn.
2. On each element K, we solve (4.23) restricted to a small subset of K × Tf

with appropriate boundary conditions. For the homogenization problem, we can
take this subset to be xK + εI and use the periodic boundary condition. From this
we can construct an approximation to A(U(t), V ) = a(u(t), R∗V ) in a similar way
as we constructed Ã(U, V ) in the last subsection. We denote this approximation
as Ã(U(t), V ). We stop the microscopic solver until Ã(U(t), V ) or its time average
reaches a quasistationary value, A∗(Un, V ).

3. We let

(Un+1, V )− (Un, V ) = ∆tA∗(Un, V )

for V ∈ VH .
In some situations, we can simply use

(Un+1, V )− (Un, V ) = ∆tÃ(Un, V )

where Ã was constructed earlier.

4.4. Simple Illustrative examples. Interesting special cases of HMM can
already be found in the literature. An immediate first example is the Godunov scheme
in gas dynamics [38]. Classical Godunov scheme corresponds to the case when the
reconstruction operator is just the identity operator. Nontrivial high order reconstruc-
tion operators are used in extensions of the Godunov scheme, such as the MUSCL,
PPM and ENO schemes (see for example [51]).

The next interesting example is found in the literature on solving stiff ODEs. In
particular, projective methods make use of the time scale separation by combining
micro and macro time steps in order to achieve large overall time steps. For details
see [39, 49, 34].

Perhaps the most significant example in the published literature that closely re-
sembles the spirit of the algorithm described above for problems of Type B is the
kinetic scheme [79] for gas dynamics. In the form of [79] the kinetic scheme is based



112 THE HETEROGENEOUS MULTISCALE METHODS

on the BGK model

ft + (u · ∇)f =
feq − f

τ

where feq is some local equilibrium state, τ is a small relaxation time. Given the
numerical approximation to the local conserved quantities at time tn, the kinetic
scheme proceeds via the following steps to compute the local conserved quantities at
time tn+1:

1. The approximate local equilibrium states feq and local gas distribution func-
tions are constructed in the neighborhood of the cell boundaries.

2. The BGK equation is solved near the cell boundaries.
3. The numerical fluxes for the conserved quantities are evaluated from the dis-

tribution functions, and the local conserved quantities are updated.
This procedure does not use Euler’s equation for gas dynamics. It only makes

use of the BGK equation. In connection with HMM, we can define the compression
operator Q by

Qf = (ρ,m, E)

where ρ,m, E are respectively the density, momentum, and total energy densities
associated with f . Designing the reconstruction operator R is the most involved step
in [79], which computes corrections to the local Maxwellians in the form of Taylor
expansions in order to achieve second order accuracy (see [79] for details).

5. Stability and Accuracy
Let U be the numerical solution computed by the heterogeneous multiscale meth-

od, u be the exact solution of the microscopic problem, and Q be the compression
operator. Our aim was to approximate Qu. In this section, we will estimate the error
U −Qu.

5.1. Variational Problems. Again we will take the classical homogenization
problem as an example. But the principle of the analysis applies to more general
problems.

Consider the problem

min
u∈H1

0 (D)




∫

D

1
2

∑

i,j

aij

(
x,

x

ε

) ∂u

∂xi

∂u

∂xj
dx−

∫

D

fu dx




where f = f(x) is a given smooth function, the aij(x, y)s are smooth and periodic
in y with period I = [0, 1]d. See section 4.1.1 for notations. We will assume that
the triangulation is quasiregular; i.e., all the triangles are of comparable size, and
all angles are bounded uniformly away from 0. Furthermore, we assume that each
triangle contains a cube of size ε.

We will analyze the HMM with Aε(U,U) approximated by Ã(U,U), defined in
(4.5). Stability comes from the fact that the quadratic form we are dealing with,
Ã(U,U), is still uniformly elliptic if aε(u, u) is. Accuracy can be estimated using the
first Strang lemma on the approximation of stiffness matrix for finite element methods
[17] although for the present problem it is simpler to proceed directly.

Lemma 5.1. Assume that aε(u, u) is uniformly V -elliptic in the sense that

aε(u, u) ≥ C0

∫

D

|∇u|2dx.
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for u ∈ H1
0 (D). Then

Aε(U,U) ≥ C0

∫

D

|∇U |2dx.

for all U ∈ VH .

Proof. From (4.2), we have

Aε(U,U) = min
u∈H1

0 (D),Qu=U
aε(u, u) ≥ min

u∈H1
0 (D)

Qu=U

C0

∫

D

|∇u|2dx

= C0

∫

D

|∇U |2dx.

Lemma 5.2. Under the same condition as in Lemma 5.1, we have

Ã(U,U) ≥ C0

∫

D

|∇U |2dx

for all U ∈ VH .

Proof. Observe that
∫

xK+εI

∑

i,j

aij

(
x,

x

ε

) ∂uK

∂xi

∂uK

∂xj
dx = min

∫

xK+εI

∑

i,j

aij

(
x,

x

ε

) ∂u

∂xi

∂u

∂xj
dx,

where the minimum is taken over all functions u such that u−U is periodic on xK +εI.
Therefore ∫

xK+εI

∑

ij

ai,j

(
x,

x

ε

) ∂uK

∂xi

∂uK

∂xj
dx ≥ min C0

∫

xK+εI

|∇u|2dx

= C0

∫

xK+εI

|∇U |2dx = C0ε
d · |∇U |2. (5.1)

This gives the desired result. This completes the proof of Lemma 6.2.
Let Uε be the solution of

min
U∈VH

{Aε(U,U)−
∫

D

f(x)U(x)dx}.

Then it is easy to see that

‖Uε −Quε‖H1 ≤ CH.

Let Ũε be the solution of

min
U∈VH

{Ã(U,U)−
∫

D

f(x)U(x)dx}

We will estimate ‖Uε− Ũε‖H1
0 (D). The difference is due to the fact that the quadratic

form Aε is approximated by Ã.
We have

C0‖Ũε − Uε‖2H1 ≤ Ã(Ũε − Uε, Ũε − Uε) = Aε(Uε, Ũε − Uε)− Ã(Uε, Ũε − Uε)
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Therefore

‖Ũε − Uε‖H1 ≤ 1
C0

sup
V ∈VH

|Aε(Uε, V )− Ã(Uε, V )|
‖V ‖H1

(5.2)

The estimate of the right-hand side is carried out in [28], which gives the following
theorem.

Theorem 5.3. Assume that the finite element triangulation is quasi-regular, and that
each element of the triangulation contains a cube of size ε, then

‖Ũε −Quε‖H1(D) ≤ C
(
H +

ε

H

)
.

Theorem 6.5 suggests a result of a general nature, namely that the error of HMM
for variational problems comes from two sources: the standard local truncation error
(here the first term) and the error due to compression (here the second term).

The proof of Theorem 5.3 was complicated by the fact that we were comparing Ũε

with Quε, therefore we needed to estimate Ã−Aε. It is simpler to estimate Ũε − U ,
where U is the solution to the homogenized equation. For that purpose, we just have
to estimate Ã(U,U)− A(U,U) where A(U,U) =

∫
D

∑
i,j Aij(x) ∂U

∂xi

∂U
∂xj

dx, and this is
a direct consequence of the Lemma 6.5. Therefore we have the following theorem.

Theorem 5.4. Under the same assumption as in the previous theorem, let U be the
solution of

min
U∈H1

0 (D)
{1
2
A(U,U)−

∫

D

fU(x)dx}.

Then

‖Ũε − U‖H1(D) ≤ CH.

Having Ũ , we can construct approximations to uε. This is done in [24, 28].

5.2. Dynamic Problems of Type B. For concreteness we will discuss the
case when the macroscopic model is a differential equation of the form Ut = F (U),
and HMM takes the form

Un+1
j = Un

j + ∆t F ε
j (Un).

We will estimate the error between {Un
j } and some suitably chosen numerical scheme

for the macroscopic model. Let us write this numerical scheme in the form

Ūn+1
j = Ūn

j + ∆tF̄j(Ūn).

Let En
j = Un

j − Ūn
j . Then

En+1
j = En

j + ∆t(F̄j(Un)− F̄j(Ūn)) + ∆t(F ε
j (Un)− F̄j(Un)).

F̄ should be chosen so that it is stable and minimizes F ε
j − F̄j . For this purpose, we

define the Generalized Godunov Scheme (GGS), which is obtained by replacing the
microscopic solver in HMM by the exact macroscopic solver. The precise definition
is not important. We just have to identify one particular macroscopic scheme that is
both stable and close to HMM. Examples of GGS will be given below.
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For nonlinear problems, we have to be careful about the notion of stability. For
problems with smooth numerical solutions for which divided differences of suitable or-
ders are uniformly bounded, Strang showed that L2 stability of the linearized equation
is sufficient for getting the full accuracy of the nonlinear problem [72]. For multiscale
problems, even though we are interested in macroscopic variables which are typically
averaged quantities, small scale fluctuations still exist at small amplitudes, and we
have to specify more carefully the class of numerical solutions that are allowed when
we define stability.

Fix a macroscopic time T . Let K be a class of discrete functions defined on the
numerical grid. For example in Strang’s theorem, K = {{Un

j }, ‖Dα
HUn

j ‖ ≤ Cα for
α ≤ N , and n∆t ≤ T}, where N is an integer depending on d, the spatial dimension;
Cα is independent of ∆t; and H, Dα

H is the divided difference operator of order
α. For our problem, K will usually be chosen to consist of discrete functions which
have bounded divided differences up to some order, and which are close to the exact
solution of the macroscopic model.

Definition. The GGS is said to be (K, δ) stable if

‖Π`
n=k(I + ∆t

∫ 1

0

∇F̄ (Un + θ(V n − Un))dθ)‖ ≤ Constant (5.3)

for all k, ` such that 0 ≤ k ≤ ` ≤ [
T
∆t

]
, and all {Un}, {V n} such that {Un}, {V n} ∈ K,

and

‖Un − V n‖ ≤ δ

if n∆t ≤ T . The constant depends only on T .

Theorem 5.5. Assume that
1. GGS is (K, δ)-stable
2. {Ūn}, {Un} ∈ K
3. maxn≤ T

∆t
‖F̄ (Un)−F ε(Un)‖ → 0 and ‖Ū0−U0‖ → 0 as ε → 0, ∆t, H → 0.

Then there exist ε0, ∆t0,H0, such that if ε < ε0, ∆t < ∆t0,H < H0, n∆t ≤ T

‖Ūn − Un‖ ≤ C(‖Ū0 − U0‖+ max
0≤k≤ T

∆t

‖F̄ (Uk)− F ε(Uk)‖).

Proof. First let us assume that

‖Ūn − Un‖ ≤ δ.

Let S̄n = I + ∆t
∫ 1

0
∇F̄ (Ūn + θ(Un − Ūn))dθ. Then from (5.3) we have

En = (Πn−1
`=0 S̄`)E0 + ∆t

n−1∑

k=0

(Πn−1
`=k S̄`)(F ε(Uk)− F̄ (Uk)).

Hence, using (K, δ) stability,

‖En‖ ≤ C0‖E0‖+ ∆t

n−1∑

k=0

C0‖F ε(Uk)− F̄ (Uk)‖

≤ C0‖E0‖+ TC0 max
k≤ T

∆t

‖F ε(Uk)− F̄ (Uk)‖.
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Now we will show that the assumption that ‖Ūn − Un‖ ≤ δ will not be violated
for n∆t ≤ T . Since ‖Ū0 − U0‖ → 0, as ε → 0, ∆t,H → 0, we have ‖Ū0 − U0‖ ≤ δ.
Assume that ‖Ūk − Uk‖ ≤ δ for all k ≤ n ≤ T

∆t . If n + 1 ≤ T
∆t , then we can use the

(K, δ) stability to get

‖En+1‖ ≤ C0‖E0‖+ TC0 max
k≤ t

∆t

‖F ε(Uk)− F̄ (Uk)‖.

From the third assumption in the statement of the theorem, there exist ε0, ∆t0, H0

such that if ε < ε0,∆t < ∆t0, H < H0, then the right-hand side of the above inequality
is less that δ. Hence ‖En+1‖ ≤ δ and by induction this proves that ‖En‖ ≤ δ if n ≤ T

∆t
and ε < ε0, ∆t < ∆t0,H < H0. This completes the proof of the theorem.

Theorem 5.8 does not guarantee that {Un} is a good approximation to the true
macroscopic behavior of the system. For this to happen it is important to assume
that the GGS is consistent. Consider the following illustrative example for solving
the parabolic homogenization problem (4.9). The proposed method consists of the
following steps.

1. Given {Un
j }, let RUn(x) be the piecewise linear reconstruction RUn(x) =

Un
j + Un

j+1−Un
j−1

2H (x− xj), xj− 1
2
≤ x < xj+ 1

2
.

2. On [xj , xj+ε], solve (4.9) with initial data u(x, tn) = RUn(x) and the boundary
condition that u(x, t)−RUn(x) is periodic.

3. Let Fn
j be the average of ∇ · (a (

x, x
ε

)∇uε(x, tn+1)
)

over [xj , xj + ε].
4. Un+1

j = Un
j + ∆tFn

j .
The corresponding GGS is the same except we replace the microscopic model in

Steps 2 and 3 by the homogenized equation.
This algorithm is unlikely to converge to the true macroscopic behavior described

by the homogenized equation since the GGS itself is not consistent with the homog-
enized equation. In fact it is easy to check that the GGS produces Ut = 0. For
consistency, the reconstruction has to be at least piecewise quadratic.

Corollary 5.6. Assume that the conditions in Theorem 5.8 hold, and let Ū0 = U0.
Then

‖Un −Qu(·, tn)‖ ≤ C(‖Ūn −Qu(·, tn)‖+ max
0≤k≤ T

∆t

‖F̄ (Uk)− F ε(Uk)‖). (5.4)

The error has two contributions: The first term is the standard local truncation
error of the macroscopic scheme and the second term is the error due to compression.

The compression error also has two contributions: error due to compression in
time and error due to compression in space. Here we will study the error due to
compression in time.

In many situations, the macroscopic model takes the form

F (U) = Qf(R∗U) (5.5)

where R∗U is the microscopic “local equilibrium” state associated with U . Recall
that F ε(U, t) has the form

F ε(U, t) = Q̃∆t{f(ũ(τ)), t ≤ τ ≤ t + ∆t, ũ(t) = RU}
Q̃∆t = QeQxQt.

For simplicity, let us assume that ũ(τ) = u(τ); i.e., the microscopic solver is exact.
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Observe that if we replace ũ(τ) by R∗U , then

Qt{f(R∗U)} = f(R∗U).

Let

Q̃f(R∗U) = QeQxf(R∗U)

then

F (U)− F ε(U, t) = Qf(R∗U)− Q̃f(R∗U)

+Q̃f(R∗U)− Q̃∆t{f(u(τ)), t ≤ τ ≤ t + ∆t, u(t) = RU}.
In the following, we will consider special cases for which Q̃ = Q. Then estimating
F (U)− F ε(U, t) reduces to estimating

Q(f(R∗U)−Qtf{u(τ), t ≤ τ ≤ t + ∆t, u(t) = RU}).
This clearly depends on the rate of relaxation to local equilibrium. It is relatively
easy to calibrate this term when strong relaxation takes place.

Lemma 5.7. Let u(τ) be the solution of the microscale problem with initial data
u(0) = RU . Assume that strong relaxation takes place in the sense that

|u(τ)−R∗U | ≤ Ce−
τ

δ(ε) (5.6)

|Qf(u(τ))−Qf(R∗U)| ≤ Ce−
τ

δ(ε) (5.7)

and let

Qt{f(u(τ)), t ≤ τ ≤ t + ∆t, u(t) = RU)} = f(u(t + α∆t)) (5.8)

then

|F (U)− F ε(U, t)| ≤ Ce−
α∆t
δ(ε) .

Typically (5.6) and (5.7) holds if there is a spectral gap. δ(ε) is the relaxation
time which goes to zero as ε goes to zero.

The case of weak relaxation is more subtle since non trivial time averaging is
necessary in order to guarantee convergence. We will postpone a discussion of the
general theory to [23].

For what follows, we will concentrate on linear problems of the type

Ut +∇ · J = 0

for which the notion of standard linear stability suffices. In this case, it is natural
to use the finite volume method as the underlying macroscopic scheme. Instead of
estimating forces, we estimate macroscopic fluxes at the cell boundaries.

We will compare the solutions of the HMM, expressed in the form

Un+1
j − Un

j

∆t
+

Jε
j+ 1

2
(Un)− Jε

j− 1
2
(Un)

H
= 0 (5.9)

where Jε
j+ 1

2
is the numerical flux computed via HMM at the cell boundary at xj+ 1

2
,
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with that of an associated macroscopic scheme

Ūn+1
j − Ūn

j

∆t
+

J̄j+ 1
2
(Ūn)− J̄j− 1

2
(Ūn)

∆x
= 0. (5.10)

Let En
j = Un

j − Ūn
j . Then we have

En+1
j − En

j

∆t
+

J̄j+ 1
2
(En)− J̄j− 1

2
(En)

∆x
(5.11)

+
1

∆x

{
(Jε

j+ 1
2
(Un)− J̄j+ 1

2
(Un))− (Jε

j− 1
2
(Un)− J̄j− 1

2
(Un))

}
= 0.

Lemma 5.8. Assume that the GGS is stable. Then we have

|En
j | ≤ C0 max

U

∣∣∣∣
1

∆x
{(Jε

j+ 1
2
(U)− J̄j+ 1

2
(U))− (Jε

j− 1
2
(U)− J̄j− 1

2
(U))}

∣∣∣∣ (5.12)

In some situations, the quantity Hε
j+ 1

2
(U) = Jε

j+ 1
2
(U) − J̄j+ 1

2
(U) is smoothly

varying in j, therefore the divided difference of Hε(U) is comparable in magnitude
with Hε(U) itself.

Our task is now reduced to estimating

max
U

1
∆x

|Hε
j+ 1

2
(U)−Hε

j− 1
2
(U)|. (5.13)

We will discuss this using several concrete examples.

Our first example is the advection equation

uε
t +∇ · (a

(x

ε

)
uε) = 0 (5.14)

in one dimension, where a(y) is assumed to be smooth and strictly positive. We will
consider a simplified situation in which the microscopic solver is exact, and Jε is
computed as the averages over a small interval of size α∆t

Jε
j+ 1

2
=

1
α∆t

∫ α∆t

0

a

(
xj+ 1

2

ε

)
uε(xj+ 1

2
, t)dt (5.15)

where uε(x, t) is the exact solution of (5.14) with the reconstruction u(x, 0) = Uj for
x < xj+ 1

2
. u(x, 0) = Uj+1 for x > xj+ 1

2
.

For this particular problem, the macroscopic equation is simply

Ut +∇ · (AU) = 0 (5.16)

where A = (
∫ 1

0
1

a(y)dy)−1. The GGS is the upwind scheme: J̄j+ 1
2
(U) = AUj−1. The

stability condition is ∆t
∆xA < 1.

To compute Jε
j+ 1

2
, let vε be defined as vε

x = uε, and vε solves the equation

vε
t + aε(x)vε

x = 0 (5.17)

with initial data vε(x, 0) = Uj(x−xj+ 1
2
) for x < xj+ 1

2
and vε(x, 0) = Uj+1(x−xj+ 1

2
)

for x > xj+ 1
2
. Here aε(x) = a

(
x
ε

)
. This equation is easily solved by the method of
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characteristics. Let X(y, t) be the solution of

dX(y, t)
dt

= aε(X(y, t)), X(y, 0) = y (5.18)

and y(x, t) be the inverse function of X(y, t) (with t fixed), X(y(x, t), t) = x. Then
vε(x, t) = Ujy(x, t). Moreover

aε(x)uε = aε(x)vε
x = aε(x)Uj

∂y

∂x
(5.19)

= aε(x)Uj
aε(y)
aε(x)

= aε(y)Uj .

Therefore we have

Jε
j+ 1

2
=

1
α∆t

∫ α∆t

0

aε(xj+ 1
2
)uε(xj+ 1

2
, t)dt

=
1

α∆t
Uj

∫ α∆t

0

aε(y(xj+ 1
2
, t))dt

=
1

α∆t
Uj

∫ α∆t

0

aε(y)dy ·
(

dt

dy

)

= − 1
α∆t

Uj

∫ α∆t

0

dy

(5.20)

since dt
dy = − 1

aε(y) . Hence,

Jε
j+ 1

2
= Uj

y(xj+ 1
2
, 0)− y(xj+ 1

2
, α∆t)

α∆t
= Uj

xj+ 1
2
− y(xj+ 1

2
, α∆t)

α∆t
. (5.21)

From (5.18), it is easy to see that

(xj+ 1
2
− y(xj+ 1

2
, α∆t))

∫ 1

0

1
a(xj+ 1

2
, y)

dy + O(ε) = α∆t. (5.22)

Therefore,

Jε
j+ 1

2
= Uj

(∫ 1

0

1
a(xj+ 1

2
, y)

dy

)−1

+ O
( ε

α∆t

)
= UjA(xj+ 1

2
) + O

( ε

α∆t

)
. (5.23)

Hence,

1
∆x

|Jε
j+ 1

2
− Jε

j− 1
2
| ≤ C

ε

α∆t∆x

From Lemma 5.9, we have

|Un
j − Ūn

j | ≤ C
ε

α∆t∆x
(5.24)

which in turn gives

|Un
j − (Qu)(xj , t

n)| ≤ C
( ε

α∆t∆x
+ ∆x

)
. (5.25)

This estimate is not optimal due to (5.24).
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For our second example, we take

uε
t = ∇ · (a

(
x,

x

ε

)
∇uε) (5.26)

in one dimension with boundary condition uε(0, t) = uε(1, t) = 0.
For simplicity we will neglect possible technical difficulty at the boundary. This

can be assured by choosing ε in the form ε = 1/N where N is an integer. Our
argument also applies to the general case, with slight modification.

Let

ûε(x, t) = u0(x, t) + εu1

(
x,

x

ε
, t,

t

ε2

)
+ ε2u2

(
x,

x

ε
, t,

t

ε2

)

where u0 satisfies the homogenized equation

∂tu0 = ∇ · (A(x)∇u0)

with A(x) =
(∫ 1

0
1

a(x,y)dy
)−1

, u1, u2, . . . satisfies, for fixed (x, t)

∂τu1 −∇y(a(x, y)(∇yu1 +∇xu0)) = 0

∂τu2 −∇y(a(x, y)(∇yu2 +∇xu1)) = ∇x(a(x, y)(∇yu1 +∇xu0))−∇x(A(x)∇xu0)

etc. Consider the family of operators defined by

Lxu(y) = −∇y(a(x, y)∇yu(y)).

with periodic boundary condition. For every fixed x it has a zero eigenvalue and
other eigenvalues are positive. Let λ(x) be its smallest positive eigenvalue, and let
ũ1(x, y, t), ũ2(x, y, t) · · · be the solutions of

∇y(a(x, y)(∇yũ1 +∇xu0)) = 0

∇y(a(x, y)(∇yũ2 +∇xu1)) = ∇x(A(x)∇xu0)−∇x(a(x, y)(∇yũ1 +∇xu0)).

In general, their averages with respect to y are determined by the slow equations of
ũ1, ũ2 obtained from higher order terms in the hierarchy, see [8]. Here we can take
their averages to be 0. Then we have

|u1(x, y, t, τ)− ũ1(x, y, t)| ≤ Ce−λ(x)τ

|u2(x, y, t, τ)− ũ2(x, y, t)| ≤ Ce−λ(x)τ .

Now let

J̃ε(x, t) = a
(
x,

x

ε

)
∂x

(
u0(x) + εũ1

(
x,

x

ε
, t

)
+ ε2ũ2

(
x,

x

ε
, t

))

Ĵε(x, t) = a
(
x,

x

ε

)
∂xûε, Jε(x, t) = a

(
x,

x

ε

)
∂xuε

we then have

|Ĵε(x, t)− J̃ε(x, t)| ≤ Ce−
λt
ε2

|Ĵε(x, t)− Jε(x, t)| ≤ Cε
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with λ = minx λ(x) and the constant C only depends on u0 and ∆x. C takes the
form C0/(∆x)k where k depends on the smoothness of the reconstruction. In one
dimension, we have

a(x, y)(∂xu0 + ∂yu1) = A(x)∂xu0 = J(x, t). (5.27)

Hence, J̃ε(x, t)− J(x, t) can be expressed as

J̃ε(x, t)− J(x, t) = εf1

(
x,

x

ε
, t

)
+ ε2f2

(
x,

x

ε
, t

)
. (5.28)

Therefore we have∣∣∣∣
1

∆x
(Jε(xj+ 1

2
, t)− Jε(xj− 1

2
, t))− 1

∆x
(J(xj+ 1

2
, t)− J(xj− 1

2
, t))

∣∣∣∣ ≤
C0

(∆x)k
(ε + e−

λt
ε2 ).

Going back to the HMM, if we assume that the microscopic solver is exact, and the
flux-estimator is given by Jε(x, α∆t) where α ∈ (0, 1), then the GGS is given by

Ūn+1
j − Ūn

j

∆t
= − 1

∆x
(J(xj+ 1

2
, α∆t)− J(xj− 1

2
, α∆t))

where J(x, t) is obtained from exact solution of the homogenized equation with the
same reconstruction as in the HMM, and we finally obtain an estimate of the type

|Ūn
j − Un

j | ≤
C0

(∆x)k+1
(ε + e−

λα∆t
ε2 )

where k depends on the regularity of the reconstruction.
This analysis cannot be extended to high dimension since (5.27) ceases to be valid

in high dimension. In fact, HMM in the flux form may not converge in high dimension.
This is discussed further in Section 5.4.

For our third example, we consider the case of an ensemble of independent random
walkers on the line. This example serves the purpose of illustrating the effect of
different reconstructions on the rate of relaxation. The macroscopic equation for the
average density of the walkers is simply the heat equation. On a macroscopic grid,
the HMM can be formulated as

Un+1
j − Un

j

∆t
+

Jn
j+ 1

2
− Jn

j− 1
2

∆x
= 0

where Jn
j+ 1

2
is computed by ensemble averaging (over N independent copies) of the

empirical flux across the boundary at xj+ 1
2

obtained by placing particles according
to some reconstructed distributions. The empirical flux is computed as N+(α∆t) −
N−(α∆t), where N±(α∆t) denotes the number of particles crossing the cell boundary
at xj+ 1

2
from the right/left respectively, up to time α∆t.

For simplicity, we will let xj+ 1
2

= 0, and replace the random walks by their
continuous counterpart, the Brownian paths. Denote by yk, k = −K,−K + 1, . . . ,K
the initial position of the Brownian particles. At later time, the positions of the
Brownian particles are at x`

k(t) = yk + w`
k(t), ` = 1, . . . N . We will consider two

different cases.

Case 1. w`
k(t) = w`(t) where {w`(·)} are independent Brownian paths.

Case 2. {w`
k(·)} are independent Brownian paths for ` = 1, · · ·N , k = −K,−K +

1, . . . , K.
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Let Nk(t) be the number of particles starting at yk that cross 0 before time t. For
k > 0, let

χk,`(t, w) = 1{min0≤s≤t w`
k(s)<−yk}

where 1B denotes the indicator function of the set B, w denotes the random path.
Then

Nk(t) =
∑

`

χk,`(t, w).

Using the reflection principle, we have

Eχk,`(t, w) = Prob { min
0≤s≤t

w`
k(s) < −yk}

= 2Prob {w(t) < −yk}

= 2
∫ −yk

−∞
Ht(λ)dλ = ft(yk)

where Ht(λ) = 1√
4πt

e−
λ2
4t . The last equality defines ft(y). Hence,

ENk(t) =
∑

`

Eχk,`(t, w) = Nft(yk)

If we denote by N+(t) the total number of particles that cross x = 0 from the right
before time t, we have

E
N+(t)

N
=

∑

k>0

ft(yk).

Consider first the case when {yk} is distributed as yk = k·δx
U+

for k > 0, and for k < 0,
yk = kδx

U−
. Here U+ = Uj+1, U− = Uj . This corresponds to a piecewise constant

reconstruction. Let ∆x = Kδx.

E
N+(t)

N
=

∑

k≥0

ft

(
kδx

U+

)
=

U+

δx

(∫ ∆x

0

ft(y)dy + O(1)

)

=
U+

δx

{√
t

π
(1− e−

(∆x)2

4t ) + ∆xerf
(

∆x√
2t

)}

where erf(y) = 1√
2π

∫∞
y

e−
x2
2 dx. As K →∞, we have

E
N+(t)

N
→

√
t

π

U+

δx
.

Similarly for k < 0

E
N−(t)

N
→

√
t

π

U−
δx
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where N−(t) is the total number of particles that cross x = 0 from the left. The
ensemble averaged flux is

J(t) = E
N+(t)−N−(t)

N
=

√
t

π

1
δx

(U+ − U−).

This has a square root behavior in t, instead of linear. As expected, the rate of
crossing 0 slows down as time increases. To compute the variance, let us first consider
Case 2. Notice that

EN2
k (t)− (ENk(t))2 =

∑

`,`′
Eχk,`χk,`′ − (

∑

`

Eχk,`)2

=
∑

`

Eχk,` +
∑

6̀=`′
Eχk,`′Eχk,` − (

∑

`

Eχk,`)2

=
∑

`

(Eχk,` − (Eχk,`)2) = N(ft(yk)− ft(yk)2).

Therefore,

Var
(

N+(t)−N−(t)
N

)
=

1
N2

∑

k

Var(Nk(t)) =
1
N

∑

k

(ft(yk)− ft(yk)2) ∼ 1
N
·
√

t

δx
.

For Case 1, let us assume that the Brownian paths for k > 0 and k < 0 are indepen-
dent. Let

ψ`(t, w) =
∑

k

χk,`(t, w)

Eψ2
` = E

∑

k,k′>0

χk,`(t, w)χk′,`(t, w) + E
∑

k,k′<0

χk,`(t, ω)χk′,`(t, ω).

Observe that for 0 < k′ < k,

χk,`(t, w)χk′,`(t, w) = χk,`(t, w).

Similarly for k < k′ < 0. Hence,

Eψ2
` =

∑

k

|k|Eχk,`(t, w) =
∑

k

|k|ft(yk).

Therefore,

Var
(

N+(t)−N−(t)
N

)
=

1
N2

∑

`

Var(ψ`) =
1
N
· {

∑

k

(|k|ft(yk))− (
∑

k

ft(yk))2}.

(5.29)

As expected this is larger than the variance for Case 2.
The above calculation is based on a piecewise constant reconstruction. We next

consider the case of piecewise linear reconstruction: U(x) = U0 + U+−U−
∆x x, where

U0 = U++U−
2 . yk is now defined by the equation
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yk =
kδx

U0 + U+−U−
∆x yk

.

Let y(x) satisfy the relation

y(x)U(y(x)) = x

then dx = U0dy + 2U+−U−
∆x ydy. In the same way as before, we have

E
N+(t)

N
=

∑

k≥0

ft(yk) =
1
δx

∫ ∆x

0

ft(y(x))dx

=
1
δx

∫ y(∆x)

0

ft(y)(U0dy + 2
U+ − U−

∆x
ydy).

Let ∆y = y(∆x), then

J(t) =
E(N+(t)−N−(t))

N
=

4
δx

U+ − U−
∆x

∫ ∆y

0

yft(y)dy

=
4
δx

U+ − U−
∆x

{
tG

(
∆y√
2t

)
+

(∆y)2

2
erf

(
∆y√
2t

)}

where G(y) = 1√
2π

∫ y

0
λ2e−

λ2
2 dλ. Let G0 = G(+∞). Then

G(y) = G0 + O(ye−
y2

2 ).

Hence, the time averaged flux behaves as

J(t)
t

= C0
U+ − U−

∆x
(1 + O(e−

(∆y)2

4t ))

with C0 = 16√
2π

G0
δx .

This calculation clearly shows the superiority of the piecewise linear reconstruc-
tion, in which case the averaged flux rate quickly saturates to a stationary value.

In summary, the error due to compression in time depends on the nature and
rate of relaxation to local equilibrium, the compression operators used to extract the
F -estimators, and the reconstruction operator.

5.3. Subtleties of the Flux-Formulation. Next we turn to the error due
to compression in space; i.e., the effect of Qx. To see the importance of Qx, let us
consider the the example of the parabolic homogenization problem. For the macroscale
scheme, we will pick the finite difference method. We will take the macroscale flux to
be

Jn
j+ 1

2
= a

(
x,

x

ε

)
∇uε(xj+ 1

2
, tn+1).

From homogenization theory, we know that uε has the form

uε(x, t) = u0(x, t) + εu1

(
x,

x

ε
, t

)
+ ε2u2

(
x,

x

ε
, t

)
+ . . .
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where u0 satisfies the homogenized equation

u0t = ∇ · (A(x)∇u0).

A is the homogenized coefficient tensor defined earlier, and u1 is given by

u1(x, y, t) =
∑

j

χj(x, y)
∂u0

∂xj
(x, t)

where χj are the solution of the cell problem

∇y·(a(x, y)(∇yχj + ej)) = 0.

We also know that

|∇ · (a
(
x,

x

ε

)
∇uε)−∇ · (A(x)∇u0)| = O(ε)

as ε → 0. However, except in one dimension, it is generally not true that

Jε(x, t)− J̄(x, t) = a
(
x,

x

ε

)
∇uε(x, t)−A(x)∇u0(x, t) → 0.

Instead, we have

Jε(x, t)− J̄(x, t) = f0

(
x,

x

ε
, t

)
+ εf1

(
x,

x

ε
, t

)
+ . . .

where f0(x, y, t) satisfies ∇y · f0 = 0. A specific example for which f0(x, y, t) 6= 0 will
be given below.

The flux form of HMM is able to compute Jε(x, t) accurately. But notice that

∇h · Jε(x, t)−∇h · J̄(x, t) = ∇h · f0

(
x,

x

ε
, t

)
+ ε∇h · f1

(
x,

x

ε
, t

)
+ . . .

where ∇h· is the discrete divergence operator on the macroscopic grid. The evaluation
of Un+1 will suffer from the large errors coming from the poor approximation of ∇h ·
f0

(
x, x

ε , t
)

to ∇ · f0

(
x, x

ε , t
)
. This problem does not occur if we approximate directly

the force ∇ · (A(x)∇u0) since the oscillatory component of f0 does not contribute to
the force by virtue of ∇y · f0(x, y, t) = 0.

This additional error is due to the oscillatory nature of the microscopic fluxes from
which macroscopic fluxes are extracted. It is similar in nature to the case of weak
relaxation to local equilibrium when error due to compression in time was considered.
The solution to this problem is simple. Instead of using pointwise values of the flux
at cell boundaries, we have to take appropriate spatial averages to smooth out the
spatial oscillations (see [6]).

We now give an example for which f0 6= 0. First of all, let us observe that if
f0 = 0, then we have

a(x, y)(I +∇yχ) = A(x).

Hence,

∇yχ = a(x, y)−1A(x)− I

A(x) =
(∫

I

a(x, y)−1dy

)−1

.

This holds in one dimension.
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Let us consider a situation when

a(x, y) =
(

a(y1) 0
0 a(y1)

)

where a(y) > 0 is a smooth periodic function with period 1.
It is an easy computation to get the solutions for the cell problem

dχ1

dy1
=

1
a(y1)

(∫ 1

0

1
a(y1)

dy1

)−1

− 1

dχ2

dy1
= 0

χ1 = χ1(y1), χ2 = χ2(y1). The leading order flux is then

Jε(x, t) = J0

(
x,

x

ε
, t

)

where

J0(x, y, t) = a(x, y)(I +∇yχ(x, y))∇xu0

=

(
(
∫ 1

0
1

a(y)dy)−1∂x1u0(x, t)
a(y1)∂x2u0(x)

)
.

Hence,

f0(x, y, t) =
(

0
(a(y1)−

∫ 1

0
a(y)dy)∂x2u0(x, t)

)
.

5.4. Limitations of HMM. To appreciate the limitations of HMM, we go back
to the example of Carleman equations discussed in Section 2. From the homogenized
form of the Carleman equations, (2.35), we see that some essential knowledge of the
oscillations must be kept after compression. The nonlinear terms in (2.35) imply that
the local distribution of u and v values in the oscillation influence the weak limit via
the terms,

∫ 1

0

ṽ2dy ,

∫ 1

0

ũ2dy ,

and the evolution of these distributions decay along the characteristics from the term
−ũ2 and −ṽ2.

A local microscale computation, as in the linear homogenization problems dis-
cussed earlier, followed by compression to approximate the weak limit will thus not
work.

The homogenized form of the equation (2.35) can be used as a basis for HMM,
replacing a direct discretization of the original problem (2.34). A discretization in the
y fiber is needed but the computational complexity of the algorithm will not increase
with decreasing ε.

In this case it is possible, however, to construct an HMM with the same com-
plexity as a coarse grid calculation in x, t-space. By choosing appropriate coarse grid
discretization a coarse grid sampling of u, v is enough. The details are given in [30].



WEINAN E AND BJORN ENGQUIST 127

The original compression is thus a uniform sampling with ∆x/ε 6= rational. For the
initial values we have,

{U0
i } = {a(xi, xi/ε)} = Qa(x, x/ε)

{V 0
i } = {b(xi, xi/ε)} = Qb(x, x/ε).

6. Variations and Improvements of the Basic HMM
The HMM as we have described it requires the definition of Q and thus the

macro scale variable U . In most of our examples, the choice of coarse-scale variable
were quite natural. This may not always be the case, and it is possible to determine
Q automatically as part of the computational process. Let us mention two such
techniques.

The first is the whole class of model reduction methods that, in particular, are
used in connection to control. The dimension of the state space is reduced when the
reduced model is derived. The numerical techniques involved may, for example, be
singular value decomposition or Krylov subspace methods, [10]. The reduced state
space will in our case typically correspond to the macro scale.

The other technique is based on wavelet compression. Such compression is com-
mon in signal and image processing but has also been applied to differential equations.
In [31], Engquist and Runborg describe a wavelet-based method for numerical homog-
enization. A differential equation representing both macro- and microscale processes
is first discretized on the microscale by standard techniques. The resulting numerical
operator is then projected onto a coarse wavelet space. The corresponding compres-
sion also reduces the numerical state space and can be used as our Q. Examples
are given from classical homogenization for which the compressed dependent variable
corresponds to the standard macroscale.

The numerical methods for the coarse grid that we have presented have mainly
been of low order. This is advantageous in the presentation of the principles but
in practical computation it is often better to apply higher order methods. This fits
well into our general framework. Higher order elements can replace P1 in the varia-
tional problems and higher order differencing, and reconstruction are possible in the
Godunov setting.

In order to apply these higher order methods, higher order of fluxes or forces
from the microscale simulation is required. This is achieved by appropriate choice of
F -estimators.

Assume that f(x) is the microscale force computed from a microscale simulation
for x ∈ Ωδ ⊂ Rd, where Ωδ is a computational cell in mcd, with diameter (Ωδ) = δ.
x can represent both spatial and temporal variables. Assume also that f(x) has the
form:

f(x) = F (x) + b(x, ε) (6.1)

where F is the macroscale forcing that we would like to approximate. We would like
to estimate F from f using

F (x̄) =
∫

Ωδ

K(x, x̄)f(x)dx (6.2)

where K is defined such that
∫

Ωδ

K(x, x̄)(x− x̄)pdx =
{

1, p = 0
0, 1 ≤ |p| ≤ p.
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When x̄ ∈ Ωδ and f is smooth then F = f and K(x, x̄) can be chosen as δ(x − x̄).
If Ωδ contains a subdomain Ω′δ in which f has a transient, K should be supported
outside of Ω′δ. In the case when f contains oscillations, then K should be smooth as
a function of x and compactly supported in Ωδ\Ω′δ.

To be more specific, if f is highly oscillatory around a smooth mean function
F (x), then we can write b as

∂B

∂xk
= bk(x, ε), |B(x, ε)| ≤ Cε, 1 ≤ k ≤ d. (6.3)

Hence,
∫

Ωδ

K(x, x̄)f(x)dx =
∫

Ωδ

K(x, x̄)(
∑

|j|≤p

Fj(x− x̄)j)dx + O(δp+1) +
∫

Ωδ

K(x, x̄)b(x, ε)dx

= F (x̄) + O(δp+1) +
∫

Ωδ

∂K(x, x̄)
∂xk

B(x, ε)dx

= F (x̄) + O(δp+1 + εδ−1).

The final step for the high order numerical F -estimator is replacing the integral in
(6.2) by a high order, accurate quadrature formula.

In this paper, we concentrated on the case when the missing macroscale data
depend only on local behavior of the macroscale quantities. This is not true for many
practical problems. The incompressible limit of fluid flows is a good example. There
the missing macroscale data, the pressure, depends on the velocity field in a nonlocal
way. It is possible to modify the HMM procedure presented here to accommodate
such situations. We will postpone a detailed discussion of this extension to a later
publication [23].

Some knowledge about the macroscopic model is necessary in order to guaran-
tee consistency with the macroscopic problem. For example it is important to know
whether the macroscopic model is nonlocal, and if it is local, it is helpful to know the
order of the differential equations. Such information might be probed in a prepro-
cessing step or adaptively during the computation using the microscopic model. This
too will be considered in more detail in a future publication [23].

For Type A problems, it often happens that near the defects or singularities, tR
is no longer small compared with tM . In such cases, it is important to modify HMM
locally so that the microscopic states are retained near defects or singularities, instead
of being converted to the macrostates at the end of each macro time step. This is
already done in algorithms involving multilevels of physical models that are coupled
together locally [1, 2, 26, 27, 65].

7. Conclusion
The heterogeneous multiscale method (HMM) is a general methodology that al-

lows us to efficiently move between the macroscopic and microscopic models, and to
best exploit scale separation in the problem for improving efficiency. As is the case
with other fast algorithms, such as multigrid, fast multipole method, and wavelet-
based multiresolution methods, the efficiency is achieved through minimizing redun-
dancy in the computations. For HMM, this is done through (1) compressing the
complexity of the microscopic solvers, (2) using explicit macroscopic models when
they are valid and available, and (3) using available computational data. As we
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demonstrated with several examples, this approach offers considerable flexibility.
There are two main components in HMM. The first is to formulate the microscopic

problem on the smallest possible computational domain without altering its basic local
averaged properties. This includes prescribing the right constraints, and processing
the data to extract the macroscopic information efficiently and accurately. The second
component is information passing at the macroscopic level by linking correctly the
different microscopic problems in order to model the macroscopic behavior. This is
done in HMM through the overall macroscale scheme. We have given several versions
on how this can be implemented.

In order not to be overwhelmed by the generality of HMM, we summarize here
some examples of new algorithms that emerge from applications to specific problems.

1. The homogenization problem. For both the static and dynamic homogenization
problems (2.6),(4.9), our method proceeds as a standard finite element method with
the usual basis functions. The new component comes in the computation of the
stiffness matrix which is obtained by solving a small “cell problem” on each element.
Additional savings will be obtained if the semi-empirical methods are used (see Figure
4). The flexibility of HMM means that it can be readily applied to more complicated
problems such as nonlinear problems or if the microstructure changes with time.

In contrast, the methods proposed in [7, 45] modify the basis functions by building
in the microstructures. This means that the microstructure problem has to be solved
over the whole element. It also limits the applicability of the method to problems for
which the microstructures can be found beforehand.

2. Coupling molecular dynamics with thermoelasticity. At low temperatures,
there exist satisfactory algorithms that couple molecular dynamics with continuum
elasticity. For static and quasistatic problems, the quasicontinuum method is now a
popular tool [73, 69, 68]. For dynamic problems, the dynamic atomistic/continuum
method proposed in [26, 27] works quite well. These methods are ideal for studying
crystalline solids with isolated defects. The natural next step is to deal with the effect
of finite temperature and heat conduction. HMM can be readily used for this purpose.
Away from defects and interfaces, one uses the continuum theory of thermoelasticity
with material parameters obtained from molecular dynamics. Near the defects where
the local deformation is large, one uses the compressed microscopic model to evaluate
the fluxes or forces in the macroscopic equations. The details of the microscopic
expression of the fluxes can be found in Section 2.

In the same fashion, HMM provides a way of coupling molecular dynamics with
continuum theory of fluid flow.

3. Structure and dynamics of complex interfaces. For complex interfaces such
as turbulent flames, twin boundaries and grain boundaries for which the interfacial
equations are not explicitly known, HMM provides an efficient way of evolving the
interfaces using the microscopic models and at the same time coupling them to the
macroscopic behavior away from the interfaces.

4. Coupled hydrodynamic/kinetic models for complex fluids [9]. When molecular
conformation has a nontrivial contribution to macroscopic stress, HMM provides an
efficient way of exploiting the separation between relaxational and hydrodynamic time
scales.

There are numerous other possible areas of applications that we will not enumer-
ate here.

From a theoretical point of view, we can associate an underlying macroscopic
scheme, the Generalized Godunov Scheme (GGS), to HMM. The stability properties of



130 THE HETEROGENEOUS MULTISCALE METHODS

HMM can be read off from the GGS. The error of HMM comes from two main sources:
the standard truncation error and the additional error due to compression. The
compression error also comes from two sources: compression in time and compression
in space. The error due to compression in time depends on the nature and rate of
relaxation to local equilibrium, as well as the compression operators used to extract
the F -estimators. Similarly the error due to compression in space also depends on the
compression operators used in the F -estimators and the boundary and constraining
conditions imposed when truncating the microscopic computational domains.
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