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a b s t r a c t

The mathematical theory of nonequilibrium steady state (NESS) has a natural application
in open biochemical systems which have sustained source(s) and sink(s) in terms of a
difference in their chemical potentials. After a brief introduction in Section 1, in Part II of
this review, we present the widely studied biochemical enzyme kinetics, the workhorse
of biochemical dynamic modeling, in terms of the theory of NESS (Section 2.1). We
then show that several phenomena in enzyme kinetics, including a newly discovered
activation–inhibition switching (Section 2.2) and the well-known non-Michaelis–Menten-
cooperativity (Section 2.3) and kinetic proofreading (Section 2.4), are all consequences
of the NESS of driven biochemical systems with associated cycle fluxes. Section 3 is
focused on nonlinear and nonequilibrium systems of biochemical reactions. We use the
phosphorylation–dephosphorylation cycle (PdPC), one of the most important biochemical
signaling networks, as an example (Section 3.1). It starts with a brief introduction of the
Delbrück–Gillespie process approach to mesoscopic biochemical kinetics (Sections 3.2 and
3.3). We shall discuss the zeroth-order ultrasensitivity of PdPC in terms of a new concept —
the temporal cooperativity (Sections 3.4 and 3.5), as well as PdPC with feedback which
leads to biochemical nonlinear bistability (Section 3.6). Also, both are nonequilibrium
phenomena. PdPC with a nonlinear feedback is kinetically isomorphic to a self-regulating
gene expression network, hence the theory of NESS discussed here could have wide
applications to many other biochemical systems.
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1. Introduction to Part II

In Part I, we have presented a general theory for the nonequilibrium steady state (NESS) of stochastic, Markovian
dynamics. Two applications of this general theory were discussed: the coherence resonance in stochastic nonlinear systems
(Section 3 of Part I) and the unidirectional motion and efficiency of molecular motors (Section 4 of Part I). In this Part II,
we shall discuss twomore applications, in molecular biophysics and chemical biophysics: the single-molecular enzymology
with linear kinetics (Section 2) and the nonlinear phosphorylation–dephosphorylation cycle kinetics for cellular signaling
(Section 3). We shall start Part II with an introduction of its own with a brief recap of the essentials from Part I and some
introductory remarks on biochemical applications. Part II ends with some additional remarks on the development of the
theory of NESS from the authors’ perspective.

1.1. The theory of nonequilibrium steady states

The NESS theory is a theory about any stochastic systems that endowedwith aMarkovian dynamics. Just as attractors are
fundamental to the understanding of any deterministic dynamics, the NESS is the long-time, stationary behavior of a wide
class of stochastic systems with recurrence and irreducible. In the classical deterministic dynamics, a distinction between
equilibrium steady states and nonequilibrium steady states was never formally made. They are all called fixed points (or
attractors in a broader sense). After all, the concept of equilibrium only rises in statistical physics. Exactly being inspired by
the physics, the NESS theory makes a fundamental distinction between the two types of stationary states, or more precisely
stationary processes, in stochastic dynamical systems.

It turns out, there are great manifestations from making this distinction, with deeper understandings and new insights
emerging naturally.

First, one can clearly associate an equilibrium with time reversibility, in a statistical sense, in the forward stationary
dynamics and its time reversal, i.e., a recording played backward. Furthermore, to quantify the time irreversibility associated
with a NESS, a concept of entropy production rate is introduced based on the measure-theoretical distance between the
forward and reversed processes. In applications to molecular physics, this mathematically defined entropy production
rate matches precisely what physicists and chemists have conceived, off by a unit of kBT . Note that the concept of
entropy production rate does not exist in the standard theory of equilibrium physics; It only exists in the various forms
of nonequilibrium, irreversible thermodynamics that still lack a unified narrative.

Second, the time-reversal symmetry implies certain self-adjoint property in the time-evolution operator of a Markov
process. In the case of discrete stateMarkov chain, this turns out to be the celebrated detailed balance condition. Furthermore,
the detailed balance condition implies a ‘‘gradient-like’’ potential function in the underlying dynamics. Therefore, stochastic
dynamical systems that approach to equilibrium steady states have to satisfy certain conditions: This had been realized for
a long time in physics [1,2] and chemistry [3,4], but was first firmly established mathematically by Kolmogorov [5].
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Third, for a system that approaches to a NESS, because of the lack of detailed balance and potential condition, it naturally
exhibits circular motion. The stationarity, in this case, is maintained not by detailed balance, but circular balance. From
a physics and chemistry standpoint, such a system requires a sustained external driving force; it has to be open to its
environment in a significant way. When the driving force is sufficiently large, the stochastic circular motion emerges as
macroscopic oscillations. Here we see why coherence resonance is intimately related to a NESS.

Finally, because of the dynamics of a system that approaches to a NESS is non-gradient-like, it dissipates energy with
every cyclic motion. It turns out, this dissipation is exactly the origin of positive entropy production rate in a NESS. The
efficiency of a molecular motor, thus, can be rigorously studied in terms of the theory of NESS.

1.2. Nonequilibrium steady states in chemical biophysics

Biophysics and biophysical chemistry textbooks usually start either with biological macromolecules, such as proteins
and DNA, or with enzymatic reaction kinetics which is the fundamental unit of biochemical reactions in living organisms.
In both cases, however, the concept of discrete conformational states of a protein or enzyme is essential. Even though the
conformational states of a biological macromolecule are themselves emergent properties of a many-body polymer system
in the classical statistical mechanics, and they are the focuses of molecular biophysics based on Kramers’ 1940 diffusion
approach to chemical reactions [6,7], many functional aspects of biochemistry can be understood based on the empirically
established concepts of conformational states and allosterism of a protein.

The above premise grants the use of discrete-state, continuous-time Markov chain, also known as master equation
approach, as a meaningful mathematical representation of the state of a biomolecular system. The corresponding
theory of NESS then applies. It turns out, this is the most natural way of looking at enzymatic reactions of single
enzyme molecules, either in isolation as in the recently developed single-molecule enzymology, or in a biochemical
reaction network. We shall discuss both cases, with one of the examples for the latter being the enzyme regulation by
phosphorylation–dephosphorylation cycle (PdPC), catalyzed by respective kinase and phosphatase.

One of the significant insights derived from the stochastic theory of NESS is that an enzyme molecule that catalyzes a
biochemical reaction in a living cell is in a NESSmost of the time: Usually the concentrations of the substrate and product of
an enzymatic reaction is approximately constant in a homeostatic cell. This new insight immediately eliminates the usual,
painful need for establishing a ‘‘quasi-steady state’’ of an enzyme in the traditional theory for relaxation kinetics in test
tubes. In fact, a new, stochastic derivation of the celebrated Michaelis–Menten equation becomes obvious. Furthermore,
the somewhat ‘‘mysterious’’ Haldane’s relation is nothing but a consequence of an isolated reversible enzyme reaction
necessarily approaching to an equilibrium steady state.

At the meantime, in an almost effortless manner, one is able to show that why any complex enzyme kinetics, as long
as there is only a single unbound enzyme species, will exhibit the Michaelis–Menten kinetics. This is a result not widely
appreciated enough; even though it has been repeated discovered in the enzyme kinetic studies [8–11].

Section 2will present the stochasticNESS theory for single-molecule enzymekinetics. In Section 3we study the important
question of how open, driven biochemical reaction systems give rise to biochemical functions. In particle, the theory of NESS
provides the recipe for quantifying the energy dissipation,which can and should be correlatedwith the biochemical function.

The ‘‘function’’ we focus on is the so-called switching behavior. It turns out, the amplitude of such a switch is dictated
by the amount of energy drive, usually in the form of ATP hydrolysis in a cell. We also discover that the sharpness of the
switching transition, which reflects a novel form of cooperativity, is also a consequence of the open-system nature of PdPC.

The in-depth study of PdPC is made more significant due to the realization that it is kinetically isomorphic to another
widely used biochemical signaling system called GTPase. Furthermore, positive feedback regulations have been widely
observed in cell biology. By augmenting the simple PdPC (or GTPase) that consists only two biochemical reactions with
an extra step of binding, the switch becomes bistable. We then show that this PdPC with feedback is kinetically identical to
the genetic networks with self-regulating genes. One can find a series of studies of this subject in [12–15]. Therefore, the
stochastic NESS study of PdPC provides a prototype for modeling many complex biochemical reaction networks in cellular
biology.

2. Applications to single-molecule enzyme kinetics

There is a resurgence of interests in the theory of enzyme kinetics due to several recent developments in biochemical
research: The foremost is the systems approach to cell biology which demands quantitative characterizations of cellular
enzymatic reactions in terms of Michaelis–Menten (MM) like kinetics. Second, recent advances in single-molecule
enzymology have generated exquisite information on protein dynamics in connection to enzyme catalysis [16–19]. And
third, the most relevant one to the present review, is the theoretical advance in our understanding of open, driven
biochemical reaction systems in terms of the theory of nonequilibrium steady state.

Single-molecule enzymology and enzymatic reactions inside cells have shown the necessity of modeling enzyme
reactions in terms of stochastic mathematics. On the theory side, an alternative to the MM approach that is particularly
applicable to stochastic single-molecule enzyme kinetics has emerged. Motivated by single-molecule experiments, we
shall introduce the concepts, and derive mathematical expressions, for the cycle fluxes, waiting cycle times, and stepping
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Fig. 1. Kinetic scheme of a simple reversible enzyme reaction inwhich k01 and k0
−3 are second-order rate constants. From the perspective of a single enzyme

molecule, the reaction is unimolecular and cyclic.

probabilities [20]. Furthermore, we shall discuss the classic Haldane equality in the light of the NESS aswell as an unexpected
generalization of this equality. The generalized Haldane equation is intimately related to the fluctuation theorems [21].

Next, we shall give three concrete examples of the NESS theory applied to single-molecule enzymology. It is widely
believed in molecular biology that biochemical function of a molecule is derived from its structure. While this is certainly
true in a general sense, we shall explicitly show how function(s) of a molecule can change depending on the NESS in which
the molecular system is situated. The three examples we shall study are (1) a same enzyme modifier switches between
being an activator and an inhibitor of an enzyme [22]; (2) how dynamic cooperativity gives rise to an enzyme response that
is shaper than MM; and (3) kinetic proofreading in which the specificity between an enzyme–ligands association may not
be determined by the equilibrium affinity [23,24]. All these examples together illustrate the importance of non-structural
based molecular regulations in the NESS. Specifically, we shall show that all these phenomena will disappear in chemical
equilibrium; thus they depend critically upon nonequilibrium kinetic processes rather than merely the static structural
properties of macromolecules.

2.1. Cycle fluxes in a nonequilibrium steady-state enzyme

We start by considering a three-step mechanism of an enzymatic reaction in which the conversion of a substrate S into
product P in the catalytic site of the enzyme [25,20]

E + S
k01


k−1

ES
k2


k−2

EP
k3


k0
−3

E + P. (1)

If there is only one enzymemolecule, then from the enzymeperspective, the kinetics are stochastic and cyclic, as shown in
Fig. 1,with thepseudo-first-order rate constants k1 = k01cS and k−3 = k0

−3cP where cS and cP are the sustained concentrations
of substrate S and product P in the steady state.

At the chemical equilibrium, the concentrations of S and P satisfy cP/cS = k01k2k3/

k−1k−2k0−3


, i.e.

k1k2k3
k−1k−2k−3

= 1.

This is known as the ‘‘thermodynamic box’’ in elementary chemistry, also called detailed balance. However, if the cS and
cP are maintained at constant levels that are not at chemical equilibrium, as metabolite concentrations are in living cells,
the enzyme reaction is in an open system that approaches a NESS. This is the scenario of most enzyme kinetics in a living,
homeostatic cell.

In this case,

k1k2k3
k−1k−2k−3

= γ ≠ 1, (2)

and in fact 1µ = kBT ln γ is the well known chemical potential difference between P and S, independent of the enzyme.
From the perspective of single enzyme molecule, the rate equation for the probabilities of the states follow a master

equation
dPE(t)
dt

= −(k1 + k−3)PE(t) + k−1PES(t) + k3PEP(t),

dPES(t)
dt

= k1PE(t) − (k−1 + k2)PES(t) + k−2PEP(t),

dPEP(t)
dt

= k−3PE(t) + k2PES(t) − (k−2 + k3)PEP(t). (3)
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The steady-state probabilities for states E, ES and EP are easily computed from setting the time derivative to zero and
noting that PE + PES + PEP = 1 for the total probability:

P ss
E =

k2k3 + k−1k3 + k−1k−2

D
,

P ss
ES =

k1k3 + k−2k−3 + k1k−2

D
,

P ss
EP =

k1k2 + k2k−3 + k−1k−3

D
,

in which the denominator

D = k1k2 + k2k3 + k3k1 + k−1k−3 + k−2k−3 + k−1k−2 + k1k−2 + k2k−3 + k3k−1.

Then, the clockwise steady-state cycle flux in Fig. 1, which is precisely the enzyme turnover rate of S → P in the reaction
scheme (1), J ss = P ss

E k1 − P ss
ESk−1 = P ss

ESk2 − P ss
EPk−2 = P ss

EPk3 − P ss
E k−3, which follows

J ss =
k1k2k3 − k−1k−2k−3

D
= J ss

+
− J ss

−
, (4)

where

J ss
+

=
k1k2k3

D
, J ss

−
=

k−1k−2k−3

D
, (5)

are the forward and backward cycle fluxes, respectively.
The net cycle flux is just the Michaelis–Menten steady-state flux of Fig. 1, i.e.

v =

VS
cS
KmS

− VP
cP
KmP

1 +
cS
KmS

+
cP
KmP

,

where maximal velocities

VS =
k2k3

k−2 + k2 + k3
, VP =

k−1k−2

k−2 + k2 + k−1
, (6)

and Michaelis constants

KmS =
k−1k−2 + k−1k3 + k2k3

k01(k−2 + k2 + k3)
, KmP =

k−1k−2 + k−1k3 + k2k3
(k−2 + k2 + k−1)k0−3

. (7)

In addition, J ss
+
and J ss

−
are the averaged numbers of the forward and backward cycles per time respectively due to ergodic

theory [20,26], i.e.

J ss = lim
t→∞

1
t
ν(t), J ss

+
= lim

t→∞

1
t
ν+(t), J ss

−
= lim

t→∞

1
t
ν−(t), (8)

where ν+(t) and ν−(t) are the number of occurrences of forward and backward cycles up to time t , and ν(t) = ν+(t)−ν−(t).
Before closing this section, it is important to point out that the quantity γ can be approximated by ν+(t)/ν−(t) in single-

molecule experiment when the time t is large enough, due to the fact that γ = J ss
+
/J ss

−
. One also has J ss

+
= J ss

−
, i.e. γ = 1, if

and only if the enzymatic reaction is at chemical equilibrium.

2.1.1. Mean waiting cycle times
In single-molecule enzyme kinetic studies, the most salient feature of either the substrate turnover time courses or the

enzyme cyclic trajectories is that they are stochastic. The stochasticity, however, is exhibited in the timeneeded ‘‘waiting’’ for
a chemical reaction to occur via ‘‘fluctuating’’ diffusion encounter and thermal activation. The time needed for actual atomic
and molecular motion that accomplishes a chemical reaction is often on the order of subpicosecond which is considered
instantaneous in enzyme kinetics in aqueous solution. Therefore, in a single-molecule experiment, the observed state as
function of time corresponds to the ‘‘stochastic waiting time’’ for a reaction. Once having a statistical time course data
in hand, the most straightforward analysis of the trajectories is clearly the two distributions of the on-time and off-time.
Therefore in our theoretical model, we shall first define the waiting cycle times and then calculate their means, variances,
and ultimately distributions.

Starting from the free enzyme state E, three kinds of waiting cycle times can be defined: Let T represents thewaiting time
for the occurrence of a forward or a backward cycle, T+ represents thewaiting time for only the occurrence of a forward cycle,
and T− represents the waiting time for only the occurrence of a backward cycle respectively. Obviously, as three random
variables, T is just the smaller one of T+ and T−.
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Fig. 2. The kinetic scheme for computing thewaiting cycle times T , T+ and T− . In order to distinguish the forward and backward cycles, Fig. 1 is transformed
into a one-dimensional random walk.

The problem of computing the mean waiting time ⟨T ⟩ is in fact the same as in the mean first-passage-time (MFPT)
problem (Fig. 2) for random walk. This is a perfect application of this classical problem of probability in single-enzyme
kinetics.

Let τi be the mean time first hitting the state 3 or −3 in Fig. 2, starting from the state i. Obviously, ⟨T ⟩ = τ0 and
τ3 = τ−3 = 0.

Then we need to derive the equations for {τi}. Starting from the state i, it will first wait for an exponential time averaged
1

qi,i−1+qi,i+1
where qij is just the reaction constant from state i to state j, then jump to either state i−1 or state i+1 according

to the ratio of their reaction constants. Hence τi would be the summation of 1
qi,i−1+qi,i+1

and the probability weighted mean
first hitting time starting from i − 1 or i + 1.

Hence τi satisfies the following equations with boundary ⟨T ⟩ = τ0 and τ3 = τ−3 = 0:

τ−2 =
1

k−1 + k2
+

k−1

k−1 + k2
× 0 +

k2
k−1 + k2

τ−1,

τ−1 =
1

k−2 + k3
+

k−2

k−2 + k3
τ−2 +

k3
k−2 + k3

τ0,

τ0 =
1

k−3 + k1
+

k−3

k−3 + k1
τ−1 +

k1
k−3 + k1

τ1,

τ1 =
1

k−1 + k2
+

k−1

k−1 + k2
τ0 +

k2
k−1 + k2

τ2,

τ2 =
1

k−2 + k3
+

k−2

k−2 + k3
τ1 +

k3
k−2 + k3

× 0. (9)

Through a simple calculation, one can obtain that

⟨T ⟩ =
1

J ss+ + J ss−
, (10)

where J ss
+
and J ss

−
are given in Eq. (5). Similarly, anothermeanwaiting cycle time ⟨T+⟩, which is themean time to complete the

forward cycle in Fig. 1 whether before or after completing cycling in the opposite direction, can be obtained as the solutions
of equations identical to Eq. (9), but with different boundary conditions. Let τi+ be the mean time first hitting the state 3,
whether before or after the time hitting the state −3 in Fig. 2, starting from the state i. Obviously, ⟨T+⟩ = τ0+, τ3+ = 0 and
τ−3+ = τ0+.

Then

⟨T+⟩ =
1
J ss+

,

where J ss
+
is given in Eq. (5). Almost with the same derivation one can compute the ⟨T−⟩, which is themean time to complete

the backward cycle in Fig. 1, whether before or after complete cycling in the opposite direction. It immediately follows

⟨T−⟩ =
1
J ss−

,

where J ss
−
is given in Eq. (5).

In fact, one can obtain the expression for ⟨T−⟩ (Eq. (5)) directly based on the expression for ⟨T+⟩ (Eq. (5)) according to the
symmetry of the random walk in Fig. 2: (k1, k−1, k2, k−2, k3, k−3) → (k−3, k3, k−2, k2, k−1, k1).

We see that ⟨T+⟩ = ⟨T−⟩ if and only if this system is at chemical equilibrium, because ofγ = ⟨T−⟩/⟨T+⟩. As a consequence,
γ can also bemeasured by the ratio of averaged forward andbackwardwaiting cycle times up to time t in the single-molecule
experiment, which is different from its previous measurement γ =

ν+(t)
ν−(t) . Nevertheless, as indicated in Eq. (8), by applying

the elementary renewal theorem, the twomethods are asymptotically the samebecause ⟨T+⟩ ≈ t/ν+(t) and ⟨T−⟩ ≈ t/ν−(t)
when t is large.
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2.1.2. Stepping probabilities
The stepping frequencies f +(t) and f −(t) up to time t are just the fractions of ν+(t) and ν−(t), representing the weights

of the forward and backward cycles respectively from the statistical point of view in experiments, i.e.

f +(t) =
ν+(t)

ν+(t) + ν−(t)
, f −(t) =

ν−(t)
ν+(t) + ν−(t)

.

According to Eq. (8), one can get the eventual stepping probability

p+ def
= lim

t→∞
f +(t) =

J ss
+

J ss+ + J ss−
=

k1k2k3
k1k2k3 + k−1k−2k−3

, (11a)

p− def
= lim

t→∞
f −(t) =

J ss
−

J ss+ + J ss−
=

k−1k−2k−3

k1k2k3 + k−1k−2k−3
. (11b)

It is necessary to point out that the stepping frequencies f +(t) and f −(t) are random variables depending on the
trajectories, while their fluctuations tend to vanish when t tends to infinity. Hence the eventual stepping probability p+

and p− are independent of the trajectories due to the ergodicity.

Interestingly, the forward stepping probability can also be defined as p+ def
= Pr{E}{T+ < T−}, whichmeans the probability

that the enzyme first completes a forward cycle, starting from the initial free enzyme state E, before a backward cycle.
Similarly, the backward stepping probability can be defined as p− def

= Pr{E}{T− < T+}.
This equivalence can also be seen explicitly through translating this problem to the corresponding randomwalk in Fig. 2.

Let pi+ be the probability of hitting the state 3 before−3 in Fig. 2, starting from the state i. Obviously, p3+ = 1 and p−3+ = 0.
Again applying the strongMarkov property ofMarkov chains aswhatwe have done in the previous section, {pi+} satisfies

the following equations

p−2+ =
k−1

k−1 + k2
× 0 +

k2
k−1 + k2

p−1+,

p−1+ =
k−2

k−2 + k3
p−2+ +

k3
k−2 + k3

p0+,

p0+ =
k−3

k−3 + k1
p−1+ +

k1
k−3 + k1

p1+,

p1+ =
k−1

k−1 + k2
p0+ +

k2
k−1 + k2

p2+,

p2+ =
k−2

k−2 + k3
p1+ +

k3
k−2 + k3

× 1.

Through a similar calculation, one can obtain that

p+
= Pr

{E}

{T+ < T−} = p0+ =
k1k2k3

k1k2k3 + k−1k−2k−3
,

and

p−
= Pr

{E}

{T+ > T−} = 1 − Pr
{E}

{T+ < T−} =
k−1k−2k−3

k1k2k3 + k−1k−2k−3
.

Consequently,

p+
=

J ss
+

J ss+ + J ss−
=

⟨T ⟩

⟨T+⟩
, p−

=
J ss
−

J ss+ + J ss−
=

⟨T ⟩

⟨T−⟩
,

and chemical potential difference

1µ = kBT log γ = kBT log
p+

p−
= kBT log

J ss
+

J ss−
= kBT log

⟨T−⟩

⟨T+⟩
, (12)

which follows p+
= p− if and only if the enzyme reaction is at chemical equilibrium.
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Fig. 3. An illustrative example of the ‘‘quasi-time-reversal’’ map. T ∗ is the last time when it leaves the state {E} before finishing a forward cycle
E → ES → EP → E, then one maps the real time-reversal trajectory of ω with respect to the time interval [T ∗, T+] to rω. See text for details.

2.1.3. Haldane equality and its generalization
The Haldane equality in enzyme kinetics is between the forwardMichaelis constant KM , maximum velocity Vmax, and the

backward ones. Using the results in Eqs. (6) and (7), we see that

VS/KmS

VP/KmP
=

k01k2k3
k−1k−2k0−3

. (13)

The right-hand-side is independent of the enzyme. In other words, (VS/KmS)cS = γ (VP/KmP)cP . The Haldane equality
in Eq. (13), thus, is simply an alternative expression for the Eq. (12):


1 +

cS
KmS

+
cP
KmP


KmS/(VScS) = ⟨T+⟩ and

1 +
cS
KmS

+
cP
KmP


KmP/(VPcP) = ⟨T−⟩!

An interesting observation from single-molecule enzymekinetics generalizedHaldane equality: not only themean values
of cycles times T− and γ T+ the same, their entire probability distributions are identical, both are the same as that of T . In
fact, waiting cycle time T is independent of whether the enzyme E completes a forward cycle or a backward cycle, although
the probability of these two cycles might be rather different (i.e., γ ≠ 1).

We introduce a one-to-one ‘‘quasi-time-reversal’’ mapping r for the trajectory of the simple kinetic in Fig. 1, which
belongs to the event {T+ < T−}, mapped to its ‘‘quasi-time-reversal’’ one [20].

For each trajectory ω = {ωt : t ≥ 0, ω0 = {E}} belonging to the set {T+ < T−}, let T ∗ be the last time when it leaves the
state {E} before finishing a forward cycle in the Fig. 1. Then its ‘‘quasi-time-reversal’’ one rω = {(rω)t : t ≥ 0} is defined as
follows:

(i) when the time t is before or equal to T ∗, then one just copy ω to rω, i.e. (rω)t = ωt ;
(ii) when the time t is between T ∗ and T+, then one maps the real time-reversal trajectory of ω with respect to the time

interval [T ∗, T+] to rω, i.e. (rω)t = ωT∗+T+−t ;
(iii) when the time t is greater than T+, then one can also simply copy ω to rω as what we have done in (i).

See Fig. 3 for an illustrative example. As was pointed out in the figure’s caption, T ∗ is denoted to be the last time when
it leaves the state {E} before finishing a forward cycle E → ES → EP → E. Then the ratio of the probability density of the
above trajectory with respect to its ‘‘quasi-time-reversal’’ one below is

γ =
k1k2k−2k2k3

k−3k−2k2k−2k−1
=

k1k2k3
k−1k−2k−3

.

Now it is indispensable to explain why we construct the above mapping like this.

(1) The number of the steps E → ES in the original trajectory ω belonging to {T+ < T−} is one more than that in its ‘‘quasi-
time-reversal’’ corresponding trajectory rω belonging to {T+ > T−}, while the number of the steps ES → E in ω is one
less than that in rω;
Similarly,

(2) The number of the steps ES → EP in the trajectoryω is onemore than that in rω, while the number of the steps EP → ES
in the trajectory ω is one less than that in rω;

(3) The number of the steps EP → E in the trajectory ω is one more than that in rω, while the number of the steps E → EP
in the trajectory ω is one less than that in rω; and more important

(4) The dwell time upon each state of the trajectory ω and its ‘‘quasi-time-reversal’’ corresponding one rω is mapped quite
well such that the difference between ω and rω are only exhibited upon their sequences of states.

Consequently, themost important observation is that the ratio of the probability density of each trajectoryω in {T+ < T−}

with respect to its ‘‘quasi-time-reversal’’ trajectory rω in {T+ > T−} is invariable, which is, surprisingly, always equal to the
constant γ = k1k2k3/(k−1k−2k−3).

Furthermore, the map r is a one-to-one correspondence between the trajectory sets {T+ < T−} and {T+ > T−}.
More particularly, for each t ≥ 0, the map r is also actually a one-to-one correspondence between the trajectory sets
{T+ = t < T−} and {T+ > T− = t}.
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Therefore, for each t ≥ 0,

Pr
{E}

{T+ = t, T+ < T−} = γ Pr
{E}

{T− = t, T− < T+},

and

p+
= Pr

{E}

{T+ < T−} = γ Pr
{E}

{T− < T+} = γ p−,

which has already been proved in the previous section, Eq. (12).
Denote the conditional probability density of T+ given that {T+ < T−} as Θ+(t)dt = Pr{E}{t ≤ T+ < t + dt|T+ < T−},

and the conditional probability density of T− given that {T− < T+} as Θ−(t)dt = Pr{E}{t ≤ T− < t + dt|T− < T+}. Hence,

Θ+(t)dt = Pr
{E}

{t ≤ T+ < t + dt|T+ < T−}

=

Pr
{E}

{t ≤ T+ < t + dt, T+ < T−}

Pr
{E}

{T+ < T−}

=

γ Pr
{E}

{t ≤ T− < t + dt, T− < T+}

γ Pr
{E}

{T− < T+}

= Pr
{E}

{t ≤ T− < t + dt|T− < T+} = Θ−(t)dt, ∀t.

And also denote the probability density of T as Θ(t)dt = Pr{E}{t ≤ T < t + dt}, so

Θ(t) = Θ+(t)p+
+ Θ−(t)p−

= Θ+(t) = Θ−(t).

It consequently follows a very important corollary that the distribution of waiting cycle time T is independent of whether
the enzyme E completes a forward cycle or a backward cycle, although the probability of these two cycles might be rather
different, i.e.

P{E}(t ≤ T < t + dt, T+ < T−) = P(t ≤ T+ < t + dt, T+ < T−)

= Θ+(t)dtp+
= Θ(t)dtp+, (14)

and

P{E}(t ≤ T < t + dt, T+ > T−) = P(t ≤ T− < t + dt, T+ < T−)

= Θ−(t)dtp−
= Θ(t)dtp−. (15)

Furthermore, we have

⟨T+, T+ < T−⟩ = p+
⟨T ⟩,

⟨T−, T− < T+⟩ = p−
⟨T ⟩,

and

⟨T+|T+ < T−⟩ = ⟨T−|T− < T+⟩ = ⟨T ⟩,

which means even in the far from equilibrium case (γ ≫ 1), the dwell times for each forward cycle and that for each
backward cycle are identical although their frequencies may be very different (p+

≫ p−). Such an important equality has
been discovered in the context of motor proteins, either experimental or theoretical [27,28].

Now as a closing of this section, we shall present an interesting corollary about the entropy production rate ep. See
Section 2.3 of Part I. We have already shown that

ep = (J ss
+

− J ss
−
) log γ , (16)

where log γ = log(J ss
+
/J ss

−
) is the entropy production of the single cycle E → ES → EP → E, and J ss

+
− J ss

−
is the net cycle

flux: number of cycles per time.
Applying Eq. (16) to waiting cycle times, ep can be expressed as

ep =


1

⟨T+⟩
−

1
⟨T−⟩


log γ

=


p+

⟨T ⟩
−

p−

⟨T ⟩


log γ

= (p+
− p−) × avepr, (17)
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where

avepr =
1

⟨T ⟩
log γ =

1
⟨T ⟩

log
J ss
+

J ss−
=

1
⟨T ⟩

log
⟨T−⟩

⟨T+⟩
=

1
⟨T ⟩

log
p+

p−

is regarded as the time-averaged entropy production rate of the cycle E → ES → EP → E.
Finally, recalling that J ss

+
and J ss

−
can be approximated by ν+(t) and ν−(t) respectively, it should be emphasized that this

entropy production rate can also be measured by (ν+(t) − ν−(t)) log(ν+(t)/ν−(t)) when the time t is large in a single-
molecule experiment [29].

2.1.4. Fluctuation theorems
There is a deep connection between the generalized Haldane equation in the previous section and the fluctuation

theorems widely studied in statistical physics in recent years [30–32,21,33]. In this section we give a brief account of two
fluctuation theorems: one for the stochastic number of substrate cycle ν(t) and one for the fluctuating chemical work done
for sustaining the NESSW (t) = ν(t)1µ/kBT = ν(t) log γ .

Regarding the probability distribution of the non-stationary process ν(t) = ν+(t) − ν−(t), one has

Pr{ν(t) = k} =

−
n−r=k

Pr{ν+(t) = n, ν−(t) = r}

=

∞−
n−r=k

Pr{ν+(t) + ν−(t) = n + r}Cn
n+r(p

+)n(p−)r ,

and

Pr{ν(t) = −k} =

∞−
n−r=k

Pr{ν+(t) + ν−(t) = n + r}C r
n+r(p

+)r(p−)n.

Note that p+ and p− are the stepping probabilities, and C r
n+r = Cn

n+r = (n+r)!/ (n! · r!) is the standard combinatorial factor.
Since p+/p−

= γ , we have
Pr{ν(t) = k}
Pr{ν(t) = −k}

= γ k,

which is called a transient fluctuation theorem for ν(t).
Therefore,

⟨e−λν(t)
⟩ =

∞−
k=−∞

Pr{ν(t) = k}e−kλ
=

∞−
k=−∞

Pr{ν(t) = −k}e−k(λ−log γ )

= ⟨e−(log γ−λ)ν(t)
⟩, (18)

which is just the fluctuation theorem in the form of Kurchan–Lebowitz–Spohn-type symmetry. If one let λ = log γ , then
the special case of Kawasaki equality arises

⟨e−W (t)
⟩ = 1. (19)

Eq. (19) is also in the form of the so-called Hatano–Sasa equality [34].
In the previous section, most of the results are obtained through solving a system of linear equations similar to Eq. (9)

(Kolmogorov backward form of a master equations). The results can be extended to the n-step cycle [20], according the
elementary renewal theorem in probability theory and general circulation theory of Markov chains presented in Section 2.3
of Part I. The key method, however, is still the same ‘‘quasi-time-reversal’’ mapping r introduced in the previous section.

2.2. Modifier activation–inhibition switching in enzyme kinetics

Reversiblemodifiers of an enzyme is a ligand that can formadynamic complexwith the enzymeand can cause its catalytic
properties to change. Reversible enzymemodifiers play a crucial role in both regulations of metabolic pathways inside a cell
and in the studies of enzymatic catalysis and functions. Moreover, they have found wide applications in pharmacology and
toxicology, as well as in industry and in agriculture. A modifier is called an activator or an inhibitor according to its ability
to increase or to decrease the catalytic rate of an enzyme.

In molecular biology, an activator or an inhibitor of an enzyme is widely assumed to be an attribute of the modifying
substance, determined by its molecular structure. In this section, we shall show how a same ligand can be both, depending
upon the context of the biochemical reaction system: the NESS. This idea was first discussed in [35]. Recently, [22,36] have
independently carried extensive analysis of this phenomenon.

Though it is a classic problem [37], it was only fully understood recently [22] through the theory of NESS. We start our
discussion with a simple example.
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Fig. 4. In the upper enzyme reaction system with a modifier, M , k01 and α0 are second-order rate constants, and k02 is a third-order rate constant. In the
absence of the modifier, u = 0, the steady state velocity of the enzymatic reaction is the Michaelis–Menten hyperbolic k1k3[S]

k1[S]+k−1+k3
. In the lower tri-state

single enzyme representation for the system: q1 = k01[S], q−1 = k−1 + k3, q2 = α0 . q−2 = β, q3 = k−2 + k3, q−3 = k02[S], and u is the concentration of
the modifier, [M].

2.2.1. Case study of a simple example
Consider a simple enzyme catalyzed reaction that is regulated by a modifier M: There are parallel catalysis pathways

with and without the modifier, as shown in the upper panel of Fig. 4. Notice that the system in Fig. 4 contains irreversible
steps, hence states ES and E would never reach an equilibrium due to the presence of a flux. However, a NESS among states
E, ES and MES can be reached in a single enzyme just as in the standard Michaelis–Menten kinetics which also contains an
irreversible step. The absence of backward steps E +P → EP andM +E +P → MEP is achieved if we assume the sustained
concentration of product P vanishes, i.e. [P] = 0. The same situation applies for all irreversible enzyme kinetics.

A moleculeM is called an activator (inhibitor) of an enzyme if the enzyme catalyzed reaction velocity is greater (smaller)
in the presence of the M . We shall show that, however, in certain kinetic systems a same molecule can act as either an
activator or an inhibitor depending upon its concentration [M]. There can be a switching from one to another with changing
[M]. We call this phenomenon kinetic based activation–inhibition switching.

From the standpoint of a single enzyme, there are two types of kinetic cycles in Fig. 4: one substrate binding cycle
M+E+S 
 M+ES 
 MES 
 M+E+S, and two catalytic cycles E+S 
 ES → E+P,M+E+S 
 MES → M+E+P . The
former should obey the detailed balance condition (k02βk−1 = k01α

0k−2) while the latter does not since there is a continuous
S → P turnover.

Since the rate constants for both ES → E + S and MES → M + E + S are the same k3, the rate of catalytic reaction
v = k3(pES + pMES). In order to show the activation–inhibition switching is a NESS phenomenon, we shall first consider the
‘‘control’’ case of E, ES and MES being at equilibrium with each other, when

[ES]eq =
k01[E]

eq
[S]eq

k1
and [MES]eq =

α0
[M]

eq
[ES]eq

β
.

Then the corresponding equilibrium turnover rate

veq
= k3

 k01[S]
eq

k−1
+

k01[S]
eqα0

[M]
eq

k−1β

1 +
k01[S]

eq

k−1
+

k01[S]
eqα0[M]eq

k−1β

 . (20)

We see that it always increases with [M]
eq. Hence the modifier in this model is an activator, never being an inhibitor in

equilibrium state.
The NESS of the kinetic system in the upper panel of Fig. 4, with irreversible steps, can be readily solved. This involves

a mathematical ‘‘trick’’ that combines rate constants k3 with k−1 and k−2, as shown in the lower panel.1 Hence the total
enzyme-substrate complex (TES)

pssTES(u) = (pES + pMES)
ss

=
A + Bu + Cu2

D + Eu + Fu2
. (21)

1 When combining steps like this, it is very important tomake an distinction between themathematical trick and the physical reality: for some particular
values of k’s, the resulting tri-stateMarkov chain in the lower panel of Fig. 4 could have q1q2q3 = q−1q−2q−3 . That does not mean the physical problem is an
equilibrium; rather it is because the mathematical simplification causes some confusion. In order to articulate this distinction, Vellela and Qian [38] have
introduced the notion of chemical detailed balance and mathematical detailed balance. A Markov chain with the latter could still be a useful mathematical
model for a nonequilibrium chemical system. However, it can be shown that a mathematical model for the former has to be the latter.
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Fig. 5. Kinetic scheme of enzyme reaction with general modifier. The pseudo-first-order rate constants k1 = k01s, q1 = q01s. s and r are the substrate
concentration and the modifier concentration respectively.

in which u is the concentration of the modifierM ,

A = q1 (q3 + q−2) , B = q−2q−3 + q1q2 + q−1q−3, (22a)

C = q2q−3, D = (q1 + q−1) (q3 + q−2) , (22b)
E = q−2q−3 + q1q2 + q−1q−3 + q2q3, F = q2q−3. (22c)

We see that

pssTES(0) =
A
D

=
k1

k1 + k−1
< pssTES(∞) =

C
F

= 1.

and 
pssTES

′
(0) =

B
A

−
E
D

=
q−1(q−2q−3 + q1q2 + q−1q−3) − q1q2q3

q1(q3 + q−2)(q1 + q−1)
. (23)

If

pssTES

′
(0) < 0, then there is an inhibition to activation switching with increasing [M]. One can in fact obtain the critical

uc value (switching point):

A + Buc + Cu2
c

D + Euc + Fu2
c

=
A
D

.

This yields,

uc =
DC − AF
AE − DB

=
F
A


C
F −

A
D

E
D −

B
A


> 0.

2.2.2. Modifier with a more general mechanism—an in-depth study
As early as 1953, Botts and Morales [39] have considered a mechanism for a general modifier with reversible binding

with a Michaelis–Menten kinetics. The four-state catalytic reaction system shown in Fig. 5 is central to their mechanism.
Fig. 5 is also kinetically isomorphic to the fluctuating enzyme model of Witzel–Frieden [40–42]. Many previous works have
studied the steady-state as well as transient kinetics of this general modifier mechanism.

Here, we shall discuss the rate of product formation associated with the general modifier mechanism in Fig. 5, in which
E, S, R and P stand for the enzyme, the substrate, the regulator (modifier) and the product respectively, and ES, ER and ERS
are three complexes, whose meanings are self-evident. k01, q

0
1 are second-order rate constants. This mechanism can produce

hyperbolic inhibition or activation, or a combination of the two. All of the simple mechanisms for inhibition and activation
(apart from product inhibition) are special cases of this general mechanism [37].

Similar to the previous subsection, the rate for product formation from an enzyme-modifier system at equilibrium is

veq(r) = k2p
eq
ES + q2p

eq
ERS =

k2
k1
k−1

+ q2
k1k3r

k−1k−3

1 +
k1
k−1

+
k1k3r

k−1k−3
+

k4r
k−4

, (24)
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in which r = [R], k1 = k01[S] and q1 = q01[S]. In the derivation of Eq. (24), we have used the detailed balance in the
substrate-binding cycle: k1k3q−1k−4 = k−1k−3q1k4. Again, with fixed [S]eq, veq(r) is always monotonic with respect to r .

Moreover, we have

veq(0) =

k2
k1
k−1

1 +
k1
k−1

,

and

veq(∞) =

q2
k1k3

k−1k−3
k1k3

k−1k−3
+

k4
k−4

,

hence when (veq(∞) − veq(0)) > 0, the modifier acts as an activator, and otherwise as inhibitor. This is true for all value
of r . Both veq(∞) and veq(0) could be measured directly and are functions of rate constants ks and qs, which are intrinsic
properties of the molecules E, R and their interaction. Hence whether the R is an equilibrium activator or inhibitor is solely
determined by the molecular structures as well as the concentration of S.

In a NESS, from a single enzyme perspective, the kinetics described in Fig. 5 can be represented as a Markov chain ξ(t)
with the finite discrete state space S = {E, ES, ER, ERS} and the continuous-time parameter t . The rate matrix Q of the
transition probability of the Markov chain can be readily written down from Fig. 5:

Q =

−(k1 + k4r) k1 k4r 0
k−1 + k2 −(k−1 + k2 + k3r) 0 k3r
k−4 0 −(k−4 + q1) q1
0 k−3 q−1 + q2 −(q−1 + q2 + k−3)

 ,

where the rows and columns are indexed by S, and r again is the modifier concentration. We will only study the steady
state and assume that the concentration s of the substrate and the concentration p of the product are kept constant in some
way (in fact p = 0 as in the previous section). This assumption implies that the single, irreversible enzyme reaches a NESS
in general.

Let pss = (pssE , pssES, p
ss
ER, p

ss
ERS) be the invariant probability distribution of the Markov chain ξ(t). Then in the steady state

the rate for product formation is

v(r) = k2pssES + q2pssERS .

The rate of product formation v(r) is dependent upon the concentration of the modifier, r , via pss, which is obtained
by solving the system of linear equations pssQ = 0. By obtaining the expression of v(r) in terms of r and examining the
influence of r on v(r), the kinetics can be analyzed.

We shall not present the mathematical details here but wish only to give a brief summary of the phenomenon. For a
comprehensive account please see [22].

Hyperbolic behavior. Under certain conditions, the steady-state velocity of product formation v(r) in a NESS exhibits
approximately hyperbolic dependence on r , the concentration of the modifier R. In this case, the modifier behaves in the
same way as it does at equilibrium steady state. (Solid line in Fig. 6.)

Bell-shaped behavior. The velocity v(r) in the NESS also could exhibit a bell-shaped dependence on [R]. In this case the
quantity 1v is always positive or negative according to whether v(∞) is greater or smaller than v(0). Although both the
hyperbolic-behaved and bell-shaped-behaved modifiers are overall activators or inhibitors for all possible values of the
modifier concentration [R], the bell-shaped-behaved modifier would make the enzyme activity exceed its limit value of
saturated rate. (Dashed line in Fig. 6.)

Switching behavior. More interestingly, in this case, the quantity 1v may change the sign somewhere in the range of
modifier concentration. The role played by themodifier will convert from an activator to an inhibitor or vice versa. Therefore
at the NESS, the effect of activation or inhibition should not be viewed as an intrinsic property of the modifier. It depends
on the concentrations of the modifier [R]. (Dotted line in Fig. 6.)

2.3. Fluctuating enzymes and dynamic cooperativity

Many experimental measurements have shown that most enzymes have a great deal of conformational fluctuations,
also called dynamic disorder.2 One of the surprising consequences of this, when an enzyme operates in a living cellular
environment (see below), is that the enzyme catalysis can exhibit positive cooperativity, giving rise to a ‘‘sigmoidal
dependence’’ of the product formation rate as a function of the substrate concentration in steady state [40,41,11]. We now
study this phenomenon.

2 Dynamic disorder refers to the behavior that a reaction rate constant fluctuates as a function of time. One of the mechanisms for such phenomenon is
that a reactant has fluctuations among multiple conformations, each with a different reaction rate constant.
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Fig. 6. Three kinds of kinetic behaviors in the general regulation mechanism (Fig. 5). 1v(r) = v(r) − v(0). Parameters: k1 = 2; k2 = 0.1; k−1 = 2 − k2;
q1 = 1; q2 = 0.085 (solid), 0.102 (dashed) and 0.11 (dotted); q−1 = 1 − q2; k3 = 1; k−3 = 2; k4 = 2; k−4 = 1. Here γ is kept to be 1/4.

2.3.1. Universal Michaelis–Menten equation for enzymes with a single unbound state
We shall consider the waiting cycle time in this case: a free enzyme molecule would wait for an exponential time with

mean a
[S] ; and then be transferred to bounded state. Nomatter how complex the reaction schemewithin bounded states, the

initial bounded state would wait for a stochastic timewithmean b, and then jump back to the free state, giving rise to either
a substrate molecule or a product molecule with probabilities p1 and 1 − p1 respectively. Hence we derive the equation for
the mean waiting cycle time ⟨T ⟩:

⟨T ⟩ =
a

[S]
+ b + p1⟨T ⟩,

which followed by

J =
1

⟨T ⟩
=

1 − p1
a

[S] + b
=

(1 − p1)[S]
b[S] + a

.

This is precisely the Michaelis–Menten kinetics.

2.3.2. A simple model for fluctuating enzyme
Aswe have shown, if there is only one unbound enzyme state E, then nomatter how complex the reaction schemewithin

the ES state is, the Michaelis–Menten kinetics is valid. So we consider the situation of having two unbound enzyme states
E1 and E2, both can bind the substrate S and to form ES.

For simplicity, we assume that the E1S and E2S are essentially the same. So we have the simplest kinetic model for
fluctuating enzyme

E1
k1


k−1

E2, E1 + S
α1


β1

ES, E2 + S
α2


β2

ES,

ES
α3

−→ E1 + P, ES
α4

−→ E2 + P. (25)

Wong and Hanes has put forward a similar model in 1962 [43]. Frieden introduced the concept of hysteretic enzyme as
early as 1970 [40], while Ricard and his colleagues have championed the concept of mnemonic enzyme [41]. See [11,42] for
two recent account in the light of single-molecule enzymology. As we shall show, while both hysteretic and monomeric
enzymes are consequences of slow conformational disorder, they are in fact saying something different: One concept
emphasizes transient kinetics and the other relates to a driven NESS.

Similar to the previous section, we assume the sustained [P]
ss

= 0 here, hence an enzymewould reach a nonequilibrium
steady state (NESS) with non-zero flux. When an enzyme is in equilibrium with detailed balance, however,

θ(s) =
[ES]
Etot

= pES =

k1α2[S]eq

k−1β2

1 +
k1
k−1

+
k1α2[S]eq
k−1β2

,

with the thermodynamic constrain k1α2β1 = k−1α1β2. This is always hyperbolic.
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Fig. 7. A tri-state Markov system representing the simplest fluctuating enzyme with two distinctly different unbound states E1 and E2 , where k2 = α2[S],
k3 = β1 + α3, k−2 = β2 + α4 and k−3 = α1[S].

In nonequilibrium steady state, from a single-enzyme perspective, we have a tri-state Markov system shown in Fig. 7.
We shall assume that the fluctuating rates between E1 and E2, k1 and k−1, are small. Otherwise, if they are fast, then this
model is reduced to the simple Michaelis–Menten kinetics with association rate constant (k−1α1 + k1α2)/(k−1 + k1) and
dissociation rate constant β1 + β2.

Simple calculation gives

pE =
[E]

Etot
=

k2k3 + k−1k3 + k−1k−2

D
,

pE∗ =
[E∗

]

Etot
=

k1k3 + k−2k−3 + k1k−2

D
,

and

pES =
[ES]
Etot

=
k1k2 + k2k−3 + k−1k−3

D
,

and

D = k2k3 + k−1k3 + k−1k−2 + k1k3 + k−2k−3 + k1k−2 + k1k2 + k2k−3 + k−1k−3.

Hence

θ(s) =
[ES]
Etot

=
ds + cs2

a + bs + cs2
, (26)

where a = k−1k3 + k−1k−2 + k1k3 + k1k−2, b = α2k3 + k−2α1 + k1α2 + k−1α1, c = α1α2 and d = k1α2 + k−1α1.
The steady state velocity of the enzyme catalyzed reaction is v = (α3 + α4)θ(s). It contains terms with [S]2. Then the

fluctuating enzyme is possible to have its catalyzed reaction velocity exhibiting a sigmoidal dependence on the substrate
concentration s. This is known as dynamic cooperativity, in contrast to the allosteric cooperativity which requires multiple
binding sites within an enzyme. This phenomenon is also known as mnemonic behavior. Both dynamic disorder and the
breakdown of detailed balance are necessary for a monomeric enzyme to show this interesting behavior in the NESS.

Applying themathematicalmethod in Section 2.3.3,we obtain ac−d(b−d) in Eq. (26) to be (k−1k−2α1−k1α2k3)(α2−α1).
Hence positive cooperativity corresponds to k1α2k3 < k−1k−2α1 (Fig. 8) and negative cooperativity corresponds to k1α2k3 >
k−1k−2α1 when α2 > α1. When α2 = α1, the catalytic capability is the same for both of the two different enzyme
conformations, so there will always have a hyperbolic mechanism.

Similar result holds for more general cases (Fig. 9), where

θ(s) =
[ES] + [E∗S]

Etot
=

ds + cs2

a + bs + cs2

where

a = k−1k−2k−3 + k−1k−2k4 + k−1k3k4 + k1k−2k−3 + k1k−2k4 + k1k3k4,
b = k2k3k4 + k−2k−3k−4 + k1k2k3 + k−1k−2k−4 + k−1k3k−4 + k1k2k−3 + k1k2k4 + k−1k−3k−4,

c = k2k3k−4 + k2k−3k−4,

d = k1k2k3 + k−1k−2k−4 + k−1k3k−4 + k1k2k−3 + k1k2k4 + k−1k−3k−4.

Again applying the mathematical method in Section 2.3.3, one obtains that ac − d(b − d) = (k−1k−2k−3k−4 −

k1k2k3k4)(k2k−3 + k2k4 + k2k3 − k−3k−4 − k−2k−4 − k3k−4). Similar conclusion as in the previous simple model can be
reached.
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Fig. 8. Positive dynamic cooperativity in the simple model (Fig. 7). Parameters: k1 = 0; k−1 = 1; α1 = 0.01; k−2 = 100; k3 = 0; α2 = 100.

Fig. 9. The canonical four-state model for fluctuating enzyme, where k4 = α + q2 and k−2 = β + q1 .

2.3.3. Mathematical method for analyzing dynamic cooperativity
The dependence of fractional saturation θ(s) on the substrate concentration is always described by a ratio between

polynomial numerator and polynomial denominator, whose order is either the same or less than the number of different
conformations:

θ(s) =

n∑
i=1

aisi

n∑
i=0

bisi
.

In particular, for the two-conformational models discussed in the previous sections, the polynomial order is two:

θ(s) =
ds + cs2

a + bs + cs2
. (27)

Rewriting Eq. (27) in terms of reciprocal fractional saturation and reciprocal substrate concentration gives Eq. (28):

1
θ(s)

=
a
 1
s

2
+ b 1

s + c

d 1
s + c

. (28)

Eq. (28) is a second order polynomial divided by a first order polynomial and therefore is called a ‘‘2/1’’ function of 1
s .

Dividing through by the denominator gives

1
θ(s)

=
bd − ac

d2
+

a
d
1
s

+
c(ac − (b − d)d)

d2
 d
s + c

 . (29)

The first two terms on the right hand side of Eq. (29) represent the Michaelis–Menten relation between θ and s which is
approached asymptotically at low substrate concentration. The third term represents the deviation fromMichaelis–Menten
kinetics at high substrate concentration when 1

s is no longer large enough to make the third term negligible. The value of
ac−d(b−d), the numerator of the third term, is a measure of the deviation from theMichaelis–Menten relationship. When
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this expression is greater than, equal to, or less than zero, apparent positive cooperativity, Michaelis–Menten behavior, or
apparent negative cooperativity is observed, respectively [41].

2.4. Kinetic proofreading and specificity amplification

Noise, stochasticity, and specificity are among the most important emerging concepts in current molecular cell biology,
particularly in connection with cellular processes such as gene regulation and signal transduction. Through evolution,
biological organismshave acquired a repertoire ofmechanisms to counteract stochasticity thus improve the accuracy of their
informational processing. Kinetic proofreading theory, first developed in 1970s [23,24], has provided a concrete example of
how cellular biochemical network can function as an error reduction device, suppressing noise and improving biochemical
specificity between macromolecules without relying on molecular structural modification. The molecular mechanisms of
the proofreading have been extensively elucidated in DNA polymerase in terms of its exonuclease activity and protein
synthesis in terms of ribosome structure and kinetics. However, having the right molecular structures and biochemical
reaction networks are not sufficient for the error reduction mechanism to function. The central idea of the Hopfield–Ninio
theory is the necessity of a free energy source in the form of chemical potential gradient, either from GTP/GDP or from
other enzymatic cofactors. Biochemical error reduction requires a continuous free energy expenditure: high grade chemical
energy is transformed into low grade heat accompanied with increasing entropy [11]. The role of free energy has been
conspicuously absent in the general discussions on biochemical specificity and error reduction in cell biology.

With respect to kinetic proofreading, here addresses a fundamental question: for a given amount of available free energy
to a cell, in the form of ATP/ADP (or GTP/GDP) ratio, what is the thermodynamic limitation on the error reduction and
specificity amplification?

2.4.1. Minimal error rate predicted by Hopfield’s 1974 model
While this model was developed for the high fidelity in biosynthetic processes, the kinetic model and the idea within

have a much broader cellular applications. Here we shall cast our discussion in terms of receptor–ligand association. Fig. 10
shows a schematics of a 3-state, cyclic receptor–ligand bindingmodel.We shall denote the equilibrium association constant
for the receptor–ligand complex Ka. Then the equilibrium between the empty receptor R and the activated complex RL∗ is
[RL∗]

eq

[R]eq = Ka[L] =
k0
−3[L]
k3

=
k−3
k3

, where k3 and k0
−3 are the dissociation and association rate constants. We shall use k−3 to

denote the pseudo-first order rate constant k0
−3[L].

We now quote a few results from standard thermodynamics. The equilibrium, standard-state free energy of hydrolysis

1G0
DT = −RT ln


[T ]

eq

[D]eq


.

Furthermore, equilibrium ATP and ADP concentrations are related to rate constants:

[T ]
eq

[D]eq
=

k0
−2[RL

∗
]
eq

k02[RL]eq
=

k−1k0−2k−3

k1k02k3
, (30)

in which the second equality is due to equilibrium relation [RL]eq/[RL∗
]
eq

= k1k3/(k−1k−3). Hence, the free energy of ATP
hydrolysis in a cell,

1GDT = 1G0
DT + RT ln


[T ]

[D]


= RT ln


k1k2k3

k−1k−2k−3


,

where [T ] and [D] are cellular ATP and ADP concentrations, not at equilibrium if a cell is alive: 1GDT > 0.
As the point of departure from the original work of Hopfield, we introduce a parameter, γ = e1GDT /RT , representing the

available free energy from each ATP hydrolysis:

γ =
k1k2k3

k−1k−2k−3
. (31)

The free energy in a living cell is from the sustained physiological level of ATP (∼8 mM) and level of ADP (∼10 M). It is not
from the phosphate bond of the ATP molecule: ‘‘The Pacific Ocean could be filled with an equilibrium mixture of ATP, ADP
and Pi, but the ATP would have no capacity to do work’’ [44]. When a cardiac myocyte experiences ischemia, its ATP/ADP
ratio goes down and the cellular energy is decreased.

In Fig. 10, now let us consider two possible ligands L and L′ at equal concentration. We assume they are structurally
related so that they have same k1, k2, k−2 and k−3.

In a test tube at equilibrium (i.e., [T ] = [T ]
eq and [D] = [D]

eq), then

k01k
0
2k3

k−1k0−2k
0
−3

=
k′0
1 k

′0
2 k

′

3

k′

−1k
′0
−2k′0−3

=
[D]

eq

[E]eq
,
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Fig. 10. A simple kinetic model of receptor–ligand binding coupled with hydrolysis reaction T � D. k−3 = k0
−3[L], k1 = k01[L] and k′

−3 = k′0
−3[L

′
], k′

1 =

k′0
1 [L′

].

hence

γ =
k1k2k3

k−1k−2k−3
=

k′

1k
′

2k
′

3

k′

−1k
′

−2k
′

−3
= 1.

Therefore, the ratio of the two affinities at equilibrium is

f =

[RL∗]

[R][L]
[RL′∗]

[R][L′]

=

k−3
k3
k−3
k′3

= θ.

Their affinities with the receptor, however, are different due to
k′
−1

k−1
=

k′3
k3

= θ , where θ < 1. That is L′ has a higher affinity
to the receptor than L; the receptor is more specific for L′ than for L.

In the Hopfield’s model for biosynthesis, f represents the expected error rate of a wrong amino acid being incorporated
into a protein. Here, f represents the error rate of activation due to non-specific binding.

In living cells, due to the hydrolysis reaction in Fig. 10, RL + T 
 RL∗
+ D, [D] and [T ] are not at their equilibrium

concentrations. The error rate therefore depends on howmuch energy is available, i.e., f is a function of γ . Here γ ≠ 1, but
γ =

k1k2k3
k−1k−2k−3

=
k′1k

′
2k

′
3

k′
−1k

′
−2k

′
−3

still hold as the thermodynamic constrain.

For Hopfield 3-state, 1-cycle model,

f = θ
(k1k2 + k2k−3 + k−1k−3)

(k2k3 + k3k−1 + k−1k−2)

(k2k3 + θk3k−1 + k−1k−2)

(k1k2 + k2k−3 + θk−1k−3)
, (32)

use relation Eq. (31) to eliminate k−1k−2 in Eq. (32), one has

f (γ ) = θ
(k1k2 + k2k−3 + k−1k−3)
k2k−3 + k−1k−3 +

k1k2
γ



k2k−3 + θk−1k−3 +

k1k2
γ


(k1k2 + k2k−3 + θk−1k−3)

.

One useful inequality. For γ > 1, θ < 1, and non-negative a’s, b, and c , we have (a+b+c)
a+ b

γ +c


aθ+

b
γ +c


(aθ+b+c) ≥


1+

√
γ θ

√
γ+

√
θ

2
, where

the equality holds true when c = 0 and b
a =

√
γ θ .

Then we have the minimal error rate

fmin(γ ) = θ


1 +

√
γ θ

√
γ +

√
θ

2

(33)
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for all possible rate constants with a given γ when k−3
k1

= 0 and k1k2
k−1k−3

=
√

γ θ . These two relations imply the inequalities

k−1 ≫ k2, k1 ≫ k−3,
k1
k−3

k2
k−1

> θ, k3 > k−2. (34)

The conditions in Eq. (34) can be described, à la Hopfield, ‘‘wrong substrate arriving at RL∗ must come typically through
step 2 rather than 3’’ and ‘‘the rate of loss of molecules RL∗ must be dominantly by path 3’’ [23]. k−1 ≫ k2 and k1 ≫ k−3
imply that the step 1 is in rapid equilibrium for an optimal error reduction.When γ ≫ θ−1, i.e., there is sufficient amount of
energy available, fmin approached θ2. This is the celebrated result of. Eq. (33) offers amore complete, quantitative description
of how much error can be reduced with finite amount of energy available.

2.4.2. Absolute thermodynamic limit on error rate with finite available free energy
The fmin obtained above is confined within the kinetic scheme given in Fig. 10. We now seek to provide an estimation

of the absolute lower bound of error rate, with a given amount of energy γ , for any possible kinetic scheme, i.e., a true
thermodynamic limit irrespective of the detailed ‘‘wiring diagram’’.

The competition between L and L′ for R can be written into a single biochemical reaction

L + RL′∗ 
 L′
+ RL∗ (35)

which has an equilibrium constant θ . With equal amount of L and L′, the free energy difference between RL∗ and RL′∗, 1Geq,
is zero in a chemical equilibrium:

1Geq
= −RT ln θ + RT ln

[RL∗
]
eq

[RL′∗]eq
= 0.

In living cells, this reaction is coupled to an ‘‘energy source’’ with free energy RT ln γ . We have recently shown that the free
energy from the source and the 1G in Eq. (36) satisfy the Kirchhoff’s loop law. Hence, the maximum contribution to the
reaction, assuming there is no waste of energy in the coupling, will be

1G = −RT ln θ + RT ln
[RL∗

]

[RL′∗]
= −RT ln γ .

This yields

[RL∗
]

[RL′∗]
=

θ

γ
. (36)

3. Regulations and feedbacks in nonequilibrium biochemical futile cycles

Reversible phosphorylation of enzymes is perhaps one of the most important biochemical regulatory mechanisms that
occur in both prokaryotic and eukaryotic organisms [45,46]. On the onset of our discussion, it is crucial to point out the term
‘‘reversible’’ used in the biochemical literature means the phosphorylation can be counteracted by a dephosphorylation
reaction. The latter E∗

→ E + Pi, however, is not the simple reversal of the former E + ATP → E∗
+ ADP, where

E and E∗ represent the unphosphorylated and phosphorylated states of an enzyme. The two reactions are catalyzed
by two different enzymes of their own: a protein kinase and a protein phosphatase, respectively. In fact, a complete
phosphorylation–dephosphorylation cycle (PdPC) hydrolyzes one ATP. In a living cell, the reaction is positively driven with
energy dissipation. Using a cellular phosphorylation potential of 1GATP = 25kBT [47], the ‘‘γ (=e1GATP/kBT ) parameter’’ of a
living cell is on the order of 1010.

It is also important to mention that kinetically, the PdPC is isomorphic to yet another key biochemical regulatory
mechanism: the GTPase reaction cycle:

GTPase · GDP + GTP → GTPase · GDP + GDP,
GTPase · GTP → GTPase · GDP + Pi.

The two reactions are also catalyzed by two enzymes, guanine nucleotide exchange factor (GEF) and GTPase-activating
proteins (GAP), respectively. If one identifies E with GTPase · GDP, E∗ with GTPase · GTP, ATP and ADP with GTP and GDP,
then indeed one sees the two kinetic scheme are the same. In this section, we shall use the terminology associated with the
PdPC, but its applications to GTPase is obvious.

For a very long time, cyclic reactions such as PdPC and GTPase are called futile cycles in biochemical literature: they
dissipate cellular free energy, but they do not seem to perform any function in the classical sense: mechanical work,
biosynthesis, or transport against chemical gradient. These three are collectively known as the three major energy sinks
in a living cell [48]. We now know that such futile cycles use free energy to process information and regulate cellular
activities [35]. The nonequilibrium steady state (NESS) is the way of life [49].
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This section is devoted to study biochemical regulatory processes, in particular futile cycles, from the perspective of the
theory of NESS.

Reversible chemical modification of an enzyme or receptor results in a conformational change in their structures. The
structural change causes them to become biochemically active (or inactive). This is quite similar to the turning on (or off)
of a switch. Phosphorylation usually occurs on serine, threonine, and tyrosine residues of a protein in eukaryotic cells. One
such example of the regulatory role that phosphorylation plays is on the p53 tumor suppressor protein. The p53 protein is
heavily regulated and contains more than 18 different phosphorylation sites. Activation of p53 can lead to cell cycle arrest,
which can be reversed under some circumstances, or apoptotic cell death. p53 activation occurswhen a cell is damaged [50].
Another widely studied phosphorylation kinase cascade is mitogen-activated protein kinases (MAPK) signaling system [51].

Biological switches such as PdPC requires high switching sensitivity: the sharpness of the activation of the substrate
protein (enzyme) in response to the concentration of the kinase is a key characteristics from the perspective of metabolic
control analysis. The sharpness is often measured by a Hill coefficient first proposed by Hill [52]. The sharp activation in
PdPC switches has always been compared to allosteric cooperative transitions [53], but it is found that the latter mechanism
could hardly show positive cooperativity with Hill coefficient greater than 4, while the former multi-enzyme systems may
exhibit ultrasensitivity [53–55] due to the mechanism of zeroth order kinetics of kinase and phosphatase.

What are the essential similarities and differences between these two different types of ‘‘cooperativity’’? This significant
question could date back to Fischer and Krebs [56,45], the 1992 Nobel Laureates who discovered protein phosphorylation
as a regulatory mechanism for enzyme activity.

We have found that a new type of cooperativity termed temporal cooperativity, emerges in the signal transduction, PdPC
module [57,49,58]. This kind of cooperativity in the cyclic reaction is temporal, with energy ‘‘stored’’ in time rather than
in space as for allosteric cooperativity. It utilizes multiple kinetic cycles in time, in contrast to allosteric cooperativity that
utilizes multiple subunits in a protein. Such is the origin of ultrasensitivity. In this section we shall thoroughly investigate
both the deterministic (macroscopic) and stochastic (mesoscopic) models, focusing in particular on the identification of the
source of cooperativity via comparing with allosterism. We assume the readers have some familiarity with the concept of
equilibrium allosterism [59].

Recently, it has been shown experimentally that bistable system guaranteed by positive feedback could be converted to a
monostable one exhibiting ultrasensitive graded response, and vice versa [60]. We shall also discuss the PdPC with a simple
positive feedback which leads to bistability. Such a feedback in PdPC has been widely seen [61]: Src family kinase itself is
activated by its phosphorylated substrate receptor [62]; and GEF Rabex-5 is itself activated by GTP bound Rab-5, the product
of the reaction it catalyzes [63]. Both in some sense are auto-catalytic.

Even more interestingly, it has been found that the kinetic system of PdPC with feedback is equivalent to the self-
regulating gene network [14]! Hence, the analysis and conclusions in this section apply to there as well. Our stochastic
approach not only quantitatively characterize the relative stability of different attractors (e.g., corresponding to different
phenotypes), but also reveals an extremely slow stochastic time scales beyond the deterministic approach. Stochastic jumps
on this time scale is highly relevant to cellular ‘‘evolution’’ [64], and it is implicated in cancer carcinogenesis [65].

All of these biological functions depend upon the open, driven chemical nature of the biochemical systems that are
spontaneously self-organizing into the NESS. The mesoscopic approach to cellular biochemistry is not merely a refinement
to the deterministic approach based on classic Law of Mass Action. It has a much more fundamental theory which reveals
nontrivial emergent properties across several different time scales. In fact, the deterministic kinetics should be viewed as
merely one, though a very important one at a short time scale, signature of a mesoscopic stochastic dynamics.

3.1. Reversible kinetic model for covalent modification

There is now a body of literature on theoretical analysis of the phosphorylation–dephosphorylation cycle (PdPC)
catalyzed, respectively, by kinase E1 and phosphatase E2 [54,57,66,67,49]. Protein W is covalently modified into W ∗ in the
phosphorylation reaction, and vice versa:

W + E1 + ATP
a01


d1

W · E1 · ATP
k1


q01

W ∗
+ E1 + ADP;

W ∗
+ E2

a2


d2

W ∗E2
k2


q02

W + E2 + Pi.

With the constant concentrations of ATP,ADP and Pi inside a cell, we introduce the pseudo-first-order reaction constants
a1 = a01[ATP], q1 = q01[ADP] and q2 = q02[Pi], then these reactions become

Reaction Rxn1 : W + E1
a1


d1

WE1;

Reaction Rxn2 : WE1
k1


q1

W ∗
+ E1;

Reaction Rxn3 : W ∗
+ E2

a2


d2

W ∗E2;
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Reaction Rxn4 : W ∗E2
k2


q2

W + E2.

From a biochemistry point of view, the intracellular phosphorylation potential through the reaction cycle, Rxn1–Rxn4 is
simply an ATP hydrolysis: [57]:

1G = 1G1 + 1G2 + 1G3 + 1G4

= kBT log
a1[W ][E1]
d1[WE1]

+ kBT log
k1[WE1]

q1[W ∗][E1]
+ kBT log

a2[W ∗
][E2]

d2[W ∗E2]
+ kBT log

k2[W ∗E2]
q2[W ][E2]

= kBT log
a1k1a2k2
d1q1d2q2

= kBT log γ ,

where γ = a1k1a2k2/(d1q1d2q2) will be called the energy parameter. The system will be in a chemical equilibrium, if and
only if 1G = 0, i.e. γ = 1. In a normal living cell, 1G = 14 kcal mol−1, which corresponds to γ = 1010 [47].

3.2. Complete mathematical models and nonequilibrium steady states

We start our analysis with the deterministic kinetics of a PdPC.

3.2.1. Deterministic model with the law of mass action
Biochemists usually develop a deterministic model of a biochemical system with a macroscopic view that is consistent

with test tube experiments: based on the law of mass action, the forward and backward rates, i.e., fluxes, of Rxn1 are
J1 = a1[W ][E1] and J−1 = d1[WE1] respectively; similarly, the forward and backward fluxes of Rxn2, Rxn3, and Rxn4
are J2 = k1[WE1], J−2 = q1[W ∗

][E1], J3 = a2[W ∗
][E2], J−3 = d2[W ∗E2], J4 = k2[W ∗E2] and J−4 = q2[W ][E2] respectively.

We can choose [W ∗
], [E1] and [E2] as independent variables according to the three conservation laws WT = [W ] +

[WE1] + [W ∗E2] + [W ∗
], E1T = [E1] + [WE1] and E2T = [E2] + [W ∗E2], where WT , E1T and E2T are constants representing

the total concentrations of target protein, kinase and phosphatase respectively. Then the deterministic equations are

d[W ∗
]

dt
= J2 − J−2 + J−3 − J3;

d[E1]
dt

= J−1 − J1 + J2 − J−2; (37)

d[E2]
dt

= J−3 − J3 + J4 − J−4.

In the steady state, the right-hand-side of Eq. (37) is set to be zero. This yields the important definition of the net, cycle
flux J def

= Ji − J−i, i = 1, 2, 3, 4. Based on the relation

γ =
a1k1a2k2
d1q1d2q2

=
J1J2J3J4

J−1J−2J−3J−4
,

we know that J > 0 is equivalent to the energy parameter γ > 1; and J < 0 is equivalent to γ < 1. Moreover, the entropy
production rate can be expressed, in unit kB, as

epr = flux × potential = J · log γ .

Obviously, epr = 0 if and only if γ = 1, which means chemical equilibrium state according to the thermodynamic
analysis in Section 3.2.3.

3.2.2. Stochastic model: the chemical master equation
A deterministic model, however, only describes the behavior of a system with large populations. It cannot capture

the temporal fluctuations of a small biochemical system, such as a cell, with either extrinsic or intrinsic noise. Intrinsic
fluctuations are determined by the structure, reaction rates, and species concentrations of the underlying biochemical
networks, which always exist even when the external environment is invariant.

A stochastic chemical kinetic approach in terms of the chemical master equations (CME) will now be presented. The CME
is based on reaction stoichiometry, molecular numbers, and kinetic rate constants. It describes a stochastic process with
discrete states and continuous time parameter. See Part I, Section 2.3.

Denote the volume as V , which is a fixed parameter of the system. And let NT = WTV ,N1T = E1TV and N2T = E2TV ,
recallingWT = [W ]+ [WE1]+ [W ∗E2]+ [W ∗

], E1T = [E1]+ [WE1] and E2T = [E2]+ [W ∗E2] are constants representing the
total concentrations of target protein, kinase and phosphatase respectively. So we can still choose the molecule numbers of
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speciesW ∗, E1 and E2 as three independent variables. Let p(i, j, k; t) be the probability of the system, at time t , has molecule
copy numbers i, j, and k forW ∗, E1 and E2, respectively. Then p(i, j, k; t) satisfies the chemical master equation

dp(i, j, k; t)
dt

=
a1
V

(NT − N1T − N2T − i + j + k + 1)(j + 1)p(i, j + 1, k; t)

+ d1(N1T − j + 1)p(i, j − 1, k; t) + k1(N1T − j + 1)p(i − 1, j − 1, k; t)

+
q1
V

(i + 1)(j + 1)p(i + 1, j + 1, k; t) +
a2
V

(i + 1)(k + 1)p(i + 1, j, k + 1; t)

+ d2(N2T − k + 1)p(i − 1, j, k − 1; t) + k2(N2T − k + 1)p(i, j, k − 1; t)

+
q2
V

(NT − N1T − N2T − i + j + k + 1)(k + 1)p(i, j, k + 1; t)

−

a1
V

(NT − N1T − N2T − i + j + k)j + d1(N1T − j) + k1(N1T − j) +
q1
V

ij

+
a2
V

ik + d2(N2T − k) + k2(N2T − k) +
q2
V

(NT − N1T − N2T − i + j + k)k

p(i, j, k; t).

It is necessary to explain the transition probability rates in the above equation. When the system is in the state (i, j, k),
the molecular numbers of WE1,W ∗E2 and W are N1T − j,N2T − k and NT − i − (N1T − j) − (N2T − k) respectively.
Moreover, the parameters (a1,2/V ) and (q1,2/V ) are number-based, rather than concentration based, rate constants [68].
Note that d1,2 and k1,2 are first-order rate constants with dimension [time]−1; while second-order rate constants a1,2
and q1,2 have dimension [time]−1

[concentration]
−1. Hence the latter involves a factor of 1/V in the conversion [69]. For

instance, the quantity J1 = a1[W ][E1] has the dimension of [concentration][time]−1, hence the probability rate J1 × V =

a1V ×
NT−N1T−N2T−i+j+k

V ×
j
V =

a1
V (NT − N1T − N2T − i + j + k)j will have the dimension of molecular numbers per time,

used in the CME.
The stochastic process it represents is a jump process on a three-dimensional cubic lattice of size NT × N1T × N2T . The

state (i, j, k) can only jump to the adjacent states (i, j + 1, k), (i, j − 1, k), (i − 1, j − 1, k), (i + 1, j + 1, k), (i + 1, j, k +

1), (i − 1, j, k − 1), (i, j, k − 1) and (i, j, k + 1).
In probability theory, such a random-walk model is called the three-dimensional birth-and-death process, which is a

special Markov chain. Generally speaking, ξ and η represent the states and qξη is the transition density along the passage
ξ → η. The Eq. (38) is just the Kolmogorov forward equation of the continuous-time Markov chain with transition density
matrix Q = (qξη)

dp(ξ , t)
dt

= p(ξ , t)Q , (38)

where ξ = (ξ 1, ξ 2, ξ 3) represents the state in which the molecule numbers ofW ∗, E1 and E2 are ξ 1, ξ 2 and ξ 3 respectively,
and

qξη =



a1
V

(NT − N1T − N2T − i + j + k)j ξ = (i, j, k), η = (i, j + 1, k),

d1(N1T − j) ξ = (i, j, k), η = (i, j − 1, k),
k1(N1T − j) ξ = (i, j, k), η = (i − 1, j − 1, k),
q1
V

ij ξ = (i, j, k), η = (i + 1, j + 1, k),

a2
V

ik ξ = (i, j, k), η = (i + 1, j, k + 1),

d2(N2T − k) ξ = (i, j, k), η = (i − 1, j, k − 1),
k2(N2T − k) ξ = (i, j, k), η = (i, j, k − 1),
q2
V

(NT − N1T − N2T − i + j + k)k ξ = (i, j, k), η = (i, j, k + 1),

−

−
ζ ≠ξ

qξζ ξ = η = (i, j, k),

0 else.

The theory developed in Part I, Section 2.3 for Q -processes can be directly applied to the CME.

3.2.3. Nonequilibrium steady state
In Section 2 of Part I, we have discussed the Kolmogorov cycle condition for aQ -process. It was shown that it is equivalent

to the time reversibility of a Markov chain, corresponding to the equilibrium steady state. The significance of this condition
is that it allows one to directly write down the condition for reversibility without first deriving the steady state. Although
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there are many cycles in the Markov chain model (38), every large cycle can be decomposed into several basic four-state
cycles

ξ1 = (i, j, k) → ξ2 = (i, j − 1, k) → ξ3 = (i + 1, j, k) → ξ4 = (i, j, k − 1) → ξ1 = (i, j, k),
which corresponds precisely to the phosphorylation–dephosphorylation chemical kinetic cycle Rxn1–Rxn4.3

In this case, the necessary and sufficient condition for the steady state being in equilibrium, i.e. the Kolmogorov cycle
condition, is expressed as qξ1ξ2qξ2ξ3qξ3ξ4qξ4ξ1 = qξ1ξ4qξ4ξ3qξ3ξ2qξ2ξ1 . From Eq. (38), this is just

a1
V

(NT − N1T − N2T − i + j + k)j × k1(N1T − j + 1) ×
a2
V

(i + 1)kk2(N2T − k + 1)

=
q2
V

(NT − N1T − N2T − i + j + k)kd2(N2T − k + 1) ×
q1
V

(i + 1)j × d1(N1T − j + 1).

One can derive from this γ , a1k1a2k2/(d1q1d2q2) = 1.
Namely, γ ≠ 1 is equivalent to the fact that this system is in a nonequilibrium steady state.

3.3. Reduced mathematical models

In many biochemically realistic situations, it is safe to suppose that the total concentration of W and W ∗ together, WT ,
is much larger than that of the kinase and the phosphatase, i.e. WT = [W ] + [W ∗

] ≫ E1T , E2T [54,57]. Therefore, we can
reasonably assume that the time scale for the enzymes E1 and E2 to reach steady state is much faster than the dynamics ofW
andW ∗. Consequently, the concentrations ofW andW ∗ can be treated as constant when studying the dynamics of kinase E1
and phosphatase E2. And when studying the dynamics of W and W ∗, E1 and E2 can be treated as in their steady states. This
argument, known as Michaelis–Menten quasi-steady-state approximation, can be rigorously justified using the method of
singular perturbation [66]. The single-molecule approach presented in the previous section, of course, is the ultimate case
of ‘‘low enzyme concentration with high substrate concentration’’. It yields Michaelis–Menten’s result exactly.

Therefore, the dynamics of kinase and phosphatase can be considered separably:

(a) : W + E1
a1


d1

WE1
k1


q1

W ∗
+ E1,

(b) : W + E2
q2


k2

W ∗E2
d2


a2

W ∗
+ E2.

(39)

The steady states in the aboveMichaelis–Menten kinetics is well-known in the classic enzyme kinetics [37]. The fluxes from
W to W ∗ and fromW ∗ to W in reactions (a) and (b) of Eq. (39) are respectively

v1([W ]) =

V1[W ]

K1

1 +
[W ]

K1
+

[W∗]

K∗
1

, v∗

1([W
∗
]) =

V∗
1 [W∗

]

K∗
1

1 +
[W ]

K1
+

[W∗]

K∗
1

, (40)

and

v2([W ]) =

V2[W ]

K2

1 +
[W ]

K2
+

[W∗]

K∗
2

, v∗

2([W
∗
]) =

V∗
2 [W∗

]

K∗
2

1 +
[W ]

K2
+

[W∗]

K∗
2

, (41)

under time-scale separation, in which the parameters V1 = k1E1T , V ∗

1 = d1E1T , V2 = d2E2T and V ∗

2 = k2E2T are themaximal
forward (W → W ∗) and backward (W ∗

→ W ) fluxes of the reactions (a) and (b); and K1 =
d1+k1

a1
, K ∗

2 =
d2+k2

a2
, K ∗

1 =

d1+k1
q1

, K2 =
d2+k2

q2
are the corresponding Michaelis constants. The energy parameter, then,

γ =
a1k1a2k2
d1q1d2q2

=
V1K ∗

1 V
∗

2 K2

V ∗

1 K1V2K ∗

2
≡

v1([W ])v∗

2([W
∗
])

v2([W ])v∗

1([W ∗])
, (42)

which is independent of [W ] and [W ∗
].

With theMichaelis–Menten (MM) approximation, Eqs. (40)–(42) now give a reduced kinetic model for the original PdPC,
as shown in Fig. 11(A) [58,66]. The reaction scheme can be modeled as deterministic kinetics [57], or stochastic kinetics as
shown on the right side of Fig. 11(A). See [11] why one can still consider exponential waiting time in the Markov chain with
the MM rates.

W
f1([W ])

�
f2([W∗])

W ∗, (43)

where f1 ([W ]) = v1 ([W ])+v2 ([W ]) is the instantaneous total flux fromW toW ∗, and f2 ([W ∗
]) = v∗

1 ([W ∗
])+v∗

2 ([W ∗
])

is the total, instantaneous flux fromW ∗ toW , and [W ] + [W ∗
] = WT , a constant.

3 Other ordering of these reactions could also form other cycles. But they all lead to the same result.
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(A) Temporal cooperativity:W (unphosphorylated protein),W ∗(phosphorylated protein).

(B) Allosteric cooperativity: E(unoccupied state of sites), ES(occupied state of sites).

Fig. 11. (A) The reduced model of PdPC switch and the illustration of its corresponding chemical master equation; (B) The general model of allosteric
cooperativity and the illustration of its corresponding chemical master equation.

3.3.1. Deterministic model
The ordinary differential equation of the model (43) is

d[W ∗
]

dt
= f1(WT − [W ∗

]) − f2([W ∗
]), (44)

whose steady state [W ∗
]
ss satisfies f1(WT − [W ∗

]
ss) = f2([W ∗

]
ss) and [W ]

ss
= WT − [W ∗

]
ss.

What we concern most is the steady state fraction of phosphorylated proteinW ∗, i.e. φ = [W ∗
]
ss/WT .

Beard and Qian [66] have written down the general equation for φ in the deterministic model under the assumption
WT ≫ E1T + E2T :

θ =

µγ [µ − (µ + 1)φ]


φ −

K∗
1 (WT+K1)

(K∗
1 −K1)WT


K2K ∗

2 (K ∗

1 − K1)

[µγ − (µγ + 1)φ]


φ +

K∗
2 (WT+K2)

(K2−K∗
2 )WT


K1K ∗

1 (K2 − K ∗

2 )
,

where

θ =
V1K ∗

2

K1V ∗

2
, µ =

V2K ∗

2

K2V ∗

2
, γ =

V1K ∗

1 V
∗

2 K2

V ∗

1 K1V2K ∗

2
=

a1k1a2k2
d1q1d2q2

.

In most biochemical applications, we have K ∗

1 ≫ K1, K2 ≫ K ∗

2 K2 ≫ WT (i.e. q1, q2 ≪ 1), then K ∗

1 − K1 ≈ K ∗

1 , K2 − K ∗

2 ≈

K2,WT + K2 ≈ K2, so the above equation can be simplified to [57]

σ
def
=

θK1

K ∗

2
=

V1

V ∗

2
=

µγ [µ − (µ + 1)φ]


φ − 1 −

K1
WT


[µγ − (µγ + 1)φ]


φ +

K∗
2

WT

 . (45)

If we let the free energy parameter γ tends to infinity, then µ = 0 (i.e. q1 = q2 = 0). From Eq. (45), one can get

σ =

φ

1 − φ +

K1
WT


(1 − φ)


φ +

K∗
2

WT

 ,

which is just the celebrated Goldbeter–Koshland equation [54] in their pioneer work on zero-order ultrasensitivity.
However, in such a deterministic model, the concentrations of phosphorylated protein W and its dephosphorylated

state W ∗ are both the ensemble-averaged quantities. It is unable to adequately reveal the intrinsic essence of temporal
cooperativity.

3.3.2. Stochastic model: chemical master equation
In order to illustrate the essence of ‘‘cooperativity’’ – usually biochemists think certain kind of cooperative behavior is

responsible for a sharp transition – we now turn to the stochastic model based on the chemical master equation. Let V be
the volume of the system, then the total molecule number of W and W ∗ is N = WTV . Due to the existence of stochastic
fluctuations, one can no longer determine the molecule numbers of a species at a given time t , and rather only determine



H. Ge et al. / Physics Reports 510 (2012) 87–118 111

the probability of the copy numbers ofW ∗ being i (the copy number ofW then will be N − i). According to the mechanism
(43), the chemical master equation model is illustrated on the right side of Fig. 11(A).

Denote the probability of the state iW ∗ at time t as p(i, t), then it satisfies the following equation
dp(0, t)

dt
= f2(1/V )Vp(1; t) − f1(N/V )Vp(0, t);

dp(i, t)
dt

= f1((N + 1 − i)/V )Vp(i − 1, t) + f2((i + 1)/V )Vp(i + 1, t)

− [f1((N − i)/V ) + f2(i/V )]Vp(i, t), i = 1, 2, . . . ,N − 1;

dp(N, t)
dt

= f1(1/V )Vp(N − 1, t) − f2(N/V )Vp(N, t). (46)

It needs to be emphasized that from a purely mathematical standpoint, the stochastic model in Eq. (46) satisfies the
detailed balance condition. However, the detailed balance condition of this reduced model does not imply the underlying,
original chemical system has detailed balance. The reversibility (i.e., equilibrium) of the complete model (i.e. γ = 1) is not
equivalent to the reversibility of the reduced model. Rather, γ = 1 corresponds to non-cooperativity, as we shall show
below.

The stationary probability of the state iW ∗ in Fig. 11(A) is

P ss(i) =

i∏
j=1

f1((N+1−j)/V )

f2(j/V )

1 +

N∑
i=1

i∏
j=1

f1((N+1−j)/V )

f2(j/V )

, (47)

and the averaged molecule number ofW ∗ is

⟨W ∗
⟩ =

N∑
i=1

i
i∏

j=1

f1((N+1−j)/V )

f2(j/V )

1 +

N∑
i=1

i∏
j=1

f1((N+1−j)/V )

f2(j/V )

. (48)

Similar to the deterministic model, we introduce the ratio of the averaged molecule number ⟨W ∗
⟩ of phosphorylated

protein molecules and the total molecule number N ,

⟨φ⟩
def
=

⟨W ∗
⟩

N
=

N∑
i=1

i
i∏

j=1

f1((N+1−j)/V )

f2(j/V )

N


1 +

N∑
i=1

i∏
j=1

f1((N+1−j)/V )

f2(j/V )

 . (49)

In the following sections, one could see that compared with the deterministic φ, the stochastic averaged ⟨φ⟩ not only
keeps the thermodynamic properties, but also reveals the temporal variance of the molecule numbers and is easy to be
compared with the allosteric cooperativity.

3.3.3. Analogous equilibrium constants
In order to estimate the degree of cooperative phenomenon in the PdPC switch, we introduce the ‘‘equilibrium constants’’

similar to the Adair constants [37] in the allosteric cooperative phenomenon.
For the state (j−1)W ∗, there have already been (j−1)molecules transited fromW toW ∗, thus there are (N+1− j)ways

of transiting for the next molecule of W to W ∗. Similarly, for the state jW ∗, there have already been j molecules transited
fromW toW ∗, and there are jways of transiting for the next molecule ofW ∗ back toW .

Introducing quantities Kj = [(N + 1− j)f2(j/V )]/[jf1((N + 1− j)/V )], representing the ‘‘de-activation capability’’ of the
j-th molecule in the state (N − j, j) transiting back from the activated stateW ∗ to the inactive stateW , which will be called
‘‘de-activation constants’’. Their reciprocals will be called ‘‘activation constants’’, representing the j-th molecule transiting
from the inactive stateW to the activated stateW ∗.

So here one could rewrite the formula (49) by the de-activation constants as

⟨φ⟩ =

N∑
i=1

(N−1)!
(i−1)!(N−i)!

1
i∏

j=1
Kj

1 +

N∑
i=1

N!

i!(N−i)!
1
i∏

j=1
Kj

,

which is essentially same as the general Adair scheme (50) of allosteric cooperativity.
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Comparing with the classical allosteric cooperativity (Fig. 11(B)), we know there exists the temporal cooperative
phenomenon if the quantities {Kj, j = 1, 2, . . . ,N} successively decreases, implying the more number of molecules of
W ∗ is, the larger the activation constant of the next molecule transiting from the state W to W ∗ becomes. Furthermore,
the cooperative phenomenon appears more and more distinct when the gradient of the decreasing quantities {Kj, j =

1, 2, . . . ,N} increases.

3.4. Switching behavior

3.4.1. Non-driven chemical system (γ = 1): no switch
While sensitivity amplification requiring both nonlinearity and nonequilibrium is intuitively obvious [70,71], the above

analysis offers a more quantitative understanding of such systems [57,49], which partially answered the question posed by
Fischer and Krebs. One essential difference between the allosteric mechanism and the hydrolysis cycle, it suggests, is that
the former does not expend energy but requires large mass: ‘‘The costs of the two types of regulations are quite different.
One requires a significant amount of regulator biosynthesis in advance. The other requires only a small amount of regulators
for the hydrolysis reaction, but it consumes energy during the regulation’’ [49].

One could build both of the deterministic and stochastic models for this biochemical system, which share two different
perspectives: the deterministic looks for sharpness and stochastic looks for large fluctuations. Furthermore, both of them
reveal the same thermodynamic property, and are complementary to each other.

3.4.1a. The deterministic model. When γ = 1, this system is in chemical equilibrium state and we have

f1([W ])

f2([W ∗])
=

v1([W ])

v∗

1([W ∗])
=

v2([W ])

v∗

2([W ∗])
= µ

[W ]

[W ∗]
,

recalling µ = d2q2/a2k2 is a constant. Hence, we get φ = µ/(µ + 1) is a constant, which does not vary with the
concentrations of the kinase and phosphatase. It implies the PdPC switch is a nonequilibrium phenomenon (γ ≠ 1), which
confirms the significant assertion that biological signal amplification needs energy.

3.4.1b. The stochastic model. The same conclusion also holds in the stochastic model. If γ = 1, then

f1([W ])

f2([W ∗])
=

v1([W ])

v∗

1([W ∗])
=

v2([W ])

v∗

2([W ∗])
= µ

[W ]

[W ∗]
,

and the steady distribution of the state iW ∗ is


N
i


µi/(1 + µ)N (Binomial distribution), so

⟨φ⟩ =
⟨W ∗

⟩

N
=

N∑
i=1

i N!

i!(N−i)!µ
i

N

1 +

N∑
i=1

N!

i!(N−i)!µ
i

 =
µ

1 + µ
,

which is the same as the quantity φ in the deterministic model and also implies that the amplification of sensitivity is
completely abolished.

Further, the de-activation constants {Ki, 1 ≤ i ≤ N} are all equal to 1
µ
, completely independent upon the concentrations

of kinase and phosphatase: there is no cooperativity.

3.4.2. Simple PdPC switch with first-order approximation
SupposeWT ≪ K1, K ∗

2 ≪ K ∗

1 , K2 (non-saturated), then

f1([W ]) = v1([W ]) + v2([W ]) ≈
V1[W ]

K1
+

V2[W ]

K2
,

and

f2([W ∗
]) = v∗

1([W
∗
]) + v∗

2([W
∗
]) ≈

V ∗

2 [W ∗
]

K ∗

2
+

V ∗

1 [W ∗
]

K ∗

1
,

are both first-order, which is just the ordinary PdPC switch discussed in [49].

The steady state of the deterministic model is [W ]
ss

=
WT
1+α

and [W ∗
]
ss

=
WT α

1+α
, where α =

V1
K1

+
V2
K2

V∗
2

K∗
2

+
V∗
1

K∗
1

. Also since

φ − 1 −
K1
WT

≈ −
K1
WT

and φ +
K∗
2

WT
≈

K∗
2

WT
, Eq. (45) is reduced to

θ =
V1K ∗

2

V ∗

2 K1
=

µγ [(µ + 1)φ − µ]

[µγ − (µγ + 1)φ]
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Fig. 12. (A)The curve of φ with respect to E1T in the deterministic model of the simple PdPC switch without the first-order linear approximation; (B) The
curve of ⟨φ⟩ with respect to E1T in the stochastic model of the simple PdPC switch without the first-order linear approximation at different volumes; (C)
The dissociation constants in the simple PdPC switchwith different volumes, where a1 = 0.01; d1 = 1; k1 = 1; q1 = 0.0001; E1T = 0.01; a2 = 0.01; d2 =

1; k2 = 1; q2 = 0.0001; E2T = 0.01;WT = 1, and α = (V1/K1 + V2/K2)/(V1/K1 + V2/K2) = 1. The horizontal line represents the quantity 1/α, which
equals all the dissociation constants under the first-order assumption.

i.e.

φ =
θ + µ

θ + µ + θ/(µγ ) + 1
=

α

1 + α
.

In the stochastic model, the steady distribution of the state iW ∗ is (from Eq. (47)) N!

i!(N−i)!α
i/(1 + α)N (Binomial

distribution), then

⟨φ⟩ =
⟨W ∗

⟩

N
=

N∑
i=1

i N!

i!(N−i)!α
i

N

1 +

N∑
i=1

N!

i!(N−i)!α
i

 =
α

1 + α
,

which is the same as the quantity φ in the deterministic model.

Furthermore,α =

V1
K1

+
V2
K2

V∗
2

K∗
2

+
V∗
1

K∗
1

is an increasing hyperbolic function of E1T . So ⟨φ⟩ = φ is also an increasing hyperbolic function

of E1T illustrating no cooperative effect either, which implies that the N molecules ofW and W ∗ are all independent.

The variance of the molecule number ofW ∗ is Σ =
α

(1+α)2
WTV , so the relative standard error is

√
Σ

φV =


WT
αV → 0 when

V → ∞, according to the mathematical theory of Kurtz [69].
Fig. 12(A) illustrates the curve of φ with respect to E1T based on the formula (49) of the deterministic model (44) of

the simple PdPC switch without the first-order linear approximation. It presents a simple hyperbolic curve, implying non-
cooperative effect. Fig. 12(B) illustrates the curves of ⟨φ⟩ with respect to E1T in the stochastic model (46) of the simple PdPC
switch without the first-order linear approximation at different volumes, all of which also presents the simple hyperbolic
shape. Fig. 12(C) represents the dissociation constants {Ki} of temporal cooperativity with different volumes. It is found
that in such a simple PdPC switch, these dissociation constants are all very close to 1 regardless of the variety of volumes,
reconfirming no obvious cooperative phenomenon.

3.4.3. Ultrasensitive PdPC switch with zeroth-order approximation
Suppose K2, K ∗

1 ≫ WT ≫ K1, K ∗

2 (saturated), and K ∗

2 ≪ K2, K1 ≪ K ∗

1 , one can arrive at the limit case
[W∗

]

K∗
1

≈ 0 and [W ]

K2
≈ 0


f1([W ]) = v1([W ]) + v2([W ]) ≈ V1,

and

f2([W ∗
]) = v∗

1([W
∗
]) + v∗

2([W
∗
]) ≈ V ∗

2 .

These are both in zeroth-order case. This is just the situations of ultrasensitive PdPC switch discussed in [57] and zero-
order ultrasensitivity phenomenon put forward by Goldbeter and Koshland [54]. The Hill coefficient of the response curve
can approach thousands and tens of thousands. It is worth pointing out that such a limit case can only be achieved when
γ ≠ 1, since otherwise V ∗

1 V2 ≫ V1V ∗

2 which contradicts the zero-order approximation.
In the deterministic model of this limit case, we have φ = δ{V1>V∗

2 }, which is a step function with ideal infinite sensitivity.

And in the stochastic model, the steady distribution of the state (N − i, i) is αi

N

1+
∑N

i=1 αi
 (truncated geometric distribution),
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Fig. 13. (A) The curve of ⟨φ⟩ with respect to E1T at different volumes in the stochastic model of ultrasensitive PdPC switch under the zero-order
approximation; (B) The curve of φ with respect to E1T in the deterministic model of the ultrasensitive PdPC switch without the zero-order approximation;
(C) The curve of ⟨φ⟩with respect to E1T of different volumes in the stochasticmodel of the ultrasensitive PdPC switchwithout the zero-order approximation;
(D) The dissociation constants in the ultrasensitive PdPC switch, where a1 = 10; d1 = 1; k1 = 1.5; q1 = 0.0001; E1T = 0.01; a2 = 10; d2 = 1; k2 =

1.5; q2 = 0.0001; E2T = 0.01;WT = 10; and α = V1/V ∗

2 .

so

⟨φ⟩ =
⟨W ∗

⟩

N
=

N∑
i=1

iαi

N

1 +

N∑
i=1

αi

 =


NαN+1

−
αN+1

−α
α−1

N(αN+1 − 1)
α ≠ 1;

1/2 α = 1,

where α =
V1
V∗
2
is the ratio of the forward flux fromW to W ∗ and the backward flux fromW ∗ toW .

Obviously, ⟨φ⟩ is an increasing function of α, and consequently an increasing function of E1T . And when N → ∞, one has
⟨φ⟩ → 1, if α > 1; ⟨φ⟩ → 0, if α < 1. The classical Hill coefficient in this case nH = 2 d log⟨φ⟩

d logα


⟨φ⟩=

1
2

=
1
3N +

2
3 . Therefore,

when the total molecule number N tends to infinity, the Hill coefficient can increase to an arbitrary value.
Hence, when theMichaelis constants K1, K2 are quite small, the ultrasensitive cooperative phenomenon emerges both in

deterministic and stochastic perspectives, although their sensitivities cannot be as high as in the limit case discussed above.
Firstly, we investigate the cooperative phenomenon in the limit case of zero-order approximation.
Fig. 13(A) illustrates the curves of ⟨φ⟩ with respect to E1T at different volumes in the stochastic model of ultrasensitive

PdPC switch under the zero-order approximation, in which it is found that the sensitivities of these curves are increasing
with the volumes (molecule numbers) and finally approaches the ideal jumping curve of φ with infinite sensitivity.

Secondly, we turn to discuss the cooperative phenomenon without the zero-order approximation.
Fig. 13(B) illustrates the curve of φ with respect to E1T based on Eq. (49) in the deterministic model (44) of the

ultrasensitive PdPC switch without the zero-order approximation, whose sensitivity is less than that in Fig. 13(A) but much
larger than that in Fig. 12(A). Fig. 13(C) illustrates the curves of ⟨φ⟩ with respect to E1T at different volumes in the stochastic
model (46) by formula (49) of the ultrasensitive PdPC switchwithout the zero-order approximation, inwhich it is found that
the sensitivities of these curves are increasing with the volumes (molecule numbers). Fig. 13(D) represents the dissociation
constants {Ki} of cooperativity with different volumes. It is found that in the ultrasensitive PdPC switch, these dissociation
constants clearly decrease, and the gradient increases with the total molecule numbers, suggesting more and more distinct
cooperative phenomenon.

3.5. Mathematical equivalence to allosteric cooperativity

Let us now turn to show an equivalence between the underlying mathematics in temporal cooperativity and in allosteric
cooperativity, both of which can be expressed by ‘‘dissociation constants’’, which also articulates the essential differences
between the simple and ultrasensitive PdPC switches (Figs. 12 and 13).



H. Ge et al. / Physics Reports 510 (2012) 87–118 115

Fig. 11(B) is the general model of allosteric cooperative phenomenon including both the famous MWC and KNF
models [72–74], which can all be expressed by the Adair scheme, first proposed by Adair [75] in relation to the binding
of oxygen to hemoglobin. In this model, the concentration of the substrate S is fixed, and the state ESi represents the state
in which there are i sites occupied with substrates among the total N sites.

It is very important to point out that Fig. 11(A) and (B) are just the same, while the temporal cooperativity is on the
scale of the N sequential phosphorylation–dephosphorylation cycles. The sequential states in Fig. 11(A) are adjacent in time
rather than in space which is the case in allosteric cooperativity.

Although there is no direct interaction between the substrate enzymes, the total N molecules ofW andW ∗ are not really
independent: they all compete for the single kinase and phosphatase and hence there are implicit interactions between
them. Because this interaction is not through space, but instead is sequential in time, so in [57,11] one of us referred it as
temporal cooperativity.

Moreover, the meanings of the quantity N in Fig. 11(A) and (B) are totally different: the former represents the total
molecule number in the temporal cooperativity model and the latter represents the total number of sites on a single
enzyme molecule respectively. Hence, the degree of allosteric cooperativity is restricted by the total number of sites in
a single enzyme molecule which cannot be very high (see Eq. (50)) and freely regulated, while temporal cooperativity is
only restricted by the total molecule number of the target protein which can be regulated in a wide range and gives rise to
the ultrasensitivity phenomenon.

Cooperativity can be generally considered in relation to the Adair scheme, and the general form of Adair equation is

φ =

N∑
i=1

(N−1)!
(i−1)!(N−i)!

ci
i∏

j=1
Kj

1 +

N∑
i=1

N!

i!(N−i)!
ci
i∏

j=1
Kj

,

where c = [S], Kj =
(N−j+1)c[ESj−1]

j[ESj]
is the dissociation constant of the jth molecule of the substrate (regardless of site).

Consequently, there is an important corollary, that is the Hill coefficient of the [S] − φ curve determined by the Adair
equation cannot exceed the total number N of sites on a single enzyme, i.e.

nH = 2
d logφ

d log c


φ=

1
2

=

4

N∑
i=1

i (N−1)!
(i−1)!(N−i)!

ci
i∏

j=1
Kj

1 +

N∑
i=1

N!

i!(N−i)!
ci
i∏

j=1
Kj

− 4N(φ)2




φ=

1
2

≤ [4Nφ − 4N(φ)2]|
φ=

1
2

= N. (50)

Hence, the degree of allosteric cooperativity is restricted by the total number of sites in a single enzymemolecule which
cannot be freely regulated, while temporal cooperativity is only restricted by the totalmolecule number of the target protein
which can be regulated in a wide range and gives rise to the ultrasensitivity phenomenon. That is just why the organisms
find it advantageous to develop the mechanism of covalent modification via phosphorylation and ATP hydrolysis to control
the biological activity of proteins rather than themechanism of allosteric transitions. Possibly, it partly answers the question
of Fischer and Krebs.

Therefore, the improving of the total number of molecules of target protein cannot increase the degree of allosteric
cooperativity, while it can obviously increase the degree of temporal cooperativity, indicated by the increasing gradients of
the fractional saturation function ⟨φ⟩ (Fig. 13(C)) and the decreasing dissociation constants {Kj, j = 1, 2, . . . ,N} (Fig. 13(D))!

3.6. PdPC with positive feedback

So far, we have discussed the phenomenon of ultrasensitivity in the reversible PdPC. There, the greatest cooperativity
possible in a response curve, i.e., ⟨φ⟩ as a function of E1T as in Fig. 13, will be a step-function. Bistable systems, however, can
have a response curve not even monotonic. We now turn to discuss bistability caused by additional positive feedback in a
PdPC network. And further from Fig. 14, one could easily see that the PdPCwith feedback is equivalent to the self-regulating
gene problem [12,14,15], which could always exhibits bistability too. In particular, we shall consider the case of positive
feedback with a dimer (χ = 2) (see Fig. 15(A) and (B) for detailed kinetic scheme). All the analysis below can be transported
to the case of gene expression system with χ = 2 in Fig. 14(A). On the other hand, it has been shown that for χ = 0, 1, the



116 H. Ge et al. / Physics Reports 510 (2012) 87–118

A

B

Fig. 14. Two almost isomorphic biochemical networks involved in gene regulation and cellular signaling. (A) A transcription factor (TF) is the gene
product which regulates its own gene expression as a monomer or dimer (χ = 1, 2). g0 > g1 and g0 < g1 correspond to a repressor and an activator,
respectively. (B) A protein phosphorylation system catalyzed by a kinase K and a phosphatase P: the kinase is itself regulated through bindingχ copies of E∗

[78,62,63,61].

A B C

Fig. 15. (A) A simple biochemical signaling network consisting of a regulatory factor E, its activator K (kinase) and inhibitor P (phosphatase). There is a
positive feedback from the activated E to the kinase K . The feedback is in the form of activation of the kinase to become KĎ , shown in (B), by binding of
two phosphorylated regulator E∗ . (C) The landscape φ(x) for the network in (A) and (B), with xt = 1, α = 43, β = 10, ϵ = 0.01 and δ = 0.5. The fixed
points are at 0.05 (stable), 0.632 (stable), and 0.368 (unstable), corresponding to the two wells and the barrier.

cellular signaling network in Fig. 14(B), with slow fluctuating kinase activity, also exhibit stochastic bistability [76,77]. The
theory we present here is indeed general to both types of biochemical networks, with and without gene expression.

If the copy numbers of the molecules are large, then the CME automatically yields the deterministic kinetics as predicted
by the traditional kinetic theory. The new information one obtains from the CME is the adaptive landscape shown in
Fig. 15(C), which is an emergent entity not given a priori. There are two issues related to this important distinction: (1) The
mathematical existence of such a landscape in a general, stochastic dynamics which does not have detailed balance; and
(2) How is such a landscape, even exists, related to the dynamics, both deterministic and stochastic. The most nontrivial
issue here is the logical relationship between the landscape and the dynamics [79,51,80–82]: It is absolutely clear that in
the detailed-balanced system, the landscape exists a priori and the dynamics is a consequence of the landscape. However,
for systemwithout detailed balance, the dynamics, as defined by the reaction networks and all the individual rate constants,
define the overall dynamics as well as define the landscape. Hence, logically, it is not correct to say that the dynamics is a
consequence of the landscape. Nevertheless, the landscape is still a very useful device to understand and characterize the
overall dynamics. The concept of adaptive landscape, thus, should only be understood in this ‘‘retrospective’’ way.

Further, Fig. 15 also suggests that there are three distinct time scales in a bistable mesoscopic biochemical reaction
systems. The first time scale is from the individual biomolecular reactions in Fig. 14. For our theory, they are given in terms
of the parameters f , g, h, k in Fig. 14(A) and ks in Fig. 14(B). Millisecond are not unreasonable for this time scale, even
though certainly there are much faster and slower biochemical reactions inside a cell. The second time scale is the network
relaxation to steady states, as illustrated in the Fig. 15(C) by the downhill dynamics, and the third time scale is the transition
rates between the twowells. Both the latter two time scales are emergent properties of the biochemical network.We shall call
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these three time scales molecular signaling time scale (MSts), biochemical network time scale (BNts), and cellular evolution
time scale (CEts), respectively.

The CEts is very sensitive to the number of molecules in the biochemical system, thus, with a given concentrations, the
size of the cell volume. It could be shown that with the MSts on the order of milli-and microsecond, and with concentration
of E on the order of micromolar, the transition times between the two states in Fig. 15(C) can be as long as thirty thousand
years! Hence, the stability of the emergent attractors are extremely stable against spontaneous concentration fluctuations
(i.e., intrinsic noise) in the system.

4. Remarks on the theory of nonequilibrium steady state

Nonequilibrium statistical thermodynamics has a very rich history. In this section, we give some remarks on the
development of the mathematical theory of nonequilibrium steady state (NESS) from the authors perspective. It is certainly
not a researched historical account of the subject. We sincerely apologize for the biased and incomplete discussion, which
reflects our own ignorance and brief nature of this review.

The idea of detailed balancewas independently proposed in thework of chemist Lewis [3,4], influenced by an observation
of Wegscheider [83], and physicist Tolman [1,2]. Note that Lewis’ chemical detailed balance applies to linear and nonlinear
macroscopic chemical reactions, while Tolman’s detailed balance is formulated in connection to transition probability.
They are different. Bridgman wrote a succinct summary, in 1928, on the principle and its relation to the Second Law
and to measurability [84]. The role of measurability in a system’s entropy was further elucidated in Refs. [85,86]. More
importantly, Bridgman clarified the difference between a steady-state sustained by detailed balance (equilibrium) and by
cyclic reactions (NESS), an idea that had already been presented in the original work of Boltzmann’s kinetic theory. This
distinctionwas explicitly stated by Klein [87] who also introduced the term ‘‘nonequilibrium steady-state’’. For overdamped
systems which include all the chemical reactions in aqueous solution, the Second Law ensures the detailed balance in
closed systems. The concept of detailed balance was also an essential ingredient of Onsager’s theory, which defined detailed
balance in terms of time symmetry (x, v, t) → (x, −v, −t) [88]. And in the 1950s, Cox formulated a quite complete
mathematical theory [89,90], connecting stochastic Markov dynamics based onmaster equation and Brownianmotion with
Gibbs’ statistical mechanics as well as Onsager’s theory of linear irreversibility.

The idea on quantifying entropy increase and the Second Law in irreversible processes first appeared in the work of
Eckart [91,92] who related the rate of entropy change to heat dissipation associated with the various linear transport laws,
such as that of Ohm (electricity), Fourier (heat), and Newton (viscosity). Again, Bridgman summarized the state of affair [93]
and clarified the important equation for ‘‘increase of entropy in the regionwithin a closed surface’’ (dS/dt) and the difference
between ‘‘entropy which has flowed out of the region across the surface’’ (hdr) and ‘‘entropy generated by irreversible
processes within the surface’’ (epr). Since then, the equation for entropy balance became the center piece of the theory of
irreversible thermodynamics [94]. The development of far-from equilibrium open-system theories of Hill [95,96] and the
Brussels school [97,70] in the 1970swere both built on these foundations.While the former clearly identified the breakdown
of detailed balance and cycle flux with a NESS, the latter emphasized the central role of positive entropy production and the
nonlinear nature of self-organization. It is unfortunate that the Cox’s stochastic nonequilibrium dynamics had not survived
to these later theories which were clearly motivated by chemistry and biology.

Inside mathematics, the legacy of Kolmogorov [5] has been carried on, though in a rather slow pace, in both theory
of stochastic processes in connection to symmetric Markov processes [98,99] and statistics in connection to Monte Carlo
methods for simulation [100,101]. Themonograph [26] was the attempt to introduce rigorously the notions of the NESS and
entropy production to mathematicians. The goal of the present review is to re-connect this unifying approach to biophysics
and biochemistry. In recent years, an attempt to introduce the stationary cycle flux into the landscape theory [7] has also
appeared [79,81]. In a nonequilibrium steady state, this is an emergent dynamic aspect that is completely absent in an
equilibrium steady state.
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