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a b s t r a c t

The concepts of equilibriumandnonequilibrium steady states are introduced in the present
review as mathematical concepts associated with stationary Markov processes. For both
discrete stochastic systems with master equations and continuous diffusion processes
with Fokker–Planck equations, the nonequilibrium steady state (NESS) is characterized
in terms of several key notions which are originated from nonequilibrium physics:
time irreversibility, breakdown of detailed balance, free energy dissipation, and positive
entropy production rate. After presenting this NESS theory in pedagogically accessible
mathematical terms that require only a minimal amount of prerequisites in nonlinear
differential equations and the theory of probability, it is applied, in Part I, to two widely
studied problems: the stochastic resonance (also known as coherent resonance) and
molecular motors (also known as Brownian ratchet). Although both areas have advanced
rapidly on their own with a vast amount of literature, the theory of NESS provides them
with a unifying mathematical foundation. Part II of this review contains applications of
the NESS theory to processes from cellular biochemistry, ranging from enzyme catalyzed
reactions, kinetic proofreading, to zeroth-order ultrasensitivity.
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1. Introduction

Based on the three fundamental laws and the concept of temperature (sometimedefined through the zeroth law) classical
thermodynamics provides a complete and concise description of the equilibrium state of a closed molecular system —
be it a box of gases, a collection of electrons confined in a block of metal, or a test tube of biological macromolecules
in aqueous solution [1]. With atoms and molecules in mind, more precisely, according to Gibbs’ theory there are several
thermodynamically equivalent ways to set up a molecular system: the ensembles [2]. An isolated system has no exchange
of energy nor material with its surrounding. A canonical system exchanges energy with its environment at a constant
temperature via heat. A grand canonical system can exchange both energy, via heat, and materials with its surrounding at a
constant temperature and a constant chemical potential. One example for the last is a dialysis tube with a semi-permeable
membrane that contains proteins [3–6].

All the above systems are thermodynamically closed. One essential feature of a closed thermodynamic system is the
monotonic increase (or decrease) of its entropy (free energy). This is a hallmark of the destruction of order in a system
spontaneously approaching to its equilibrium [7,8]. However, in a real life, especially in biological organisms, many systems
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are actually open to exchange of energy and materials with their environment.1 In contrast to a closed system, an open
system exists in a state away from equilibrium even when it reaches its steady state. As has been articulated in I. Prigogine’s
seminal text [9], nonequilibrium systems can generate self-organized order even without introducing external mechanical
forces. While it does not require external mechanical force, it is necessary to have an external chemical driving force. This
thermodynamic necessity is at the heart of the problem:We are accustomed tomacroscopic organization due tomechanical
forces; but somehow infinitely surprised by mesoscopic organization due to chemical forces.

Nonequilibrium phenomena are ubiquitous and widely present in physics, chemical reactions, cellular activities and
biological systems. We would like to make a clear distinction, however, at the on-set of this review: A significant portion
of nonequilibrium phenomena being studied in the literature are ‘‘time-dependent’’ phenomena: There, one is interested
in the system’s dynamics on its way toward equilibrium. This is not the focus of this review. Rather, we are interested in
systems with ‘‘driving forces’’. Further more, we will be mainly interested in the time-invariant stationary behavior of such
systems. Two examples, one electrical and one thermal, immediately come to mind: A copper wire connecting a constant
electrical battery and an iron bar under a constant temperature gradient across its two ends. A bacteria cell is the chemical
version of these two examples: glucose goes in and carbon dioxide and water come out.

What systems are far from equilibrium?What are the basic rules that govern these systems and phenomena? How dowe
mathematically characterize them?With respect to the first question, Prigogine and the Brussels school have long regarded
a stationary nonequilibrium system as a time-invariant open system with positive entropy production rate. However, such
a definition is only descriptive. How to measure the entropy production rate? Not satisfied with the above descriptive
definition of the so-called nonequilibrium steady state, one of us (M.Q.) and his colleagues at Peking University began
to develop a rigorous mathematical treatment shortly after the publication of the celebrated book Self-Organization in
Nonequilibrium Systems: From dissipative structure to order through fluctuations in 1977 [9]. Now after more than thirty years
of effort and endeavor, several basic concepts and rules have been clarified. A comprehensive, but rather mathematical
monograph has already been published [10]. The present review is written with the aim of being more accessible to a wider
audience in physical and biological sciences.

We assume that a molecular system can be mathematically characterized by a stochastic model: This can be a master
equation, a Fokker–Planck equation, or a Markov chain, depending on the nature of the molecular system under study.
Within this mathematical framework, the first concept is the distinction between detailed balance that is a consequence of
an equilibrium state and nonequilibrium steady state (NESS) in terms of their different mathematical assumptions. In fact,
Kolmogorov has already indicated, as early as 1935 [11], the equivalence between the concept of detailed balance originated
in physics and the mathematical concept of reversibility of a Markov chain. This deep relation even had been hinted in the
original work ofMaxwell and Boltzmann. Inspired by this, M. Qian and his colleagues proposed that a nonequilibrium steady
state is actually a stationary, irreversible Markov process in mathematical terms.2

The second concept emerged from this study reveals the origin of all nonequilibrium phenomena: Dissipation lies in
the appearance of circulation in a stochastic sense. Cyclic dynamics with rhythms play important roles in a wide range of
engineering and biological systems, see texts such as [14,15]. However, to be able to identify such dynamics as a fundamental
aspect of any nonequilibrium system in steady state is a very significant insight.

A third theoretical result that is particularly important is the quantification of entropy production rate via a rigorous
mathematical formula. One is able to prove that positive entropy production rate is the sufficient and necessary condition
for unbalanced circulation. Recall that the Second Law of Thermodynamics has always been an inequality only. Hence, being
able to provide a quantitative supplement to the Second Law should have a long-lasting consequence in physics and biology.
We shall also point out that the recent development of fluctuation theorems is precisely along a similar line [16]. See also
the work of Zia and Schmittmann [17].

All the above mentioned results have been published in research papers and recently summarized in a Springer
Lecture Notes in Mathematics (LNM) [10]. However, the LNM has put its main emphasis on the mathematical rigor; the
physical meaning of the entire theory of nonequilibrium steady states, thus, is obscured in the logical deductions for the
mathematical theorems. Furthermore, the LNM does not contain any example for the applications of the theory in analyzing
nonequilibrium phenomena.

The present review, thus, is designed to amend the shortcomings of the LNM. With the recently emerging interests
in computational systems biology at cellular level, it is now timely to have a text for physicists, biochemists and applied
mathematicians interested in the subject that is mathematically not too involved but at the same time with some detailed
applications of theory of NESS. This sets the tone of the review inwhichwemainly emphasize themathematical expressions
of the theory of NESS as well as its applications in physics and biochemistry. Readers with a minimal amount of background
in probability theory and stochastic processes will be easy to follow the physical ideas in mathematical terms.

As in the equilibrium theory of matters where the deeper understanding of thermodynamics relies on a molecular view
of fluctuations, the nonequilibrium phenomena can only be fully understood in terms of fluctuations. Therefore, the more

1 Another often made statement is that complex systems are open to information exchange with their surrounding. However, information is only an
abstract term; as far as we know its physical bases have to be either energy or material.
2 In a recent publication [12], a more refined distinction betweenmathematical detailed balance and chemical detailed balance of Lewis [13] is introduced

and discussed.
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effective, probably the best, way to study nonequilibrium systems is to use themethod of stochastic processes. After all, this
was the choice of Gibbs. There exist several excellent books that deal with nonequilibrium phenomena or the method of
stochastic processes, but none of them has combined the two as one coherent theory. For example, Risken, van Kampen, and
Gardiner’s books are all excellent texts for applying stochastic methods in physics and chemistry [18–20], but there are no
focused discussions on nonequilibrium phenomena. The books by Nicolis and Prigogine, Keizer, and Ross [9,21,22], on the
other hand, contain a great deal of related materials; but they did not present their theories with a coherent mathematical
framework. The recently published Computational Cell Biology [23] aims to discuss nonequilibriumphenomena at the cellular
level, but it is mainly based on deterministic dynamical systems rather than stochastic mathematics.

Since 1970s, there has been a growing fascination toward driven phenomena in stochastic systems sustained in NESS.
H. Haken and his colleagues have developed a successful program for laser physics, which were further developed into
the general theory of synergetics [24,25]. The Brussels school’s approach has been more rooted in physical chemistry. Two
of the most widely studied NESS systems in recent years, stochastic resonance (SR) [26] and molecular motors [27], have
their theoretical origins in the earlier work [28]. There are many other systems to which the theory of NESS can be applied;
but stochastic resonance and molecular motors are two areas with which we are most familiar. Thus they are the main
examples for the applications in the Part I of this review. In the Part II, applications of the theory of NESS to problems in
chemical biophysics, via enzyme kinetics, will be presented.

This review is organized as follows. In Section 2, we introduce the background material needed for and the foundations
of the theory of NESS. Section 2.1 illustrates the concept of amesoscopic system using an enzymatic reaction as an example.
Section 2.2 discusses the equilibrium and nonequilibrium steady state properties of a mesoscopic system from a statistical
thermodynamic point of view. Section 2.3 presents the mathematical background for mesoscopic systems in terms of a
discrete Markov jump (Q) process (i.e., master equation). It derives the basic properties of equilibrium state and NESS
through amore rigorous mathematical treatment. In Section 2.4, the discussion is extended to diffusion processes and NESS
in continuous stochastic systems. In particular, we discuss one-dimensional stochastic dynamics on a circle. This is a very
unique topic which offers a great deal of insights to the general problem of NESS. All the materials in Section 2 provide the
theoretical foundations for the applications in the subsequent Sections 3 and 4.

In Section 3, we study the coherence resonance (CR), also widely known as SR without forcing. As we shall show, the
theory of NESS indeed sets the mathematical foundation for the exciting phenomenon. In Section 3.1, we first give a general
introduction that distinguishes the two types of SR: the traditional SR which occurs under the interplay of noise and a weak
deterministic periodic forcing, and the CR which occurs with only noise perturbation. In Section 3.2, the nonequilibrium
nature of CR is investigated in several excitable systems that include a simple phase model, the integrate-and-fire model,
as well as the FitzHugh–Nagumo model. We shall also discuss CR in a single Hodgkin–Huxley neuron with intrinsic noises
aroused from the stochastic opening and closing of membrane channels. We show that the phenomena of CR, whether
the noise is from external environmental perturbations or intrinsic molecular fluctuations, is always originated in the
nonequilibrium circulation in a NESS. In Section 3.3, we investigate the traditional SR in a typical bistable system and
a periodically driven overdamped pendulum model. We show that one can map a non-autonomous periodically driven
system to a high-dimensional autonomous one. Therefore, there is no fundamental difference between SR andCR.We further
explore the phenomena of CR and SR in coupled oscillators in Section 3.4. It is found that both CR and SR are greatly enhanced
in the coupled systems.

Section 4 is devoted to the application of the NESS theory to Brownian motors. In Section 4.1, we presented a brief
introduction of the noise-induced unidirectional transport in a spatially periodic but asymmetric potential. Due to the
periodic nature of the problem, the dynamical framework of the Brownian ratchet is stochastic dynamics on the torus, as
illustrated in Section 4.2. The relationship between probability flux, rotation number, and the mean velocity of a Brownian
ratchet are discussed in Section 4.3. These sections prepare us for Section 4.4, which investigates the unidirectional transport
of a Brownian ratchet in a spatially periodic but asymmetric potential and its corresponding dynamics. It is shown that the
direction and velocity of the unidirectional movement are closely related to the relative position of stable and unstable
limit cycles on a cylinder. Section 4.4 studies the unidirectional transport in coupled diffusion systems, which model motor
proteins, such as a kinesin moving along a microtubule with conformational transitions. In the presence of both periodic
driving and white noise forces, the motor undergoes either positive unidirectional transport or negative unidirectional
transport, depending on the amplitude of the driving force. In Section 4.6, we study the efficiency of energy transduction by
Brownian ratchet. It is illuminating to discover that the efficiency of free energy transduction can be expressed exactly in
terms of the entropy production rate of a Brownian ratchet during the process of transport against a load. This demonstrates
the fundamental role the NESS theory plays in Brownian motors. Section 5 provides some concluding remarks and outlook.
In the Appendices, some detailed mathematical materials are presented.

2. An introduction to nonequilibrium steady states

2.1. Microscopic, macroscopic and mesoscopic systems

We assume our readers have some familiarity with the terminology of macroscopic world and microscopic world: The
former usually refers to material in our daily life that is described by a handful of variables (e.g., volume, temperature, total
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internal energy), even though it consists a large number of particles (1019–1023!). The latter usually refers to a complete
molecular (or atomic) description of all the particles in the system, in terms of their positions and momenta. To some other
authors, these two terms are related to the classical world and the quantumworld. In recent years, one often hears also the
term mesoscopic. The prefix meso- means ‘‘middle’’ or ‘‘intermediate’’ [29]. First introduced by van Kampen [30], physicists
now use mesoscopic systems to describe a physical world that is between classical and quantum physics [31], or between
the few-variable description and the complete molecular description.

In this review, our usage of the term ‘‘mesoscopic’’ is in line with Laughlin et al. [29]. What we are concerned with is
a class of molecular systems widely observed in biology, whose configurational states change with the evolution of time.
For example, in biochemical reactions, an enzyme can exist in either a state that without binding anything or in a state
that binding a substrate (or a product) molecule. The latter is widely known as enzyme–substrate (-product) complex. In
cell membrane, almost all the ion channel proteins switch between open and close states that allow or forbid specific ion
passing through. These systems cannot be simply categorized asmacroscopic ormicroscopic: They are notmacroscopic since
it is only one or few protein molecules; they are not microscopic since the proteins are immersed in aqueous fluid or sea of
lipids; there are very large number of atoms in the molecular systems. We, thus, prefer to call these systems mesoscopic.
We shall further clarify this concept below. Perhaps the best known theory of mesoscopic systems, according to our usage,
is the polymer theory developed by P.J. Flory, B.H. Zimm, and P.-G. de Gennes [32].

Let us first review the concepts of microscopic states and macroscopic states which can be found in any textbook on
statistical physics [33]. In principle, the true dynamics of a microscopic system follows quantum mechanics. To avoid
unnecessary additional knowledge of quantum mechanics, however, we shall confine ourselves to consider only classical
physics. Consider a system consisting of r , an enormous number (on the order of 1023) of particles such as molecules and
atoms. From the standpoint of classical mechanics, the state of each individual particle can be represented by its three-
dimensional coordinate q⃗ andmomentum p⃗. If we know themechanical states of each individual particle at any fixed time t ,
then the state of such a system can be determined by the values of r generalized coordinates q⃗1, q⃗2, . . . , q⃗r and r generalized
momenta p⃗1, p⃗2, . . . , p⃗r at this time. Hence, a microscopic state of a multiple-particle system is a representative point in a
6r-dimensional phase space.

According to the laws of classical mechanics, the microscopic evolution of a macroscopic system can be described by a
trajectory in the 6r-dimensional phase space. However, due to the extremely complex and intractablemotions of themany-
body system, it is impossible to describe the microscopic motion of such a system just by applying the classical mechanical
theorywhich requires solving an enormous number of differential equations.3 The behaviors andproperties of amacroscopic
systemwe observed in daily life are basically the consequences of the interactingmicroscopic particles. It is sufficient to give
a macroscopic description of the system by statistically averaged method based on the fundamental mechanical properties
such as positions andmomenta of microscopic particles [34,35]. This is the subject of statistical physics, which connects the
macroscopic quantities with the microscopic states of a multi-particle system. In statistical physics, a macroscopic state
of a system is a complete macroscopic description in terms of temperature, pressure and internal energy etc., under some
thermodynamical assumptions. A macroscopic state corresponds to many microscopic states. A ‘‘complete description’’ is
determined depending upon the particular problems to be studied [33]. Classical statistical mechanics, however, can only
deal with systems that are under thermodynamic equilibrium. In the language of systems biology, equilibrium statistical
physics is about the intrinsic properties of macroscopic matters; it is not about a functional system.

To illustrate the concept of mesoscopic state, let us consider the biochemical reaction of adenosine triphosphate (ATP)
hydrolysis. Inside living cells this reaction is the central energy generator for all the other processes [36]. In terms of atoms,
ATP is a nucleotide formed by attaching three phosphate groups at the 5’ carbon atom of a pentose sugar. It is an extremely
importantmolecule since its hydrolysis reaction powers the gene expression, cell division, biosynthesis, signal transduction,
etc. In Section 4, we shall study a nonequilibrium phenomenon of how ATP providing chemical energy to drive a class of
proteins called molecular motor that, by a single molecule, moves unidirectional along its linear track.

To fulfill all the important functions of ATP in a living cell, however, the hydrolysis reaction has to have the participation
of the enzyme called ATPase and/or kinase. They are macromolecules (biopolymers). In the presence of the enzyme, ATP in
aqueous solution is quickly hydrolyzed into ADP (adenosine diphosphate) plus Pi (inorganic phosphate), and free energy in
the ‘‘chemical gradient’’ (see below) is released. For simplicity, we write the ATP hydrolysis process as follows:

M+ATP
α1


β1

M · ATP, (1a)

M · ATP
α2


β2

M · ADP · Pi, (1b)

M · ADP · Pi
α3


β3

M · ADP + Pi, (1c)

M · ADP
α4


β4

M + ADP. (1d)

3 Nevertheless, such an approach is oneway to studymesoscopic systems. Themethod is calledmolecular dynamic (MD) simulationswhich have enjoyed
a great deal of applications in molecular biophysics and material sciences.
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Fig. 1. An image of a structural model, made of balls and sticks, of protein molecule hexokinase, a key enzyme in cellular glycolysis process. On the top
right-hand corner are ATP and glucose, two small molecules which are substrates of the enzyme. Carbon atoms are in white, oxygens are in red, nitrogens
are in blue, and phosphorus atoms are in orange. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Source: Copied from online Wikipedia http://en.wikipedia.org/wiki/Protein.

In the first equation, the forward direction says that the enzyme M is associated with ATP to form a complex M·ATP, while
the backward direction refers to the dissociation of the enzyme M and ATP. The second reaction represents the catalyzed
hydrolysis of ATP into ADP plus Pi when they are bound with the enzyme. The third reaction is for the Pi to leave the ternary
complex M·ADP·Pi. In the last reaction the ADP is dropped off from the complex M·ADP, and the enzyme is recovered to its
original state. The parameters αi and βi (1 ≤ i ≤ 4) refer to the forward and backward chemical reaction rate constants
according to the Law of Mass Action. Some of them, the first-order rate constants, have a dimension of [time]−1, and other,
the second-order rate constants, have a dimension of [concentration]

−1
[time]−1. Chemical rate constants are different from

the transition probability rates in a Markov model (see below).
Inside a cell there are many copies of the enzymeM, some of which are by itself, while others are in the ternary complex

with ADP and Pi. We shall regard M, M·ATP, M·ADP·Pi and M·ADP as four different ‘‘conformational states’’ of an enzyme
molecule, denoted as M1,M2,M3,M4, respectively. This definition is motivated by well-established biophysical studies of
enzyme kinetics of ATP hydrolysis. Fig. 1 shows that each state of the enzyme is a collection of large number of atoms.
Furthermore, all the atoms, as well as water molecules around the enzyme, are in constant thermal motion. Therefore, we
can treat the ‘‘ensemble’’ as a macroscopic system. This can be done for each of the four states.

If the concentrations of ATP, ADP, and Pi are much greater than that of the concentration of the enzyme, then each copy
of the enzyme is essentially independent of other copies. In this case, we only have to track one enzyme. Its dynamics
is stochastic due to all the microscopic motions of the atoms within. In fact, it is impossible to determine completely the
positions and themomenta of all the atoms at time t fromonly knowing that the enzymebeing inmesoscopic conformational
state i (1 ≤ i ≤ 4) at time zero; neither can we know for certain what the conformational state of the enzyme is at time
t . However, both empirical evidences and Kramers’ theory for chemical reactions [37] state that the enzyme conformation
changes by ‘‘jumping’’ from one of the four possible states to another with certain transition probability. We, thus, can write
the conformational dynamics of a single enzyme as

1
M

k+1


k−1

2
M·ATP

k+2


k−2

3
M·ADP·Pi

k+3


k−3

4
M·ADP

k+4


k−4

1
M , (2)

where k±i are the transition probability rates.
The ‘‘chemical kinetic scheme’’ in Eq. (2) is in fact a stochastic Markovmodel for the conformational transition of a single

enzyme.4 We know the probability of the occurrence of each conformational state if we know the probability of its initial
state. A macromolecule such as an enzyme that consists of a large number of atoms can be understood in the macroscopic
terms. For this reason, we call such a system amesoscopic system, and the conformational states are correspondingly called
mesoscopic states. Themesoscopic system is interpreted in a probability sense, which exhibits certain degree of uncertainty
of the occurrence of the system’s conformational states. A mesoscopic system will undergo different conformational
states with the evolution of time, stochastically. We can study this dynamics from the transition rates between these
conformational states, and its statistical properties from the time evolution of the probability distribution of the system
being in different states.

4 A more fundamental approach that justifies this entire mesoscopic approach is the theory of Kramers [37,38].

http://en.wikipedia.org/wiki/Protein
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2.2. Equilibrium and nonequilibrium properties of mesoscopic systems

In this section, we shall explore the equilibrium and nonequilibriumproperties ofmesoscopic systems from two different
angles, but both reach the same conclusions at the end. Let us first consider a liquid system containing N different
components e.g. M1,M2, . . . ,MN . Suppose that the system keeps in a close contact with a large heat bath with constant
temperature T and pressure P , i.e., the system considered is in an isothermal and isobaric surrounding. For simplicity, the
concentration of every substance is assumed to be independent of its position, and there is no external input or output of
mechanical energy.

In classical thermodynamics, one frequently talks about reversible processes. These are processes that can be ‘‘reversed’’
by means of infinitesimal rate of change in some property of the system without loss or dissipation of energy [39]. Due
to these infinitesimal rate of change, the system is in equilibrium throughout the entire process. All the properties of a
reversible process are derived from the Laws of Thermodynamics. The First Law is about the conservation of energy in a
physical system. For a single-component system, it is stated as

‘‘The increment of the internal energy of a system is equal to the amount of energy added by heating the system, minus the
amount of lost as a result of the work done by the system on its surroundings.’’

Mathematically, the First Law is expressed in the following equation

dU = δQ − δW , (3)

where U is the internal energy, and dU is the infinitesimal increase of the internal energy. As one knows that the internal
energy U is a state function while heat Q and work W are not. The latter are dependent upon a physical process. We using
δQ to represent the infinitesimal amount of heat obtained by the system, and δW the infinitesimal amount of work done by
the system, through the process.

When a system is doing work against its surrounding only in the form of volume change, δW = PdV where P is the
pressure on the system. For a system at temperature T and when an amount of heat δQ is absorbed, Clausius introduced
a quantity dS 1

= δQ/T , and gave S a name called entropy. S is a state function which is central to the Second Law of
Thermodynamics. The Second Law tells us about the time evolution of thermodynamic systems. It is stated as

‘‘The total entropy of an isolated thermodynamic system tends to increase over time, until reaching a maximum. For a
thermodynamic system exchanging heat with its surrounding at temperature T , dS ≥ δQ/T .’’

Combining the First and the Second Laws gives us an important thermodynamics equation for the state variables:

dU + PdV − TdS ≤ 0. (4)

A process is reversible if and only if the equality holds in the above equation.
A system undergoing reversible processes has a well defined characteristic function called Gibbs function, or Gibbs free

energy, which is a thermodynamic potential expressed as

G = U + PV − TS. (5)

Then the total differential of G

dG = dU + PdV + VdP − TdS − SdT . (6)

If the thermodynamic system is under constant T and P , then dT = dP = 0 and

(dG)T ,P = dU + PdV − TdS ≤ 0. (7)

That is, a spontaneous irreversible process of any macroscopic system under constant T , P intends to decrease the value
of G:

(dG)T ,P ≤ 0, and (dG)T ,P = 0 iff the process is reversible. (8)

Eq. (5) is valid only for systems with single component and constant number of particles. For a multi-component system,
the number of particles of each component in the system may not be constant. Let ni be the number of particles in the ith
component, then the system’s volume V , internal energy U , and entropy S are all functions of the temperature T , pressure
P and the number of molecules ni:

V = V (T , P, n1, . . . , nN),

U = U(T , P, n1, . . . , nN),

S = S(T , P, n1, . . . , nN).

The First Law is then expressed as:

dU = δQ − δW +

N−
i=1

µidni. (9)
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Each component has a chemical potential µi (see Eq. (12) below), and the internal energy changes when the number of
particles change. The Gibbs free energy of an equilibrium state can be expressed as G = G(T , P, n1, . . . , nN). In such a case,5

dG = −SdT + VdP +

−
i

µidni. (10)

For an isothermal and isobaric system, the increment of the Gibbs free energy is:

(dG)T ,P =

−
i

µidni, (11)

where µi = (∂G/∂ni)T ,P,nj is called the chemical potential of the ith component [40]. It represents the increment of Gibbs
free energy of the system as the number of particles of the ith component increases by 1 but all other variables such as the
temperature, the pressure and the molecule numbers of other components are kept constant. In other words, the ‘‘chemical
potential’’ µi is a measure of how much the free energy of a system changes if one adds or removes one particle of the ith
component.

A macroscopic system is said to reach a thermodynamic equilibrium if the system reaches thermal equilibrium (i.e., the
temperatures of different parts are the same), mechanical equilibrium (i.e., all the parts have the same pressure) and
chemical equilibrium (i.e., all the components in exchange reaches same chemical potential) [40]. For a system which
keeps in close contact with a heat bath and excludes any work done due to volume change, it naturally satisfies thermal
equilibrium as well as mechanical equilibrium. Hence as long as a macroscopic system reaches a chemical equilibrium,
then it is in thermodynamic equilibrium. When a system reaches chemical equilibrium, the chemical potentials of different
components are the same, i.e.,

µi = µj, ∀ i ≠ j. (12)

The equilibrium characteristics of a system with components M1, M2,M3, . . . ,MN can be discussed in the framework of a
multi-component single-phase system.

According to physical chemistry theory [40], we have6

µi = µ0
i + kBT ln[Mi], i = 1, 2, 3, 4, (13)

in which [Mi] is the concentration of the ith component, µ0
i is the standard chemical potential which is independent of the

concentration of the ith component. kB is Boltzmann’s constant and T is temperature in Kelvin. Actually, µ0
i is a basic free

energy which can be understood as the Gibbs free energy per particle when the system consists only one component. Hence
if an aqueous system contains only Mi, the Gibbs free energy of the system is just the basic free energy multiplied by the
concentration of the component, i.e., Gi = [Mi] · µ0

i .
It follows from formulas (12) and (13) that at chemical equilibrium:

µ0
i + kBT ln[Mi] = µ0

j + kBT ln[Mj], ∀ i ≠ j. (14)

Hence for an macroscopic system in equilibrium, the ratio of concentrations of any two different components satisfies

[Mi]

[Mj]
= e−

µ0i −µ0j
kBT . (15)

It is worthmentioning that in equilibrium, it is still possible for chemical reactions between different components to take
place. Considering a chemical reaction between reactantsMi andMj, let rij and rji be the reaction rate constants ofMi → Mj
and Mj → Mi, respectively. Then the number of particles transferring from Mi to Mj in unit time is rij[Mi], and that from Mj
toMi is rji[Mj]. Hence the net number of particles fromMi → Mj is

rij[Mi] − rji[Mj].

According to the Law of Mass Action in chemical kinetics [41], the concentration [Mi] of the ith component satisfies the
following differential equation

d[Mi]

dt
=

−
j≠i

(−rij[Mi] + rji[Mj]). (16)

5 From Eq. (6), it should be clear that the term (dG)T ,P in Eq. (7) is for a nonequilibrium changing system under constant T , P . However, in Eq. (7), dG is
the difference of G for two equilibrium states of the system with different T and P . The former is about irreversibility, the latter is about equilibrium states.
6 The hidden assumption of the following equation is that the Mi are ideal solution in a liquid system. This poses no problem for all the applications to

mesoscopic systems with dilute macromolecular concentrations.
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If d[Mi]
dt = 0 (i = 1, 2, . . .), then the concentration of every component of the considered system is invariant with the

evolution of time. Such a system is said to be in a steady state. However, a real equilibrium state should be such a state that
not only the concentration [Mi] is invariant with time, but also there is no net current of particles, i.e., besides satisfying

d[Mi]

dt
= 0, (17)

the system is required to obey the following condition

rij[Mi] = rji[Mj], ∀ i, j. (18)

In statistical physics, such a system is said to be in equilibrium, and Eq. (18) is known as detailed balance. The concept of
detailed balance was first introduced by Boltzmann [42] as a way of maintaining thermodynamic equilibrium.

A steady state with d[Mi]
dt = 0 is still possible for a net current between states i and j to exist.We call a state that satisfies

d[Mi]

dt
= 0, ∀ i

but for some i, j,

rij[Mi] ≠ rji[Mj]

a nonequilibrium steady state (NESS). More detailed discussions of the NESS will be presented later.
For the ATP hydrolysis process discussed before, we have studied the equilibrium and nonequilibrium characteristics

of the system from the viewpoint of classical thermodynamics by treating the system as a multi-component system. In
the following, however, we will take the enzyme M as a single molecule. We regard the M, M·ATP, M·ADP·Pi and M·ADP as
four possible states of an enzyme, denoted as 1, 2, 3, 4. From this point of view, the state of the system (i.e., the state of a
mesoscopic single particle M) at time t is one of these four states. The system is stochastic. If the state of the enzyme M at
time t is realized for a large number of times, then the concentration of the component Mi mentioned above corresponds
to the probability distribution of the enzyme at state i. In this way, one can describe the chemical reactions in an aqueous
system from the viewpoint of a mesoscopic system and its probability distribution among different states, and how the
system transforms, i.e., moves, from one state to another. This in fact is what single-molecule chemical kinetics about [43].

For the sake of generality, we consider a mesoscopic systemwith N possible states 1, 2, . . . ,N and an initial distribution
{p1(0), . . . , pN(0)}. Suppose that the probability density of the system in state i at time t is pi(t), and the transition
probability from state i to j in unit time is qij, then corresponding to the chemical reaction described by Eq. (16), we have
the following master equation concerning the probability distributions of the states

dpi(t)
dt

=

−
j≠i


−pi(t)qij + pj(t)qji


. (19)

Parallel to the detailed balance condition in (18) for amacroscopic system, amesoscopic system is said to be in equilibrium if
and only if there exists an invariant distribution π⃗ = (π1, . . . , πN) and the system satisfies the detailed balance condition:
πiqij = πjqji. If a mesoscopic system has an invariant distribution π⃗ , but for some i, j, πiqij ≠ πjqji, then it is said to be in a
nonequilibrium steady state (NESS).

An equilibriummesoscopic system fixed in a certain state i can be considered as a ‘‘pure, homogeneous’’ solution, hence
it can be endowed with relevant thermodynamical quantities such as Gibbs free energy. Parallel to Eq. (13), the Gibbs free
energy of a mesoscopic system in a given state consists of two parts: a basic free energy term µ0

i , which is determined by
the molecular structure of state i, and an entropy contributed from the probability. Note that logarithm of the probability is
precisely the Boltzmann’s entropy. Thus, the Gibbs free energy of state i

µi = µ0
i + kBT ln(πi). (20)

Because the free energies of different states in an equilibrium mesoscopic system are equal, i.e., µi = µj, then

πi

πj
= e−

µ0i −µ0j
kBT . (21)

Eq. (21) shows that the equilibrium distribution of a mesoscopic system obeys Boltzmann distribution, i.e.,

πi =
e−µ0

i /kBT∑
i
e−µ0

i /kBT
. (22)

In statistical physics, the theory of equilibriumsystemshas beenwell establishedwithwide and successful applications to
nontrivial problems such as complex fluids and critical phenomena. Nonequilibrium studies in general focus on fluctuations
and relaxations near equilibrium state. For a very long time, researchersmainly focused on closed systems, i.e. the dynamical
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processes approaching an equilibrium. Along this line, L. Onsager’s work on linear irreversibility is particularly worth
noting [44]. However, it becomes clear in recent years that the more interesting systems are in fact those that are far from
equilibrium state.

In this section, we shall give a probabilistic description of mesoscopic systems in terms of Markov chains with discrete
states and continuous time parameters. This is widely known as master equation in physics literature. We apply the theory
ofMarkov chains to discuss the basic, statistical properties of equilibrium and nonequilibrium states of mesoscopic systems.
The discussion thenwill be further extended to diffusion processes, Markov processes with continuous states and time, on a
circle. Studying one-dimensional dynamics on a circle rather than on R1 is an approach first taken in the theory of nonlinear
dynamical systems. As we shall see, it offers greater insights with less amount of mathematics.

Let ξ(t) be the state of a mesoscopic system at time t . At any given time only the probabilities of the system being in
different states are known; ξ(t) is a random variable taking discrete values in {1, 2, . . . ,N}. Following the evolution of
time, one observes a stochastic process {ξ(t)}t≥0 with state space {1, 2, . . . ,N}. For most applications, {ξ(t)}t≥0 is a process
without long memory. Taking the state transitions of a single enzyme M in an aqueous solution for example, the particle M
in a ATP hydrolysis reaction will undergo the following states:

1
M 


2
M·ATP 


3
M·ADP·Pi 


4
M·ADP 


1
M .

When M is in state i (e.g. state M·ADP), it can only transfer to state i − 1 (M·ADP·Pi) or state i + 1 (M), here states −1 and
N + 1 correspond to states N and 1, respectively. Let t1, t2, . . ., be the time that the particle M switches its states. Generally,
we suppose that the state of M at time tn+1 only depends on the state at time tn, but not on the ones before time tn. Such a
property is calledMarkov property, i.e., knowing the current state, the statistical law of the future of a system is independent
of its past.7 Rigorous definition will be presented in the subsequent section.

We shall discuss exclusively stochastic dynamics following Markov processes. There is also a large literature on non-
Markov dynamics with applications to, among other subjects, enzyme dynamics [45]. Semi-Markov processes, also known
as continuous time random walk (CTRW), has also been extensively studied in the past. The reversibility of semi-Markov
processes, however, is not as completely developed as for Markov processes. Thus we shall not present the non-Markov
models. Interested readers are referred to [46,47] and cited references within.

In the following sections, we shall see that the NESS of a mesoscopic system and the irreversibility of a Markov
process are in fact two representations of the same entity. Markov theory is the appropriate mathematical framework for
nonequilibrium mesoscopic systems.

2.3. Description of a mesoscopic system in terms of a continuous time Markov (Q) process

2.3.1. Preliminary material
In the mathematical theory of probability, a stochastic process is defined on a suitable probability space (Ω,F , P). To

have an intuitive understanding of the space (Ω,F , P), let us take the previously mentioned single enzyme molecule M as
an example. It is treated as amesoscopic systemwhose dynamics is stochastic due to its incessant random collisions with the
aqueous solvent. The state of M changes with time stochastically, and there are different probabilities for the occurrence,
i.e., realization, of different trajectories. The time-dependent random states of the molecule M is a stochastic process. All the
possible trajectories form a sample spaceΩ . Clearly, the dimension of this space is infinite since the trajectories are infinitely
long. For a given trajectory ω ∈ Ω space, its state at time t is ξt(ω): It is a deterministic function of ω with parameter t; the
randomness is only in the ω. The trajectory ω here is the elementary random event, and Ω = {ω}. The stochastic process
defined on Ω is {ξt(ω)}t∈R: For a fixed time t , ξt(·) is a random variable; with the evolution of time, one observes the
trajectory ξ·(ω).

The sample space can be understood in a more intuitive way. Consider there are a large number of independent enzyme
copies, each of which is jumping among the four different states. If the state of every enzyme can be written down at any
time t , then with time evolution, we observe many different trajectories in t–ξ plane. They are discontinuous with respect
to time t . The set of all trajectories, extending to time infinity, is the sample spaceΩ .

A.N. Kolmogorov has proved that if ∀t1 < t2 < · · · < tn, and the joint probability distribution of any finite random
variables (ξt1(ω), ξt2(ω), . . . , ξtn(ω)) are known, then one can obtain all statistical laws of the stochastic process {ξt(ω)}t∈R.
The F in the triplet (Ω,F , P) is a set whose elements are all the Ω ’s subsets that can be furnished reasonably with a
probability, and P is a probability measure defined on such subsets.

2.3.2. Q -process description of mesoscopic systems
In the previous section, we have established a Markov jump process as the mathematical representation of a mesoscopic

system with finite states. In the following, we shall discuss the characteristics of NESS of mesoscopic systems in terms of
Q -processes.

7 Markov property is the stochastic version of first-order dynamical systems. As in the case of a differential equation with higher order but finite, it can
always be transformed into a first-order system in a space with higher dimension.



X.-J. Zhang et al. / Physics Reports 510 (2012) 1–86 11

2.3.2a. Basic expressions for equilibrium and nonequilibrium steady states. When a mesoscopic system reaches equilibrium,
it has a steady distribution

πi =
e−µ0

i /kBT∑
i
e−µ0

i /kBT
, i = 1, 2, . . . ,N, (23)

and it satisfies the detailed balanced condition

πiqij = πjqji, ∀ i ≠ j. (24)

It follows from Eq. (23) that πi/πj = exp[−(µ0
i − µ0

j )/kBT ], together with condition (24), we have

qij
qji

= e
µ0i −µ0j
kBT . (25)

Letµ0
ij
1
= kBT ln(qij/qji), which is called the chemical force associated with transition from state i to state j. Eq. (25) states

that µ0
ij = µ0

i − µ0
j . Hence for an equilibrium mesoscopic system,

µ0
i1i2 + µ0

i2i3 + · · · + µ0
is i1 = 0, (26)

which means that µ0
ij corresponds to a potential function. In general, we say a chemical force having a potential if there

exists a functionΦ defined on a state space, such thatµ0
ij = Φ(i)−Φ(j). It can be proved that amesoscopic system reaches

equilibrium if and only if the chemical force µ0
ij corresponds to a potential, and if and only if µ0

ij satisfies Eq. (26).
We now consider the situation of NESS. It should be kept in mind that the concept of free energy of a state for an

equilibrium system is no longer valid now, i.e. µ0
ij ≠ µ0

i − µ0
j . Nevertheless, there is free energy difference 1µij between

any two states i and j:

1µij = µ0
ij + (kBT lnπi − kBT lnπj) = µ0

ij + kBT ln
πi

πj
. (27)

This corresponds to a non-gradient force field in the classical calculus. The first term in the right-hand-side of Eq. (27) is
caused by the transition between states due to the chemical force, while the second term is contributed by the change of
entropy. Furthermore, as µ0

ij = kBT ln(qij/qji), then

1µij = kBT ln
qij
qji

+ kBT ln
πi

πj
= kBT ln

πiqij
πjqji

.

Therefore, for a nonequilibrium mesoscopic system, we have

πiqij
πjqji

= e1µij/kBT . (28)

We emphasize again that1µij is the free energy difference resulted from the transition from state i to j. Single-step transition
like such in a NESS requires energy input, but can also result in an release of energy, for example the phenomenon of
fluorescence. We refer readers to H. Qian’s work [48–50] for detailed discussions on free energy difference associated with
equilibrium fluctuations and nonequilibrium deviations.

Eqs. (25) and (28) are basic expressions for a mesoscopic system in equilibrium and nonequilibrium steady states,
respectively. From Eq. (28), one knows that the necessary and sufficient condition for a mesoscopic system in equilibrium is

1µij = 0, ∀ i ≠ j,

i.e., the free energy difference1µij between any two states is zero.

2.3.2b. Free energy dissipation and entropy production. The Second Law of Thermodynamics tells us that the increment in
the entropy of an isolated, macroscopic system undergoing a spontaneous change is impossible to be negative. For a closed,
canonical system the statement becomes the impossibility of free energy increment being positive. However, for an open
system, the increment of entropymay be negative (and free energy incrementmay be positive) because the system is driven
by the environment: energy is pumped into the system. In the steady state of an open system, it is now the entropy production
rate (e.p.r) that must be nonnegative. The concept of entropy production was articulated by Prigogine [9,51] to describe
phenomena far from equilibrium. Since then, a great deal of interests has been aroused in understanding the concept, from
both mathematics and physics perspectives [10,52–56]. A deep insight in recent years on the entropy production and free
energy dissipation is the fluctuation theorems [57,58,10].
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Intuitively, the concept of entropy production can be introduced from the following non-mathematical discussion.
Suppose that the distribution of a mesoscopic system at time t is P(t) = (p1(t), . . . , pN(t)), then the Gibbs entropy of
the system is

S(t) = −

−
i

pi(t) ln pi(t). (29)

Taking the total derivative of Gibbs entropy with respect to t and noting that
∑

i pi(t) = 1, we have
dS(t)
dt

= −

−
i

p′

i(t) ln pi(t)

= −

−
i≠j


pj(t)qji − pi(t)qij


ln pi(t) (according to Eq. (19))

= −
1
2

−
i≠j


pj(t)qji − pi(t)qij


ln

pi(t)
pj(t)

.

dS(t)/dt should be considered as the increment of entropy during the evolution of a mesoscopic system. Entropy is an
extensive quantity, its time derivative and its production rate are two different concepts.

In a steady state, dS(t)/dt = 0, and pi(t) = πi. Hence

0 =
1
2

−
i≠j


πiqij − πjqji

 
lnπi − lnπj


= −

1
2

−
i≠j


πiqij − πjqji


ln

qij
qji

+
1
2

−
i≠j


πiqij − πjqji


ln
πiqij
πjqji

1
= −hd + ep, (30)

where

hd
1
=

1
2

−
i≠j


πiqij − πjqji


ln

qij
qji

(31)

reflects the heat dissipation of the system. We call hd the heat dissipation rate (h.d.r). Furthermore,

Definition 2.1. We call

ep
1
=

1
2

−
i≠j


πiqij − πjqji


ln
πiqij
πjqji

(32)

the entropy production rate of a mesoscopic system in a steady state.

Since every term in the right-hand-side of Eq. (32) is nonnegative, ep ≥ 0, and

ep = 0 ⇔

πiqij − πjqji


ln
πiqij
πjqji

, ∀ i ≠ j ⇔ πiqij = πjqji, i ≠ j.

Hence a mesoscopic stationary system is in detailed balance if and only if the entropy production rate is zero.
Eq. (30) shows that in a NESS, the entropy production rate equals to the heat dissipation rate of the system. Terms in both

formulas for hd and ep contain the product of currents and the forces. ln(qij/qji) is a deterministic force having to do with
the ‘‘internal energy’’ of the system, while ln(πiqij/πjqji) is a statistical force with contributions from the ‘‘entropy terms’’.
One can consider the deterministic force ln(qij/qji) as the molecular driving force (non-conservative) of the system, then it
is the force that drives the system to a nonequilibrium steady state.

From the above discussion, one knows that after realizing a transition from state i to j in a steady state, the free energy
change of the system is 1µij = kBT ln πiqij

πjqji
. Since the probability current caused by the transition i → j in unit time is

Jij = πiqij − πjqji, then the free energy dissipation in unit time caused by the state transition of i → j is

Πij = kBTJij ln
πiqij
πjqji

= kBT

πiqij − πjqji


ln
πiqij
πjqji

.

Thus, the total free energy dissipation of the system in unit time is

Π ss
= kBT

−
i>j

Jij ln
πiqij
πjqji

= kBT
−
i>j


πiqij − πjqji


ln
πiqij
πjqji

. (33)

This is exactly Eq. (32).
Hence the essence of the entropy production is actually the free energy dissipation. Noticing that every term on the

right-hand-side of (33) is nonnegative, thus a system is in equilibrium if and only if the free energy dissipation is zero.
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2.3.2c. Calculating free energy dissipation along a stochastic trajectory. In this section, we will demonstrate a very significant
fact that, in a steady state, the free energy dissipation rate (or the entropy production rate) of a mesoscopic system, is
in fact the time-averaged free energy dissipation along a realization of the corresponding Q -process provided that the Q is
communicative, as described in Appendix A. This fact implies that the concept of entropy production could be in fact defined
as a stochastic quantity associated with a sample path.

Let us observe a sample path ω of the Q -process starting from time t0 = 0. Suppose that the particle transits from its
initial state i0 to i1, and then to i2, . . . , ik, . . . at time t1, t2, . . . , tk, . . ., respectively. Let n be the total times of the particle
changing its states during time interval [0, t]. One knows from the above discussion that each transition between any two
different states will lead to a free energy dissipation. Then during [0, t], the averaged free energy dissipation of the system
along this trajectory is

1
t

n−
k=1

ln
πikqik ik+1

πik+1qik+1 ik
. (34)

In the following, as a main result that cannot easily be found in standard textbooks, we shall prove that for almost every
trajectory, the above time-averaged value of free energy dissipations along the trajectory equals to the entropy production
rate of the system in steady state.

Lemma 2.2. Suppose that {ζk(ω)}k≥1 is an embedded Markov chain of a stationary and communicative Q -process, then

lim
n→∞

1
n

n−
k=1

ln
πζkqζkζk+1

πζk+1qζk+1ζk

=

1
2

∑
i≠j
(πiqij − πiqji) ln

πiqij
πjqji∑

i
πiqi

, a.e.P(dω), (35)

where a.e. means for almost every trajectory ω.

Proof. Let Gij = ln(πiqij/πjqji), which is a two-variable function defined on the state space E × E with E = {1, 2, . . . ,N}.
Since the embedded Markov chain of a stationary communicative Q -process is irreducible and positive recurrent

(i.e., ergodic), then it follows from the strong Birkhoff ergodic theorem that

lim
n→∞

1
n

n−
k=1

ln
πζkqζkζk+1

πζk+1qζk+1ζk

= lim
n→∞

1
n

n−1−
k=0

Gζk(ω)ζk+1(ω)

=

−
i≠j

GijP(ζ0 = i, ζ1 = j) (ergodic theorem)

=

−
i≠j

Gijπipij
=

−
i≠j

ln
πiqij
πjqji

·
πiqi∑
πiqi

·
qij
qi

=

−
i≠j

ln
πiqij
πjqji

·
πiqij∑
πiqi

=
1∑
πiqi

·

−
i≠j

πiqij ln
πiqij
πjqji

=
1∑
πiqi

·
1
2

−
i≠j

(πiqij − πiqji) ln
πiqij
πjqji

.

That is,

lim
n→∞

1
n

n−
k=1

ln
πζkqζkζk+1

πζk+1qζk+1ζk

=
1∑
πiqi

·
1
2

−
i≠j

(πiqij − πiqji) ln
πiqij
πjqji

, a.e.P(dω). �

For the original process {ξt(ω)}t∈R, we note that the sojourn time for each step is
∑

πiqi
−1, then the limit of the time-

averaged quantity in (34) becomes the entropy production rate ep. We have the following theorem.

Theorem 2.3. Suppose that {ξt(ω)}t∈R is a stationary communicative Q -process with jumping time tk, k = 1, 2, . . ., then for
almost every trajectory ω, we have

lim
t→∞

1
t

−
0≤tk≤t

ln
πξtk qξtk ξtk+1

πξtk+1
qξtk+1 ξtk

=
1
2

−
i≠j

ln
πiqij
πjqji

(πiqij − πiqji). a.e. P(dω). (36)
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Proof. Let ni(ω) be the times of the particle transiting to state i during [0, t], and ti(ω) be the corresponding sojourn time
in state i, then n(ω) = Σini(ω) is the total jumping times of the process {ξt(ω)}t∈R before time t , and ti(ω)

ni(ω)
is the averaged

sojourn time at state i during this time interval.
Since theQ -processwe consider is communicative, then the corresponding embeddedMarkov chain {ζk(ω)}k≥1 (ζk(ω)

1
=

ξtk(ω)) is irreducible and positive recurrent. Hence starting from any state i, {ζk(ω)}k≥1 will come back to this state after a
certain random time. Actually, the process {ζk(ω)}k≥1 will come back to state i for infinite times with probability 1. Hence,
we have

lim
t→∞

ni(ω) = ∞, lim
t→∞

ti(ω) = ∞ a.e.P(dω).
And

lim
t→∞

ti(ω)
t

= πi, lim
t→∞

ti(ω)
ni(ω)

=
1
qi

a.e.P(dω).
As a result,

lim
t→∞

n(ω)
t

=

−
i

πiqi, a.e.P(dω).
So

lim
t→∞

1
t

−
0≤τk≤t

Gξtk (ω)ξtk+1 (ω)
= lim

t→∞

n(ω)
t

1
n(ω)

n(ω)−1−
k=0

Gζk(ω)ζk+1(ω)

= lim
t→∞

n(ω)
t

· lim
n→∞

1
n

n−1−
k=0

Gζk(ω)ζk+1(ω)

=

−
i=1

πiqi


lim
n→∞

1
n

n−
k=1

ln
πζkqζkζk+1

πζk+1qζk+1ζk

.

Therefore, it follows from Lemma 2.2 that

lim
t→∞

1
t

−
0≤tk≤t

ln
πξtk qξtk ξtk+1

πξtk+1
qξtk+1 ξtk

=
1
2

−
i≠j

ln
πiqij
πjqji

(πiqij − πiqji), a.e. P(dω). �

2.3.2d. Entropy production and the theorem of circulation distribution. Theorem 2.3 shows that the entropy production rate
of a Q -process {ξt(ω)}t∈R can be calculated along any sample path, and the value is 1

2

∑
i≠j ln

πiqij
πjqji

(πiqij − πjqji). In this
probabilistic interpretation, ln(πiqij/πjqji) is the chemical potential difference between states i and j (an analogue to a force
in a continuous system), and Jij = (πiqij − πjqji) is the net current from i to j. In the derivation of the formula, we only
consider the current and the ‘‘force’’ between each two states. Actually, along a trajectory of the Q -process, some states will
be visitedmore than one time. For example, In a realization of the process, the mesoscopic particle may undergo a sequence
of ordered states like . . . , i1, i2, . . . , ik, i1, . . .. For simplicity, we let c = (i1, i2, . . . , ik, i1) represent a directed cycle starting
from state i and then come back to it after visiting states i2, i3, . . . , ik in order, and c−

= (i1, ik, ik−1, . . . , i1) represent the
reverse cycle obtained by reversing the time in cycle c .

For a Q -process in a steady state, it follows from the master Eq. (19) that
∑

j≠i(πiqij − πjqji) = 0. This means that the
total probability influx to state i equals to the total outflow from the state i. We classify the visited states of a mesoscopic
particle along a trajectory into different directed cycles, and can endow each cycle with a probability current Jc . There is an
analogy between the chemical potential and current in the probability model and the voltage and current in an electrical
circuit. If one looks for the Kirchhoff’s loop expression of the total power for the electrical circuit in the case of Markov
master equation, then the entropy production rate is analogous to the electric power. It has been proved that the entropy
production can be calculated by considering the probability current on each and every directed cycle [10]. The result is stated
in the following theorem.

Theorem 2.4. For a mesoscopic system in a NESS, the e.p.r can be expressed as

ep =

−
c∈C∞

(Jc − Jc−) ln
Jc
Jc−
, (37)

where C∞ is the collection of directed cycles occurring along almost all the sample paths and c− is the reversed cycle of c. Actually,
we should write C∞(ω), but by ergodicity they can be proved to be ω independent, a.e., P(dω).

The proof ismathematically sophisticated, but the theoremdemonstrates that amesoscopic system is in detailed balance
if and only if the system maintains a balance within each and every cycle, i.e., Jc = Jc− .
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2.3.2e. Equivalent conditions for detailed balance. With the above discussion concerning amesoscopic system, we are now in
a position to state the relationship betweenNESS, the irreversibility of aMarkov process, the positivity of entropy production
rate, and unbalanced circulations (NBC) [10,59]. We have

Theorem 2.5. Let {ξt}t∈R be a stationary and irreducible communicative Q -process with a state space E = {1, 2, . . . ,N} and an
invariant distribution π⃗ = (π1, . . . , πN). Let pij(t) = Pr{ξt = j|ξ0 = i}. Then the following conditions are equivalent:

(1) The process {ξt}t∈R is detail balanced, i.e., πiqij = πjqji, ∀i ≠ j.
(2) πipij(t) = πjpji(t), ∀t > 0,∀i ≠ j.
(3) {ξt}t∈R satisfies the following Kolmogorov cycle criteria

qi1 i2qi2 i3 . . . qis−1 isqis i1 = qi2 i1qi3 i2 . . . qis is−1qi1 is . (38)

(4) {ξt}t∈R is time reversible.
(5) The entropy production rate of the process {ξt}t∈R is zero, i.e., ep = 0.
(6) The process maintain circulation balance, i.e., Jc = Jc− , for all c ∈ C∞.
(7) The chemical force µ0

ij = ln(qij/qji) between any two states i, j can be expressed as the difference of values of a potential
function in these two states, i.e., there exists a functionΦ(·), such that qij/qji = exp(Φ(i)− Φ(j)).

The following proof is provided for readers who are interested in the mathematics. Readers who are only interested in
the physics of the problem can simply skip the entire proof.

Proof. (1) ⇔ (2). First, (2) ⇒ (1): Given the statement in (2), assertion (1) is obvious since ∀i ≠ j, limt→0 Pij(t)/t = qij.
Now (1) ⇒ (2): Let

M 1
=


√
π0

. . .
√
πN

 , U 1
= M2

=

π0
. . .

πN

 ,
and Q̄ 1

= M · Q · M−1. Then condition (1) implies that Q̄ is a symmetric matrix. Hence there exists an orthonormal matrix
Γ = (Γij) such that Q̄ = Γ · A · Γ T , where

A 1
=

−a0
. . .

−aN

 ,
in which ai is determined by the eigenvalue of the matrix Q̄.

Obviously, Q = M−1
· Q̄ · M, and exp(Qt) = M−1

· exp(Q̄t) · M, then

P(t) = exp(Qt) = M−1
· exp(Q̄t) · M,

U · exp(Qt) = M · exp(Q̄t) · M.

So

(U · exp(Qt))T = (U · exp(Qt)).

Since the element of (U · exp(Qt)) is πipij(t), then

πipij(t) = πjpji(t), ∀ i ≠ j.

Therefore (1) ⇒ (2).
(1) ⇔ (3). First, (1) ⇒ (3): Suppose that the Q -process {ξt}t∈R is in detailed balance, then for ∀i ≠ j, πiqij = πjqji. Hence

for any cyclic path i1 → i2 → · · · → is → i1, we have

πi1qi1 i2qi2 i3 · · · qis−1 isqis i1 = qi2 i1 · πi2qi2 i3 · · · qis−1 isqis i1 = · · · = qi2 i1qi3i2 · · · qis is−1qi1is · πi1 .

Subsequently,

qi1i2qi2 i3 · · · qis−1 isqis i1 = qi2i1qi3 i2 · · · qis is−1qi1 is .

Thus, the Kolmogorov criteria is satisfied.
Now (3) ⇒ (1): Suppose that {ξt}t∈R satisfies the Kolmogorov criteria, i.e, for any cyclic path i1 → i2 → · · · → is →

i1,we have

qi1i2qi2 i3 · · · qis−1 isqis i1 = qi2i1qi3 i2 · · · qis is−1qi1 is .
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First, let us fix a state i0, and suppose that µi0 = 1. Since the process is communicative, then for ∀i ≠ i0, there exists
i1, i2, . . . , in, such that qiinqin in−1 · · · qi2i1qi1 i0 > 0, i.e., qi1 i0qi2i1 · · · qiin > 0. We thus define

µi =
qi0i1qi1 i2 · · · qin i
qi1i0qi2 i1 · · · qiin

.

It can be proved that the value of µi is independent of the selection of i1, i2, . . . , in and the number n of jumping times.
Actually, suppose that there is another path i′1, i

′

2, . . . , i
′
m, such that qii′mqi′m i′m−1

· · · qi′2 i′1qi′1 i0 > 0, i.e., qi′1 i0qi′2i′1 · · · qii′m > 0,

thenµi =
qi0 i′1

qi′1 i
′
2
···qi′mi

qi′1 i0
qi′2 i

′
1
···qii′m

makes sense. It follows from the Kolmogorov criteria that

qi0 i1qi1 i2 · · · qini · qii′m · · · qi′2i′1qi′1 i0 = qi1 i0qi2 i1 · · · qiin · qi′m i · · · qi′1 i′2qi0i′1 .

This shows that µi/µi = 1, which demonstrates that the value of µi is independent of n and the path i1, i2, . . . , in.
In the following, we will apply the Kolmogorov criteria to prove that {µi} satisfies

µiqij = µjqji, ∀ i ≠ j.

Actually,

µiqij =
qi0 i1qi1i2 · · · qiniqij
qi1 i0qi2 i1 · · · qiin

, µjqji =
qi0j1qj1j2 · · · qjmjqji
qj1 i0qj2j1 · · · qjjm

.

where µj =
qi0 j1 qj1 j2 ···qjmj
qj1 i0 qj2 j1 ···qjjm

, in which j1, j2, . . . , jm are arbitrarily selected such that qj1 i0qj2j1 · · · qjjm > 0.

According to the Kolmogorov criteria, we have

qi0 i1qi1 i2 · · · qiniqij · qjjmqjmjm−1 · · · qj2j1qj1 i0 = qi1 i0qi2 i1 · · · qiinqji · qjmjqjm−1jm · · · qj1j2qi0j1 .

Hence

µiqij = µjqji, ∀ i ≠ j.

Let πi =
µi
Σiµi

, then (π1, . . . , πN) is a probability measure which is determined uniquely by the Q-matrix.
(2) ⇔ (4). First (2) ⇒ (4): For any t > 0, and t1 ≤ t2 ≤ · · · ≤ tk ≤ t , then conditioning on (2), we have

Pr{ξt1 = i1, ξt2 = i2, . . . , ξtk = ik} = πi1pi1i2(t2 − t1) · · · pik−1 ik(tk − tk−1)

= pi2 i1(t2 − t1)πi2 · pi2 i3(t3 − t2) · · · pik−1 ik(tk − tk−1)

= · · · = pi2i1(t2 − t1)pi3i2(t3 − t2) · · · pik ik−1(tk − tk−1)πik

= πikpik ik−1(tk − tk−1) · · · pi3 i2(t3 − t2)pi2 i1(t2 − t1).

On the other hand,

Pr{ξ−t1 = i1, ξ−t2 = i2, . . . , ξ−tk = ik} = πikpikik−1(tk − tk−1) · · · pi3i2(t3 − t2)pi2i1(t2 − t1).

Hence

Pr{ξt1 = i1, ξt2 = i2, . . . , ξtk = ik} = Pr{ξ−t1 = i1, ξ−t2 = i2, . . . , ξ−tk = ik},

which manifests that the process is reversible.
Now (4) ⇒ (2): If the process {ξt}t∈R is reversible, then for ∀h > 0, ∀i ≠ j, we have

Pr{ξt = i, ξt+h = j} = Pr{ξt+h = i, ξt = j}.

i.e.,

πipij(h) = πjpji(h).

(2) is proved.
(1) ⇔ (5). Noticing that every term in the formula of ep is nonnegative, then the equivalence between (1) and (5) is

obvious.
(5) ⇔ (6). This follows immediately from the definition of ep given in Eq. (37).
(1) ⇔ (7). The proof is straightforward if one starts with the fact that a force doing work but independent of the path

implies the existence of a potential function. This is a standard result in multivariate calculus. We omit the details here. �
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2.3.3. Measure theoretical basis of time-reversal and entropy production
In the previous sections, we have discussed the entropy production rate (e.p.r) of a mesoscopic system from the

standpoint of free energy dissipation and probabilistic circulation distribution. We have provided a physical meaning to
the entropy production rate. In this section, we shall further provide amore general mathematical definition for the entropy
production in terms of the probabilitymeasure of aQ -process and its time-reversed process. The significance of this abstract
definition is that it can be applied to a much broader class of dynamical systems. It also implies that ep is the quantity to
capture all the irreversibility in a stochastic Markov process.

First, we consider the embedded Markov chain {ζn}n∈Z of {ξt}t∈R and its reversed process {ζ−
n }n∈Z . Let P+ be the

probability measure of {ζn(ω)}n∈Z along time-increasing direction, andP− be the one along time-decreasing direction, thenP+(ζ0 = i0, ζ1 = i1, . . . , ζN = iN) = πi0pi0i1 · · ·piN−1 iN ,P−(ζ0 = i0, ζ1 = i1, . . . , ζN = iN) =P+(ζ−N = iN , ζ−(N−1) = iN−1, . . . , ζ−1 = i1, ζ0 = i0)

= πiNpiN iN−1 · · ·pi1 i0 .
The last equation is based on the stationarity of the process (the initial time is −N). Then we have

Lemma 2.6. For the embedded Markov process {ζn}n∈Z of a Q -process {ξt}t∈R,

dP+

[1,N]
(ω)

dP−

[1,N]
(ω)


ζ0=i0,ζ1=i1,...,ζN=iN

=
πi0pi0 i1 · · ·piN−1iNπiNpiN iN−1 · · ·pi1 i0 =

πi0qi0 i1 · · · qiN−1 iN

πiN qiN iN−1 · · · qi1 i0
. � (39)

Furthermore, according to Lemma 2.2, we have the following theorem

Theorem 2.7. For the embedded Markov process {ζn}n∈Z of a Q -process {ξt}t∈R,

lim
N→∞

1
N
E


ln

dP+

[1,N]
(ω)

dP−

[1,N]
(ω)


=

1∑
i
πiqi

·
1
2

−
i≠j

ln
πiqij
πjqji

(πiqij − πjqji), a.e.P(dω). (40)

Proof. It follows from Lemma 2.6 that

1
N

ln
dP+

[1,N]
(ω)

dP−

[1,N]
(ω)

=
1
N

N−1−
k=0

ln
πζkqζkζk+1

πζk+1qζk+1ζk

.

Calculating the limit of the above lemma according to Lemma 2.2, we have

lim
N→∞

1
N

ln
dP+

[1,N]
(ω)

dP−

[1,N]
(ω)

=
1∑

i
πiqi

·
1
2
Σi≠j ln

πiqij
πjqji

(πiqij − πiqji).

Therefore

lim
N→∞

1
N
E


ln

dP+

[1,N]
(ω)

dP−

[1,N]
(ω)


= E


lim

N→∞

1
N

ln
dP+

[1,N]
(ω)

dP−

[1,N]
(ω)



=
1∑

i
πiqi

·
1
2

−
i≠j

ln
πiqij
πjqji

(πiqij − πiqji). �

Let us further consider the Q -process {ξt(ω)}t∈R and its time-reversed process {ξ−

t : ξ−

t (ω) = ξ−t(ω),∀t ∈ R}. Let

t0(ω) = 0,
tk+1(ω) = inf{t > tk(ω); ξt(ω) ≠ ξtk(ω)}, k = 0, 1, 2, . . .

and

τk(ω) = tk+1(ω)− tk(ω), k = 0, 1, 2, . . . .

For T > 0, denote NT (ω) as the number of the total transition times of an trajectory ω during [0, T ], it is also a stochastic
variable. Furthermore, let

Ai0 i1···in = {ω : NT (ω) = n, ξt0(ω) = i0, ξt1(ω) = i1, . . . , ξtn(ω) = in},

then Ai0,i1,...,in is the collection of those trajectories ω that transfer their states for n times until time T with t0(ω) = 0 and
transition times t1(ω), t2(ω), . . . , tn(ω).
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We have the following Lemma

Lemma 2.8. Let {ξt(ω)}t∈R be a stationary communicative Q -process on space (Ω,F , P), then for ∀T > 0,

dP+

[0,T ]
(ω)

dP−

[0,T ]
(ω)


Ai0 i1 ···in

=
πi0qi0 i1 · · · qin−1 in

πinqin in−1 · · · qi1 i0
. (41)

Proof.

P+

[0,T ]


ω : ω ∈ Ai0 i1···in; s1 ≤ t1(ω) ≤ s1 +1s1, . . . , sn ≤ tn(ω) ≤ sn +1sn


= P+

[0,T ]


ξt0 = i0, ξt1 = i1, . . . , ξtn = in; s1 ≤ t1 ≤ s1 +1s1, . . . , sn ≤ tn ≤ sn +1sn;NT (ω) = n


=

∫ s1+1s1

s1
qi0e

−qi0 τ1dτ1

∫ s2−τ1+1s2

s2−τ1
qi1e

−qi1 τ2dτ2 · · ·

∫ sn−
∑n−1

i=1 τi+1sn

sn−
∑n−1

i=1 τi

qin−1e
−qin−1 τndτn

×

∫
∞

T−
∑n

i=1 τi

qine
−qin dτπi0

qi0 i1
qi0

· · ·
qin−1 in

qin−1

= πi0qi0i1 · · · qin−1 inqin

∫ s1+1s2

s1
dτ1

∫ s2−τ1+1s1

s2−τ1
dτ2 · · ·

∫ sn−
∑n−1

i=1 τi+1sn

sn−
∑n−1

i=1 τi

dτn

∫
∞

T−
∑n

i=1 τi

dτn+1

n+1∏
i=0

e−qiτi+1 .

On the other hand, we have

P−

[0,T ]


ω : ω ∈ Ai0 i1···in; s1 ≤ t1(ω) ≤ s1 +1s1, . . . , sn ≤ tn(ω) ≤ sn +1sn


= P−

[0,T ]


ξt0 = i0, ξt1 = i1, . . . , ξtn = in; s1 ≤ t1 ≤ s1 +1s1, . . . , sn ≤ tn ≤ sn +1sn;NT (ω) = n


= πi0qi0i1 · · ·qin−1 inqin ∫ s1+1s2

s1
dτ1

∫ s2−τ1+1s2

s2−τ1
dτ2 · · ·

∫ sn−
∑n−1

i=1 τi+1sn

sn−
∑n−1

i=1 τi

dτn

∫
∞

T−
∑n

i=1 τi

dτn+1

n+1∏
i=0

e−qiτi+1

= πi0
πi1

πi0
qi1 i0

πi2

πi1
qi2i1 · · ·

πin

πin−1

qin in−1

∫ s1+1s2

s1
dτ1

∫ s2−τ1+1s2

s2−τ1
dτ2 · · ·

∫ sn−
∑n−1

i=1 τi+1sn

sn−
∑n−1

i=1 τi

dτn

∫
∞

T−
∑n

i=1 τi

dτn+1

n+1∏
i=0

e−qiτi+1

= qi1 i0qi2 i1 · · · qin in−1πin

∫ s1+1s1

s1
dτ1

∫ s2−τ1+1s2

s2−τ1
dτ2 · · ·

∫ sn−
∑n−1

i=1 τi+1sn

sn−
∑n−1

i=1 τi

dτn

∫
∞

T−
∑n

i=1 τi

dτn+1

n+1∏
i=0

e−qiτi+1 .

Hence

dP+

[0,T ]
(ω)

dP−

[0,T ]
(ω)


Ai0 i1 ···in

=
πi0qi0 i1 · · · qin−1 in

πinqin in−1 · · · qi1i0
. �

Based on Lemma 2.8, the following theorem can be obtained:

Theorem 2.9.

lim
T→∞

1
T
E


ln

dP+

[0,T ]
(ω)

dP−

[0,T ]
(ω)


=

1
2

−
i≠j

ln
πiqij
πjqji

(πiqij − πjqji). � (42)

Rigorous mathematical proof of the above theorem was first presented in [60]. Detailed mathematical discussion of the
relationship between the reversibility of a Q -process and entropy production can be found in [10].

2.4. Diffusion processes on a circle

One of the most fundamental insights from the theory of NESS is the existence of circular fluxes in a stationary Markov
processwithout detailed balance, and its intimate relation to free energy dissipation and entropy production. In recent years,
a connection between this mesoscopic cyclic motion and the nonlinear oscillations in non-gradient dynamical systems was
also discovered [61]. The most natural mathematical tool for studying this connection is the dynamics, deterministic or
stochastic, on a circle. This section focuses on the stochastic (diffusion) processes on the circle.
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2.4.1. Dynamics on a circle
Wenow give a very brief introduction to the nonlinear dynamics on a circle. For amore detailed discussion of the subject,

see [62].
The simplest deterministic dynamics on a circle is the uniform rotation: dθ

dt = ω. Such a motion can be obtained from a
linear dynamical system with a center:

dx
dt

= y,
dy
dt

= −
1
m

{kx + ηy} .

When applied to a harmonic oscillator, the three parameters, m, k, and η are the mass, spring constant, and frictional
coefficient, respectively. If we transform this pair of differential equations into the polar coordinate system:

r2 = kx2 + my2, tan θ =


m
k
y
x
,

then we have

dr
dt

= −2ar sin2 θ,
dθ
dt

= −ω − a sin 2θ, (43)

where a = η/(2m) and ω =
√
k/m. We note that the rotational dynamics is independent of the radial component, as is

expected for a harmonic oscillator.
The θ component in Eq. (43) is a nonlinear dynamical system on a circle. It undergoes in fact a saddle–node bifurcation

when ω = a: For ω > a, the right-hand-side of Eq. (43) is always negative. Hence the particle has a continuous, clockwise
rotation with non-uniform angular velocity. However, then ω < a, the system has four fixed points within [0, 2π ] interval,
located at π2 + θ∗ (unstable), π − θ∗ (stable), 3π

2 + θ∗ (unstable), and 2π − θ∗ (stable) where θ∗
=

1
2 arcsin (ω/a).

We note that the critical condition for the saddle–node bifurcation in θ is when ω = a. That corresponds to η2/(4mk)
= 1, the same critical condition for under- to over-damped oscillation. We thus see that the underdamped oscillation,
η2/(4mk) < 1, corresponds to a continuous rotation of θ ; and the overdamped oscillation, η2/(4mk) > 1, corresponds to
an asymptotic relaxation to the origin with a fixed angular value.

We are now in a position to compute the long-time average

Rot = lim
t→∞

θ(t)
t
. (44)

Rot is called rotation number. It is easy to show that forω > a, we haveRot = 2π/T where T is the period of the rotation [62].

T =

∫ 2π

0

dθ
ω + a sin 2θ

=
2π

√
ω2 − a2

. (45)

The rotation number is the imaginary part of the eigenvalues of a underdamped harmonic oscillation. For ω < a, we have
Rot = 0.

Therefore, for deterministic nonlinear dynamics on the circle, having fixed points and having nonzero rotation are
mutually exclusive scenarios. As we shall see, when there is noise present, this is no longer the case. In fact, the coexistence
of nonzero rotation and ‘‘stochastic fixed points’’ gives rise to one kind of coherent resonance.

A clarification on harmonic oscillations, or Hamiltonian dynamics in general, and the stochastic circulation extensively
discussed in the present review is in order: Throughout the present review, all the dynamics considered are overdamped.
Thus, any oscillation in dynamics is in the ‘‘position space’’, and it is not a consequence of classical conservative dynamics
but due to active forcing. For stochastic dynamics of an underdamped system, dynamics in the phase space of (p, q)
can have rotation even in equilibrium without entropy production. In the latter cases, the time reversal is defined as
(p, q, t) → (−p, q,−t). See [63] for more discussions and references cited within.

2.4.2. Entropy production, circulation and rotation number
Wearenowready to discuss the relationship between entropyproduction and circulation of a useful but simple stochastic

dynamics on a circle. This is actually the noisy phase equation of Eq. (43). We consider the following stochastic differential
equation (SDE) with a constant diffusion

dx(t) = b(x)+ AdB(t), (46)

where b(x) satisfies b(x + L) = b(x), B(t, ω) is a Brownian motion, and A is a constant representing the strength of noise.
The corresponding Fokker–Planck equation (FPE) to the SDE in Eq. (46) is

∂

∂t
p(t, x) = −

∂

∂x
(b(x)p(t, x))+

A2

2
∂2

∂x2
p(t, x) = −

∂

∂x
J(t, x), (47)
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where p(t, x) is the probability density of the particle in position x at time t , and

J(t, x) 1
= b(x)p(t, x)−

A2

2
∂

∂x
p(t, x).

If one views Eq. (47) as a continuity equation for the probability density (as analogous to a fluid), then the J(t, x) is the
corresponding probability flux.

If we consider the dynamics of system (46) on a real line, then there is no invariant probability density p(x), that is
p(t, x) → p(x), as t → ∞. However, due to the periodicity of b(x), the solution to Eq. (46) can be winded on a circle S1 with
radius L/(2π). Hence, letx(t) = x(t) (mod L),

then {x(t)}t≥0 is a diffusion process on S1 satisfying

dx(t) = b(x)dt + AdB(t), x(t) ∈ S1, (48)

where {B(t)}t≥0 is a Brownian motion on S1. The FPE corresponding to Eq. (48) is

∂

∂t
p(t,x) = −

∂

∂x
J(t,x), (x ∈ [0, L)), (49)

wherep(t,x) =
∑

∞

n=−∞
p(t,x + nL) is a probability density of the system in positionx ∈ S1 at time t , it is smooth on S1,

and the corresponding probability current is

J(t,x) = b(x)p(t,x)−
A2

2
∂

∂x
p(t,x)

=

[
b(x)−

A2

2
∂

∂x lnp(t,x)]p(t,x). (50)

SinceJ is defined on a circle, it is also called the circulation of the stochastic motion. It is more directly to be visualized than
the same object in a Markov chain.

With Eqs. (48)–(50), there is a unique invariant probability distribution ν(dx) = p(x)dx for system (48), wherep(x) is
the solution to the equation

b(x)p(x)−
A2

2
∂

∂x
p(x) =J, (51)

in whichJ is a constant. The process {x(t)}t∈R is ergodic on S1. For more related discussions on diffusion processes on a
manifold, see [64,65].

The Gibbs entropy associated with the probability densityp(t, x), x ∈ S1 is

S(t) = −

∫ L

0
p(t, x) lnp(t, x)dx.

Differentiating S(t)with respect to t , we have

dS(t)
dt

= −

∫ L

0
[lnp(t, x)+ 1]

∂p(t, x)
∂t

dx

= −

∫ L

0
lnp(t, x)dJ(t, x)

= −

∫ L

0
2A−2b(x)J(t, x)dx +

∫ L

0
2A−2b(x)J(t, x)dx −

∫ L

0

∂

∂x
lnp(t, x)J(t, x)dx

= −

∫ L

0
2A−2b(x)J(t, x)dx +

∫ L

0
2A−2

[
b(x)−

A2

2
∂

∂x
lnp(t, x)]J(t, x)dx

= −

∫ L

0
2A−2b(x)J(t, x)dx +

∫ L

0
2A−2

[
b(x)−

A2

2
∂

∂x
lnp(t, x)]2p(t, x)dx. (52)

In the above equation, we introduce

hd
1
=

∫ L

0
2A−2b(x)J(x)dx, (53)
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which should be interpreted as the heat dissipation rate (h.d.r) of the system; and

ep
1
=

∫ L

0
2A−2

[
b(x)−

A2

2
d
dx
(lnp(x))]2p(x)dx, (54)

which should be interpreted as the entropy production rate (e.p.r) of the system. Then Eq. (52) can be again written as

dS
dt

= ep − hd. (55)

This is the celebrated entropy balance equation in nonequilibrium thermodynamics [66]. An alternative definition for the
e.p.r in terms of time irreversibility will be given by the theorem below.

If a system starts from the invariant distributionp(x)dx, i.e., it is in a NESS, then Eq. (55) becomes

ep = hd. (56)

In a NESS, the amount of entropy created is precisely balanced by the amount of dissipation, while the entropy of the system
remains constant.

In Section 2.3.3, we have discussed the e.p.r of a Markov process with discrete states and continuous time. There we had

ep = lim
T→∞

1
T
E


ln


dP+

[0,T ]
(ω)

dP−

[0,T ]
(ω)


=

1
2

−
i≠j

(πiqij − πjqji) ln
πiqij
πjqji

.

For a diffusion process {x(t)}t≥0, we in fact can have a similar result expressed in the following Theorem 2.10:

Theorem 2.10. The entropy production rate of diffusion process on a circle is

ep = lim
T→∞

1
T
E


ln


dP+

[0,T ]
(ω)

dP−

[0,T ]
(ω)



=

∫ L

0
2A−2

[
b(x)−

A2

2
d
dx
(lnp(x))]2p(x)dx. (57)

Proving formula (57) requires the application of Cameron–Martin–Girsanov theorem and the mathematical details are
rather involved. We shall skip the proof here; readers who are interested in the mathematics are referred to Chapter 4 of
Ref. [10].

As in the deterministic case, for a diffusion process {x(t, ω)}t≥0 defined on a circle, the rotation number Rot =

limt→∞
x(t,ω)
L t (if it exists) describes the average number of turns a trajectory winding around the circle. It characterizes

the circulations in a diffusion process. In generally, Rot is a stochastic quantity, a function of ω. However, by applying the
ergodicity of system (48) on S1, we shall demonstrate in the following that the value of Rot is independent of the sample
path ω.

Following the integral formula given in Appendix B, Eq. (B.5), we have

x(t, ω)
t

=
1
t

∫ t

0
b(x(s))ds +

1
t

∫ t

0
AdB(s). (58)

Using the law of logarithm of the Brownian motion [67]:

Pr

lim inf
t→∞

B(t, ω)− B(0)
√
2t log log t

= −1


= 1,

Pr

lim sup
t→∞

B(t, ω)− B(0)
√
2t log log t

= 1


= 1,

thus

lim
t→∞

A(B(t, ω)− B(0, ω))
t

= 0, a.e. P(dω). (59)

Since the process {x(t)}t≥0 is ergodic on S1, then for almost all ω ∈ Ω , we have

(a.e.) lim
t→∞

x(t, ω)
t

= (a.e.) lim
t→∞

1
t

∫ t

0
b(x)ds

see Eq. (48)
= (a.e.) lim

t→∞

1
t

∫ t

0
b(x)ds

=

∫ L

0
b(x)p(x)dx; (60)
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The last equality is ensured by the Birkhoff ergodic theorem. Therefore

Rot =
1
L

∫ L

0
b(x)p(x)dx. (61)

We now establish the relationship between the e.p.r and the rotation number using a rather elementary method [68]. A
system in a steady state implies that ∂p

∂t = 0, and since ∂p(x)
∂t +

∂J(x)
∂x = 0, then

J(x) = b(x)p(x)−
A2

2
p′(x) = Constant 1

= Jc, x ∈ S1. (62)

Asp(x) is continuous on S1, then

Jc =
1
L

∫ L

0
(b(x)p(x)−

A2

2
p′(x))dx =

1
L

∫ L

0
b(x)p(x)dx = Rot.

Therefore

ep =

∫ L

0
2A−2

[
b(x)−

A2

2
d
dx

lnp(x)]2p(x)dx
=

∫ L

0
2A−2

[
b(x)p(x)−

A2

2
p′(x)

] [
b(x)−

A2

2
d
dx

lnp(x)] dx
= Rot

∫ L

0
2A−2

[
b(x)−

A2

2
d
dx

lnp(x)] dx (see Eq. (62))

= Rot
∫ L

0
2A−2b(x)dx = Rot × W , (Notep(x) > 0 on S1) (63)

whereW =
 L
0 2A−2b(x)dx is the work done by the force F(x) = 2A−2b(x)winding around the circle S1.

The above result shows that the entropy production rate ep is just equal to the rotation number Rot multiplying the total
work per cycle,W . The rotation number of the system is a manifestation of the circulation. Hence the entropy production is
due to the existence of circulations. In fact ep = 0 if and only if Rot = 0. But also, Rot = 0 if and only ifW = 0, i.e., the b(x)
has a potential on S1.

2.4.3. Equivalent conditions for a diffusion process in equilibrium
Similar to the case of discrete-stateMarkov chains, we have the following theorem for diffusion processes on a circle [10].

Theorem 2.11. Let {ξt}t∈R be a stationary diffusion process on a circle described by Eq. (46), with state space S1 and an invariant
distribution ν(dx), then the following conditions are equivalent:

(1) {ξt}t∈R is detail balanced, i.e.,∫
D
ν(dx)

∫
D′

P(t; x, dy) =

∫
D′

ν(dy)
∫
D
P(t; y, dx),

D,D′
⊂ S1, in which P(t; x, dy) represents transition probability.

(2) The process {ξt}t∈R is reversible.
(3) The entropy production rate of {ξt}t∈R is zero, i.e., ep = 0.
(4) the rotation number vanishes, i.e., Rot = 0.
(5) The force F(x) 1

= 2A−2b(x) has a potential function, i.e., there exists a continuous U(x) such that F(x) = −U ′(x), and
S1 e

U(x)dx = 1. �

3. Coherent resonance in stochastic nonlinear systems with circulations

Uncertainty is an inevitable part of mathematical models of natural phenomena. The rise of statistical thinking testifies
the importance of dealing with randomness, or noise, in modern science, be it physical, biological or social, and engineering.
However, deeply rooted in Newtonian–Laplacian tradition of classical mechanics, noise has long been thought to be a
nuisance, playing only a destructive role. It supposedly hinders the transmission and detection of signals, and causing
the behavior of a system irregular and uncontrollable. However, during the past two decades, it has been discovered that
under certain nonlinear conditions, an extra dose of noise can actually play a ‘‘constructive’’ rather than a ‘‘destructive’’
role. For example, in signal processing, noise can help enhancing the transmission of signal! The recently emerged area
of research on stochastic resonance (SR) has become a paradigm for illustrating this seemingly counter-intuitive role of
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noise [26]. In fact, we arewitnessing an increasing list of phenomena due to the positive effect of noise: coherence resonance
(CR) [69–71], noise-induced transport (which includes Brownian motor) [28], stochastic focusing [72], noise suppressing
noise [73], stochastic induced bifurcation and bistability [74,75], and stochastic synchronization [76]. The list is rapidly
growing.We now realize that all these phenomena occur only in systems that are far from equilibrium; all these phenomena
are behavior of driven systems. Borrowing the concepts from Section 2, it is not the noise per se, but the ‘‘energy’’ carried by
an irreversible stationary stochastic process that does the job.

Recall that in Section 2, nonequilibrium steady state (NESS) is characterized by the following properties [10]:

(i) the underlying stochastic process is irreversible with respect to time;
(ii) the entropy production of the system is positive;
(iii) there appears clockwise and counterclockwise nonbalanced circulations (NBC) in the system.

Recent studies have further shown that NESS also exhibits nonmonotonic power spectrum due to the property (iii).
Mathematically, this is a consequence of complex eigenvalues associated with irreversible Markov processes [59,77]
(Q matrix with detailed balance has all eigenvalues being real).

In the following two sections, we shall discuss the noise-induced phenomena within the framework of the theory of
NESS. The present Section 3 focuses on stochastic and coherence resonance. Section 4 will be dedicated to Brownian ratchet
models for molecular motors. We refer the readers to two previous reviews published by the Review of Modern Physics, on
the two subjects [26,27]. The unique feature of our review is treating these two subjects as applications of the theory of
NESS.

This section starts with a general introduction to two types of SR: those with a deterministic, periodic driving force and
those without. The latter, also known as SR without forcing, is now widely called CR. Then in Section 3.2 we discuss the
phenomenon of CR and its nonequilibrium nature in terms of a one-dimensional stochastic model on a circle (the phase
model), the two-dimensional FitzHugh–Nagumo (FHN) model, and (Section 3.2.5) the stochastic Hodgkin–Huxley (HH)
model. The last one is the most natural way of attacking a system with internal noise, which is quite novel. Section 3.3
studies the phenomena of SR, starting with the periodically driven one-dimensional system on the circle with a bistable
potential. We note that by mapping a non-autonomous, periodically driven system to a high-dimensional autonomous one,
there is essentially no difference between SR and CR. Furthermore, using an embedding-based description, the bistable
system is shown to exhibit SR in the super-threshold regime. Section 3.4 is devoted to explore the phenomena of CR and SR
in coupled systems where one has the interplay among noise, nonlinearity, and ‘‘spatial’’ coupling, which often considered
as a model for flocking behavior.

3.1. Brief introduction

3.1.1. Stochastic resonance (SR)
The phenomenon of SR was first discovered independently in 1981 by Benzi et al. [78,79] and Nicolis et al. [80,81] in

studying the problem of periodically recurrent ice ages. Through analyzing the historical records of 700,000 years of the
climate change, it was discovered that there is an approximately 100,000 year cycle between two successive ice ages.
Analyzing the power spectrum of the time series for the ice volume, inferred from oxygen isotope data, revealed a clear
frequency peaking. At the same time, one also discovered that the earth’s motion around the sun experiences a 100,000
year periodic influence, due to the perturbation of other planets. This influence, however, is rather weak. This led to a
proposal that the weak periodic influence to the earth’s motion can be ‘‘boosted’’ by a random forcing inherently present
in the planetary motion. A typical model in studying the SR phenomenon, thus, is the following equation which contains
bistability:

dx
dt

= −
dV (x)
dx

+ a sin(ωt + ϕ)+ Dξ(t), (64)

where V (x) =
x4
4 −

x2
2 is a potential function with two wells, a, ω and ϕ are the magnitude, frequency and initial phase of

the periodic driving force, respectively. ξ(t) is a white noise, i.e., the ‘‘derivative’’ of a Brownian motion that satisfies

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t ′)⟩ = δ(t − t ′), (65)

and D is the noise intensity.
With respect to the climate dynamics, the two stable states correspond to an ice state and a warm state; the weak

periodic influence in planetary motion is represented by a sinusoidal function a sin(ωt +ϕ); and the white noise represents
the random forcing. One can intuitively understand the following: If without the external periodic force, then the random
forcing will make the system stochastically transit between the two (ice and warm) states. But the oscillatory cycle will
not be periodic. The weak periodic influence makes the stochastic transition more periodic. On the other hand, without the
white noise, the periodic force is too weak to be able to push the system over the energy barrier.

In fact, from the power spectrum of the signal x(t), one finds a peak, located at the frequency of the external drive.
Furthermore, the height of the peak changes with the noise intensity, and the height reaches amaximum at an intermediate
noise level. This resonance-like optimal behavior is called SR. Note that unlike the traditional resonance of deterministic
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systems in which there is a ‘‘frequency matching’’, here the term ‘‘resonance’’ emphasizes the greatest response of the
system to an optimal noise intensity. The traditional resonance, in the contrary, is weaken by the presence of noise. Still, SR
and the traditional resonance share a common feature: Both represent an enhancement of the output signal of a system.

Since the original development of the concept of SR thirty years ago, the SR phenomenon has been extensively observed
in controlled experiments. Fauve and Helslot first realized the SR in an electronic device called Schmitt trigger system [82].
Later, McNamara et al. also observed SR in a bistable ring laser [83]. Today, SR has grown into an exciting, highly interdisci-
plinary area of research that involves both theories and experiments. SR phenomena have been observed in superconducting
device [84–86], magnetic systems [87], optics [88–92], quantum systems [93,94], chemical reactions [95,96,61], neurophys-
iology [97–101], and biological evolutionary systems [102]. For a comprehensive discussion of the applications of SR, see
reviews [26,103].

On the theoretical side, it has been shown that beside bistability, uni-stable systems with excitability can also exhibit
SR. In contrast to a bistable system, an excitable system has a single stable state (called resting state) but also a threshold.
When a relatively large perturbation passes the threshold, the system undergoes a large excursion (called excited state,
or ‘‘firing’’). Driven by a noise together with a periodic force, excitable systems can exhibit SR phenomenon [104–106].
The canonical example of excitability is the Hodgkin–Huxley (HH) equation for the dynamics of neuronal membrane
potential [107–111]. Its simplified version is the FitzHugh–Nagumo (FHN) equation [112–115]. Several other systems:
Hindmarsh–Rose model [116,117], Morris–Lecar model [118], integrate-and-fire (IF) mode [110,119,120], and the phase
mode (i.e., dynamics on the circle) [121–123] all have been studied in connection to SR.

3.1.2. Coherence resonance (CR)
With the SR understood as above, it comes as a surprise that even without a periodic drive, excitable systems can still

exhibit coherent oscillation in the presence of noise (or more precisely a stochastic driving force). This phenomenon has
also been called stochastic limit cycle in phase space [124]. The system also shows the property of ‘‘resonance’’: There
is an optimal noise intensity at which the noise-sustained oscillations become most regular. To distinguish this type of
phenomena from SR, it has been termed as coherence resonance (CR).

Originally, CR was found in a simple dynamical system [125] in the vicinity of a saddle–node bifurcation. Hu et al. called
the phenomenon ‘‘SR without forcing’’. The history of CR, however, is much longer. It is interesting to note that it had been
discussed in the enzyme reaction literature by Chen in 1973 [126], for a linear reaction, andHahn et al. in 1974 for a nonlinear
reaction [127].

The canonical model for the CR is the following Adler’s one-dimensional system on a circle:

dx
dt

= b − sin x + Dξ(t), x ∈ S1, (66)

where b > 0 is a control parameter, ξ(t) is a white noise satisfying Eq. (65), and D is the intensity of noise.
Pikovsky and coworkers investigated CR in the FitzHugh–Nagumo (FHN) model near a Hopf bifurcation [71]. The

corresponding equation can be written as [128]
du
dt

= u(a − u)(u − 1)− v + b + Dξ(t),

dv
dt

= ε(u − γ v),

(67)

where u is the fast, voltage-like variable and v is the slow recovery variable. ϵ ≪ 1 is a small parameter allowing one to
separate all motions into the fast and slow ones. The parameter b controls the firing behavior of a neuron in deterministic
case. The noise term stands for external perturbations from other neurons as well as intrinsic noise sources.

CR can be expected in systems near its dynamical bifurcation point [129–131]. It is now a sub-field of the stochastic
resonance research. Through exploring different mathematical models (see review [132]), the mechanism of CR has also
been extensively discussed in the literature. Statistically speaking, CR is explained as the result of difference in the noise
dependences of activation time and excursion time [71,132]. Dynamically, it is regarded as due to the noise precursor of
bifurcation [129–131]. Qian and Qian [61] first pointed out that, as a nonequilibrium phenomenon, the occurrence of CR
is a consequence of the unbalanced circulation in the stochastic dynamics. The NESS approach to CR in terms of the one-
dimensional dynamics on a circle, Eq. (66), and two-dimensional FitzHugh–Nagumo model (Eq. (67)) will be presented
in Section 3.2.4.

The above discussed SR and CR are all in the context of ordinary differential equations. With many potential applications
in physics, chemistry, and life sciences (see reviews [26,133,132]), both SR and CR have been extended into coupled systems
with spatial dimension, i.e., lattice and partial differential equations. One of the earliest report on the subject is [134]. Later,
spatiotemporal order and array enhanced SR were introduced by Lindner et al. [69]. Their work was further carried to two-
dimensional systems [135]. These work has shown that the occurrence of SR is due to a cooperation between a periodic
driving force, white noise, and the coupling. There is a sizable literature on the subject [136–142]. SR has also been extended
to chaotic systems and quantum systems. See the reviews [26,103] for more details.
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The distinction between the SR and CR is only a mathematical one. Consider the system in Eq. (64) which contains
an external periodic drive. This is a non-autonomous differential equation. However, it is equivalent to the following
autonomous system:

dx
dt

= −V ′(x)+ a sin(θ + φ)+ Dξ(t),
dθ
dt

= ω, (68)

where θ ∈ S1. The second equation is defined on a cycle. Thus, (x, θ) is defined on a cylinder. Aswe shall show, this dynamics
on a cylinder’s point of view is very natural to the SR problem.We believe the key to understand SR is to understand CR. The
present review reflects this believe of ours.

3.1.3. The characterization of CR
One of the standard methods for analyzing CR is the power spectrum. Suppose that {x(t)}t≥0 is a solution to an excitable

system driven by awhite noise but without a periodic force, then in the long time limit x(t) is a stationary stochastic process
(the solution to SDE). The power spectrum of the stochastic process {x(t)}t≥0 is defined as

S(ω) =

∫
∞

−∞

E [x(t)x(t + τ)] e−iωτdτ . (69)

Here, to be consistent with Section 2, we use the E[· · · ] to denote the expectation instead of the ⟨· · · ⟩. Alternatively, because
of the Wiener–Khinchin theorem, one has

S(ω) = lim
T→∞

1
T
E

∫ T

−T
e−iωtx(t)dt

2

. (70)

The equivalence between Eqs. (69) and (70) is due to the ergodicity of the stationary process. Since function S(ω) is an
expectation, it is a deterministic function.

In numerical simulations,weneed to take the time sequence sufficiently long. Equivalently,we can take adequate number
of identical, independent realizations of {x(t)}t≥0 and obtain the average of their power spectrum.8 From N identical,
independent time series {xk(t)} according to certain numerical algorithm, such as Runge–Kutta or simply Euler forward
method, one can compute the corresponding Fourier transforms Ŝk(ω), which is an approximation of Sk(ω) defined by
formula Eq. (70) (k = 1, . . . ,N). Then the power spectrum we need is:

S(ω) =
1
N

N−
k=1

Ŝk(ω)2 . (71)

For CR, Hu et al. [125] introduced a quality factor β to quantify the influence of noise on the output signal:

β = ωph/W , (72)

where h andωp are the peak height and location of the power spectrum, andW is the width of the power spectrum at height
h/

√
e. Therefore,W/ωp is the relative sharpness of the power spectrumpeak. Hence large h and smallW/ωp indicates amore

deterministic like periodic oscillation. Another way to look at the β is that h and ωp reflect noise’s positive contributions to
the periodic motion, whileW reflects its destructive role.

Beside the spectral method, the phenomenon of CR can also be studied by statistical analysis. Taking the FHNmodel (67)
as an example, one can define a threshold level uth in the voltage variable u. Suppose that τ0 = 0, u(τ0) = uth, let

τi = inf{t > τi−1 : u(t) = uth, u̇(t) > 0}, (73)

which corresponds to, because of the threshold phenomenon, the onset of a spike at the time τi, then Ti = τi − τi−1, i ≥ 1
is a sequence of the interspike interval (ISI) time. It is easy to see that {Ti, i ≥ 1} is an i.i.d. sequence and has the identical
distribution density as T , a continuous non-negative random variable, defined as

T = inf{t > 0 : u(t) = uth, u̇(t) > 0}.

Then CR can be measured by the coefficient of variation (CV) of T , defined as

ρ =

√
Var (T )
E[T ]

(74)

where E[T ] is the mean of the ISI T , and Var (T ) = E[T 2
] − E[T ] is the variance of T . Smaller the ρ is, more periodically

regular the spiking will be.

8 In practice, the difference between these twomethods is due to a very slowly varying component in the time series. In that case, the shorter realizations
serve as a ‘‘filter’’ for the low frequency signal.



26 X.-J. Zhang et al. / Physics Reports 510 (2012) 1–86

3.1.4. The characterization of SR
For a periodically driven system, the time correlation function of the process

E [x(t)x(t + τ)] (75)

is a function of both t and τ . Ref. [26] suggested a phase-averaged power spectral density defined as

S(ω) =

∫
∞

−∞

⟨E [x(t)x(t + τ)]⟩eiωτdτ , (76)

where the E[· · · ] denote the ensemble average over the realizations of the noise and ⟨· · · ⟩ stands for 1
T

 T
0 [. . .]dt , where T

is the period of the driving force.
The standard method for quantifying SR is to compute signal-to-noise ratio (SNR) or response amplitude (RA). The SNR

is defined as

SNR =
2

SN(ω)

[
lim
1ω→0

∫ ω+1ω

ω−1ω

S(ω′)dω′

]
, (77)

where S(ω) is the power spectrum of the signal, and SN(ω) is the power spectrum of the noise itself. The RA is defined as

RA =
R1

R0
, (78)

where R0 is the peak height of the power spectrum of the output signal in the absence of the noise (i.e., D = 0), and R1 is the
height in the presence of noise. We say that an SR occurs when RA as a function of D shows a maximum RAmax. Larger the
value of RAmax, stronger the effect of SR.

Both SNR and RA characterize the enhancement of the output periodic signal due to the presence of the noise in the
frequency domain. In addition, parallel to the ISI distribution for excitable systems, another method to quantify SR is done
in timedomain. For the bistable system (64), one can calculate the residence distribution of two successive switches between
the two potential wells. More precisely, we set two crossing levels, for instance at x± = ±c with 0 ≤ c ≤ 1. Suppose that
at time t0 = 0, x(0) = −c, ẋ < 0, let

t2k+1 = inf{t > t2k, x(t) = c, ẋ(t) > 0},
t2k = inf{t > t2k−1, x(t) = −c, ẋ(t) < 0}, k = 1, 2, . . . ,

then the quantity Ti = ti−ti−1 represents the residence time between two subsequently switching events. If the distribution
of the residence time has peaks at


n −

1
2


Tω , where Tω = 2π/ω is the period of the driving force and n = 1, 2, . . . , with

the peak at 1
2Tω being dominant, then this can be considered as a signature of SR. For more discussions on this method,

see [143–145].
For systems exhibiting CR and SR, the above mentioned characteristics all share a common feature: With the increase

of the noise intensity, they all increase first, but at some particular noise intensities, begin to decrease. There is an optimal
noise intensity. This is the hallmark of SR.

In general, the methods used in studying SR are based on theoretical analysis, numerical computation, and experiments.
So far, the theoretical studies are based on the FPE or associated SDE. Unfortunately, as a second-order partial differential
equation, the FPE with two energy wells is notoriously difficulty to be integrated numerically due to its stiffness. Hence, a
large amount of literature focuses on the adiabatic approximation (b ≪ 1, ω ≪ 1, D ≪ 1). This regime has provided many
useful results [146–151]. However, the approach is not very effective for systems with strong noise or strong periodic drive.
We shall not follow this direction in the review; for applying adiabatic method to this type of problems, see [18].

3.2. Nonequilibrium nature of coherence resonance in excitable systems

In this section, we take the one-dimensional phase model, the IF single neuron model, as well as the two dimensional
FHN model (67), as examples for explaining how nonequilibrium circulation plays it organizational role in the occurrence
of CR in excitable systems. In these models, both the dynamical and physical mechanisms of CR will be elucidated. In
particular, the FHN system motivates the novel concept of stochastic limit cycle [124] which is intimately related to the
nonequilibrium circulations we discussed in Section 2. The discussions of the nonequilibrium characteristic of CR in these
models are representative for all other excitable systems, where NBC can be described in terms of the statistical properties
of the stochastic limit cycle, and the rotation number introduced in Section 2.4.2.

3.2.1. Coherence resonance in a simple phase model
We first investigate the phenomenon of CR in a phase model whose dynamics is characterized by the one-dimensional

Adler equation (66): ẋ = b − sin x + Dξ(t), x ∈ S1 [152,153].
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Fig. 2. From top to bottom traces: the phase curves of system (79), the fixed points shown on a circle (S: stable, U: unstable, M: marginal stable), the
average power spectra of sin{x(t)}t≥0 , and the quality factors β of Eq. (66) as functions of the noise intensity D. Column (A) is for 0 < b < 1, column (B) is
for b = 1 and column (C) is for b > 1.

The deterministic equation corresponding to Eq. (66) is

ẋ = b − sin x, x ∈ S1. (79)

The dynamics of Eq. (79) is properly defined on the unit circle S1. There are two fixed points (one is a stable node and
the other is an unstable saddle) of Eq. (79) on the circle for 0 < b < 1. When b increases to 1, these two fixed points collide
into a saddle–node point which is marginal stable. In these two cases, the particle starting from a point different from the
fixed points eventually stays close to the stable fixed point S (for 0 < b < 1) or the semistable fixed point M (for b = 1). So
the rotation number is just zero. When b > 1, the fix point disappears and the particle starting from any point will rotate
periodically around the circle forever. This gives a nonzero rotation number for b > 1 even without noise.

Let us investigate the situation when white noise is present. For the case 0 < b < 1, instead of staying motionless at the
stable fixed point S, the particle will wander in the neighborhood of the stable fixed point S for some time. However, there is
a positive probability that the noise produces a sufficiently large positive force, which pushes the particle to overcome the
threshold U (i.e., the energy barrier). Therefore, at a certain random time, it escapes from the attraction of S and reaches the
position where the unstable fixed point is located and then completes a full counter-clockwise to be back into the basin of
attraction of S again. The normal distribution of the noise term ensures that this process is recurrent. Thus a coherent, noise-
induced rotation on the circle appears. This motion can be quantified by a nonzero rotation number. With the increase of
noise strength, such a circular motion occurs more frequently. It is easy to see that the rotation number also becomes larger
(see the dashed curves with open circles in Fig. 7). However, if the noise intensity is too large, then both clockwise and
counter-clockwise cycling occur, and the coherent motion is destroyed.

Numerical computations are used to obtain the power spectrum of the stochastic dynamics of Eq. (66). The third panel
of Fig. 2(A) shows the power spectra of the system with b = 0.98 and three different values of D. As usually, we consider
the power spectrum of {sin x(t)}t≥0 [equivalent to x(t)mod(2π)]. One sees that for small noise (for example D = 0.007),
a small spectrum peak occurs at a low frequency (curve a1). As the strength of noise increases, the peak moves toward a
higher frequency, meanwhile the height of the spectrum peak increases until reaching a maximum at a certain value of D
(aboutD = 0.5). After that, the peak height decreases with the further increase of the noise intensity. If the strength of noise
becomes sufficiently large, no distinct peak in the power spectrum can be observed (see the curve for D = 1.3). Thus the
strongest coherent oscillation occurs at an intermediate value of D. To further confirm the above observation, we also plot
the quality factor β versus D in the bottom panel of Fig. 2(A). The figure shows that as a function of D, β has a maximum. In
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the region with positive slope, the enhancement of the quality factor indicates that the coherent motion becomes stronger
as the noise intensity D increases. The negative slope tells us that the noise is gradually destroying the coherent motion
when its strength increases. The fact that the quality factor passing through a maximum at a certain value of noise intensity
announces the existence of coherence resonance.

As can be seen from Fig. 2(B), b = 1 is a critical case inwhich S andU coincide at the pointM and the deterministic system
is marginal stable. Then even a slight perturbation can motivate the particle to move away from the semistable fixed point
M (a saddle–node). But the particle will still oscillate near M for a certain random time before rotating around the circle
and then entering the neighborhood of M again. Hence in this case, the system also occurs CR at a certain noise intensity.
And since the threshold is greatly decreased, one can expect a better effect of CR than in the case 0 < b < 1 (compare the
bottom panels in Fig. 2(A) and (B)).

As for the case b > 1, since the particle without noise perturbation is already rotating periodically on the circle in one
direction, the presence of noise can only destroy such a periodic motion. The destruction of the coherent motion of the
system by noise can be clearly seen in the last two panels in Fig. 2(C) for b = 1.05, where the height of the spectrum peak
and the value of the quality factor β both decrease with the increase of the noise intensity. There is no CR in this case.

3.2.2. Coherence resonance in an integrate-and-fire single neuron
Both SR and CR have been successfully demonstrated in mathematical models of neural systems and laboratory

neurophysiological experiments [98,154,132,99,155,156]. Applications of SR and CR have been enthusiastically anticipated.
In fact, several successful biomedical applications have been achieved. For a comprehensive review, see [157].

In mathematical modeling of single neuron, integrate-and-fire (IF) model has been widely used by computational
neuroscientists due to its simplicity [158]. Even though this simplemodel often is not sufficient in describing the dynamics of
a real neuron [159,160], it is expected to provide great insights for dynamics of neural networks where emergent properties
are usually insensitive to the details of underlying single neurons. In this section,we shall consider the single IF neurondriven
by Gaussian white noise. The source of the noise is assumed to be ‘‘external’’: It represents the synaptic inputs from many
other neurons [101,161,162]. In more realistic biological applications, the noise is often assumed to be a Poisson process or
more generally a renewal process [163,164].

The dynamics of a single IF neuron subject to a Gaussian white noise is given by the following threshold equation
Cm · dV = −gL · Vdt + Idt + σcdBt , V ≤ Vth
V = Vrest , V > Vth.

(80)

Here gL is the leaky conductance, and an artificial threshold is added to say that once V (t) crosses the threshold Vth from
below, a spike is generated andV (t) is reset to the resting stateVrest .Without noise, the neuron stays atV = I/gL if I ≤ gL ·Vth,
and generates spikes periodically for I > gL · Vth.

Actually, the dynamics of the system can again be considered on a circle by wiring the solution on a circle and regarding
Vrest and Vth as being identical (modul 2π ). Let S1

[Vrest ,Vth]
be the circle. The model is then simply written as

Cm · dV = −gL · Vdt + Idt + σcdBt , V ∈ S1
[Vrest ,Vth]. (81)

This model is now equivalent to the phase model discussed in the previous subsection. Corresponding to each value of
V ∈ (Vrest , Vth), we can define a phase on the circle S1

[Vrest ,Vth]
, with θrest = 0 which corresponds to V = Vrest , and θth = 2π

corresponding to V = Vth. When I < gL · Vth, the deterministic system without noise has two fixed points on the circle, one
is located at θs corresponding to V = I/gL. It is stable. The other is located at θth, which is unstable.

By defining the deterministic picture of model (80) on the circle S1
[Vrest ,Vth]

, the effect of noise on a single IF neuron can be
explored in the sameway as in the phasemodel. For simulation,we take Cm = 1nF , Vth = 20mV, gL = 0.05µS, Vrest = 0mV.
The time evolutions of the membrane potentials without noise (red) and in the presence of noise (blue) are plotted in the
second panel of Fig. 3, the power spectra for different noise intensities are depicted in the third panel, and the curves of the
quality factor β and the coefficient of variance (CV) vs. the noise intensity are plotted in the bottom panel. It is shown that
for I < gL · Vth (it is equal to 1 in the above given values of parameters), CR occurs at an intermediate noise intensity, and
coherent spiking is induced at this noise intensity. This is similar to the phase model in the case b < 1. Furthermore, once
the quality factor reaches a maximum, the CV reaches a minimum which indicates the best coherence of the firing.

As expected, there is no CR for I > gL · Vth, because the neuron already fires regularly even without noise, adding noise
only destroys such a periodic firing behavior. Therefore, the quality factor β decreases, while the CV increases with the
increase of the noise intensity (see Fig. 3(C)).

What is different from the phase model is for the critical case I = gL · Vth. In both models, no rotating motion occurs
on the circle without noise, and the corresponding spectrum, obtained as the Fourier transform of a transient trajectory
is of Lorentz type centered at zero frequency. In the presence of noise, the peak of the spectrum peak first increases with
increasing noise intensity, reaching amaximum and then decreases with the further increase of the noise perturbation. This
characterizes the occurrence of CR in the phase model for the critical case b = 1 (see Fig. 2(B)). However, for the IF neuron,
even a very weak noise perturbation (for example D = 0.0001) can induce the neuron to fire quite coherently. However,
increasing the noise intensity destroys the coherence in the firings, which can be seen from the decreasing of the power
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Fig. 3. From top to bottom traces: the phase curves of V̇ vs. V , the fixed points (S: stable, U: unstable, M: marginal stable) shown on the circles, the time
course of themembrane potential of system (80), the average power spectrum of {V (t)}t≥0 , and the quality factor β (square) and the CV (circle) as functions
of THE noise intensity D. (A) 0 < I < gL · Vth(= 1). (B) I = gL · Vth(= 1). (C) I > gL · Vth(= 1). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

spectrum peak as well as the quality factor. To understand the reason for this difference between the two models in the
critical case, let us first have a look of the dynamics of the particle (single neuron in the IF model) in a small neighborhood
of the fixed point (see the upper panel of Fig. 2(B) and the upper panel of Fig. 3(B)). For the phase model, ẋ looks parabolic
near its minimum, thus the velocities in the left and right neighborhoods of the fixed point are both very small, but with
opposite directions. In the presence of noise, though the particle can be perturbed to escape the semistable fixed point and
rotates around the circle, the fixed point still makes itself feel through a saddle–node ghost [62], if the noise intensity is very
weak. On the other hand too strong noise totally makes the system behave randomly. This is why one sees similar pictures
of the power spectra for the cases of b < 1 and b = 1 in the presence of noise. For the IF model, V̇ is not continuous near its
minimum, it linearly decreases to zero below the threshold, and once it reaches Vth, it ‘‘spontaneously’’ re-starts from a large
positive value I . Under such a deterministic dynamics, even a very weak noise can easily induce the neuron fire regularly,
while further increasing the noise intensity destroys the coherence of the firing gradually. This explains a decreasing quality
factor with the increasing noise, but with a sharp jump between the deterministic and stochastic cases.

3.2.3. Coherence resonance in FitzHugh–Nagumo system
In this subsection, we take the well known FitzHugh–Nagumo (FHN) equation (67) from neuroscience as a typical

mathematical model to further investigate how nonequilibrium, unbalanced circulation (NBC) plays the essential role in
the occurrence of CR in excitable systems.Wewill first give a more precise description of a stable stochastic limit cycle (SSLC)
than one finds in the literature. We then describe the probability localization behavior of NBC intuitively in terms of the
statistical properties of the SSLC. And finally we shall present our point of view: the occurrence of CR is not only due to the
existence of NBC, but more crucially, it is a result of sufficient localization of NBC along the SSLC [165].

Through out the discussion, all computations and graphings are based on system (67) with parameters fixed as a = 0.14,
γ = 2.54, ϵ = 0.005. The nullclines of the deterministic system plotted in Fig. 4 show that the system is excitable for
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Fig. 4. Top trace: The nullclines (solid lines) of the FHN system (67) in the absence of noise (i.e., D = 0). Bottom trace: The corresponding phase portraits:
(A) b < bc , (B) b > bc .

Fig. 5. Effect of noise. The first and second traces: The phase portraits of the FHN system (67) in the presence of noise and the corresponding trajectories of
{u(t)}t≥0 . The third trace: The power spectra of {u(t)}t≥0 (black) and {v(t)}t≥0 (red). Bottom trace: The probability densities of ISI. Column (A) is for weak
noise. Column (B) is for intermediate noise perturbation. Column (C) is for strong noise perturbation. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

b < bc ≈ 0.0334 and is excited for b > bc . In numerical integration, we implement the 4th-order Runge–Kutta algorithm
with a time step1t = 0.01.

The effects of noise perturbation in these two parameter regimes are quite different. In the excited regime, the
deterministic system already exhibits periodic firings, then adding noise only plays a destructive role. However, in the
excitable regime, moderate perturbations of noise can induce regular firing, while too weak or too strong noise cannot
result in such effects (see the first and second traces in Fig. 5). To quantify the degree of such a noise-induced coherence, we
depict the profiles of power spectra of both {u(t)}t≥0 and {v(t)}t≥0 to different noise intensities in the third trace of Fig. 5.
The quality factor β of the power spectrum is further calculated. The bell-shaped curve of β vs D in Fig. 6 reveals that the CR
occurs at an optimal noise intensity (about D ≈ 0.045).
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Fig. 6. The variations of the quality factor β of the power spectrum and the regularity factor γ of the FHN system (67) with the increase of the noise
intensity D.

A nonzero peak frequency in the power spectrummanifests that the excitable FHN systemdriven by noise exhibits noise-
sustained oscillations which are usually identified with the so-called SSLC [124,132]. Based on this, the state of the system
can be described by the phase along the SSLC. Such a treatment is useful in studying the synchronization phenomena of
coupled oscillators [166]. Not only this, we shall show in the following that the SSLC is directly related to the NBC which we
think is the physical origin of CR.

Dynamically, since the name of SSLC, stable stochastic limit cycle, is transplanted from the concept of deterministic limit
cycle, it should inherit (in a weaker sense) the main characteristics of a stable limit cycle: (1) It displays a certain degree of
attraction; (2) it appears sustained circular motion on the attractor, i.e., a ring-shaped region which is localized to a limit
cycle. Viewing with these two features in mind, both too weak and too strong noise cannot support a SSLC. In fact, it is
seen from the upper trace in Fig. 5 that for weak noise, the system behaves as switching between two basins of attraction,
one stable focus which exists before bifurcation, and another stable limit cycle which occurs after bifurcation (the upper-
left panel). For strong noise, the rotation around the limit cycle becomes totally irregular (the upper-right panel). Hence
the concept of a SSLC is confined to a certain range of noise intensity, where the limit-cycle like oscillation is optimally
supported by the noise (the upper-middle panel).

We can further give a quantitative description of the SSLC; or more widely, noise-sustained oscillations. Let random
variable T be the ISI (interspike interval) between two successive firings of u. If the SSLC is supported, we can define E[T ] as
the mean period of the SSLC. In the bottom row of Fig. 5, we show the probability density function ρ of the time interval T
normalized from the histograms of ISIs. We define the regularity factor of the noise-sustained oscillations as

γ = ρmax/W , (82)

where ρmax is the maximum of the probability density of T , W is the width of the curve at half value of ρmax. The larger
the value of ρmax is (or the smaller W is), the more regular the oscillations are. The most concentrated NBC in the phase
portrait of Fig. 5(B) may be defined as the SSLC when γ reaches its maximum value: For too weak noise, the neuron spends
most of the time near its resting state with some occasional and random firings, then ρmax is small and W is large, which
gives rise to small value of γ . For too strong noise perturbation, the neuron fires very randomly. Certainly, γ is also small.
For moderate noise, the spikes are rather regular which implies that the ISIs do not differ much. Then the density curve is
centered near a large value of ρmax with narrowwidthW , which provides the optimal γopt . So γ is a quality factor tomeasure
the concentration of NBC.

Thus a noise-induced cycle can be characterized by its mean period E[T ] and the regularity factor γ . Fig. 6 shows the
variation of the regularity factor γ with the increase of the noise intensity D. One can see that the value of γ first increases
with the increase of D, reaches a maximum at a critical value of D, and then decreases with further increasing D. This means
that the noise-induced oscillations obtain the best degree of regularity at a critical value of D. We prefer to name the ring-
shaped region at this critical value of D as a SSLC, and γopt its characteristic value.

We further compare the variation of the regularity factor γ of the SSLC versus the noise intensity D with that of the
quality factorβ of the power spectrumversusD. From Fig. 6, one can see that these two quantities undergo similar increasing
manners, and almost at the same critical value of D, both γ and β reach a maximum. This means that when CR occurs, the
ring-shaped region has its most preferable profile, which also announces the existence of the SSLC. Therefore, the SSLC and
CR in the excitable regime share a common feature: both are related to the best degree of noise-induced regularity of an
excitable system.
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Fig. 7. (A) Variations of the peak frequency of the power spectrum ωp , the calculated frequency ωc , and the rotation number Rot with the increase of the
noise intensity for (a) b < 1; (b) b = 1; and (c) b > 1. (B) The time series of {sin x(t)}t≥0 of the Adler equation (66) vs. time t in the presence of noise
perturbation.

3.2.4. Nonequilibrium origins of CR phenomena
Earlier work relating power spectrum with nonequilibrium circulations can be traced back to the work of Hill, Chen,

and their colleagues [167,168], who constructed a general mesoscopic model for the associations and conformational
changes of biopolymers in open systems and applied their results on cycle kinetics in elucidating the mechanism of muscle
contractions and the power spectrum ‘‘peaking’’ ofmembrane channel current in theHodgkin–Huxley typemodel [126,169].
In 2000, H. Qian and M. Qian, using a toy model of cyclic chemical reaction in terms of a master equation with five states,
presented a concrete bridge between CR and NESS [61]. Later, it was further shown that, in terms of finite state Q -processes,
the power spectrum of any equilibrium mesoscopic system is necessary of Lorentzian type [59], a consequence of the
Q -matrix being similar to a symmetric matrix. Since a continuous diffusive process can be approximated via discretization
by a Q -process, the above results imply that CR is impossible to occur in an equilibrium system. Both CR and SR are driven
phenomena.

Let us nowdiscuss this nonequilibrium origin of CR in the abovementioned Adler’s phasemodel. Thematerials presented
in Section 2 will be used. For system (66), the condition b > 0 is crucial for the existence of CR. When b = 0, the stationary
distribution of the system obeys Boltzmann’s distribution, and the system is in equilibrium steady state.

Considering system (66) on the circle S1, from Section 2 we know that b > 0 implies a positive entropy production rate
(e.p.r) for the diffusive process on a circle, and the entropy production rate (e.p.r) is linearly proportional to the rotation
number. The rotation number quantifies the circular motion of the system (i.e., circulation). To demonstrate the relation of
nonequilibrium circulation and CR in this system, let us first establish the relationship between the rotation number Rot and
the peak frequency of the power spectrum ωp. Fig. 7(A) shows the variations of Rot and ωp with the increase of the noise
intensity. One can see that in a certain range of noise intensity, the peak frequency ωp is close to the rotation number of
the system (the relative error is about 25%), and they both increase with the increase of the noise intensity. This fact further
confirms that CR is indeed due to the appearance of non-equilibrium circulations.

The reason for the 25% difference between Rot and ωp can be explained as follows. One knows that the power spectrum
of a time sequence is the composition of different harmonic signals. The spectrum analysis is to display the amplitude of
every harmonic component in the composed signal. The larger the amplitude is, the stronger the corresponding harmonic
signal will be. Obviously, the periodic component corresponding to the peak frequency is the most prominent. As for the
rotation number, it reflects the mean number of the particle winding around the circle. Therefore, ωp generally does not
equal to the value of Rot . In a nutshell, it is a matter of mean value versus peak value in a distribution. Generally, ωp should
be larger than Rot . In the phase model, excluding the fluctuating motions near the stable fixed point S (the part near the
dashed line in Fig. 7(B)), the remainingmotion couldmore accurately determine the peak frequency of the power spectrum.
To be more precise, we denote T as the total time for the particle to move around the unit circle and T0 as the time the
particle fluctuating near the stable fixed point S, and T1 = T − T0. Let Nr(b,D) count the total number of times that the
particle complete rotates around the whole circle. Then ωc ≈ Nr(b,D)/T1 measures the frequency of the particle moving
coherently on the circle excluding the fluctuation near S. Comparing ωc with the peak frequency ωp of the power spectrum,
we find that they are in a good agreement if the noise intensity is not too large (compare the gray squares in Fig. 7(A) and
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the solid curve). This tells us that the peak frequency ωp may reflect the periodicity of the excursion motion of the particle
outside the attracting basin.

The nonequilibriummechanism of CR can be further clarified from quantifying CR and SSLC in FHN system. Actually, the
nonzero frequency in the power spectrum implies the existence of NBC, a probability flow [59–77]. Intuitively, in analogous
to an electrical current density, a probability flow, a vector field, has a density. In FHN model, the NBC is localized at a
ring-shaped region. This localized probabilistic behavior is directly reflected by the regularity of the dynamic motion. For
weak noise, the NBC is ‘‘blocked’’ frequently at certain positions (see the top panel in Fig. 5(A)). Increasing the noise level
helps eliminating the ‘‘blockage’’ of the NBC. But of course at the meantime the increase of the noise intensity results in the
scattering of the NBC. For too strong noise, the NBC is widely de-localized. Thus, only for a moderate level of noise, the NBC
‘‘flows smoothly’’ and is localized along a ring-shaped region. This is reflected by a maximum value of regularity factor γ of
the SSLC, which indicates the occurrence of CR at an optimal noise level. The effect of CR, therefore, is the result of optimal
localization of NBC along the SSLC.

Based on the close relationship between CR, SSLC and NBC we have discovered, we suggest that the SSLC in excitable
systems exists only when the noise-sustained oscillations exhibit a sufficient degree of regularity. CR exists when noise
supports such a SSLC in excitable systems. In fact, CR occurs when NBC is localized along the SSLC. We have presented the
novel regularity factor γ to describe a SSLC. It can also be taken as a measurement of CR.

Previously in the literature, CR is usually measured by the inverse of CV (see Eq. (74) for its definition) which quantifies
the ratio R = E[T ]/

√
Var(T ) of the ISI in time domain. Or equivalently, it is measured by the quality factor β of the power

spectrum in the frequency domain. Here γ measures CR in terms of the probability density of the ISIs. All these share a
common feature of CR, and all are due to the existence of localized NBC.

The mechanism of NBC playing a role in CR of FHN model is a general one. It can be used to explain CR in other
excitable systems, such as phase model, IF model, and Hodgkin–Huxley model, etc. It provides a nonequilibrium-physics
insight into discussing noise-induced phenomena, e.g., stochastic synchronization, coherence transport. Elucidating the
relationship between SSLC, NBC and CR helps scientists and engineers to better understand the physical origin of the
regularity in stochastic, nonlinear systems. For example, the occurrence of nearly periodic oscillations in the biochemical
system P53/Mdm2 has recently become a focus of interest in molecular systems biology [170,171].

3.2.5. Coherence resonance in Hodgkin–Huxley equation with intrinsic channel noise
In the above sections, we have shown CR in simple neuronal systems in terms of IF and FHN models. So far, the noises

considered are all ‘‘external’’. Can intrinsic thermal fluctuations also give rise to CR? In this section, we will show that while
internal thermal fluctuations, when a system is left alone, have to satisfy Gibbs–Boltzmann distribution in an equilibrium
steady state,when it is coupled to a time-dependent deterministic dynamics, unbalanced circulation (NBC) also arises. Again,
the NBC leads to CR.

We shall study the Hodgkin–Huxley (HH) model for single neurons, in which the membrane electrical potential is
characterized by a deterministic variable V . V changes according to stochastic open and close of membrane channels for
sodium (Na) and potassium (K) ions. This type of stochastic processes that couple deterministic dynamics with Markov
jump processes are called random evolution in probability theory [172]. While the membrane channel sub-system satisfies
detailed balance at all time without internal circulations, channel states and voltage together as a whole still exhibit NBC.
The significance of the present model is demonstrating the possibility of CR using purely internal equilibrium fluctuations
in the sub-system.

In the literature, channels’ open and close were treated as deterministic rate equations in the past. Due to the finite
size of the cell membrane, however, the number of ion channels is finite, and the role of intrinsic channel noise on the
firing behavior should not be neglected. Indeed, it has been suggested that voltage-sensitive spontaneous conformational
transitions of ion channels can give rise to spontaneous firing of the membrane potential of a single neuron, even without
any external driving [173]. Hänggi and coworkers [111] have also studied CR due to the intrinsic channel noise. However, in
the earlier work, the treatment of the channel fluctuation is approximated by Langevin equations. Here, we investigate the
phenomenon of CR in the original HHmodel with a finite number of sodium and potassium channels according to a discrete
Markov description [174–176], with voltage-dependent transition rates.

A fewwords on the equation for the dynamics ofmembrane potential in theHHmodel is in order. The traditional equation
is given by

Cm
dV
dt

= −[gL(V − VL)+ gK (V , t)(V − VK)+ gNa(V , t)(V − VNa)], (83)

in which Cm is the capacity per unit area of membrane. Therefore, both sides of Eq. (83) are intensive quantities: gL, gK
and gNa are all conductances per unit area. It is important to point out that deterministic equations like (83) should not
be considered as the mean value of a stochastic dynamics; rather it is the infinite population limit of the corresponding
stochastic dynamics, expressed in terms of intensive quantities. Thus, to consider the corresponding stochastic dynamics
for finite membrane area Area, one needs to consider the Area explicitly:

Area · Cm
dV
dt

= −Area [right-hand-side of (83)] ,
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Table 1
Parameters for the stochastic HH model (83).

Symbol Definition Values, units

Cm Unit area membrane capacitance 1 µF/cm2

VL Leaky reversal potential −54.4 mV
VNa Sodium reversal potential 50 mV
VK Potassium reversal potential −77 mV
ĝL Leaky conductance 0.3 mS/cm2

ĝNa Sodium channel conductance 120 mS/cm2

ĝK Potassium channel conductance 36 mS/cm2

ρNa Sodium channel density 60 channels/µm2

ρK Potassium channel density 18 channels/µm2

in which, Area · g(V , t) = total number of open channels × conductance per open channel. That is,

g(V , t) =
tot. # of open chann.

tot. # of chann.
×

tot. # of chann. × conduct. per open chann.
Area

.

Therefore, we have that in Eq. (83),

gK (V , t) =


OK (V , t)

Nk


ĝK, gNa(V , t) =


ONa(V , t)

NNa


ĝNa. (84)

In Eq. (84),OK (V , t) andONa(V , t) are the numbers of potassium and sodium channels in their respective ‘‘open’’ states. They
are discrete randomvariables following time-inhomogeneousMarkov process, throughV (t).NK = ρKArea andNNa = ρNaArea
are the total numbers of potassium and sodium channels, with ρK and ρNa being the number densities of the two channels,
respectively. Parameter values used in computations are given in Table 1.

Each sodium channel is composed of three identical m-gates and one h-gate, and each potassium is composed of four
identical n-gates. Only when all of the constituent gates are in the open states, a given channel is said to be open. The state
evolution of each individual channel can be described by a Markov process, with kinetics given by

m0h1 m1h1 m2h1 m3h1

m0h0 m1h0 m2h0 m3h0

✻ ✻ ✻ ✻

❄ ❄ ❄ ❄

✲✛ ✲✛ ✲✛

✲✛ ✲✛ ✲✛
3αm

βm

2αm

2βm

αm

3βm

βh βh βh βh

3αm

βm

2αm

2βm

αm

3βm

αh αh αh αh

(85)

for the sodium channel, and

n0
4αn


βn

n1
3αn


2βn

n2
2αn


3βn

n3
αn


4βn

n4, (86)

for the potassium channel.
The voltage-dependent transition rates are given as in the literature [173]

αn =
0.01(V + 55)
1 − e−(V+55)/10

, βn = 0.125e−(V+65)/80,

αm =
0.1(V + 40)

1 − e−(V+40)/10
, βm = 4e−(V+65)/18,

αh = 0.07e−(V+65)/20, βh =
1

1 + e−(V+35)
.

The dependence of these transition rates on the membrane voltage V is depicted in Fig. 8.
Different from the traditional treatment, we consider a membrane patch consist of NNa sodium channels and NK

potassium channels. These channels, instead of behaving independently, are controlled by a common voltage V (t) varying
with time.

In simulating the dynamics of the stochastic HH equation with intrinsic Markovian channel kinetics, there are two
alternative methods: the Gillespie algorithm [178–180] that tracks the number of channels in each state, or a Monte Carlo
algorithm that tracks the state of each channel. Computationally, the former one is more efficient with large number
of channels, while the later gives the state of each channel, which can be helpful in explaining the mechanism for the
spontaneous firing.



X.-J. Zhang et al. / Physics Reports 510 (2012) 1–86 35

A B C

Fig. 8. Dependence of the transition rates of the ion channels on the membrane voltage V . (A) is for m gate of the sodium channel, (B) is for h gate of the
sodium channel, and (C) is for n gate of the potassium channel. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

A B C

Fig. 9. (A) Time courses of the membrane voltage of the stochastic HH model (83) and (84), with different patch sizes, 0.5, 5, 100, and 200, in µm2 , from
top to bottom. The densities for the sodium and potassium channels are 60 and 18 per µm2 . (B) The corresponding power spectra. (C) The firing rate and
the CV of the ISI vs. the area of the membrane patch.

We use the Gillespie method to see how the intrinsic channel noise affects the dynamics of the membrane potential in
a single neuron. We plot the membrane potentials for different sizes of a membrane patch, and the corresponding power
spectra (Fig. 9A and B). It is shown that if the patch area is very small (0.5 µm2), the neuron fires very irregularly, and the
height of the spectrum is very low; on the other hand, if the area of themembrane patch is too big (e.g. 200µm2), the action
potential is rarely generated. However, for an intermediate patch area (5 ∼ 20µm2), the neuron produces action potentials
relatively regularly, compared with the case in a small patch area. Viewing from the profile of the power spectrum, there is
a distinguish peak at a nonzero frequency, which reflects a certain degree of coherence of the firing of the neuron.

To further show the effect of intrinsic channel noise on the statistic properties of the firing behavior, we calculate the CV
of the ISIs of the action potentials. The curves of the firing rate and the CV vs. the area of the membrane patch are depicted
in Fig. 9C. It is shown that although the firing rate of a single neuron decreases with increasing the channel number, the CV
of the firings reaches the minimum at about Area = 5 µ m2. This further confirms the occurrence of CR.

It is important to point out that, conditioned on a given membrane potential V , the mesoscopic channel fluctuations are
strictly equilibrium. However, when coupled to the macroscopic V , there is an unbalanced circulation (NBC) in the ‘‘voltage
channel-state space’’ without any externally injected current. We give a more detailed description below.

According to Eqs. (85), (86) and Fig. 8, when the membrane voltage is at V1 = Vrest ≈ −50 mV, most of the sodium
channels are in state (m0, h1) and most of the potassium channels are in state n0. Noticing that the second term in Eq. (83)
is nonnegative (i.e., −gNa(V − ENa) ≥ 0) at V = V1, and the kinetics of n-gate of the potassium channels are much
slower than those of m-gate of the sodium channel, there will be an increase in the membrane potential after a short
time duration. Since αm increases and βm decreases with the increase of V , there will be a net probability flux through
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Fig. 10. The coupling between macroscopic dynamics of the membrane potential V and mesoscopic stochastic kinetics of individual channels (sodium).
(a) membrane potential V (t). (b–i) The fraction of the channels in different states: 0 := m0h0 , 1 := m1h0 , 2 := m2h0 , 3 := m3h0 , 4 := m0h1 , 5 := m1h1 ,
6 := m2h1 and 7 := m3h1 . There is an emergence of a NBC: The peaks successively occur at states 4, 5, 6, 7 (b–e), which correspond to the depolarizing
phase of the membrane voltage in (a), and then to 3, 2, 1, 0 (f–i) corresponding to the hyperpolarizing phase of V . Interestingly, for states 1, 2 and 5, 6, in
addition to the high peaks, there are also low peaks. Taking state 1 as an illustration: This is due to the net flux from state 5(m1, h1) to state 1(m1, h0),
which appears earlier than the major circulation from 5 → 6 → 7 → 3 → 2 → 1. This is also the case for state 2. As for state 5 and 6, the low peak
should appear later than the major one. In the simulation, the area of the membrane patch is 5 µm2 . (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

(m0, h1) → (m1, h1) → (m2, h1) → (m3, h1): A large fraction of sodium channels open up, which causes the neuron to
generate a spike. In Fig. 10a, the positions within one spike is marked. One can clearly see the states of the sodium channel
at the rising phase of the membrane potential. After the generation of the spike, V further increases (see the increasing part
after state 7 in Fig. 10a), but this will subsequently be shut down by the inactive h-gate, whose backward transition rate
βh(V ) increases and forward rate αh(V ) decreases with the increase of V . Thus there is a net flux from (m3, h1) to (m3, h0)
during the overshooting phase of the membrane potential. Finally, after the occurring of the peak at state (m3, h1), one
observes a peak at states (m3, h0), and later the peak successively occurs at state (m2, h0), (m1, h0), and (m0, h0), these
channel states correspond to the falling phase of the membrane potential (see marked states in Fig. 10a).

During the changes of the membrane potential, there also occurs a net flux of the potassium channel (see the successive
peaks at states n0, n1, . . . , n4 in Fig. 11a). Because the forward transition rate αm of the sodium channel is much greater
than the rate αn of the potassium channel (compare Fig. 8A and C), the opening of the potassium channels has a time lag to
the sodium channels (compare state 7 in Fig. 10a and state 4 in Fig. 11a). Hence during the rising phase of the membrane
potential, it is mainly the sodium current that gives rise to the depolarization of the membrane potential. After the firing,
however, the net flux in the potassium channel population results in a large fraction of the potassium channels to open and
an opposite current, which leads to the polarization of the membrane potential, and the net flux from n4 to n0. The neuron
is then hyperpolarized, and the net flux of the sodium is then going toward to state (m0, h1) to complete a circle and allows
the neuron back to the resting state, ready for the next spike generation.

With the coupling of ‘‘equilibrium channel’’ with the macroscopic V , there is a time-irreversible circulation in the
phase space. Such a circular motion is spontaneous and stochastic; leading to a nonequilibrium phenomenon in the HH
model (83). To mathematically prove asymptotic stationarity of the stochastic process is outside the scope of the present
review. Nevertheless, we believe the physical interpretation in terms of NESS is still valid. It is also important to point out
that the thermodynamic driving force in the present model is from the macroscopic dynamics, i.e., the sustained sodium
and potassium ion gradients across the membrane due to the Na–K-ATPase pumps, which is implicitly assumed in the HH
model. It is not from the breakdown of detailed balance in the mesoscopic part.

With respect to SR, the central question is why the spontaneous firings disappear when the number of channels, together
with themembrane area, becomes too large? The reason for this can be clearly found in Eq. (84): For the potassium channels,
note that with increasing the membrane patch area, both the random variable OK (V , t) the total channel number NK
increase proportionally. Hence, by the probability law of large numbers and the central limit theorem, their ratio tends
to a deterministic value with variance proportional to N−1

K . The same is true for sodium channel fluctuations. Hence, with
increasing membrane area, the channel noise levels are decreasing.
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Fig. 11. The coupling between the macroscopic dynamics and the mesoscopic kinetics of individual channels (potassium). Due to the emergence of NBC,
there are peaks successively occurring at states n0, n1, n2, n3 and n4 (b–f). The corresponding phases of these states can be clearly seen in (a). Here the area
of the membrane patch is the same as Fig. 10. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Based on Kramers–Moyal expansion, Fox and Lu [177] have shown that the effect of randomly opening and closing of
independent individual channels can be approximated by three independent, standard Gaussian white noise terms added
to the traditional HH equation for gating variablesm, n and h:

dn
dt

= αn(1 − n)− βnn +


2αnβn

NNa(αn + βn)
ξn(t), (87a)

dm
dt

= αm(1 − m)− βmm +


2αmβm

NK (αm + βm)
ξm(t), (87b)

dh
dt

= αh(1 − h)− βhh +


2αhβh

NNa(αh + βh)
ξh(t). (87c)

They obtained this set of equations based on the diffusion approximation of the underlying discrete Markov process: The
latter approach preserves the independence of the gates within a channel while in the former this independence is lost
due to terms like n4(t) andm3(t)h(t). Using the approximated Eq. (87) but consider n4(t) as a product of four independent
processes, Hänggi et al. discovered CR in a moderate area of membrane patch. Further injection of external periodic current
passing through the cell membrane does not have a significant effect on such a CR originated from the intrinsic channel
noise [111].

Recently it has also been reported that, in comparison to the Markov model, the Langevin approximation, even with the
correction introduced in [111], is most of the time inadequate to accurately represent channel dynamics. It underestimates
the effect of channel noise contribution, even in simulations with large numbers of ion channels [181,182].

3.3. Stochastic resonance in the presence of periodic driving and its relation with coherence resonance

In this section, we will explore the phenomena of SR, which occurs usually in nonlinear systems owing a certain energy
threshold and driven by a periodic force plus noise perturbation. Traditionally, the phenomena of CR and SRwere considered
different. In this section, by treating the periodically driven SR model as an autonomous system based on an embedding-
based description, we shall show that both SR and CR actually have the same essence; both are intimately related to NESS.

3.3.1. Stochastic resonance in a periodically driven phase model
We first investigate the interplay between noise and periodic excitation in the simple Adler’s phase model [183]

ẋ = b − sin x + A cosωt + Dξ(t). (88)

It is obligatory to first study the deterministic dynamics of Eq. (88) without noise:

ẋ = b − sin x + A cosωt. (89)
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Fig. 12. (A) The intersections of the surface y = sin x − bwith the cylinder E2 for (a) 0 < A < 1 − b, (b) 1 − b < A < 1 + b, and (c) A > 1 + b, where the
sign ‘‘+’’ represent ẋ > 0, while ‘‘−’’ represents ẋ < 0. (B) The bifurcation curve Lc of Eq. (90): above Lc , there are one SLC and one ULC on the cylinder in
every strip 2kπ − π/2 < x ≤ 2kπ + 3π/2, while below Lc , no limit cycle exists.

In the literature, the traditional way to explore the existence of periodic solutions in such a system is to take the signal term
as a small perturbation. However, for large values of A, the perturbation theory is no longer valid. To explore the dynamical
behavior of system (89) both for small and large periodic modulations, we transform Eq. (89) into an autonomous system
by setting y = A cosωt and z = A sinωt , then Eq. (89) equivalently becomes:ẋ = b − sin x + y,

ẏ = −ωz,
ż = ωy.

(90)

Because of the periodicity in x, a solution to Eq. (90) can either be regarded as a curvewinding on a cylinder E2
: y2+z2 = A2

or on a torus T = S1
× S1.

Let ẋ = 0, one has b − sin x + y = 0, i.e. y = sin x − b. Considering the intersection of the surface y = sin x − b with
E2 for b < 1. We shall first learn to visualize the interaction(s) between the two surfaces and its relation to the system of
differential equations. As in the case of intersections between the two nullclines in the system of two differential equations,
such intersection(s) provides a basic understanding of the dynamics on a cylinder.

Let the coordinate system satisfies the right-hand rule: x̂ × ŷ = ẑ. The equations ẏ = ωz and ż = −ωy means that the
trajectory is rotating on the front face (to the reader) of the cylinder from right to left in Fig. 12A. It does not stop nor turn
back since the angular velocity is constant. Now combining the rotationwith themovement in vertical x direction, we notice
that the x component has to change direction across the null cline surface.

We now see that there are two different cases that deserve attention separately:

Case 1: A ≤ 1 − b. In every strip (2kπ − π/2, 2kπ + 3π/2] of x, the surface y = sin x − b divides the cylinder into three
parts. In each two neighboring parts, ẋ changes sign (see Fig. 12A (a)).

Case 2: A > 1− b. in every strip (2kπ −π/2, 2kπ + 3π/2], the surface y = sin x− b divides the cylinder into two sections.
Fig. 12 A(b) shows the intersection for 1 − b < A < 1 + b, and Fig. 12A(c) shows the intersection for A > 1 + b.

The dynamics of the deterministic system (90) on the cylinder for the above two cases are discussed in Appendix C. It is
shown that for every fixed value of b, there exists a critical function ω = ωc(A) such that for ω > ωc(A), system (90) has
two limit cycles, while for ω ≤ ωc(A), no limit cycle exists (see Fig. 12B). Note that no limit cycle means that x continuously
increases.

Except a stable limit cycle that is perfectly perpendicular to the cylinder, there is an oscillation in x in system (88) even
without noise. To measure noise-induced enhancement of the amplitude of the periodic signal x, we average the power
spectra of 50 runs of the time series of {sin x(t)}t≥0. We then calculate the response amplitude RA, defined by Eq. (78)
in Section 3.1.4, which characterizes the occurrence of SR. Let us first investigate the influence of noise in the regime for
ω > ωc(A).
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Fig. 13. The effects of noise for two different phase portraits under the case of A ≤ 1 − b. Left column: the phase portraits; middle column: the power
spectra for different noise intensities; right column: the response amplitude as a function of noise. Parameters used in (A): b = 0.97, A = 0.02, ω = 0.2;
and in (B): b = 0.9, A = 0.09, ω = 0.4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

3.3.1a. ω > ωc(A) and A ≤ 1 − b. In this parameter regime, for every driving frequency ω, the deterministic system (90)
has a stable limit cycle (SLC) and an unstable limit cycle (ULC) on every strip (2kπ−π/2, 2kπ+3π/2] (k = 0,±1,±2, . . .).
Motions on the limit cycles have the same frequency ω. To investigate the behavior of the system in the presence of noise
perturbation, we consider two different sets of system parameters.

Firstly, let us see the situation for a weak periodic drive, with b = 0.97, A = 0.02, ω = 0.2 for illustration. The phase
portrait of the deterministic system in Fig. 13A shows that both the SLCs and the ULCs are very flat, i.e., almost perpendicular
to the cylinder, and the distance of the SLC to one ULC is much closer than to another ULC (This is due to the parameter b is
very near 1.) Correspondingly, there is a low spectrum peak centered at the driving frequency in the power spectrum (blue
in the middle panel of Fig. 13A). When noise is included, hopping motion from one SLC to the next SLC on the cylinder,
crossing the ULC, occurs. Reflected in the power spectrum is an enhanced spectrum peak at the driving frequency. With the
noise intensity D increasing, the height of this peak increases correspondingly until reaching a maximum at about D = 0.2,
which indicates themaximal degree of coherence of the hoppingmotion (red spectrum in themiddle panel of Fig. 13A). After
that, the spectrum peak decreases with further increasing D. This means that in system (88) the conventional SR occurs as
an optimal ‘‘cooperation’’ between a weak periodic signal and white noise.

We point out that by treating the periodically driven SR model as an autonomous system according to the embedding-
based description, this traditional SR can be regarded as the coherent hoppingmotion between the two SLCs on the cylinder.
It is essentially a type of CR.

Wenowexplore the situationwhen the amplitude of the driving signal is relatively larger. For illustration,weuse b = 0.9,
A = 0.09 and ω = 0.4. It is seen in the left panel of Fig. 13B that the smallest distance between the SLC and the ULC is now
much larger than that in Fig. 13A. Although the effect of noise ismore or less the same to the case in (A), the deterministic case
has a much stronger peak in (B) compared that in (A). One therefore sees that the height of the spectrum peak at the driving
frequency is decreasing with the increase of the noise intensity (middle panels of Fig. 13B). So for this set of parameters, no
conventional SR is judged by the RA curve shown in the right panel of Fig. 13B.

3.3.1b. ω > ωc(A) and A > 1 − b. The case of A ≤ 1 − b is called subthreshold. We proceed to investigate the case of
superthreshold periodic modulations: A > 1 − b, ω > ωc(A). Again, we take two sets of parameters for illustration: One is
b = 0.9, A = 0.3, ω = 0.423, and another is b = 0.5, A = 0.6, ω = 0.131. From the phase portrait shown in Fig. 14A with
b = 0.9, A = 0.3, ω = 0.423, one sees that the neighboring SLC and ULC are very close to each other. In such a situation,
even a weak perturbation of noise can easily induce coherent switching between the stable limit cycles. Correspondingly,
from the power spectrum in the presence of noise (middle panels in Fig. 14A), one sees that noise can boost the signal that
is very weak in the deterministic case. Furthermore, the background in the spectrum is much smaller than that in Fig. 13.
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Fig. 14. The effects of noise for two different phase portraits under the case of A > 1 − b: (A) b = 0.9, A = 0.3, ω = 0.423, (B) b = 0.5, A = 0.6,
ω = 0.131. The phase portraits are shown in the left column, the curves of the response amplitude RA vs. the noise intensity D are shown in the right
column. The middle panel in (A) gives the comparison of the power spectrum in the absence and presence of noises. Note that the noise-induced motion
peaks at a different frequency.

The occurrence of conventional SR in this scenario is characterized in the right panel of Fig. 14A, where RA vs. D displays an
optimum.

Fig. 14B shows the results for b = 0.5, A = 0.6, ω = 0.131. It is seen that although the SLC and the ULC are still close to
each other, including noise does not facilitate the response amplitude any more. This is because the deterministic motion
already has a periodic rotation around the SLC with large amplitude even in the absence of noise. Thus even though adding
noise can easily induce switching between stable limit cycles, it can only cause irregularity. These results tell us why noise
can detect weak period signal, but certainly can only cause deterioration for strong periodic signal.

3.3.1c. ω < ωc(A). In the above sections, we have illustrated different consequences of the interplay between noise and
the periodic driving in the situation where the deterministic system (90) exhibits two SLCs with an ULC in between. In the
absence of noise, if the periodic motion on a SLC has a very small amplitude, noise will increase the amplitude as well as
induce coherent hopping motions between the two SLCs.

Let us now consider the situation when the deterministic system (90) has no limit cycle on the cylinder. Fig. 15a is the
phase portrait of system (90) for b = 0.9, A = 0.4, and ω = 0.2. It is shown that without any noise perturbation, the
solution to the deterministic system is already periodically running around the cylinder E2 with a large amplitude. Then
it is easy to conclude that adding noise can only destroy such a regular motion. This is confirmed in Fig. 15b, where the
response amplitude of the output is decreasing with the increase of the noise level. Numerical simulations for other sets of
parameters, with which the deterministic system has no limit cycle, all give the same result. Therefore SR is impossible to
exist when system (90) has no limit cycle.

In conclusion, SR in a periodically driven nonlinear, stochastic system is essentially the same as the phenomenon of CR.
SR exists only when the deterministic system has two SLCs and one ULC on the cylinder, and the mechanism of SR/CR is
attributed to the coherent hopping between stable limit cycles. The occurrence of CR depends on the relative position of the
SLC to its neighboring ULC as well as the amplitude of the SLC itself, as shown in Figs. 13 and 14.

3.3.2. Stochastic resonance in a bistable system
In this subsection, we will apply the same idea of embedding an non-autonomous system to an autonomous one to

investigate the phenomenon of SR in system (64) with a bistable V (x). The conventional results on SR in such systems
require the amplitude of the driving force not exceeding a threshold value of Ac = 2

√
3/9 (subthreshold regime). For

A > Ac (superthreshold regime), SR was declared as impossible [184] because the double-well profile of the potential is
no longer preserved. Recently, Apostolico et al. [185] pointed out that SR can also occur in superthreshold regime, but via a
mechanism called ‘‘noise failure’’ which is essentially different from the one in the subthreshold regime (see Fig. 16).
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a b

Fig. 15. (a) The phase portrait of system (90) for b = 0.9, A = 0.4, ω = 0.2. (b) The response amplitude RA vs. the increase of the noise intensity D.
Source: Reproduced with permission from X. J. Zhang, J. Phys. A: Math. Gen. 37(2004) 7473.

Fig. 16. (A) The sketch of the effective potential V (x) of Eq. (64) in the absence of a periodic driving. (B) Periodic rocking of the potential under a
subthreshold periodic driving (A < 2

√
3/9) at different time points. (C) Trajectories of the system in the presence of a subthreshold drive and noise

fluctuation with different intensities. In the subthreshold regime (A ≤ 2
√
3/9), SR was found to occur for moderate strength noise perturbation; however,

in the superthreshold regime (A > 2
√
3/9), SR was usually thought to be impossible because of loosing bistability.

Source: Figure reproduced from L. Gammaitoni et al., Rev. Mod. Phys. 70, 224 (1998) with permission.

Actually, using the idea of embedding the non-autonomous equation into an autonomous system [186–188], we will
further show the existence of SR in the superthreshold regime via numerical computations. We will demonstrate two SLCs
of the deterministic system above a bifurcate curve. From this perspective, the mechanisms of SR in both subthreshold and
superthreshold cases are essentially the same.

By setting y = A sin(ωt+ϕ), z = A cos(ωt+ϕ), Eq. (64) in the absence of noise is equivalent to the following autonomous
system on a cylinder E2

: y2 + z2 = A2 (see Fig. 17A)ẋ = x − x3 + y,
ẏ = ωz,
ż = −ωy.

(91)

Applying the samemethodused in Section3.3.1,wehave the following results for the two-dimensional systemona cylinder:

(i) For A ≤ Ac and all ω > 0, Eq. (91) has and only has three limit cycles with two stable and the other one unstable.
(ii) For A > Ac and ω ≪ 1, there exists only one SLC on the cylinder for Eq. (91).
(iii) For A > Ac and ω ≫ 1, Eq. (91) has and only has three limit cycles with two stable and the other one unstable.

A detailed mathematical proof of the above assertions, which we shall not present here, can be found in [189].
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Fig. 17. (A) The intersection of y = x3 − x with the cylinder for A < Ac and A > Ac . (B) The bifurcation curve Lc of Eq. (91): Above Lc , there are two SLCs
and one ULC on the cylinder; while below Lc , only one SLC exists on the cylinder. The left side of the dashed line is for the subthreshold parameter regime
(A ≤ Ac =

2
√
3

9 ), and the right side is for the superthreshold regime (A ≤ Ac ).

According to the above statements, it is expected that for A > Ac and with any ω, there still exists a critical curve Lc :
ω = ωc(A), for ω ≥ ωc(A), Eq. (91) has three limit cycles, while for ω < ωc(A), only one SLC exists on the cylinder. Fig. 17B
is a plot of such a bifurcation curve.

From the standpoint of the embedded autonomous system, the bistability of the system in a subthreshold regime referred
in the literature corresponds to the existence of two SLCs on the cylinder. As for the superthreshold regime, the system can
still exhibit bistability if the driving frequencyω is larger than a critical valueωc (see Fig. 17B). Then in the presence of noise,
the motion will no long be confined on one SLC. Rather, it will switch between the two SLCs randomly. Such a motion can
result in SR in system (64). Thus, for A > Ac , SR can still occur for suitable driving frequencies, and the mechanism will be
essentially the same as that for A < Ac . We suggest that SR is easy to occurwhen the driving parameters (A, ω) is close to the
bifurcation curve Lc . To confirm this, in Fig. 18A and B,we plot the power spectra and the corresponding response amplitudes
for values of (A, ω) that are close to the curve Lc and also values that are far from Lc , respectively. As forω < ωc , since there is
only one SLC, introducing the noise destroys the periodicmotion along the limit cycle. Hence no SR is observed (see Fig. 18C).

Similar to what we have presented for the periodically driven phase model with noise, the occurrence of SR depends
upon the relative position of the SLC and the ULC as well as upon the amplitude of the SLC itself in the absence of noise. In
order for SR to occur, the distance between the SLC and the ULC has to be small, and the amplitude of the stable periodic
motion should also be small. Note that these two quantities do not simultaneously increase or decrease with varying the
parameters of the system. Decreasing the distance between the SLC and the ULC till they almost collide should optimize
the switching motion and hence the SR. However at the meantime it might increase the amplitude of the SLC and boost the
deterministic spectrum peak, which reduces the response amplitude. Overall, the occurrence of SR is a competition between
these opposite effects (see Fig. 19). SR thus can only be observed in a certain parameter regime in the A–ω plane (see Fig. 20).
For a more detailed discussion of the dependence of SR on these two ingredients, see [190].

3.4. Array-enhanced coherence resonance and stochastic resonance in coupled systems

For systems with a single oscillator, we have elucidated the mechanism(s) of CR and SR in the previous sections. The
question naturally comes next is what the situations will be in systems with many degrees of freedom? In this section, we
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A B C

Fig. 18. The effects of noise in the superthreshold regime: Top panel: The trajectories in the absence (red for stable and blue for unstable) and in
the presence of noise (black). Bottom panel: The response amplitude vs. the noise intensity. Column (A) is for A = 0.4, ω = 0.1, column (B) is for
A = 0.4, ω = 3, and column (C) is for A = 0.6, ω = 0.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

further investigate the phenomenon of CR as well as SR in coupled systems, where one sees that the interaction between
noise, nonlinearity, and the coupling will result in much more pronounced CR and SR.

3.4.1. CR in a coupled phase model without periodic driving force
Let us now investigate the influence of noise on a systemofN×N identical overdamped oscillatorswith nearest neighbor-

coupling on a square lattice, without an external periodic driving [191]. The model in dimensionless form is characterized
as

u̇i,j = bi,j − sin ui,j + K

ui−1,j + ui+1,j + ui,j+1 + ui,j−1 − 4ui,j


+ Di,jξi,j(t), (92)

(u⃗ = (ui,j, i, j = 1, 2, . . . ,N) ∈ TN2 △
= S1

× S1
× . . .× S1  
N2

)

in which ui,j represents the phase of the oscillator on the lattice (i, j), it is a time-varying variable; bi,j ≥ 0 is the
control parameter, K > 0 is the coupling coefficient, and ξi,j(t) > 0 is Gaussian white noise satisfying: ⟨ξi,j(t)⟩ = 0,
⟨ξi,j(t)ξi′,j′(t ′)⟩ = δi,i′δj,j′δ(t − t ′). We use free boundary conditions at the edges of the array. Such a systemwere introduced
to describe the real physical phenomena such as the motion of squid arrays [192]; they were also used to model oscillating
chemical reaction [193] and neural networks in biology [194]. In our computations, the array size is taken as 10 × 10 and
the coupling constant K = 1.

Even without any noise, system (92) displays interesting dynamical behaviors. Numerical simulations show that
whenever the coupling K > 0, it may alternatively rest near a stable state or has a unique running periodic solution. And if
there are fixed points, their numbers will be about eN

2
[195]. These fixed points form a vast majority of metastable states

of the system. Taking TN2
(the production of N2 unit circles S1) as the phase space, then the rotation numbers for different

components of the solution are either zero or nonzero. Further calculations show that they are all equal even when the
values of bi,j’s are different: There is a phase-locking phenomenon. Thus, we define the rotation number of the deterministic
system as Rdet = limt→∞ u1,1(t)/2π t . One will see in the following that for the cases of Rdet = 0 and Rdet ≠ 0, the noise
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Fig. 19. Dependence of SR on the relative position of the SLC and the ULC. By varying the driving amplitude and frequency, the relative position of the SLC
and the ULC changes accordingly. (a) corresponds to the subthreshold regime, (b–d) correspond to the superthreshold regime. The top panels are plotted
from the parameters that are close to the bifurcation curve Lc in Fig. 17, while the middle panels are from the parameters that are not close to Lc . It is seen
that (i) the effect of SR in the subthreshold parameter regime is muchmore significant than in the superthreshold regime. (ii) For a fixed driving amplitude,
the effect of SR decreases with the increase of the driving frequency. (iii) For a fixed driving frequency, increasing the driving amplitude destroys the
phenomenon of SR (see the bottom panels).
Source: Reproduced with permission from M. Qian and X. Zhang, PRE 65, 011101 (2001).

Fig. 20. The parameter regime where SR can occur in system (64).
Source: Reproduced with permission from M. Qian and X. Zhang, PRE 65, 011101 (2001).

plays very different roles for the behavior of the corresponding system. Actually, for Rdet > 0, every oscillator in the absence
of noise already rotates periodically on the circle, introducing noise only destroys such a nice periodic motion. Hence no CR
can occur. We therefore need only to consider the effect of noise for the case of Rdet = 0.

3.4.1a. Homogeneous driving with global noise perturbation. For 0 < bij = b < 1, all the oscillators are driven by the same
constant forces. Here we set bi,j = b = 0.98 for illustration. Without any noise, the system has two spatially homogeneous
stationary solutions: us

i,j = arcsin b (stable) and uu
i,j = π − arcsin b (unstable) (i, j = 1, 2, . . . ,N). We speculate that with
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Fig. 21. (A) The power spectrum of {sin u(t)} for the single oscillator system (66) and for the coupled system (92) with K = 1 on lattices (1, 5) and
(2, 7). Here bi,j = b = 0.98,Di,j = D = 0.5 (i, j = 1, 2, . . . ,N). (B) The quality factor β vs. D for bi,j = 0.98, K = 0, bi,j = 0.98, K = 1, and
bi,j = 0.98+0.2× (−1)i, K = 1 (i, j = 1, 2, . . . ,N). Here Di,j = D (i, j = 1, 2, . . . ,N). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

the increase of the noise strength, the quality factor (see Eq. (72)) of the power spectrum for every oscillator will exhibit
similar increase property to that in the uncoupled case (i.e., system (66)). Numerical simulations confirm this speculation
(see Fig. 21A). It turns out that the profile of the power spectrum as well as the D–β curve are independent of the lattice
sites. The coupled system exhibits nice, coherent behavior: First of all, for every oscillator, the height of the spectrum peak
is increased, meanwhile, the width of the spectrum becomes much narrower. As a result, the maximum of the quality factor
is significantly (about five times) higher than that of the uncoupled case (see Fig. 21B, the green and red curves). Secondly,
as shown in Fig. 21A, all the oscillators have exactly the same peak frequency, even when the values of Di,j are different).
This means that all the units oscillate in synchrony. From these two facts, we say that even without any external periodic
driving, bona fide CR actually occurs in system (92) as a mutually cooperative phenomenon.

3.4.1b. Heterogeneous driving with global noise perturbation. As an illustration, we take bi,j = 0.98 + (−1)i × 0.2, (i, j =

1, 2, . . . ,N). It is shown in Fig. 21B (the blue curve) that though the averaged force isΣbi,j/N2
= 0.98, the effect of array-

enhanced CR is much better than that in the case bi,j = 0.98. This shows that heterogeneous driving forces can result in a
better array-enhanced CR than homogeneous driving.

3.4.1c. Local noise perturbation. In the above two cases, independent noises are applied to the lattice points. What will be
the result if only a fraction of the sites are perturbed with noise? For illustration, we use bi,j = 0.9 (i, j = 1, 2, . . . ,N) and
subject only the single middle oscillator to noise: D5,5 = 9 and all other Di,j = 0. In such a situation, it requires relatively
stronger noise perturbation to promote the running motion than in the globally perturbed cases. In Fig. 22, we plot the
phase trajectories of the oscillators at lattices (5, 5), (6, 5) and (4, 8) and the corresponding power spectra of {sin u5,5(t)},
{sin u6,5(t)}, {sin u4,8(t)}. One sees that although only one element is subjected to the noise perturbation, the phases of all
the oscillators increase in a phase-lockingmanner, but themotion of the oscillator at lattice (5, 5) is severely disturbed by the
noise and there is only a low peak in its power spectrum. For its neighboring oscillators, c.f. at (6, 5), the noise disturbance
is not so great, and there is in fact a significantly higher spectrum peak than at lattice (5, 5). As for other oscillators, say the
one at (4, 8), the noise disturbance is further reduced. In fact, it is the coupling which plays a dominant role in promoting
the oscillator to skip cycles. Consequently, for these sites, there is a higher spectrum peak than the middle two layers. In
the bottom trace of Fig. 22, we plot the curves of the quality factors vs. D of these oscillators, one can clearly see different
effects induced by the noise. The above observations show that for SR, it is not necessary to subject every oscillator to noise.
Suitable localized noise perturbation can have global effect on the whole dynamics of the system, and cause most of the
oscillators undergo SR.

3.4.2. Stochastic frequency resonance in a coupled phase model with a periodic driving force
Introducing a periodic driving to system (92), we have the following periodically driven coupled phase model

u̇i,j = bi,j − sin ui,j + K

ui−1,j + ui+1,j + ui,j+1 + ui,j−1 − 4ui,j


+ A sinωt + Dξi,j(t), (93)

(u⃗ = (ui,j, i, j = 1, 2, . . . ,N) ∈ TN2 △
= S1

× S1
× · · · × S1  
N2

)

In the previous sections, through numerical computations, we have shown that pure noise can already induce the
occurrence of CR in system (93) with A = 0. Such a CR phenomenon is usually characterized by the appearance of a
nonzero-frequency peak in the power spectrum, and by a nonmonotonic increasing of the quality factor with increasing
noise intensity. The off-zero power spectral peak in such systems reflects an intrinsic periodicity of the noisy system [125].
One could say that such a system has an intrinsic frequency. A natural question then is: If the frequency of an external
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Fig. 22. Top trace: Time courses of the phase ui,j(t) of the oscillator on lattices (5, 5), (6, 5) and (4, 8). Middle trace: The corresponding power spectra.
Bottom trace: The quality factorβ calculated from the power spectrumvs. the noise intensityD. Here the external constant forces are added homogeneously
with bi,j = 0.9, (i, j = 1, 2, . . . , 10); and the noise perturbation is added only on the lattice (5, 5), with D5,5 = D > 0 and Di,j = 0 (i ≠ 5 or j ≠ 5).

periodic forcing matches the intrinsic one, will the periodic signal of the system be significantly higher than adding signals
with ‘‘non-resonance’’ frequencies? In 1998, Hu and coworkers [141] considered this interesting problem and obtained an
affirmative answer in a globally coupled spatial system, near a bifurcate point, with both activating and inhibitory terms.
Similar result was later reported by Plesser and Geisel in an IF neuron model [196]. Here we shall use the model in (93) to
see such an effect.

As a control, we first consider the case of a single oscillator with Eq. (88). We fix the parameters b = 0.98 and D = 0.7.
Without the periodic force, the peak frequency of the power spectrum is atω0 ≈ 0.7095 (see inset in Fig. 23A). To investigate
the effect of a periodic modulation on the output of the stochastic system, we use A = 0.1 and plot the power spectra with
different driving frequencies in Fig. 23A. One indeed sees that the output of system (88) reaches a maximum when the
external modulation frequency is varied to match the noise-induced ‘‘intrinsic’’ frequency ω0. This is the characteristics of
traditional ‘‘resonance’’ with matching frequencies in deterministic physics systems.

To distinguish this novel resonance phenomenon in stochastic systems from the better-known SRwhich emphasizes the
noise influence on the output of a system, we suggest to call it stochastic frequency resonance (SFR).

Wenow further investigate the effect of spatial coupling. To comparewith the uncoupled case,we still use bi,j = b = 0.98
and D = 0.7. Without periodic forcing (A = 0), the power spectrum of system (93) is shown in the inserted in Fig. 23B,
where noise-induced peak frequency ω0 ≈ 0.3336. With periodic forcing using A = 0.1, the power spectra for various
driving frequencies are shown in Fig. 23B. One sees that when the frequency of the periodic drivingmatchesω0, the spectral
peak is again much higher than the ones for other driving frequencies. This indicates that SFR also occurs in the locally
coupled system (93). One also notices that the noise-induced spectrum shown in Fig. 23A is significantly ‘‘cleaned’’ in the
coupled system. When further plot the height of the spectrum peak h vs. the driving frequency ω in Fig. 24A, it is seen that
the coupled system exhibits much better SFR than the single-oscillator system. For the case we considered with D = 0.7,
the SFR output of coupled system (93) is almost 7 times larger than that of single-oscillator system (88).
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A

B

Fig. 23. The power spectra of (A) the single oscillator system (88), and (B) the coupled phasemodel (93) for different values of the driving frequency stated
in the figures. Here b = 0.98, A = 0.1,D = 0.7. The inserted figure is for A = 0.

A B

Fig. 24. (A) Array-enhanced FSR, where the height of the spectrum peak h vs. the driving frequency ω with fixed a noise intensity D = 0.7. (B) Array-
enhanced SR, where the response amplitude vs. the noise intensity Dwith a fixed driving frequency ω = 0.4. In both figures, bij = b = 0.98, A = 0.1. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The mechanism of the amazing array-enhanced SFR can be elucidated from the different interactions between the noise
and the periodic forcing in these two systems. To distinguish from the motion of a system forced by a periodic signal, here
we call the oscillations of a system driven only bywhite noise self-oscillations. This is really just a highly coherent version of
the NESS circulations. For system (88)without a periodic forcing, it is seen from the inserted figure in Fig. 23A(a) that there is
a wide range of self-oscillating frequencies.When aweak periodic signal is applied, though the power spectrum is peaked at
the driving frequency, the profile of the noise-induced power spectrum is still preserved. This fact tells us that the external
periodic signal can barely drive the original self-oscillations to synchronize with itself. The reason system (88) exhibiting
SFR, therefore, ismainly due to noise-boosted spectrumpeak being preserved under a periodicmodulation. However, for the
coupled-oscillator system (93), the power spectrum without periodic forcing already exhibits a narrower spectral line with
a much higher peak than that in the single-oscillator (compare the insets in Fig. 23B(a) and A(a)), for the reason of coupling
and synchronization [191]. Without external periodic driving, noise-induced coherent motion has already occurred with
frequency partly concentrated at the intrinsic ω0. Then when an external periodic signal is applied, it drives the noise-
induced oscillations to synchronize with itself. So in Fig. 23B(a), the spectrum of the self-oscillation is essentially the entire
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spectrum. It is easy to imagine that as a periodic signal with the exact noise-induced central frequency is introduced, it
becomes even easier to synchronize the motion of the self-oscillation.

Hence the occurrence of array-enhanced SFR in coupled system (93) is due to the ‘‘frequency focusing’’ twice: the first
time due to the coupling in the presence of noise and the second time due to the external periodic driving with matched to
the noise-induced frequency.

So far we have shown SFR both in single and coupled oscillator systems. Compared with the phenomenon of SR which
emphasizes the optimal level of intensity of the noise to a system, SFR exhibits a real resonance of a stochastic system, as in
the classical physics, with stimulus frequency matching the noise-induced intrinsic frequency.

There is also array-enhanced SR in the coupled phasemodel (93). This can be clearly seen in Fig. 24B, where the response
amplitudes of the single oscillator system (88) and of the coupled system (93) are plotted.

3.4.3. Rotation number and stochastic resonance (SR)
From the previous discussion, we have learnt that the rotation number is an essential indicator for nonequilibrium

circulation, and it is closely related to the occurrence of CR in stochastic nonlinear systems without a periodic forcing.
In this subsection, we shall further discuss the relationship between the rotation number and the SR. Let us first define
the rotation number in the coupled system (92). Recall that the rotation number of a single oscillator is defined as Rot =

limt→∞ u(t)/(2π t). As has been shown in the Fig. 7A, it is an increasing function of noise strength D. Thus, for an N × N
array of uncoupled oscillators, if the noise levels Di,j (i, j = 1, 2, . . . ,N) are different, then the oscillators will all have
different values for their rotation numbers. However, when there are coupling between the neighboring oscillators, the
rotation numbers of all the oscillators are exactly the same, irrespective whether the D(i, j) are same or different. A rigorous
prove of this result can be found in [64]. Thus a rotation number of the coupled stochastic system (92) still makes sense.
We therefore define the rotation number of the coupled system simply by

Rot = lim
t→∞

u11(t)
2π t

. (94)

Let us first exam the relationship between the rotation number and the peak frequency of the power spectrum in the
absence of an external periodic driving. For single oscillators such as in Eq. (66), Fig. 25A (the same data from the left panel
of Fig. 7A) shows a difference between the rotation number and the peak frequency of the power spectrum. There, we
argued that the difference is caused by the local fluctuations at the bottom of the potential well. In the coupled system,
numerical simulations show that these two quantities now agreewith each other verywell in awide range of noise intensity
(see Fig. 25B). The close relation between the rotation number and the peak frequency of power spectrum in the coupled
oscillators suggests that all the oscillators are frequency-locked and behaves coherently.

Let us further see the situation in the presence of a periodic driving. For illustration, we take A = 0.1, bi,j = b = 0.98
and Di,j = D = 0.7. For the case K = 0, i.e., no coupling, Eq. (93) for a single isolated oscillator yields rotation number
Rot = 0.4761 almost independent of driving frequency ω, as shown in Fig. 26A). This fact means that the external driving
can barely change the rotation number of a single oscillator. We have also seen in Fig. 23A that the spectral shape of the
noise-sustained oscillations is almost independent of the external driving frequency. However, in sharp contrast, for coupled
system (93) with K = 1, Fig. 26B shows that the rotation number changes correspondingly with the increase of the driving
frequency. In fact, it first increases until reaching amaximal value, but then decreaseswith the further increase of the driving
frequency. Furthermore, when the value of ω is close to the noise-induced intrinsic frequency ω0 = 0.3336, the rotation
number is also close to both, i.e., Rot ≈ ω = ω0. When the driving frequency ω becomes away from ω0, the rotation
number also departures from the driving frequency. The consistence of the rotation number and the noise-induced internal
frequency suggests that the oscillations in the coupled system are localized near this intrinsic frequency ω0.

The relationship among the rotation number, the peak frequency and the driving frequency motivates us to further
investigate the relationship between SR and the rotation number.We surmise that for a fixed periodic driving, SR occurs just
when the rotation number of the system increases to a value that equals to the driving frequency ω. Numerical simulations
confirm this: We use A = 0.1, ω = 0.4 and ω = 0.6136 for illustration. In Fig. 27A and B, one sees that with increasing
noise intensity A, the value of the rotation number Rot is also increasing; and when Rot increases to the value that equals
to the driving frequency ω, the corresponding spectrum peak reaches its maximum compared with both those for Rot < ω
and Rot > ω. This shows that for the coupled system, SR indeed occurs just when the value of Rot matches the driving
frequency.

4. Unidirectional motion and energy transduction efficiency of molecular motors

4.1. Brief introduction

In addition to stochastic/coherence resonance (SR/CR) discussed in the previous section, another nonequilibrium
system in which thermal ‘‘noise’’ plays a striking constructive role is molecular motor, also called Brownian ratchet.
This is a mesoscopic, stochastic system that is capable of carrying out unidirectional transport in a spatially periodic but
asymmetric potential, in the absence of anymacroscopic force ormean potential gradient [27,197]. The connection between
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A B

Fig. 25. The relationship between the peak frequency of the power spectrum and rotation number. (A) For a single oscillator in Eq. (66) with b = 0.98 < 1.
There is about 25% difference between the two quantities. This is the same data from Fig. 7A. (B) The coupled system (92) with bi,j = b = 0.98 and
Di,j = D (i, j = 1, 2, . . . , 10). It is seen that in the coupled case, these two quantities agree with each other very well in a wide range of noise intensity. This
announces the coherent synchronization among all the coupled oscillators. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

A B

Fig. 26. The variation of the rotation number Rot with the increase of the driving frequency ω. (A) The single oscillator system (88). (B) The coupled
oscillator system (93). Both are with b = 0.98, A = 0.1 and D = 0.7. The value of Rot0 gives the rotation number in the absence of a periodic driving. It
is seen that in the uncoupled case, the rotation number in the presence of a periodic driving is kept almost unchanged, irrespective of the increase of the
driving frequency; while in the coupled case, the rotation number changes accordingly with the driving frequency.

A B

Fig. 27. Themaximal spectrum height h vs. the noise intensityD (black curve with circles), and the rotation number Rot vs.D (red curve with squares). The
horizontal dashed linemarks the driving frequency (also equals to the peak frequency,ωp , of the power spectrum). (A) is forω = 0.4, (B) is forω = 0.6136.
Both are with bij = b = 0.98, A = 0.1. It is seen that with increasing D, the value of h obtains its maximum when the rotation number Rot equals to the
external driving frequency ω. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

stochastic, nonequilibrium fluctuations andunidirectionalmotionwas extensively studied in the physics literature in [28]. In
biophysics, the theory of muscle contraction pioneered by Huxley and further developed by Hill had predated all the recent
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work on Brownian ratchets [198,199], though the theory developed from 1950s to 1970s was not formulated at single-
molecules level. It was formulated in terms of the so called ‘‘sliding filament’’ and ‘‘cross-bridge’’. In modern terms, the
Huxley–Hill theory is based on a randomly positioned linear array of identical single motors (cross-bridges). Their chemical
kinetics are independent; but they are mechanically constrained to a rigid filament: They can only move in unison [172].

Such a mesoscopic transport phenomenon is now understood to occur under two crucial conditions, namely, outside a
thermal equilibrium (i.e., breakdown of detailed balance and time reversibility) and an one-dimensional spatial asymmetry.
It is called a Brownian ratchet, or a molecular motor, which has received considerable attention in recent years. In addition
to muscle contraction, there are other biophysical motivation to study such a phenomenon [200]: Many active processes
in biological systems are carried out by enzymes, often ATPases, which can move, linearly or circularly, biased toward one
direction by converting the chemical energy from ATP hydrolysis to mechanical work [201].

Therefore, the physics of a Brownian ratchet, especially its free energy transduction, is of considerable interest to
biologists, physicists and chemists [202–204]. In general, a motor protein functions by moving along a certain type of
macromolecular filament. The latter plays the role of a track to guide the motion of the motor protein. In cell biology, there
are mainly four different families of motor proteins: kinesins, myosins, dyneins, and polymerases. Kinesins and dyneins
move along tubulin filaments, while myosins move along actin filaments. The primary biological functions of polymerases
are notmechanical movement per sc. However, theymove along their templates (DNA for replication and transcription, RNA
for protein biosynthesis) nevertheless.

Though the detailed atomic structures are very different, common to all molecular motors is a tail domain that attaches
to a cargo and a head domain that binds the track and hydrolyzes ATP and/or GTP [202]. The basic ingredients for kinetic
modeling are essentially the same for all molecular motors. The underlying biochemical reaction cycle occurs at the ATP
(or GTP) binding site is as the following:

1
M 


2
M · ATP 


3
M · ADP · Pi 


4
M · ADP 


1
M . (95)

In which state 1 represents the head of the motor being attached to the filament but without anything else bound to it.
Transition to state 2 represents the binding of oneATPmolecule. Transition to state 3 represents the chemical transformation
of ATP being decomposed into ADP and Pi. In many cases, the same step is simultaneously the motor head detaching from
the filament. Transition to state 4 represents the release of Pi and the affinity between themotor head and filament becomes
high again, resulting in the motor attaching to the filament after a certain amount of random diffusion. Inside a living cell
the concentration ratio of ATP to ADP/Pi is about 10 decades above its thermal equilibrium value. Thus macroscopically it is
essentially impossible for ADP and Pi to be transformed back into ATP. This is the driven force of the molecular motor.

If the motion in the 3 → 4 is not a random diffusion, but rather a definitive tight coupling between the Pi release
and motor head stepping forward a period along the filament, then the motor protein has a tightly coupled hydrolysis and
mechanicalmovement. The chemicalmodels formotor proteins can be developed along this line. The ratchetmodelwe shall
discuss in the present section, however, assumes that themechanicalmovement can be decoupled from the hydrolysis. Thus,
the random diffusion can be in both directions, with of course a bias for the forward direction.

The filaments are spatially periodic with a period on the order of nanometers or tens of nanometers. Moreover, it has a
polarity which means that its mechanical potential within a period is asymmetric. This feature is very important since the
chemical transition in a ratchet model is completely ‘‘orthogonal’’ to the mechanical axis. On the other hand, the interaction
energy between a molecule protein and the filament is on the order kBT , where kB is the Boltzmann constant and T is
temperature in Kelvin. The influence of thermal fluctuations, thus, is not negligible. The directional motion of a single motor
protein is caused by the nonequilibrium fluctuations and the asymmetry of the filament [197,27]. This is the reason why it
is also called a Brownian motor.

Variousmodels have been proposed in the literature in studying themechanism ofmolecular motormovement. The first
step in modeling the dynamics of a motor enzyme is to regard it as a single particle characterized by its position, say the
center of mass, in an overdamping continuous medium.9 The general form of this type of models is given by the following
SDE

ẋ(t) = −V ′(x(t), f (t))+ y(t)+ F(x(t))+ Dξ(t), (96)

where V ′(x, f ) = ∂V (x, f )/∂x, V (x, f ) is a periodic, but asymmetric potential function satisfying V (x+L, f (t)) = V (x, f (t)),
in which f (t) is a time periodic with zero time average; y(t) can either be a time-periodic force or an external stochastic
force; F(x) is an external load, it is required to be zero in deciding whether the system exists directed motion and to be
nonzero in calculating the efficiency of the transport; the noise term ξ(t) is assumed to be Gaussian white noise satisfying
⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t ′)⟩ = δ(t−t ′). According to different forms of the functions V (x(t), f (t)) and y(t), themodel is classified
as flashing ratchet (y(t) = 0) [205–208], tilting ratchet (f (t) = 0) [209,210], etc.

For a Brownian ratchet, the occurrence of directed transport requires the presence of a nonequilibrium forcing. To
understand this necessary condition [59,202,211,172], let us first consider the following simple ratchet system

ẋ = −V ′(x)+ A sinΩt + Dξ(t). (97)

9 More precisely, for an overdamped mechanical system, it should be the center of friction.
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In the case A = 0, system (97) becomes

ẋ = −V ′(x)+ Dξ(t). (98)

The termDξ(t) is assumed to represent equilibrium thermal fluctuations. Hence, the stationary system (98) is an equilibrium
system with a stationary distribution

π(x) =
e−V (x)/kBT L

0 e−V (x)/kBTdx
,

which dictates D2
= 2kBT . The probability flux in stationary state J = 0, which implies no macroscopic current in the

system. From the viewpoint of thermodynamics, directed transport in an equilibrium thermal bath violates Kelvin–Planck’s
version of the Second Law: It is impossible for any cyclic device to convert heat from a single bath into work.

Besides noise-induced unidirectional transport, unbiased deterministic forcewith time or spatial symmetric breaking can
also result in directed motion of the particle. Such a phenomenon is called deterministic ratchet. If one further takes into
account the mass of the particle in the underdamped regime, then the corresponding unidirectional transport is call inertia
ratchet. It has been shown that besides regular or chaotic transport, an inertia ratchet may exhibit inverse transport. As the
direction of the current depends on the mass of the particle and the damping coefficient of the system [212], applications of
inertial ratchets in particle separation based on mass is expected. Since we are primarily concerned with the phenomenon
aroused by nonequilibrium fluctuations, we will not discuss inertial ratchets. Readers who are interested in this topic can
refer to the Refs. [212,202,213,214].

When applying a Brownian motor with Eq. (96) to a motor protein, the variable x represents the center of friction of the
macromolecule with respect to its track; it is a geometric point. Conformational changes of the macromolecular structure,
including association with ATP, ADP, and Pi, are characterized by discrete biochemical states i. A unified working model
describing the dynamics of a single-headmotor proteinwithN different chemical states is governedby the following coupled
diffusion model [206,207,215]

ẋ(t) = −V ′

i (x)+ Diξi(t), (i = 1, 2, . . . ,N) (99)

To fix our terminology,we call x(t) themechanical position of themotor at time t , and i = i(t) (i = 1, 2, . . . ,N) the chemical
state of the motor. They are both stochastic processes, i.e., x = x(t, ω), i = i(t, ω), in which ω gives rise to randomness.

The first important issue in studying Brownian motors is to understand, without net external mechanical work done to
the system, how it can break down symmetry and thermochemical equilibrium, resulting in a net unidirectional transport.
The second important problem concerns the determination of the direction, and its reversal, of a ratchet with the various
system’s parameters.

A third important issue, naturally, is about the efficiency of Brownian motors when it is used as an ‘‘engine’’ to pull
an external load [216,217]. With respect to the over-damped, one-dimensional Brownian ratchet system (97), the motor
efficiency can be calculated by thermodynamic efficiency or alternative, Stokes efficiency. Thermodynamic efficiency defines
how well a motor converts chemical free energy into useful work [218,215,27]

ηtherm
1
=

⟨ẋ⟩F
Pin

, (100)

where ⟨ẋ⟩ is the mean velocity of the motor, F is the external load, and Pin is the total input power. An alternative measure,
Stokes efficiency, has been devised for purely viscous loads such as amotor encounters in normal transport. Stokes efficiency
is defined as [219,220]

ηstokes
1
=

⟨ẋ⟩F + ⟨ẋ⟩2

Pin
, (101)

where the term ⟨ẋ⟩2 reflects the power working against the viscous drag. In both cases, the input power must be formulated
to ensure that the defined efficiencies are bounded by 1.

In this section, we confine our discussion to models (97) and (99). We investigate the dynamics of unidirectional
movement, the efficiency of a Brownian motor and the corresponding nonequilibrium origin.

4.2. Nonlinear, stochastic dynamics on a torus

4.2.1. Diffusion processes on a torus

dφ
dt

= −Ωe + a sin(ψ − φ)+ A1ξ1(t),

dψ
dt

= −Ωd + A2ξ2(t),

(102)
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in whichΩe represents the external resistant force,Ωd represents the driving force. One should compare this equation with
Eq. (68) and realize that Brownian motors and SR are indeed intimately related problems [221,222]. Now if we introduce a
phase difference θ = φ − ψ , then

dθ
dt

= 1Ω − a sin θ + Aξ(t) (103)

where1Ω = Ωd −Ωe and A2
= A2

1 + A2
2. This is the exactly the same equation of Adler phase model! In fact, it is tempting,

not unreasonably, to consider the a > 1Ω case (i.e., phase locking) related to ‘‘power stroke’’ and a < 1Ω case to ‘‘Brownian
ratchet’’ [211].

4.3. Mean velocity, probability flux and rotation number of Brownian motors

The most important and widely studied quantity that characterizes the unidirectional motion of a molecular motor is its
mean velocity ⟨ẋ⟩, where ⟨·⟩ denotes the statistical ensemble average. There is a well-established relationship between the
mean velocity, the probability flux (or current) J , and the time-averaged velocity (also known as rotation number) [202]:

⟨ẋ⟩ = L · J = lim
t→∞

x(t)
t
, (104)

where L is the length of the period of a linear track along which the motor moves. Intuitively, Eq. (104) is understood as
a consequence of the ergodicity of a stochastic process. However, a more careful examination shows that it requires some
mathematical explanations. First, the continuous stochastic motion of the motor, x(t), is nowhere smooth, just as Brownian
motion B(t); the limit of x(t+h)−x(t)

h when h tends zero does not exist. Hence the meaning of the very notation ⟨ẋ⟩ remains
to be clarified. Second, a molecular motor moving along a periodic linear track never reaches a true stationarity, just as a
biased Brownian motion. The x(t) has no invariant probability distribution; The ergodicity, i.e., the ensemble average being
the same as the time average, in principle does not apply.

Therefore, for further in-depth studies of the Brownian ratchet mechanism of molecular motors, it is of essential
importance to give a precise definition for the mean velocity ⟨ẋ⟩, and provide a mathematically justified derivation
for Eq. (104). In Section 4.3.1, based on a properly defined conditional forward random velocity (CFRV), we will give a
mathematically sensible definition for ⟨ẋ⟩whilemaintaining its explicit physical meaning. After defining ⟨ẋ⟩ as the expected
value of the CFRV, we shall discuss in Section 4.3.2 the relationship between the mean velocity, the time-averaged velocity
and the probability current, in various Brownian ratchet systems.

4.3.1. A clarification of the definition of mean velocity
To clarify the definition of ⟨ẋ⟩, let us start by considering the stochastic process characterized by the equation

dx(t) = −
∂

∂x
V (t, x)dt + DdB(t), (105)

whose solution {x(t)}t≥0 is a Markov process on the Wiener space (Ω,F , µ). More precisely, as discussed in Appendix A,
x(t) should be written as x(t, ω), where the randomness of the trajectory is inherited in ω ∈ Ω . One sometimes uses x(t)
to represent x(t, ω). For convenience, we shall in the following write x(t), but x(t, ω) when the context is necessary. Let
p(s, t; x, y) be the transition probability density of {x(t, ω)}t≥0 from position x at time s to position y at time t .

To keep the original physical meaning of the velocity but at the same time overcome the mathematical difficulty, we
define the CFRV v(t, x(t)) for the stochastic process {x(t)}t≥0 as

v(t, x(t)) 1
= lim

h→0+
E
[
x(t + h)− x(t)

h

Ft

]
, (106)

where Ft = σ {x(s), 0 ≤ s ≤ t} which contains all the information before time t . It follows from the Markovian property of
the process that

v(t, x(t)) = lim
h→0+

E
[
x(t + h)− x(t)

h

x(t)] . (107)

To see the existence of the above limit, suppose that the position of a particle at time t is at x, then the CFRV at time t is

v(t, x) = lim
h→0+

1
h
E

x(t + h)− x(t)

x(t) = x


= lim
h→0+

1
h

∫
(y − x)p(t, x; t + h, y)dy

=
∂

∂x
V (t, x). (108)
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So we see that conditioning on x(t) = x, the CFRV v(t, x) is just the drift of the diffusion process corresponding to Eq. (105).
While this result appears intuitive to physicists, we have not found the rigorous mathematical justification, as given here,
in the literature. Since {x(t)}t≥0 is a stochastic process, then v(t, x(t)) changes correspondingly along with x(t), i.e. it is a
random function v(t, x(t, ω)). So we can define the mean velocity of system (105), denoted as ⟨ẋ⟩, as the expectation of the
CFRV, i.e.,

⟨ẋ⟩ 1
= E[v(t, x(t, ω))] = E

[
∂

∂x
V (t, x(t, ω))

]
. (109)

The definition given by formula (109) has a very explicit physical meaning: It is the mean transport (drift) velocity of a
diffusing process. This is completely consistent with the intuitive concept referred to in the literature.

In the following section,we shall prove the equivalence betweenmean velocity, probability flux, and the rotation number.
The material is essentially mathematical in nature; hence for readers who are not interested in the mathematical rigor,
he/she can skip this section and go to Section 4.4.

4.3.2. Relationship between mean velocity, probability current and time-averaged velocity

4.3.2a. One-dimensional time-homogeneous Brownian ratchet. The first problem we shall study is a ratchet-like mesoscopic
system with a non-zero force [223]

dx(t) = (F − V ′(x))dt + DdB(t), x(t) ≡ x(t, ω), (110)

where F is a constant and V (x) is a periodic potential satisfying V (x + L) = V (x). By time-homogeneous, we mean neither
the diffusionD or drift (F−V ′(x)) is an explicit function of time. Note that any periodic force F(x) can be always decomposed
into the form:

F(x) = F −
d
dx

V (x), where F =
1
L

∫ L

0
F(x)dx. (111)

Eq. (110) is not a correct model for a motor protein per se, since the mean velocity arises from a nonzero mechanical force F .
Still, its mathematical analysis will provide clarifications for the relationships in Eq. (104). We shall point out, however, that
several correct models for motor proteins can be mathematically simplified into this form, in particular when one evokes
the ‘‘rapid biochemical cycle approximation’’ [27,172].

The periodicity of V ′(x) with respect to x suggests that we can represent the solution to Eq. (110) on a circle S1 with
radius L/(2π). To do this, letx(t) = x(t) (mod L),

then {x(t)}t≥0 is a diffusion process on S1 satisfying

dx(t) = (F − V ′(x ))dt + DdB(t), x(t) ∈ S1, (112)

where {B̃(t)}t≥0 is a Brownian motion on the circle. The FPE corresponding to Eq. (112) is

∂

∂t
p̂(t,x) = −

∂

∂x
Ĵ(t,x), (x̃ ∈ [0, L]), (113)

where

p̂(t,x) =

∞−
n=−∞

p(x + nL, t)

is the probability density in positionx ∈ S1 at time t with periodic boundary condition p̂(t,x) = p̂(t,x + L), and

Ĵ(t,x) = (F − V ′(x ))p̂(t,x)−
D2

2
·
∂

∂x
p̂(t,x)

is the probability flux (current). The diffusion process on the circle, Eq. (112), has a unique invariant distribution [64] and
the process {x(t)}t≥0 is ergodic on S1. By solving the equation ∂ p̂(t,x)/∂t = 0, we obtain a unique invariant probability
density of {x(t)}t≥0, denoted as p̂(x ).

According to formula (108), the CFRV of {x(t)}t≥0 is

v(x(t)) = F − V ′(x(t)) = F − V ′(x(t)) = v(x(t)); v(x(t)) ≡ v(x(t, ω)).

Since in the long-time run, the process {x(t)}t≥0 will approach stationarity, we can reasonably take the invariant distribution
p̂(x )dx as the initial distribution of {x(t)}t≥0 and obtain a stationary process. So by (109), in the steady state, the mean
velocity of {x(t)}t≥0 is

⟨ẋ⟩ = E[v(x(t))] =

∫ L

0
(F − V ′(x))p̂(x)dx. (114)
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Next, applying Itô’s integral to Eq. (110), we have

x(t)
t

=
1
t

∫ t

0
(F − V ′(x))ds +

DB(t)− DB(0)
t

. (115)

According to the iterated-logarithm theorem of Brownian motion [224], we obtain

(a.e.) lim
t→∞

D(B(t)− B(0))
t

= 0, (116)

here (a.e.)means for almost all trajectories ω. As V (x) is periodic in x, it is a continuous function on S1. It follows from the
ergodicity of the process {x(t)}t≥0 on S1 that for almost all ω ∈ Ω

(a.e.) lim
t→∞

x(t, ω)
t

= (a.e.) lim
t→∞

1
t

∫ t

0
(F − V ′(x(s)))ds

= (a.e.) lim
t→∞

1
t

∫ t

0
(F − V ′(x(s)))ds

=

∫ L

0
(F − V ′(x ))p̂(x )dx; (117)

the existence of the limit and the last equality are ensured by Birkhoff ergodic theorem [225].
Finally, in the steady state, the probability flux in one-dimension

Ĵ(x ) = (F − V ′(x̃))p̂(x̃)−
D2

2
·
∂

∂x
p̂(x ) (118)

is a constant. We shall denote it as Ĵ ss since ∂ Ĵ/∂ x̃ = −∂ p̂/∂t = 0. Then integrating the two sides of Eq. (118), we have∫ L

0
(F − V ′(x̃))p̂(x̃)dx̃ = L · Ĵ ss. (119)

Therefore, according to (114), (117) and (119), we have

Theorem 4.1. For time-homogeneous Eq. (110), themean velocity ⟨ẋ⟩, the time-averaged velocity and the steady state probability
flux of system (112) on the S1 are all equivalent to each other, i.e.,

⟨ẋ⟩ = L · J ss = (a.e.) lim
t→∞

x(t, ω)
t

, (for ω a.e.). (120)

Remark. Sincex is a point on the circle S1, x(t)/t is the mean angle swept during [0, t]. Thus.

lim
t→∞

x(t)
L · t

is just the rotation numberwe have discussed in the previous sections, where one has learned that there is a deep connection
between the nonequilibrium circulation and the rotation number.

Applying the ideas for proofing Eq. (120) to the more general Eq. (105), similar relationship between the mean velocity
and the rotation number can be established. However the same result could be obtained only withmuchmore sophisticated
mathematical techniques, which we shall give in the subsequent section.

4.3.2b. One-dimensional time-inhomogeneous Brownian motor. Let us now consider a diffusion with a time-dependent
potential, or mathematically called time-inhomogeneous Brownian motor with an external load. The corresponding SDE
is

dx(t) = [F − V ′(x, f (t))]dt + DdB(t), (121)

where the time-varying potential V (x, f (t)) satisfies V (x + L, f (t)) = V (x, f (t)) and V (x, f (t + T )) = V (x, f (t)). This type
of Brownian ratchets was widely discussed in the literature, but there have been only fewmathematical investigations into
its dynamics [226,227].

Since the potential V (x, f (t)) is periodic with respect to the position x, Eq. (121) can be again considered as a diffusion
process on S1. But due to the explicit external time-varying modulation, the system considered now no longer reaches
stationarity. This makes the mean velocity ⟨ẋ(t)⟩ = E[v(t, x(t))] time-dependent. Nevertheless, for every fixed s ∈ [0, T ],
the subprocess {x(s + k · T )}k≥0 is a homogeneous Markov chain with continuous states in S1. Since D > 0 and the state
space S1 is compact, then similar to the case in a finite Markov chain, we have
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Lemma 4.2. For the process {x(s + kT )}k≥0 on S1, there exists an invariant distribution νs(x)dx on S1, such that

1
n

n−1−
k=0

p(s + kT , x)dx
weakly
−→ νs(x)dx, n → ∞, (122)

i.e., for any continuous function g(x), x ∈ [0, L],

lim
n→∞

∫ L

0
g(x) ·

1
n

n−1−
k=0

p(s + kT , x)dx =

∫ L

0
g(x)νs(x)dx. (123)

Lemma 4.2 reveals that the process {x(s + k · T )}k≥0 on S1 is asymptotically stationary. According to this property and
the ergodicity of {x(s + kT )}k≥0, we can reach the following conclusion:

Theorem 4.3. For a time-inhomogeneous Brownian motor characterized by Eq. (121), we have
(i) The mean velocity is

lim
t→∞

1
t

∫ t

0
⟨ẋ(s)⟩ds =

1
T

∫ T

0
ds
∫ L

0

[
F −

∂

∂x
V (x, f (s))

]
νs(x)dx. (124)

We therefore define the mean velocity of a time-inhomogeneous Brownian motor as

⟨ẋ⟩ 1
= lim

t→∞

1
t

∫ t

0
⟨ẋ(s)⟩ds. (125)

(ii) The limit of the time-averaged velocity is

ℓ.i.m.
t→∞

x(t, ω)
t

=
1
T

∫ T

0
ds
∫ L

0

[
F −

∂

∂x
V (x, f (s))

]
νs(x)dx, (126)

in which ℓ.i.m. means ‘‘limit in mean square’’.

Proof. Part (i) It follows from (109) that

⟨ẋ(t)⟩ = E(v(t, x(t, ω))) =

∫ L

0

[
F −

∂

∂x
V (x, f (t))

]
p(t, x)dx, (127)

where p(t, x) =
 L
0 p(0, t; y, x)p(0, y)dy is the probability density of {x(t)}t≥0 in position x at time t . Then,

lim
n→∞

1
nT

∫ nT

0
⟨ẋ(s)⟩ds = lim

n→∞

1
nT

∫ nT

0
ds
∫ L

0

[
F −

∂

∂x
V (x, f (s))

]
p(s, x)dx

= lim
n→∞

1
T

∫ T

0
ds
∫ L

0

[
F −

∂

∂x
V (x, f (s))

]
·
1
n

n−1−
k=0

p(s + kT , x)dx

=
1
T

∫ T

0
ds lim

n→∞

∫ L

0

[
F −

∂

∂x
V (x, f (s))

]
·
1
n

n−1−
k=0

p(s + kT , x)dx.

The exchange of the limit and the integral
 T
0 · · · ds in the last two equations is warranted by the dominated convergence

theorem. According to Lemma 4.2, we have

lim
t→∞

1
t

∫ t

0
⟨ẋ(s)⟩ds =

1
T

∫ T

0
ds
∫ L

0

[
F −

∂

∂x
V (x(s), f (s))

]
νs(x)dx. (128)

Now let us prove Part (ii). By Itô’s integral, we have

x(t, ·)
t

=
1
t

∫ t

0

[
F −

∂

∂x
V (x(s, ·), f (s))

]
ds +

DB(t, ·)− DB(0, ·)
t

. (129)

A stochastic process {x(t, ω)}t≥0, when considered as a function in L2(Ω,F , P), is denoted as {x(t, ·)}t≥0.
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Taking t = nT , we have

1
nT

∫ nT

0

[
F −

∂

∂x
V (x(s, ·), f (s))

]
ds =

1
nT

n−1−
k=0

∫ (k+1)T

kT

[
F −

∂

∂x
V (x(s, ·), f (s))

]
ds

=
1
T

∫ T

0

1
n

n−1−
k=0

[
F −

∂

∂x
V (x(s + kT , ·), f (s))

]
ds. (130)

Since the stationary process {x(s + kT )}k≥0 with the invariant measure νs(x)dx (0 ≤ s ≤ T ) is ergodic on S1, then it follows
from Lp ergodic theorem of Von Neumann that for every fixed s ∈ [0, T ],

ℓ.i.m.
n→∞

1
n

n−1−
k=0

[
F −

∂

∂x
V (x(s + kT , ·), f (s))

]
=

∫ L

0

[
F −

∂

∂x
V (x, f (s))

]
νs(x)dx. (131)

For E|B(t)− B(0)|2 = t , we have

lim
t→∞

E|B(t)− B(0)|2

t2
= 0. (132)

Since the term 1
n

∑n−1
k=0[F −

∂
∂xV (x(s + kT , ·), f (s))] in the left-hand side of (131) without ℓ.i.m. is a function of s taking

values in L2(Ω,F , P(dω)), and its L2 norm is uniformly bounded with respect to s ∈ [0, T ], then applying the bounded
convergent theorem to formulas (129), (130) yields

ℓ.i.m.
n→∞

x(nT , ·)
nT

=
1
T

∫ T

0
ℓ.i.m.
n→∞

1
n

n−1−
k=0

[
F −

∂

∂x
V (x(s + kT , ·), f (s))

]
ds

=
1
T

∫ T

0
ds
∫ L

0

[
F −

∂

∂x
V (x, f (s))

]
νs(x)dx. (133)

Hence

ℓ.i.m.
n→∞

x(t)
t

= ℓ.i.m.
n→∞

x(nT , ·)
nT

=
1
T

∫ T

0
ds
∫ L

0

[
F −

∂

∂x
V (x, f (s))

]
νs(x)dx. � (134)

Remark. At a first glance of (131), and following Birkhoff ergodic theorem that for every fixed s,

lim
n→∞

1
n

n−1−
k=0

[
F −

∂

∂x
V (x(s + kT , ·), f (s))

]
=

∫ L

0

[
F −

∂

∂x
V (x, f (s))

]
νs(x)dx, a.e. P(dω) (135)

one may expect the following a.e. limit,

lim
n→∞

1
T

∫ T

0

1
n

n−1−
k=0

[
F −

∂

∂x
V (x(s + kT , ω), f (s))

]
ds =

1
T

∫ T

0
lim
n→∞

1
n

n−1−
k=0

[
F −

∂

∂x
V (x(s + kT , ω), f (s))

]
ds

=
1
T

∫ T

0
ds
∫ L

0

[
F −

∂

∂x
V (x, f (s))

]
νs(x)dx, a.e. P(dω).

However, it should be noticed that the above limit is not valid for almost allω, since the zero-measure set omitted in formula
(135)may depend on the parameter s ∈ [0, T ]. And because themeasure of the union of uncountable setswith zeromeasure
may be positive, we cannot improve the limit in (134) as

lim
n→∞

x(nT )
nT

=
1
T

∫ T

0
ds
∫ L

0

[
F −

∂

∂x
V (x, f (s))

]
νs(x)dx, a.e. P(dω).

4.3.2c. Brownian motors with coupled diffusions. The previous section on ‘‘One-dimensional time-homogeneous Brownian
motion’’ tells us that, when there is no external force F , the one-dimensional time-homogeneous system (110) allows
only zero mean velocity. Therefore, a unidirectional moving Brownian motor either is driven by a time-inhomogeneous
mechanism, or from chemical reactions such as ATP hydrolysis. In 1957, Andrew F. Huxley first introduced internal
conformational states into the mechanical moving particle, called ‘‘cross-bridge’’ at the time, and coupled biochemical
reactions with the mechanical movement in a theory. The ‘‘sliding filament’’ model is a mathematical theory for muscle
contractions [198]. In 1990s, with the discovery of single motor protein movement, the mechanical movement has shown
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to be a Brownian-like motion. This leads to a coupled diffusion system as the mathematical framework for Brownian motor
movement [228,61,27]. For generality in mathematics we consider N + 1 chemical states: Eq. (110),

dx(t) = (F − V ′

i (x))dt + DidBi(t), (i = 0, 1, 2, . . . ,N) (136)

where x(t) describes the space position of the center of mass of a molecular motor, i = i(t) represents the chemical state
of the molecule at time t . Here {i(t)}t≥0 should be understood also as a stochastic process. Suppose that its transition rate is
determined by a Q-matrix:

Q(x) 1
= (qij(x))N×N ,

−
j

qij(x) = 0


. (137)

Then to be rigorous, the dynamics of the motor is represented by the stochastic process X(t) 1
= (x(t, ω), i(t, ω)), where

x and i characterize its position and its internal chemical states, respectively. Then system (136) should be written as the
following SDE:

dx(t) =

N−
k=0

Xk(η(t))[(F − V ′

k(x(t)))dt + DkdBk(t)], (138)

wherein η(t) 1
= i(t).

Xk(i) =


1, i = k,
0, i ≠ k.

Eq. (138) defines a coupled diffusion process {(x(t), η(t))}t≥0 on R × E. The corresponding PFE is

∂

∂t
pi(t, x) = −

∂

∂x
(F − V ′

i (x))pi(t, x)+
D2
i

2
·
∂2

∂x2
pi(t, x)+

−
j

pj(t, x)qji(x)

= −
∂

∂x
Ji(t, x)+

−
j

pj(t, x)qji(x), (139)

in which pi(t, x) is the probability density of the motor with chemical state i locating at position x at time t . Ji(t, x) = (F −

V ′

i (x))pi(t, x)−
D2
i
2 ·

∂
∂xpi(t, x) expresses the net probability current of themotor, being in state i, passing through the position x

at time t; it shows the spatialmovement of themolecule. The last term in the FPE,
∑

j pj(t, x)qji =
∑

j(pj(t, x)qji−pi(t, x)qij),
represents the net probability current associated with transitions between state i and all other states at position x. This term
displays a chemical reaction flux entering and leaving the ith state. Eq. (139) presents a clear physical picture of the two
types of the motion, chemical and spatial, of the motor.

Suppose that the stationary distribution of the system is πi(x), and the stationary probability current is Ji(x), then

0 = −
d
dx

Ji(x)+

−
j

(πj(x)qji(x)− πi(x)qij(x)),

i.e.

d
dx

Ji(x) =

−
j

πj(x)qji(x). (140)

Let J(x) =
∑

i Ji(x), then it follows from (140) and the property of Q = (qij) that

d
dx

J(x) =

−
i

−
j

πj(x)qji(x) =

−
j

−
i

πj(x)qji(x) = 0. (141)

This indicates that in the steady state, J(x) =
∑

i Ji(x) = Constant 1
= J ss. If the J ss ≠ 0, then system (136) exhibits a

unidirectional transport phenomenon.

Theorem 4.4. For the coupled diffusion Brownian motor (136), the relationship between the mean velocity, the probability flux
and the rotation number can be expressed as

⟨ẋ⟩ = L ·

N−
i=1

Ji(x) = L · Rot, (142)

where the last equality is valid in an a.e. P(dω) sense.
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Proof. Let b(x, i) =
∑

k Xk(i)(F − V ′

k(x)) = F − V ′

i (x). Conditioning on x(t) = x, η(t) = i, the CFRV {(x(t), η(t))}t≥0 of
Eq. (138) is

v(x, i) 1
= lim

h→0

1
h
E[x(t + h)− x(t)|x(t) = x, η(t) = i]

= lim
h→0

1
h

∫ h

0
E(x,i)b(x(s), η(s))ds
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1
h

∫ h

0
ds
∫ L

0

−
k

b(y, k)pik(s, x, y)dy

=
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0
dy lim

h→0

1
h

∫ h

0

−
k≠i

b(y, k)[qik · s + o(s)]δ(y − x)ds

+

∫ L

0
dy lim

h→0

1
h

∫ h

0
b(y, i) · [1 − qis + o(s)]δ(y − x)ds

=

∫ L

0
b(y, i)δ(y − x)dy

= b(x, i). (143)

Similar to the case in the time-homogeneous ratchet system, we consider the stationary process starting from the
invariant distribution πi(x). Then

⟨ẋ(t)⟩ = E[v(xt , ηt)] = E[b(xt , ηt ] =

∫ L

0

−
i

b(x, i)πi(x)dx

=

∫ L

0

−
i

(F − V ′

i (x))πi(x)dx

=

∫ L

0

−
i

[
(F − V ′

i (x))πi(x)−
D2
i

2
·
∂
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πi(x)

]
dx

=

∫ L

0

−
i

Ji(x)dx

= L · J ss

= L ·

−
i

Ji. (144)

On the other hand, according to Itô integral, we have

x(t)
t

=
1
t

∫ t

0
b(xu, ηu)du +

∑
i
DiXi(ηu)Bi(t, )

t
.

It follows from the ergodicity of the process that

lim
t→∞

x(t)
t

= lim
t→∞

1
t

∫ t

0
b(x(u), η(u))du

a.e.
= E[b(xt , ηt)]

=

∫ L

0

−
i

πi(x)(F − V ′

i (x))dx

= L ·

−
i

Ji. (145)

Hence, for the coupled diffusion system (138), we obtain the following equalities

⟨ẋ⟩ = L ·

−
i

Ji
a.e.
= lim

t→∞

x(t)
t
. �
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A

B

Fig. 28. (A) The potential function V (x) = −V0(sin x + 0.25 sin 2x) + C for given V0 = 1 and C = 1.1. (B) The phase space of the system in Eq. (149).
Three cases of the intersection of y = −V0(cos x + 0.5 cos 2x)with the cylinder for (a) A ≤ 0.75V0 , (b) 0.75V0 < A ≤ 1.5V0 , and (c) A > 1.5V0 are shown.
The ‘+’ and ‘−’ signs indicate the x-component of the vector field on the cylinder. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

4.4. Unidirectional movement of Brownian ratchet and dynamical mechanism of symmetry breaking

In this section, we investigate the unidirectional motion in the stochastic, one-dimensional system (97). For concrete
computations, we assume that the asymmetric potential shown in Fig. 28(A) takes the form of

V (x) = −V0(sin x + 0.25 sin 2x)+ C,

where C is a constant.
The corresponding SDE is then written as

ẋ = −V ′(x)+ A sinωt + Dξ(t). (146)

The phenomena of noise-induced transports in such a simple system have been explored in a number of studies in the
last decade [209,202]. Many extensions of the simple model have been developed, for instance, inertia ratchets with regular
or chaotic transport and coupled ratchets with array-enhanced transport. Still, understanding the simplest model from an
alternative viewpoint is very useful. For the specific system in this section, we shall study the current reversal that occurs
at a high driving frequency ω.

4.4.1. Deterministic nonlinear dynamics of a system on a cylinder
Let us first study the dynamics without noise perturbation. The nonlinear differential equation is

ẋ = V0(cos x + 0.5 cos 2x)+ A sinωt. (147)

Definition 4.5. The solution {x(t)}t≥0 to Eq. (147) with an initial value x(0) = x0 is called a (p:q)-type phase-locking
solution, if

x(t + pT ) = x(t)+ 2πq, ∀t ≥ 0, (148)

where T = 2π/ω, p and q are two prime integers.

In Fig. 29, the entire A–ω parameter plane, with V0 = 1.5, is divided into different phase-locking regions. In (1:0)
region, no unidirectional transport occurs; while in (p:q)-type (p ≠ 0, q ≠ 0) region, the deterministic system exhibits
unidirectional transport with mean velocity v =

q
pω.

By setting y = A sinωt, z = A cosωt , the deterministic system can be equivalently written asẋ = V0(cos x + 0.5 cos 2x)+ y,
ẏ = ωz,
ż = −ωy,

(149)

where y, z satisfy: y2 + z2 = A2.



60 X.-J. Zhang et al. / Physics Reports 510 (2012) 1–86

Fig. 29. Different (p:q)-type phase-locking solutions to Eq. (147) shown in the (A, ω) parameter regime. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Therefore, (y, z)moves on a circle, and together with x, Eq. (149) is a dynamical system on a cylinder.10 On the cylinder,
as shown in Fig. 28, the (1:0)-type resonance solution means that the particle winds around the cylinder, but it has no
movement in x direction. This corresponds to a limit cycle of Eq. (149) on the cylinder. For (p:q)-type (p ≠ 0, q ≠ 0) phase-
locking solution to Eq. (147), the corresponding trajectory to Eq. (149)winds around the cylinder q timeswith the increment
2πq in x direction during p · T time. In this situation, there is no limit cycle on the cylinder. These different ‘‘topological’’
scenarios in a molecular motor were first discussed in [216].

Let ẋ = 0, considering the intersection of the null-cline surface y = −V0(cos x + 0.5 cos 2x) with the cylinder
E2

: y2 + z2 = A2. We have the following three different cases for the system in Eq. (149):
Case 1: 0 ≤ A ≤ 0.75V0, where the generatrices y = −A and y = A both intersect with the phase y = −V0(cos x +

0.5 cos 2x). See Fig. 28B(a).
Case 2: 0.75V0 < A ≤ 1.5V0, where the generatrix y = −A intersects with the phase y = −V0(cos x + 0.5 cos 2x), while

y = A does not. See Fig. 28B(b).
Case3:A > 1.5V0, where both generatrices y = −A and y = Adonot intersectwith the phase y = −V0(cos x+0.5 cos 2x).

See Fig. 28B(c).
Corresponding to the above three cases, using qualitatively analysis and numerical simulations, we find that there is no

negative, and the velocity of the deterministic unidirectional transport is usually an integralmultiple of the driving frequency
ω (see Fig. 29). besides, we have:

(i) For every fixed value of A ∈ (0, 0.75V0] and any frequency ω > 0, Eq. (149) has one and only one stable limit cycle
(SLC) and one unstable limit cycle (ULC) in the region x ∈ [k · 2π, (k + 1) · 2π). The limit cycles are within in the narrower
dashed regions shown in Fig. 28A(a): + \ − (in the x direction) for the stable one and − \ + for the unstable one. The
conclusions can be rigorously proven mathematically by applying Poincaré–Bendixson theorem on the cylinder.

(ii) For every fixed value of A ∈ (0.75V0, 1.5V0], there exists a critical value ofω = ωc(A) (see the critical line Lc between
(1:0)-type motion and (1:1) type motion in Fig. 29), such that for ω > ωc(A), Eq. (149) has a unique SLC and ULC in the
region x ∈ [k · 2π, (k + 1) · 2π), k ∈ Z; while for ω < ωc(A), Eq. (149) has no limit cycle on the cylinder. In conclusion, this
critical line Lc : ω = ωc(A) divides the behavior of the system into two different dynamics, above which the system has 1:0
limit cycle; but below which the system has p:q (q ≠ 0), i.e., no limit cycle. These results can all be rigorously proven.

(iii) For A > 1.5V0, Eq. (149) alternatively occurs (1:0)-type solutions, i.e., limit cycles, and (p:q)-type (p ≠ 0, q ≠ 0)
phase-locking solutions (also called periodic running solutions), with the variations of A and ω. A rigorous mathematical
treatment of this case is rather difficult.

4.4.2. Noise-induced unidirectional motion in different phase-locking regions
We shall now investigate the effects of noise on the transport behavior of the system in these different phase-locking

regions. We shall note that the (p:q)-type of motion with q ≠ 0, corresponds to a sustained global mobility in x direction,
while (1:0)-type of motion means there is no global mobility in x-direction. The physical significance of (p:q), thus, is clear:
It corresponds to (chemical cycle:mechanical cycle).

10 If we consider the periodic x ∈ S1 as in the previous section, then Eq. (149) is a dynamical system on a torus S2 .
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Fig. 30. Noise effects in a (p, q) regime. Here the curves of the mean velocity v = ⟨ẋ⟩ vs. the noise strength D are plotted for the cases (a) (A, ω) lies in the
(1, 1) regime but very near the boundary with the (1, 0) regime, (b) (A, ω) lies in the middle of the (1, 1) regime, and (c) (A, ω) is in the (1, 1) regime but
near the boundary with the (1, 2) regime. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

4.4.2a. p:q region with q ≠ 0. We have learned that when the deterministic system (147) has a (p:q)-type (q ≠ 0) phase
locking solution, the particle will undergo unidirectional movement with mean velocity v = qω/p. In the presence of
noise, though the unidirectional motion persists, it is continuously being perturbed by the noise. The question then is,
quantitatively, how does the velocity vary with the noise strength? To see the effect of the noise on (p:q)-type (q ≠ 0)
phase-locking, we consider the (1:1)-type motion in Fig. 29 in details.

First, let the parameters (A, ω) lie in the (1:1) region, but very near the boundarywith the (1:0) region.We take A = 1.55
and ω = 0.2 for example. Fig. 30a shows that the effect of the noise can reduce the velocity of the unidirectional motion.
Numerical simulations for other values of A and ω confirm that in this parameter regime, noise can only play a destructive
role.

Now for (A, ω) lies in the middle part of the (1:1) region. For example A = 1.8 and ω = 0.2. We see from Fig. 30b
that, when 0 < D < 0.5, the velocity of unidirectional transport keeps almost unchanged, and then decreases with further
increasing the strength of noise perturbation. This indicates that the phase-locking solution in this case is stable under the
small perturbation of noise.

Finally, when (A, ω) lies in the (1:1) region but near the boundary with the (1 : 2) region, i.e., A = 2.0 and ω = 0.2, we
see from Fig. 30c that certain strength of noise perturbation can increase the velocity of unidirectional transport. This result
is more interesting, it suggests a ‘‘constructive’’ role of the noise in accelerating the transport.

What is the reason that the noise plays such significantly different roles in different parts of the same phase-locking
region? It can be explained from the structure of phase-locking regions shown in Fig. 29. Qualitatively speaking, the noise
blurs a boundary between two phase-locking regions. Therefore, when (A, ω) lies at the edge of a boundary, the noise
exhibits a more pronounced effect. In fact, the motion of such a particle, in the presence of the noise, actually switches
between the two resonance states. The velocity of the transport, then, lies between the velocities of two deterministic
resonance states. This explains why in the first case the mean velocity decreases with increasing D while in the third case
⟨ẋ⟩ increases with the noise strength.

4.4.2b. (1:0) region. We now study the effect of noise to the motion in the (1:0) region. Noise can induce a unidirectional
motion. But at a first glance, one cannot determine which direction will the particle move in the spatially asymmetric
potential V (x), since there is no macroscopic bias force applied nor potential gradient present. Then how and why can
the interplay of the asymmetry of V (x), the periodic forcing and white noise result in such a unidirectional transport? In the
following, we shall give a dynamical explanation to this problem.

With the modulation of the external periodic driving, we notice that the relative position of the SLC and the ULC varies
correspondingly. We denote d1 the distance between the SLC to its above neighbored ULC, and d2 the distance between the
SLC to its below neighbored ULC. The symmetry breaking of the system can partly be reflected by the difference between d1
and d2.

Near the edge of (1:0) region closing to (1:1) region, d1 ≈ 0 and d2 > 0 (see Fig. 31A). In such a situation, the particle
moving around the SLC can be easily induced to move around the above copy of SLC by a weak noise perturbation via the
ULC. Hence in Fig. 31A, one observes an obvious positive unidirectional motion. Besides, with the increase of noise intensity,
the velocity of this unidirectional motion increases until a maximum is reached, and then decreases with further increasing
the noise intensity. Here we call such an SR-like behavior velocity-measured SR to distinguish it from the conventional
spectrum-measured SR. From Fig. 31A and B, one can see that as d1 increases together with the decreasing of the difference
between d1 and d2, the velocity of positive unidirectional motion decreases. And a negative unidirectional transport occurs
when difference between d1 and d2 further decrease (see Fig. 31C), and this negative velocity also undergoes SR-like
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Fig. 31. Dependence of the unidirectional motion on the relative positions of the SLC to its two neighboring ULCs on the cylinder. Left column: Trajectories
of the steady-state solutions to Eq. (146) with D = 0, which correspond to limit cycles on the cylinder; middle column: the trajectories of system (146)
for D > 0, where unidirectional movements can be clearly seen; right column: the mean velocity ⟨ẋ⟩ of the system vs. the noise strength D. Here three
different sets of (A, ω) are considered: (A) A = 1.6V0, ω = 0.66; (B) A = 1.1V0, ω = 0.45; (C) A = 1.5V0, ω = 1.5. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

behavior. The result shown in Fig. 31 informs us that the relative position between the SLC to its two neighbored ULC has
an important effect on determining the direction of the unidirectional motion of the ratchet system.

4.5. Unidirectional motion in coupled diffusion processes

4.5.1. Time-homogeneous coupled diffusion: a canonical Brownian ratchet
We now turn our attention to unidirectional transports in coupled diffusion systems. This is the canonical mathematical

model for Brownian ratchets. For simplicity, we consider the following coupled two-state model

ẋ(t) = −V ′

i (x)+ Diξi(t), i = 1, 2, (150)

where x(t) represents themechanical position of the particle at time t; and i = i(t) (i = 1, 2) describes the chemical state of
the particle. i(t) is a two-state stochastic jump process with transition rate {qij(x)}2×2 which satisfies

∑
j qij = 0 (i = 1, 2).

Vi(x) defines the mechanical potential for the particle when in state i (i = 1, 2) at point x. We shall choose V1 to be a flat
potential and V2 an asymmetric function V2(x) = −V0(sin x+0.25 sin 2x)+C (see Fig. 32(A)), inwhich C = 1.1 is a constant,
V0 = 2π . ξi(t) (i = 1, 2)) are standardwhite noises satisfying ⟨ξi(t)⟩ = 0, ⟨ξi(t)ξi(t ′)⟩ = δ(t−t ′). Thewhite noise in the two
states can either be from two uncorrelated sources, i.e., ⟨ξ1(t)ξ2(t ′)⟩ = 0, or from the same sources, i.e.,D1 = D2, ξ1 = ξ2. In
this ‘‘ratchet’’ model, we assume that during the transition between the two states, the particle does not change its spatial
position.

In numerical simulation, we fix q12 = 3, q21 = 1. It is shown that system (150) exhibits a unidirectional transport under
the noise perturbation (see Fig. 32B). The direction of the motion, however, is opposite to the one observed in Section 4.4
even though the asymmetric potential function V2(x) used is the same as the V (x) in Eq. (146). The question naturally arises:
Why? And how does the unidirectional motion occur in the coupled diffusion system (150)?

First of all, let us see two extreme cases:
(i) D1 = 0 and D2 > 0. In this case, the particle receives noise perturbation only when it is in state 2. When in state 1, it

does not change its position. The random switching between the two states only slows down the time, but contributes no
dynamics. Since a Brownian particle in V2(x) alone does not have unidirectional transport in the long run, the same is true
for the present case.

(ii) D1 > 0 and D2 = 0. In this case, the particle only receives perturbations of the noise when it is in state 1. Suppose
that the particle is initially at the bottom of the potential V2. After staying in state 2 for a random amount of time (the mean
residence time is 1/q21), the particle jumps to state 1 and now is in potential V1. With the presence of Brownian motion, the
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Fig. 32. (A) An example of the twopotential functions in system (150): A flatV1(x) and an asymmetricV2(x). Also shown is the schematics of themovements
of a Brownianmotor. (B) A trajectory of the system (150) that undergoes unidirectional motion. (C) Schematics of the motion of the Brownianmotor under
strong noise perturbation in V1 . (D). The mean velocity ⟨ẋ⟩ of the system (150) vs. the noise intensity D1 with fixed D2 = 0.05. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

particle will diffuse in both directions symmetrically with equal probability. And after a certain amount of random time (the
mean time duration is 1/q12), the particlewill switch back to the potential V2. Due to the asymmetry of the V2(x), the particle
has a larger probability of surmounting the leftmaximum than that of surmounting the rightmaximum (see Fig. 32A). Hence,
macroscopically, the system exhibits a unidirectional motion toward the left. And with the noise intensity D1 increases, the
velocity of the movement increases correspondingly. Fig. 32D shows the mean velocity ⟨ẋ⟩ as a function of D1 with fixed
D2 = 0.1. Interestingly, one sees that increasing D1 always increases the mean velocity. As the value of D1 increases to a
sufficiently large value, the mean velocity plateaus. To explain this ‘‘noise-induced’’ ratchet phenomenon, we suppose that
the particle is initially at point O of potential V2 in Fig. 32C. As soon as the particle jumps to state 1, it will diffuse quickly
and symmetrically to both sides due to the Brownian motion. If the noise strength is sufficiently strong, as the particle
jumps back to state 2, the probability of the particle falling in the k + 1 wells leftward is the same as that of falling in the k
wells rightward. Hence on average, the system only undergoes the length of one well. This explains why the mean velocity
saturates as the noise intensity increases.

From the above discussions, we see that the perturbations of the noise to state 2 does no good for improving the
unidirectional motion. In fact it plays a destructive role. Noise to the state 1, however, plays an active role.

Let us further consider the situation with only one noise source, i.e., D1 = D2
1
= D, ξ1(t) = ξ2(t). Increasing the noise

intensity D will cause the particle diffuse more quickly along the flat potential V1, resulting in an increased probability of
the particle to fall into the well on the left in the potential V2. On the other hand, the Brownian motion of the particle in the
ratchet-like potential V2 becomes more ‘‘sluggish’’ with the increasing of the noise strength. As the noise plays these oppo-
site roles for a particle in the two potentials, one sees from Fig. 33 that increasing the noise level can accelerate the transport,
and then at a suitable noise intensity, a maximal mean velocity is obtained. After that, further increasing the perturbation
strength can only hinder the unidirectional motion. This indicates the occurrence of the velocity-measured SR.

4.5.2. Coupled diffusion with a time-periodic driving
In this last subsection,we give a brief discussion on the coupled diffusion processwith a time-dependent periodic driving.

The Eq. (150) becomes:

ẋ(t) = −V ′

i (x)+ A sinΩt + Diξi(t), i = 1, 2. (151)

Numerical simulations show that there exists a critical driving amplitude Ac such that when A < Ac , the system moves
unidirectionally to the left, while for A ≥ Ac , themotion of the system becomes unidirectionally toward the right. Moreover,
in both the regimes of the driving amplitude, the unidirectional motion shows velocity-measured SR effect: i.e, the velocity
is first increasing with the increase of the driving amplitude until reaching a maximum and then decreasing again with the
increase of A. This is shown in Fig. 34(c).

Combining with the discussion of the unidirectional motion in Section 4.4, it is not difficult to understand such a current
reversal phenomenon. As has been mentioned in Section 4.4, the interplay of noise and the periodic force in potential V2
tends to drive the particle moving toward the right. However, without periodic forcing, noise in potential V2 only plays its



64 X.-J. Zhang et al. / Physics Reports 510 (2012) 1–86

Fig. 33. The mean velocity ⟨ẋ⟩ of system (150) vs. the noise intensity D under the condition that D1 = D2 = D.

(a) (b) (c)

Fig. 34. Trajectories of system (151) for different driving amplitudes A. (a) A = 0.1; (b) A = 1.5. The mean velocity ⟨ẋ⟩ as a function of the driving
amplitude A is depicted in (c). Here ω = 0.25 and D = 1.8.

destructive role. When the periodic forcing is weak, the motion of asymmetric diffusion plays dominant role, which results
in a unidirectional motion toward the left. However, when the periodic forcing amplitude increases to a certain value, the
cooperation of noise and periodic force becomes dominant. This changes the direction of the system from moving leftward
to moving rightward.

4.6. The efficiency of energy transduction in Brownian motors

From the discussions in the previous several sections, we have learned that a multi-state Brownian particle in an
asymmetric periodic potential can have a directed motion, even when the total work done by the external force is zero.
The molecular motor can thus carry an external load and still move against a resistant force, therefore, does work. It is
natural one is interested in the mechanical efficiency of the motor, which has been a topic of great interest for quite long
time.

In this section, we shall discuss the efficiency of molecular motors, for both time-independent coupled diffusion and
periodically forced time-inhomogeneous Brownian motors. From the general theory of NESS we already had the notions
of e.p.r and h.d.r. They are the amount of input energy that is converted into heat and lost to the isothermal environment.
However, if the system has a load, at least part of the input energy can be converted into useful work against the load. The
focus of the present section, therefore, is the efficiency of this energy conversion.

Analyses in the previous sections have shown that amulti-state Brownian particle can undergo unidirectionalmovement
in a periodic but asymmetric potential even in the absence of any appliedmacroscopic force or potential gradient. The energy
for the movement comes from the chemical state transitions that are coupled to external chemical potential. In fact, such a
‘‘Brownian motor’’ can carry a cargo and against a resistant force (i.e., a load) still moves forward. It can do work! There is a
free energy conversion from chemical form tomechanical form. A very important question one is interested is the efficiency
of this energy conversion [207,218].

In Section 2.3.2, we have discussed the entropy production: The amount of free energy dissipation which is regarded as
being wasted. However, in the case of the Brownianmotor with a load, a part of the consumed chemical energy is converted
into useful work. The focus of this section, thus, is to discuss the efficiency of such a type of mesoscopic energy utilization.
We shall discuss two cases: the time-homogeneous coupled diffusion characterized in terms of Eq. (150) [216] and the
one-dimensional time-inhomogeneous Brownian ratchet characterized by Eq. (110) [217].

4.6.1. The efficiency of energy transduction of a Brownian motor with coupled diffusion
For concreteness, we shall again consider the asymmetric potential V (x) = −V0(sin x + 0.25 sin 2x). We have seen in

the previous sections that the motion of a Brownian ratchet in such a potential has a net unidirectional bias. Now let us
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suppose that the Brownian particle also encounters a resistant force. Intuitively, if the force is not too large, the motion will
slow down but will not change the direction. The dynamical equation, and the corresponding FPE, are again described by
Eqs. (136) and (139), respectively. We can identify the F term in the equation as the external load.

Applying the same idea in Section 2.3.2, let us consider the Gibbs entropy:

S(t) = −kBT
−

i

∫ L

0
pi(t, x) ln pi(t, x)dx (152)

where D2
= 2kBT , where kB is the Boltzmann constant. For an isothermal Brownian motion in general, the relationship

between the entropy production rate (e.p.r), heat dissipation rate (h.d.r.) and theGibbs entropy can be stated in the following
entropy balance equation [49,50]

T ·
dS(t)
dt

= ep − hd, (153)

where ep is the e.p.r., and hd is the h.d.r. of the system. In a steady state, the time derivative in Eq. (153) is zero, and the ep of
the system is balanced by the h.d.r.

Carrying out the derivative of S(t)with respect to the time t we have

dS(t)
dt

=

−
i

kBT
∫ L

0
ln pi(t, x) ·

∂

∂x
Ji(t, x)dx − kBT

−
i,j

∫ L

0
pj(t, x)qji(x) ln pi(t, x)dx. (154)

In steady state, the probability density pi(t, x) and the probability current Ji(t, x) can be replaced by the stationary
distribution πi(x) and the current Ji(x), then we have

0 =
dS(t)
dt

= kBT
−

i

∫ L

0
lnπi(x) · J ′i (x)dx − kBT

−
i,j

∫ L

0
πj(x)qji(x) lnπi(x)dx. (155)

Corresponding to every i in the first term of the equation, we have

kBT
∫ L

0
lnπi(x) · J ′i (x)dx = −kBT

∫ L

0

d
dx
(lnπi(x)) · Ji(x)dx

= −

∫ L

0
[F − V ′

i (x)] · Ji(x)dx +

∫ L

0

[
F − V ′

i (x)− kBT ·
d
dx

lnπi(x)
]

· Ji(x)dx. (156)

We see that the first term is just the h.d.r on a circle discussed in Section 2, and the second term is the e.p.r arising from the
spatial diffusive motion of the particle in state i, denoted asΠi:

Πi =

∫ L

0

[
F − V ′

i (x)− 2kBT ·
d
dx

lnπi(x)
]

· Ji(x)dx. (157)

It has three terms, and each has a clear physical interpretation. The first term
 L
0 F · Ji(x)dx describes the energy consumption

due to the work done of the motor pulling a load; the second term
 L
0 2D−2

i [−V ′(x)] · Ji(x)dx shows the dissipation of the
potential energy during transporting along the trajectory, and the third term

 L
0

d
dx lnπi(x)·Ji(x)dx is the increment of entropy

due to the change in the probability distribution.
Similar to the situation in a Markov chain, the integral in the second term of Eq. (154), in a steady state, can be expressed

as:
− kBT

−
i

−
j

πj(x)qji(x) lnπi(x) = kBT
−

i

−
j

[πi(x)qij(x)− πj(x)qji(x)] · lnπi(x)

=
1
2
kBT

−
i,j

[
πi(x)qij(x)−

1
2
kBTπj(x)qji(x)

]
· ln

πi(x)
πj(x)

= −
1
2
kBT

−
i≠j

[πi(x)qij(x)− πj(x)qji(x)] · ln
qij(x)
qji(x)

+
1
2

−
i≠j

[πi(x)qij(x)− πj(x)qji(x)] · ln
πi(x)qij(x)
πj(x)qji(x)

, (158)

where the first term in the last equality describes the h.d.r of a molecular motor, at position x, when undergoes a chemical
transition, while the second term corresponds to the e.p.r of the motor associated with the transition. LetΠij be the e.p.r. of
the motor particle transiting between state i and j, then

Πij =
1
2
kBT

∫ L

0
[πi(x)qij(x)− πj(x)qji(x)] ln

πi(x)qij(x)
πj(x)qji(x)

dx. (159)
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Hence in the steady state, the e.p.r. of the coupled diffusive ratchet is

ep =

−
i

Πi +
−
i≠j

Πij

=

−
i

∫ L

0

[
F − V ′

i (x)−
D2
i

2
·
d
dx

lnπi(x)
]

· Ji(x)dx

+

∫ L

0

1
2
kBT

−
i≠j

[πi(x)qij(x)− πj(x)qji(x)] · ln
πi(x)qij(x)
πj(x)qji(x)

dx. (160)

And the total h.d.r. is

hd = −

−
i

∫ L

0
[F − V ′

i (x)] · Ji(x)dx −
1
2
kBT

∫ L

0

−
i≠j

[πi(x)qij(x)− πj(x)qji(x)] · ln
qij(x)
qji(x)

dx. (161)

As stated in Section 2, the e.p.r ep is the free energy dissipation in a unit time of a Brownian motor undergoing ‘‘uphill’’
motion against an external load.

During transport, the work done in a unit time by the motor against the load is

W = −

−
i

∫ L

0
F · Ji(x)dx. (162)

The rest of the energy is dissipated in the form of entropy production. The total dissipation plus the work done against the
outside equals to the total free energy consumptionΠ (the input power Pin), i.e.,

Pin = Πfree = ep + W . (163)

Eq. (163) is a statement about the conservation of energy: It means that during the unidirectional movements of amolecular
motor, the input energy is partly utilized to do useful work against the external load, and the rest is dissipated (i.e., wasted).
This equation first appeared in [229] for a chemical model of motor proteins, and more recently, see [216] for a molecular
motor which has an internal potential function, and [217] for Brownian ratchet in general. It is important to point out that
we have derived the Eq. (163) from the theory of NESS; it is not a supposition based on physical arguments, as had been
done in several previous works on motor efficiency.

Now combining the terms (160) and (162) above, we have

ep + W =

−
i

∫ L

0

−
j

[πj(x)qji(x)− πi(x)qij(x)]Vi(x)dx +
1
2
kBT

−
i≠j

∫ L

0
[πi(x)qij(x)− πj(x)qji(x)] ln

qij(x)
qji(x)

dx. (164)

One sees from Eq. (164) that the total energy supplied to the unidirectional transport by a coupled diffusion ratchet system
is only partly from the chemical energy released during the state transition of the enzyme (i.e. the ATPase), represented by
the second term in Eq. (164). In addition, though the potential does nowork on average, the coupling of the potential and the
state transition, which is ‘‘driven’’ externally, also provides energy for the unidirectional motion. The former can be called
chemical driving, and the latter, noise-induced force. For molecular motors with internal potential function, the qij(x) and
Vi(x) satisfy the detailed balance condition, then the chemical driving force is the sole energy input [216].

Based on the above discussion, the thermodynamic efficiency of a Brownian motor can thus be expressed as

ηtherm1 =
W
Πfree

=
W

ep + W
. (165)

As the entropyproduction rate ep is nonnegative, then for a Brownianmotor carrying a load (W > 0),wehave 0 ≤ ηtherm ≤ 1,
whichmeans that the consumed energy is partly used to dowork and the rest is dissipated. If themotor does not pull a load,
then the energy is totally dissipated, which results in a zero efficiency. On the other hand, if the load is equal to the stalling
force, then the work done by the motor is also zero. However, the particle is still switching between the different potentials
and the e.p.r is nonzero. Hence in this case, the efficiency of the motor is also zero. Therefore, under a suitable amount of
load the efficiency reaches a maximum.

We can further unify the notions of Stokes efficiency and thermodynamic efficiency under the same input power:

ηStokes
1
=

W + ⟨ẋ⟩2

Πfree
=

W + ⟨ẋ⟩2

ep + W
. (166)
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Fig. 35. Computational results from two Brownian ratchets. (A1, A2) show the potential functions used in the computations. (B1, B2) show the
thermodynamic efficiency vs. the external load F for different noise intensities. (C1, C2) show the Stokes efficiency vs. the external load F for different
noise intensities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: Reproduced with permission from M. Qian et al., EPL, 84 (2008) 10014.

Without imposing any specific condition on the transition rates and potentials, it is easy to prove that this efficiencymeasure
is bounded by 1. Actually, applying Cauchy–Schwarz inequality and noticing the expression of ep in Eq. (160), we have

⟨ẋ⟩2 =

∫ L

0

−
i

Ji(x)dx

2

=

∫ L

0

−
i


πi(x) ·

Ji(x)
√
πi(x)

dx

2

≤

∫ L

0

−
i

πi(x)dx ·

∫ L

0

−
i

J2i (x)/πi(x)dx

=

∫ L

0

−
i

J2i (x)/πi(x)dx

≤ ep

then

ηStokes ≤ 1.

To illustrate the variation of the efficiency of a motor with increasing load, let us turn to computations. We first consider
a simple two-state motor with one periodic and one flat potential in Eq. (136). The potential function is given in Fig. 35A1.
We fix the parameters q12 = 3, q21 = 1 and U = 2, a = 0.1, L = 1. Without any load (F = 0), the motor moves to the right.
It is shown in Fig. 35B1 and C1 that with the increase of the load F , both ηtherm and ηstokes increase until reaching amaximum,
and then decrease with further increasing of the load.

Furthermore, let us consider a two-state motor with two potentials of period L = 1 and of equal amplitude U (see
Fig. 35A2). Similar to system A in Ref. [218], we suppose that V2(x) = V1(x− δ)+U0, here δ = 0.5,U0 = 2.3. The transition
rate of the system obeys q12 = α(x)e(V1−V2+1µ)/D + β(x)e(V1−V2)/D, q21 = α(x) + β(x), where α(x), β(x) are the same as
in [218].

Employing the e.p.r. formula to calculate the input power, one can see that the curves of ηtherm vs F for different noise
intensities depicted in Fig. 35B2 are similar to those in [218]. Viewing from the Stokes efficiency, we see in Fig. 35C2 that
with the increase of external load, ηstokes vs F does not always exhibit a bell-shaped curve.

4.6.2. Time-inhomogeneous Brownian ratchet
In the above section, we have discussed the efficiency of a Brownian motion in a time-homogeneous system, moving

against an external load. We found that in addition to the chemical driving force in the molecular motor, a system
experiencing externally controlled random ‘‘flipping’’ between potential functions also receives an amount of input energy.
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This point can be even better studied by considering the system of time-inhomogeneous Brownian ratchet. We shall
specifically consider Eq. (121), whose corresponding FPE is

∂p(t, x)
∂t

= −
∂ J(t, x)
∂x

, (167)

where

J(t, x) = (F − V ′(x)+ A sinΩt) · p(t, x)−
D2

2
∂p(t, x)
∂x

. (168)

The system’s Gibbs entropy at time t is

S(t) = −

∫ L

0
p(t, x) ln p(t, x)dx. (169)

Taking a time-derivative on both sides of the equation, we have

dS(t)
dt

= −

∫ L

0
2D−2

[F − V ′(x)+ A sinΩt]J(t, x)dx

+

∫ L

0
2D−2

[
F − V ′(x)+ A sinΩt −

D2

2
·
d
dx

ln p(t, x)
]2

· p(t, x)dx. (170)

Extending the definition of the e.p.r. in steady state to a non-stationary case, we shall call

hd(t)
1
=

∫ L

0
2D−2

[F − V ′(x)+ A sinΩt]J(t, x)dx (171)

the instantaneous heat dissipation rate of system (121) at time t , and

ep(t)
1
=

∫ L

0
2D−2

[
F − V ′(x)+ A sinΩt −

D2

2
·
d
dx
(ln p(t, x))

]2
· p(t, x)dx (172)

the instantaneous entropy production rate at time t .
As system (121) is no longer stationary, the e.p.r and the h.d.r. never become constant. Still, we have instantaneous

entropy balance equation

ep(t) =
dS(t)
dt

+ hd(t). (173)

Even though the system does not reach stationarity, one can still define the time-averaged e.p.r as

ep = lim
t→∞

1
t

∫ t

0
ep(s)ds. (174)

For the time-inhomogeneous system with period T = 2π/ω, according to Lemma 4.2 in Section 4.3.2, we know that for
∀s ∈ [0, T ], each subprocess {x(s + k · T )}k≥0 asymptotically approaches to a stationary distribution νs(x)dx as time tends
to infinite. Here

νs(x)dx =

∫ L

0
νs(y)p(s, s + T ; y, x)dydx. (175)

Eq. (175) shows that νs(x)dx is periodic T -invariant. Hence we can consider a periodic process {x(t)}t≥0 with an initial
distribution ν0(x)dx. Note that the Gibbs entropy S(t) is a bounded function on [0,+∞) (In fact, we only need to consider
the bound of S(t) on interval [0, T ]). Therefore

lim
t→∞

1
t

∫ t

0

dS(t)
dt

dt = lim
t→∞

S(t)− S(0)
t

= 0. (176)
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It follows from Eq. (172), (174) and (176) that for a time-inhomogeneous ratchet:

ep = lim
t→∞

1
t

∫ t

0
hd(s)ds

= lim
n→∞

1
nT

∫ nT

0
hd(s)ds.

= lim
n→∞

1
nT

∫ nT

0
dt
∫ L

0
2D−2(F − V ′(x)+ A sinΩt) · J(t, x)dx

= 2D−2

F · lim

n→∞

1
nT

∫ nT

0
dt
∫ L

0
J(t, x)dx − lim

n→∞

1
nT

∫ nT

0
dt
∫ L

0
V ′(x)J(t, x)dx

+ lim
n→∞

1
nT

∫ nT

0
dt
∫ L

0
A sinΩt · J(t, x)dx


. (177)

We shall now compute the limits for all above three terms. For the first term, we have

1
nT

∫ nT

0
dt
∫ L

0
J(t, x)dx =

1
nT

∫ nT

0
dt
∫ L

0
(F − V ′(x)+ A sinΩt)p(t, x)dx −

1
nT

∫ nT

0
dt
∫ L

0

∂p(t, x)
∂x

dx

=
1
nT

∫ nT

0
dt
∫ L

0
(F − V ′(x)+ A sinΩt)p(t, x)dx (noticing that p(t, x + L) = p(t, x))

=
1
nT

∫ nT

0
dt
∫ L

0
(F − V ′(x))p(t, x)dx


noting

∫ L

0
p(t, x)dx = 1, and

∫ nT

0
A sinωtdt = 0


=

1
T

∫ T

0
ds
∫ L

0
(F − V ′(x)) ·

1
n

n−1−
k=0

p(s + kT , x)dx.

Then according to the result in Section 4.3.2, we know that

lim
n→∞

1
T

∫ T

0
ds
∫ L

0
(F − V ′(x)) ·

1
n

n−1−
k=0

p(s + kT , x)dx =
1
T

∫ T

0
ds
∫ L

0
(F − V ′(x))νs(x)dx.

It follows from Theorem 4.3 in Section 4.3.2 that

lim
n→∞

1
nT

∫ nT

0
dt
∫ L

0
J(t, x)dx =

1
T

∫ T

0
ds
∫ L

0
(F − V ′(x))νs(x)dx = ⟨ẋ⟩. (178)

For the second term in the last step of Eq. (177), we have

−
1
nT

∫ nT

0
dt
∫ L

0
V ′(x)J(t, x)dx = −

1
nT

∫ nT

0
dt
∫ L

0
J(t, x)dV (x)

=
1
nT

∫ nT

0
dt
∫ L

0
V (x) ·

∂ J(t, x)
∂x

dx

= −
1
nT

∫ nT

0
dt
∫ L

0
V (x) ·

∂p(t, x)
∂t

dx

= −

∫ L

0
V (x)

[
1
nT

∫ nT

0

∂p(t, x)
∂t

dt
]
dx

= −

∫ L

0
V (x) ·

p(nT , x)− p(0, x)
nT

dx.

Then  1
nT

∫ nT

0
dt
∫ L

0
V ′(x)J(t, x)dx

 ≤ max
x∈[0,L]

|V (x)| ·
1
nT

[∫ L

0
p(nT , x)dx +

∫ L

0
p(0, x)

]
=

2
nT

max
x∈[0,L]

|V (x)|.

Hence

lim
n→∞

1
nT

∫ nT

0
dt
∫ L

0
V ′(x)J(t, x)dx = 0. (179)
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For the third term in the last step of Eq. (177), we have

1
nT

∫ nT

0
dt
∫ L

0
A sinΩt · J(t, x)dx =

1
nT

∫ nT

0
dt
∫ L

0
A sinΩt(F − V ′(x)+ A sinΩt)p(t, x)dx

−
1
nT

∫ nT

0
dtA sinΩt

∫ L

0

∂p(t, x)
∂x

=
1
nT

∫ nT

0
dt
∫ L

0
A sinΩt(F − V ′(x))p(t, x)dx

+
1
nT

∫ nT

0
dt
∫ L

0
(A sinΩt)2p(t, x)dx

=
1
T

∫ T

0
A sinΩs

∫ L

0
(F − V ′(x))

1
n

n−1−
k=0

p(s + kT , x)dx +
1
nT

∫ nT

0
(A sinΩt)2dt.

Hence

lim
n→∞

1
nT

∫ nT

0
dt
∫ L

0
A sinΩt · J(t, x)dx =

1
T

∫ T

0
A sinΩsds

∫ L

0
(F − V ′(x))νs(x)dx +

1
T

∫ T

0
(A sin(Ωt))2dt. (180)

Therefore the average e.p.r of the time-inhomogeneous Brownian motor moving against a load is

ep = 2D−2F⟨ẋ⟩ + 2D−2

1
T

∫ T

0
A sinΩsds

∫ L

0
(F − V ′(x))νs(x)dx +

1
T

∫ T

0
(A sinΩt)2dt


, (181)

in which ζ is the frictional coefficient, D2/2 = 1/ζ when kBT = 1. The first two terms are both of the form expressed as
a force multiplying a current; while the third term can be regarded as an average power. For A = 0, Eq. (181) is just the
expression of ep of time-homogeneous systems mentioned in Eq. (63) in Section 2.4.2.

Therefore the free energy consumption of the time-inhomogeneous Brownian motor is

Π = ep + W

= 2D−2
[
1
T

∫ T

0
A sin(Ωs)ds

∫ L

0
(F − V ′(x))νs(x)dx +

1
T

∫ T

0
(A sinΩt)2dt

]
, (182)

where

W = −2D−2(F · ⟨ẋ⟩). (183)

Comparing Eqs. (181) and (182), one can see that the coupling of the periodic driving and the asymmetric potential can
provide part of the energy for unidirectional transport.

For a time-inhomogeneous Brownian motor, we can still define the efficiency of transport as

η =
W

ep + W
.

To illustrate the change of the efficiency of a time-inhomogeneous Brownian motor with increasing load, we again give
some numerical results. Fig. 36a shows different stationary probability densities corresponding to the processes {s+ kT }k≥0
starting from s ∈ [0, T ].

In Fig. 36b, we plot the mean velocity of system (121). The variations of the work done W by the particle and the
corresponding efficiency η with the increase of the loaded force F are shown in Fig. 36c and d. One can see similar result to
that in the coupled diffusive system (136), i.e., the efficiency reaches a maximum at a suitable load.

5. Conclusions and outlook

In the literature, there are several excellent reviews and books that address the constructive roles of noise in inducing
regular oscillations in excitable systems (CR) [132], unidirectional transports in molecular motors (Brownian ratchets) [27]
and signal amplifier by the mechanism of stochastic resonance (SR) [26,230]. However, as the review [26] has pointed out,
what is still lacking froma physical point of view is a detailed,microscopic (mesoscopic) approach to account for the physical
essence of all the noise-induced phenomena. In this report, we have provided a unified theory, i.e. nonequilibrium steady
state (NESS), to the phenomena of SR, CR and unidirectional transports.
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a b

c d

Fig. 36. (a) Stationary probability densities corresponding to the processes {x(s+kT )}k≥0 starting from different values of s ∈ [0, T ]. (b) Themean velocity
⟨ẋ⟩ vs. F . (c) The variations of the work done,W , with the increase of F . (d) The efficiency η vs F for system (121) with the potential given by Eq. (168). Here
V0 = 1, A = 1.6V0 , ω = 0.45,D = 0.45, F = −0.07 for (a). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

For the benefit of our readers, we have presented the mathematical theory of NESS within the framework of stationary
Markov processes and continuous diffusion processes on a circle. We ask the readers to bear in mind several key notions
which are crucial for understanding the nonequilibrium characteristics of the three phenomena discussed in this report:

(i) The underlying stochastic process is time irreversible;
(ii) There are an emergence of unbalanced circulation (NBC) due to the break-down of the detailed balance;
(iii) The power spectrum is non-Lorentzian;
(iv) There is a positive entropy production rate.
Unified under the theory of NESS, we have shown that the occurrence of CR in the typical excitable systems such as

Adler’s phase model, the integrate-and-fire (IF) model and the FitzHugh–Nagumo (FNH) model, is due to the existence of
NBC. In the phase model and the IF model, the NBC is characterized by a noise-induced rotation around the circle which
also implies a positive e.p.r; in the FHN model, it is represented by the appearance of a stochastic stable limit cycle (SSLC).
Interestingly, the concept of SSLC can be clearly quantified by the regularity factor of noise-sustained oscillations (or the
quality factor of the power spectrum) which represents a highly localized NBC. Of particular interest is the CR in a single
stochastic Hodgkin–Huxley (HH) type neuron with intrinsic channel noise in a membrane patch with finite-size. After a
detailed analysis using Gillespie algorithm, we have learned that a single neuron can effectively couple the mesoscopic
kinetics of individual channels, with randomly opening and closing of the channel gates, and the macroscopic dynamics of
the cell membrane potential, with depolarization and repolarization, to generate spontaneous firings, i.e., CR without any
external injected current. We have illustrated in Section 3.2.5 again this is due to the emergence of NBC. This time the NBC is
caused by the coupling of passive channel fluctuation with active dynamics of membrane potential. We expected this type
of mesoscopic-macroscopic coupled systems, together with the application of NESS theory, will find further applications in
biological systems.

Traditionally, SR and CR are usually treated as two different phenomena because the former requires the interplay of
noise and a weak external periodic signal while the later does not. However, as we have shown, these two phenomena in
fact have the same origin, if one treats the periodically driven SRmodel as an autonomous systemusing an embedding-based
description. In terms of this embeddingmethod, SR in a classical bistable periodically drivenmodel, which was traditionally
explained in the subthreshold regime as thematching of periodically rocking of the two-well potential and thenoise-induced
hopping between the two potential wells, can now be interpreted from a new perspective. In fact, the two potential wells
in the original model, in the subthreshold regime, is equivalent to the two stable limit cycles on the cylinder. Thus the
dynamical mechanism of SR can now be explained due to the coherent switching between the two stable limit cycles.
Such an embedding method can also quantitatively show that it is the relative position of the stable limit cycle (SLC) to
the unstable limit cycle (ULC) as well as the amplitude of the SLC itself that determine the effect of SR. Furthermore, using
dynamical theory, the whole parameter regime of (A, ω), the amplitude and the frequency of driving force, can be classified
into two regime: One is shown to have two SLCs and therefore is possible for SR to occur, and the other is shown to have
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only one SLC and no SR can appear. SR is found to be most significant near the bifurcation curve in the subthreshold regime.
It is therefore not surprising to find that SR occurs in the superthreshold regime which had been considered impossible.

Regarding the Brownian ratchet, the same embedding method is also shown to be useful in clarifying the mechanism of
unidirectional transport of a Brownian particle in a spatially periodic potential driven by a periodic force in the presence of
Gaussian white noise. We have shown the existence of a sequence of SLCs and ULCs of the equivalent dynamical systems on
a cylinder, and furthermore elucidated that it is the relative position of the SLC to its two neighboring ULCs, which reflects
the break-down of the symmetry, that determines the direction of transport as well as its velocity. In this problem, the
NESS theory presented in Section 2 has also found its promising role in clarifying the efficiency of energy transduction by
the Brownian motors. We have rigorously shown that the thermodynamic efficiency of a Brownian motor can be explicitly
expressed as the work done by the motor over the sum of entropy production rate and the work.

Applying the mathematical theory of NESS to the noise induced phenomena discussed in this report is mainly based on
the stochastic theory of Markov processes and diffusion processes on a circle (or cylinder). It should be noted that there
are several physical assumptions hidden behind a Markov dynamics for mesoscopic systems such as the separation in time
scales between the degrees of freedom associated with a state and those associated with the state transitions, leading to
a rapid equilibration of the fast degrees of freedom. For non-Markovian behaviors that sometime observed in condensed
phase kinetics, further discussions are required.
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Appendix A. Mathematical theory of Markov processes

In order to use a Markov process as the mathematical representation for a mesoscopic system in either equilibrium or
nonequilibrium states, we give an introductory account of themathematical theory ofMarkov processes.We shall only state
the key results without giving proofs. Readers who are interested in the full account of the theory are referred to several
texts on stochastic processes [231,232].

A.1. Markov chain with discrete time parameter and discrete states

Before discussing a Markov chain with continuous time, we shall first discuss briefly a Markov chain with discrete time.
Discrete time is easier to work with, and almost all results on the latter can be translated into the former.

Definition A.1. Suppose that {Xn(ω)}n∈Z is a stochastic process. It takes values in a finite or denumerable set E. If for
∀i, j, i0, i1, . . . , in−1 ∈ E, we have

Pr{Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X1 = i1, X0 = i0} = P{Xn+1 = j|Xn = i}, (A.1)

then {Xn}n∈Z is called a Markov chain with the state space E. Furthermore, if Pr{Xn+1 = j|Xn = i} = Pr{X1 = j|X0 = i}, then
the Markov chain is said to be time-homogeneous.

Eq. (A.1) shows that knowing the state of the system at time n, the probability that the process in state j at time n + 1 is
independent of the states before time n (memoryless before time n).

For simplicity, we shall assume in the following that the state space of a Markov chain is E = {1, 2, . . . ,N}, and the
process is time-homogeneous.

We call pij
1
= Pr(X1 = j|X0 = i) the one-step transition probability of the Markov chain {Xn}n∈Z if it satisfies:

pij ≥ 0,∀i, j ∈ E;

N−
j=1

pij = 1, ∀i ∈ E. (A.2)

Denote P 1
= (pij), which is called the one-step transition probability matrix of {Xn}n∈Z.

The statistical properties of a Markov chain are determined by its initial distribution πi
1
= Pr{X0 = i} and the one-step

transition probability matrix P = (pij):

Pr{X0 = i0, X1 = i1, . . . , Xn = in} = πi0pi0 i1pi1 i2 · · · pin−1 in . (A.3)

We call pij(n)
1
= Pr{Xm+n = j|Xm = i} the n-step transition probability of the Markov chain {Xn}n∈Z, and Pn 1

= (pij(n)) is
correspondingly called the n-step transition probability matrix. It is not difficult to show that Pn is in fact the nth power of
P . Hence we have
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Theorem A.2 (Kolmogorov–Chapman Equation). The transition probability matrix Pn satisfies

pij(m + n) =

−
k

pik(m)pkj(n). (A.4)

i.e.,

Pm+n
= Pn

· Pm
= Pm

· Pn. � (A.5)

Starting from state i, if a system has a positive probability reaching state j, i.e., ∃n ≥ 1, s.t. pij(n) > 0, then we call state j
is reachable from i. If j is reachable from i and i is reachable from j, then states i and j are said to be communicative. If starting
from i the system returns to this state in a finite time with probability 1, i.e.,

Pr


n=∞
n=1

{Xn = i}
X0 = i


= 1,

then state i is said to be recurrent.
If any two states of a Markov chain are communicative, then the process is said to be irreducible. Obviously, if one state

of an irreducible Markov chain is recurrent, then all the states are recurrent.

Theorem A.3 (The Weak Ergodic Theorem of Markov Chains). Let {Xn}n∈Z be a finite-state Markov chain with transition
probability matrix P, then the following limit

lim
n→∞

1
n

n−1−
k=0

Pk
= L(L = (Lij)) (A.6)

exists, and LP = PL = L2 = L. �

1/Lij can be understood as the average time of the system starting from state i and then coming back to this state. If
Lii > 0, then state i is said to be positive recurrent. If Lii = 0, then we call state i zero recurrent, which means that the average
time of the system returning to i is infinitely long.

Definition A.4 (Invariant Distribution). If there is a vector π⃗ = (π1, . . . , πN)with πi ≥ 0 and
∑

i πi = 1, such that

π⃗P = π⃗ , (A.7)

i.e.,
N−
i=1

πipij = πj, ∀j ∈ E,

then π⃗ is called an invariant probability distribution of P , or an invariant distribution of the Markov process.

Theorem A.5. Suppose that a Markov chain {Xn}n≥0 with N states is irreducible, then
(1) it has a unique invariant distribution π⃗ = (π1, . . . , πN), in which all πi’s are positive.
(2) L = (1, 1, . . . , 1)⊤(π1, . . . , πN), which yields that Lii > 0, for ∀i ∈ E, i.e., all states are positive recurrent. �

If a mesoscopic system only changes its states at time t = 1, 2, . . . , k, . . ., then the evolution of the system with time
can be described by a Markov chain {ζn(ω)}n∈Z with discrete time parameter and discrete states. However, time in a real
physical system usually is continuous, hence it is necessary to further discuss Markov processes {ξt(ω)}t∈R with continuous
time parameter.

A.2. Finite-state Markov chain with continuous time parameter (Q -process)

Let pi(t)
1
= Pr{ξt = i} be the probability of a system (say a single enzyme molecule) in state i at time t , and qij be

the transition probability rate of the particle transiting from state i to j, then the time evolution of the distribution of a
mesoscopic system in state i can be described by the following master equation:

dpi(t)
dt

=

−
j≠i


−qijpi(t)+ qjipj(t)

 1
=

−
all j

qjipj(t). (A.8)

Let pij(t)
1
= Pr{ξt = j|ξ0 = i}. Since pij(t) ≥ 0, and

∑
j pij(t) = 1, then

qij = lim
t→0

pij(t)
t
, i ≠ j; qi = lim

t→0

1 − pii(t)
t

, qii
1
= −qi.
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Furthermore, qij satisfies
(1) qij ≥ 0,∀i ≠ j; qii ≤ 0;
(2)
∑

j≠i qij = qi (qi = −qii).

Let P(t) 1
= (pi(t), . . . , pN(t)), and Q 1

= {qij}. We call the matrix Q a Q-matrix and the corresponding stochastic process
{ξt(ω)}t∈R a Q -process, which is a Markov process with continuous time parameter and discrete states. Equivalently, the
master equation (A.8) can be rewritten be as

dP(t)
dt

= P(t)Q. (A.9)

The trajectory {ξt(ω)}t∈R that describes the motion of the system is a function with steps of jumping. For simplicity, we
always suppose that it is right continuous, i.e., Pr{ω; limt↓t0 ξt(ω) = ξt0(ω)} = 1. Let τ = inf{t > 0; ξt(ω) ≠ ξt0(ω)},
which means that conditioning on ξt0 = i, τ is the first time that the process jumps out of state i. It is a random variable.
Concerning the statistical laws of the transition behavior of the particle, we have the following theorem:

Theorem A.6. Suppose that a Q -process {ξt}t∈R is right continuous and 0 < qi < +∞, then
(1) Pr{τ ≥ t|ξ0 = i} = e−qit;

(2) Pr{ξτ = j, τ ≤ s|ξ0 = i} =

1 − e−sqi

 qij
qi
(j ≠ i, qi ≠ 0);

(3) Pr{ξτ = j|ξ0 = i} =
qij
qi
(j ≠ i, qi ≠ 0). �

Conclusion (1) reveals that the sojourn time of a mesoscopic particle (i.e., a molecule) residing in state i obeys an
exponential distribution. It is easy to calculate that the mean sojourn time of the particle in state i is 1/qi. Conclusion (3)
states that the probability of the particle transiting from state i to j is qij/qi. Based on (1) and (3), Conclusion (2) says that
ξτ and τ are two conditionally independent random variables under the condition ξ0 = i. These facts are the bases for a
computer simulation of a Q -process, known as Gillespie algorithm [178,179].

Definition A.7 (Communicativity). A Q -process with finite states is said to be communicative, if

∀ i ≠ j, ∃i1, i2, . . . , is, s.t. qii1qi1 i2qi2i3 · · · qis−1 isqisj ≠ 0. (A.10)

Definition A.8 (Stationarity). A Markov chain {ξt}t≥0 is said to be stationary, if for ∀ 0 ≤ t1 < t2 < · · · < tk, and ∀h > 0,
(ξt1 , ξt2 , . . . , ξtk) and (ξt1+h, ξt2+h, . . . , ξtk+h) have the same distribution.

The stationarity of a stochastic process means that the statistical properties of the process are invariant with the shift of
time.

Proposition A.9. A Q-process {ξt}t≥0 is stationary if and only if its initial distribution π⃗ = (π1, . . . , πN) is an invariant
distribution, i.e, π⃗Q = 0. �

Definition A.10 (Detailed balance). A stationary Q -process {ξt}t∈R is said to be in detailed balance, if

πiqij = πjqji, ∀i ≠ j, (A.11)

where π⃗ = (π1, . . . , πN) is the invariant distribution.

Observing a stochastic process is actually viewing the probability characteristics of the process along the time-increasing
direction; while its reverse process refers to observing this trajectory along the time-decreasing direction. A natural idea to
define a reverse process is to reflect the original process about the zero point in time axis. Denote

ξ−

t (ω) := ξ−t(ω), ∀t > 0.

We call ξ−
= {ξ−

t (ω)}t∈R the reverse process corresponding to the stationary Q -process ξ = {ξt(ω)}t∈R.
Obviously, {ξ−

t (ω)}t∈R is also a Q -process defined on (Ω,F , P), with stationary distributionπi = Pr{ξ−

t = i} = πi. LetQ = (qij) be the corresponding Q-matrix. Suppose that t1 < t2, i.e. −t2 < −t1. Since

Pr{ξ−

t1 = i, ξ−

t2 = j} = Pr{ξ−t1 = i, ξ−t2 = j} = Pr{ξ−t2 = j, ξ−t1 = i},

then

πiqij = πjqji.

Thus the transition probability rate of the reverse process ξ− is

qij =
πjqji
πi
. (A.12)

qij still satisfies the conclusions in Theorem A.6, and π⃗ Q̃ = 0 holds true.
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Definition A.11 (Reversibility).AQ -process {ξt(ω)}t∈R is said to be reversible, if it is stationary and for any t1 ≤ t2 ≤ · · · ≤ tk,
(ξt1 , ξt2 , . . . , ξtk) and (ξ−t1 , ξ−t2 , . . . , ξ−tk) have the same distribution.

The time reversibility, or simply reversibility, of a stochastic process means that the statistical law of the process is
invariant under the reverse of time. Let P+ and P− be the probability measures of a stochastic process {ξt(ω)}t∈R along the
time-increasing and decreasing directions, respectively, then

P−

ξt1 = i1, ξt2 = i2, . . . , ξtk = ik


= P+


ξ−

t1 = i1, ξ−

t2 = i2, . . . , ξ−

tk = ik

.

Proposition A.12. A stochastic process {ξt(ω)}t∈R is reversible if and only if ∀t > 0,

P+

[0,t](ω) = P−

[0,t](ω).

This holds true if and only if πiqij = πjqji, or q̃ij = qij. �

A.3. Embedded Markov chain of a Q -process.

Suppose that a Q -process {ξt(ω)}t∈R is right continuous. Let
t0(ω) = 0,
tk+1(ω) = inf{t > tk(ω); ξt(ω) ≠ ξtk(ω)}, k = 0, 1, 2, . . .

and
τk(ω) = tk+1(ω)− tk(ω), k = 0, 1, 2, . . .

then tk(ω) is the kth jumping time of ω during time interval [0,∞), τk(ω) is the sojourn time of the trajectory in state ξtk−1 ,
they are both random variables. Let

ζk(ω) = ξtk(ω),

then {ζn(ω)}n∈Z is a Markov chain with discrete time parameter and finite states. It has the same state space as that of ξ , and
the transition situation of ζ at time n = 1, 2, . . . , k, . . . is the same as that of the process ξ at time tk(ω), k = 1, 2, . . .. We
call {ζn(ω)}n∈Z an embedded Markov chain of a Q -process {ξt(ω)}t∈R. It can be seen from Theorem A.6 that the transition
probability rate of {ζn(ω)}n∈Z transferring from state i to j is qij/qi. Hence we have

Proposition A.13. The embeddedMarkov chain {ζn(ω)}n∈Z has an invariant distribution (π1, . . . ,πN):πi = πiqi/
∑

i πiqi, and
the transition probability rate of {ζn(ω)}n∈Z is

pij =

qij
qi
, i ≠ j;

0, i = j
(A.13)

where (π1, π2, . . . , πN) is the invariant distribution of the Q -process {ξt(ω)}t∈R. �

Suppose that the probability space of theQ -process {ξt(ω)}t∈R is (Ω,F , P), then the embeddedMarkov chain {ζn(ω)}n∈Z
can be considered as being defined on a subspace (Ω, F ,P) of the space (Ω,F , P), hereΩ = {ω = {ωn}n∈Z : ωn takes values in {1, 2, . . . ,N}}.

The sample path ω ∈ Ω can also be extended to a step-function of t ∈ R, hence Ω ⊂ Ω , every trajectory ω ∈ Ω can
be sorted as a sequence (ζ1, ζ2, . . . , ζn, . . .) in Ω according to the observed value of the trajectory at the jumping time.
Therefore, we can define a mapΘ

Θ : Ω −→ Ω,
ω ∈ Ω → (ζ1, ζ2, . . . , ζn, . . .) ∈ Ω

and a probability measure P on F :
1
= Θ(F ) byP = P ◦Θ−1.

Appendix B. Background materials on stochastic differential equations

Inmany applications, one has to deal with a stochastic process with continuous time and continuous states. Usually, such
a process is described by a stochastic differential equation (SDE). For simplicity, we consider the following one-dimensional
SDE equation:

ẋ(t) = b(x)+ σ(x)ξ(t), (B.1)
in which ξ(t) is a Gaussian white noise satisfying ⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t ′)⟩ = δ(t − t ′), where ‘‘⟨· · · ⟩’’ stands for the
expectation. Actually, the white noise is the formal derivative of a Brownian motion B(t) with respect to t , i.e., ξ(t) =

dB(t)/dt .



76 X.-J. Zhang et al. / Physics Reports 510 (2012) 1–86

B.1. Brownian motion

Since the celebrated work of Einstein in 1905 [233,234]11 and followed by contributions from physicists M. von
Smoluchowski, P. Langevin, G.E. Uhlenbeck, L.S. Ornstein [235], and mathematicians N. Wiener, P. Levy, J. Doob and
many others, the theory of Brownian motion has become one of the well-established areas of mathematics with wide
applications [236,67,237]. There is a large literature, inside and outside mathematics, on Brownian motions and diffusion
processes [238]. Here we only present some necessary materials related to stochastic differential equation (B.1). To be
consistent with the symbols in probability theory, here we use E[· · · ] to denote the expectation instead of the ⟨· · · ⟩.

Definition B.1 ([237]). Suppose that there is a free particle moving randomly on a line. The position of the particle at time
t is denoted as B(t, ω). We call the process B 1

= {B(t, ω)}t≥0 a Brownian motion, if it satisfies the following conditions:
(1) The displacements B(ti, ω)− B(si, ω) for any finite nonintersect time intervals (si, ti](ti > si) are independent. Here

for convenience, we set B(0) = 0.
(2) The increment B(t, ω)− B(s, ω) (t > s) obeys a normal distribution N(0, t − s)with zero means and variance t − s.
(3) For almost all trajectories ω, B(t, ω) is a continuous function of t .

From (2), one knows that E[B(t, ω)] = 0, and E[|B(t, ω)− B(s, ω)|2] = |t − s|. This manifests that the statistical law of a
Brownian motion is spatially symmetric, and the mean displacement over t − s time is of order

√
t − s, which suggests that

a Brownian motion is non-differentiable with respect to time. In fact, the path characteristics of a Brownian motion can be
rigorously characterized in terms of the following two results.

Lemma B.2. Let {B(t, ω)}t≥0 be a Brownian motion, then for any fixed time t ≥ 0 and any time increment h > 0, we have

P

ω; lim sup

h→0+

B(t + h, ω)− B(t, ω)
h

= +∞


= 1,

P

ω; lim inf

h→0+

B(t + h, ω)− B(t, ω)
h

= −∞


= 1.

The lemma informs us that almost all trajectories of a Brownian motion B(t) have no finite derivative at any time t.

Theorem B.3. For almost every trajectory ω of a Brownian motion {B(t, ω)}t≥0, B(t, ω) is continuous but has no derivative at
any fixed time t.

The term ξ(t) (= dB(t)/dt) in Eq. (B.1) actually makes no sense from a mathematical point of view.
Condition (1) in Definition B.1 indicates that a Brownian motion is a stochastic process with mutually independent

increments, hence it is a Markov process. Combining with condition (2), its transition probability can be expressed as

p(t; x, y) =
1

√
2π t

e−
(y−x)2

2t (B.2)

and since B(0) = 0, then the distribution density of {B(t, ω)}t≥0 at time t is

p(t, x) =
1

√
2π t

e−
x2
2t .

One can further deduce from conditions (1) and (2) that any finite-dimensional joint distribution of a Brownian obeys
n-dimensional normal distribution. Actually, for any 0 < t0 < t1 < · · · < tn−1 < tn, it follows from the independence of
the increments B(t1), B(t2)− B(t1), . . . , B(tn)− B(tn−1) that the joint distribution of B(t1, ω), . . . , B(tn, ω) is

f (t1, . . . , tn; u1, u2, . . . , un) = p(t1, u1)p(t2 − t1, u2 − u1) · · · p(tn − tn−1, un − un−1).

Hence the finite-dimensional distribution of a Brownian motion is

P(ω : B(t1, ω) ≤ x1, . . . , B(tn, ω) ≤ xn) =

∫ x1

−∞

· · ·

∫ xn

−∞

f (t1, . . . , tn; u1, u2, . . . , un)du1 · · · dun

=

∫ x1

−∞

· · ·

∫ xn

−∞

exp

−


u21
2t1

+
(u2−u1)2

2(t2−t1)
+ · · · +

(un−un−1)
2

2(tn−tn−1)


(2π)

n
2
√
t1(t2 − t1) · · · (tn − tn−1)

du1 · · · dun. (B.3)

11 It is now known that the essential idea had been independently developed in Louis Bachelier’s Ph.D. thesis ‘‘The theory of speculation’’ in 1900, under
the direction of Poincaré.
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Definition B.4. For a stochastic process {ξ(t, ω)}t≥0, if for any 0 < t1 < t2 < · · · < tn, the joint distribution of
(ξt1 , ξt2 , . . . , ξtn) obeys a n-dimensional normal distribution, then the process {ξ(t, ω)}t≥0 is called a Gaussian process.

It follows from Eq. (B.3) that a Brownian motion is a Gaussian process.
Furthermore, we have the following equivalent definition of a Brownian motion (the proof is omitted).

Definition B.4′. A stochastic process {B(t, ω)}t≥0 with B(0) = 0 is called a Brownian motion, if {B(t, ω)}t≥0 is a Gaussian
process with continuous trajectories, and for ∀s, t > 0, we have E[B(t, ω)] = 0, E[B(s)B(t)] = t ∧ s (the minimum of t
and s).

B.2. Itô and Stratonovich integrals of a stochastic differential equation (SDE)

Since a Brownianmotion {B(t, ω)}t∈R has no finite derivative at any time t , Eq. (B.1) is only a formal expression of a noise
perturbed system. Rigorously, it should be expressed as the following SDE

dx(t) = b(x)dt + σ(x)dB(t, ω), (B.4)

or equivalently, an integral equation

x(t)− x(0) =

∫ t

0
b(x(s))ds +

∫ t

0
σ(x(s))dB(s). (B.5)

It is worth mentioning that the solution {x(t)}t≥0 to Eq. (B.4) is a Markov process on the Wiener space (Ω,F , µ), whereΩ
is the space of elementary events with probability measure µ on a σ -algebra F of sets A ⊆ Ω . So actually, x(t) should be
written as x(t, ω), where the randomness of the trajectory is inherited in ω ∈ Ω . In the following, we sometimes write x(t)
as x(t, ω) to emphasize this fact, but often write x(t) for convenience.

We note that for a given sample path ω, x(s, ω) is a continuous function of s, so the term
 t
0 b(x(s))ds can be considered

as a normal integral, but the value of the integral is a random function. But how to deal with the integral
 t
0 σ(x(s))dB(s)?

As a Brownian motion, {B(t)}t≥0 has no derivative with respect to t , nor does it have a finite variance, so we cannot regard
this term as a Riemann or a Lebesgue–Stieltjes integral. For this reason, we need to introduce a new method of integration.
This was developed by Itô as follows, known as Itô stochastic integral.

Following the same spirit in defining a Riemann integral, we divide the time interval [a, b] into n subintervals:

a = t0 ≤ t1 ≤ · · · ≤ tn = b.

Let

△n = max
1≤i≤n

(ti+1 − ti)

be the maximal length of the subintervals, and

Sn(ω) =

n−
i=1

σ (x(ti, ω)) (B(ti+1, ω)− B(ti, ω)) (B.6)

be the summation associated with the given partition.
If for every ω, the limit of Sn(ω) exists as △n → 0, then naturally, we can define such a limit as the integral of σ(x(t, ω))

with respect to B = {B(t, ω)}t≥0. However, because {B(t, ω)}t≥0 has no finite variance, in general we cannot be sure that a
limit exists for the sequence {Sn(ω)}n≥0 with every ω. As a matter of fact, for most of the trajectories ω, {Sn(ω)}n≥0 may not
have a limit. Because of this, let us consider an alternative limit in a different sense.

Definition B.5. If a limit S(ω) exists for the sequence {Sn(ω)}n≥0 defined by (B.6) in the mean-square sense as n → ∞, i.e.,

lim
n→∞

E

|Sn(ω)− S(ω)|2


= 0, (B.7)

then S(ω) is called an Itô stochastic integral of the function σ(x)with respect to a Brownian motion B in time interval [a, b],
denoted as

S(ω) =

∫ b

a
σ(x(s))dB(s) = ℓ.i.m.

t→∞
Sn(ω). (Itô) (B.8)

Here ℓ.i.m. means ‘‘limit in mean square’’, i.e., Eq. (B.7).
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Remark 1. According to the relationship between the convergences in mean-square sense and in probability measure, one
knows that if formula (B.7) holds true, then ∀ε > 0,

lim
n→∞

Pr{ω : |Sn(ω)− S(ω)| ≥ ε} = 0, (B.9)

(B.9) means that the probability of the set formed by those ω whose Sn(ω) and S(ω) are not sufficiently close is small when
n is large. Considering every ω as an trajectory, then (B.9) means that the probability of those trajectories whose Sn(ω) does
not approach to S(ω) could be as small as possible.

Remark 2. In the definition of Itô integral, we take σ(x(ti)), which is the value of σ(x(t)) at the left point of the interval
[ti, ti+1), as an approximation of σ on [ti, ti+1). It should be kept in mind that one can no longer take the value of σ at any
point in the interval as an approximation. Actually, if we take the value of σ at themiddle point of the interval [ti, ti+1) as an
approximation, then it corresponding to a different type of integral, known as Stratonovich stochastic integral. Its precise
definition is given below.

Definition B.6. Let

Sn(ω) =

n−
i=1

σ


x(ti)+ x(ti+1)

2


(B(ti+1, ω)− B(ti, ω)) . (B.10)

If there exists a random variableS(ω), such that {Sn(ω)}n≥0 converges toS(ω) in mean-square sense, i.e.,

lim
n→∞

E|Sn(ω)−S(ω)|2 = 0, (B.11)

thenS(ω) is called a Stratonovich stochastic integral of σ(x) with respect to a Brownian motion B on interval [a, b], which
is denoted as

S(ω) =

∫ b

a
σ(x(s))dB(s) = ℓ.i.mn→∞

Sn(ω). (Stratonovich) (B.12)

The stochastic integrals given by Definitions B.5 and B.6 are different; each has its own advantage. The Itô integral can
be easily implemented in numerical simulations, while the Stratonovich integral shows a much clear physical meaning. In
the following, we mainly follow Itô’s approach.

We shallmention some important properties of Itô stochastic integral. Similar to the Riemann integral, stochastic integral
exhibits properties such as linearity and additivity of the integral with respect to the interval. In addition, it has the following
two distinct properties:

(i)

E
[∫ b

a
φ(t, ω)dB(t, ω)

]
= 0, (B.13)

(ii)

E
[∫ b

a
φ(t, ω)dB(t, ω) ·

∫ b

a
ψ(t, ω)dB(t, ω)

]
=

∫ b

a
E[φ(t, ω)ψ(t, ω)]dt. (B.14)

More specifically,

E

∫ b

a
φ(t, ω)dB(t, ω)

2


=

∫ b

a
E

|φ(t, ω)|2


dt. (B.15)

In the above equations, both φ(t, ω) and ψ(t, ω) are stochastic processes that only depend on the past of the Brownian
motion, and both their Itô stochastic integrals are assumed to exist.

B.3. Method of numerical integrations of a SDE

In computer simulations, we need to discretize the time. Based on Itô stochastic integral, the SDE (B.4) can be
approximated by the following difference scheme

x(t +1t)− x(t) = b(x(t))1t + σ(x(t))1B(t, ω), (B.16)

where1B(t, ω) = B(t +1t, ω)− B(t, ω).
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Considering the time interval [0, T ], let 0 = t0 < t1 < · · · < tn = T be a partition, and denote 1ti = ti+1 − ti, then
Eq. (B.16) yields an iterative relation

x(ti+1) = x(ti)+ b(x(ti))1ti + σ(x(ti))1B(ti). (B.17)

One knows that a Brownian motion is a stochastic process with independent increments. The variance of the increment is
E[B(ti+1) − B(ti)]2 = ti+1 − ti, which roughly shows 1B(ti) to be on the order of

√
1ti, and 1B(ti)/

√
1ti obeys normal

distribution N(0, 1). Hence, Eq. (B.17) can be equivalently rewritten as

x(ti+1) = x(ti)+ b(x(ti))1ti + σ(x(ti))
1B(ti)
√
1ti

√
1ti. (B.18)

Eq. (B.18) is the basis for numerical simulations of a SDE. One only needs to produce n normally distributed randomnumbers
1B(ti)/

√
1ti, then the trajectory of the SDE (B.4) can be simulated according to the iterated equation (B.18). The difference

to a deterministic differential equation is that even starting from the same initial condition (t0, x(0)), each simulation of
SDE gives a different trajectory, it is a different realization of the stochastic process.

B.4. Diffusion processes and Fokker–Planck equations

One can either study the dynamical behavior of a stochastic process by numerical simulations, or one can investigate
the statistical law of the process via its probability density function. Suppose that the transition probability of a stochastic
process {x(t,D)}t≥0 is P(s, t; x, ω), in which s < t,D is a measurable set in F . Let Oε(x) = {y ∈ R : |y − x| < ε} be a small
neighborhood of x. The process is called a diffusion process, if for any fixed ε > 0, the probability of the particle escape away
from this neighborhood in a sufficiently short time is o(t − s), i.e.,

P(s, t; x,Oc
ε(x)) = o(t − s), for t − s → 0.

It can be proved that the solution {x(t, ω)}t≥0 to Eq. (B.4) is a diffusion process.
According to the iterated Eq. (B.16) and the Definition B.1, we can estimate that

lim
h→0+

E
[
x(t + h)− x(t)

h

 x(t) = x
]

= b(x)+ lim
h→0+

1
h
σ(x)E{(B(t + h)− B(t))|x(t) = x}

= b(x),

and

lim
h→0+

E
[
(x(t + h)− x(t))2

h

 x(t) = x
]

= lim
h→0+

b2(x) · h + 2 lim
h→0+

b(x)σ (x)E [(B(t + h)− B(t))|x(t) = x]

+ lim
h→0+

σ 2(x)E
[
(B(t + h)− B(t))2

h

 x(t) = x
]

= σ 2(x).

Furthermore, it follows from the diffusive properties that

b(x) = lim
h→0+

E
[
x(t + h)− x(t)

h

x(t) = x
]

= lim
h→0+

1
h

∫
|y−x|≤1

(y − x)P(h, x; dy); (B.19)

σ 2(x) = lim
h→0+

E
[
(x(t + h)− x(t))2

h

x(t) = x
]

= lim
h→0+

1
h

∫
|y−x|≤1

(y − x)2P(h, x; dy); (B.20)

b(x) is called the drifting coefficient, and σ 2(x) is called the diffusion coefficient.
One can also obtain from Eq. (B.16) that for k > 2,

lim
h→0+

1
h

∫
|y−x|≤1

(y − x)kP(h, x; dy) = 0.

Eqs. (B.19) and (B.20) provide intuitively the physical meanings of b(x) and σ 2(x). More rigorously they can be obtained
via Itô stochastic integral provided that the functions b(x) and σ(x) satisfy certain conditions. In the following, wewill prove
Eqs. (B.19) and (B.20) for the case when b(x) and σ(x) are smooth and bounded. Readers who are unfamiliar with or not
interested in the rigorous mathematic treatment can skip this part.
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According to Itô integral, we have

lim
h→0+

E
[
x(t + h)− x(t)

h

 x(t) = x
]

= lim
h→0+

E
[
1
h

∫ t+h

t
b(x(s))ds

 x(t) = x
]

+ lim
h→0+

E
[
1
h

∫ t+h

t
σ(x(s))dB(s)

x(t) = x
]
.

By the dominated convergence theorem and the continuous property of the trajectory, the first term of the above equation
is

lim
h→0+

E
[
1
h

∫ t+h

t
b(x(s))ds

x(t) = x
]

= E
[

lim
h→0+

1
h

∫ t+h

t
b(x(s))ds

x(t) = x
]

= b(x).
By the property of the stochastic integral (see Eq. (B.13)) and the independence of the increments of a Brownianmotion, the
second term is

lim
h→0+

E
[
1
h

∫ t+h

t
σ(x(s))dB(s)

x(t) = x
]

= 0.

Hence

lim
h→0+

E
[
x(t + h)− x(t)

h

x(t) = x
]

= b(x).

Similarly, according to the dominated convergence theorem, we have

lim
h→0+

E
[
(x(t + h)− x(t))2

h

x(t) = x
]

= E


lim

h→0+

1
h

∫ t+h

t
b(x(s))ds

2 x(t) = x



+ 2E
[

lim
h→0+

1
h

∫ t+h

t
b(x(s))ds

∫ t+h

t
σ(x(s))dB(s)

 x(t) = x
]

+ E


lim

h→0+

1
h

∫ t+h

t
σ(x(s))dB(s)

2 x(t) = x



= lim
h→0+

1
h
E
[∫ t+h

t
σ(x(s))dB(s)

]2
(the integrals of the first and second terms are both )o(h)

= lim
h→0+

1
h

∫ t+h

t
E[σ 2(x(s))]ds

(by the property of Itô integral, Eq. (B.14))
= σ 2(x).

Similar to the case of master equation of a Q -process, there is a partial differential equation, i.e., Fokker–Planck equation,
for the time evolution of the probability density function of the diffusion process defined by the SDE (B.1). There is
some differences, however, between the form of the Fokker–Planck equation obtained according to Itô integration and
that according to Stratonovich integration. Taking the probability density p(t, x) for example, we have the following
Fokker–Planck equations (also known as Kolmogorov forward equation):

The Itô form:
∂

∂t
p(t, x) = −

∂

∂x
(b(x)p(t, x))+

1
2
∂2

∂x2

σ 2(x)p(t, x)


= −

∂

∂x
(b(x)p(t, x))+

1
2
∂

∂x


σ 2(x) ·

∂

∂x
p(t, x)


(B.21)

whereb(x) = b(x)− σ(x)σ ′(x).
Physicists and engineers prefer to use the following Stratonovich form of the Fokker–Planck equation [19].
The Stratonovich form:

∂

∂t
p(t, x) = −

∂

∂x
(b(x)p(t, x))+

1
2
∂

∂x


σ(x) ·

∂

∂x
(σ (x)p(t, x))


. (B.22)

When the diffusion coefficient σ 2(x) is independent of the position x, then Eqs. (B.21) and (B.22) are the same. Both
expressions are important. The proof of these equations can be found in general texts on stochastic processes. Since the
proofs are not particularly relevant for applications, we shall omit them.
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Appendix C. Dynamics of a periodically driven phase model without noise

In this Appendix, we give a mathematical analysis of the dynamical behaviors of system (90):
ẋ = b − sin x + y, ẏ = −ωz, ż = ωy, (C.1)

for b < 1 in the cases A < 1 − b and A > 1 − b, respectively [122].

C.1. Case 1: A ≤ 1 − b

Due to the periodicity of sin x, we only need to consider x ∈ (−π/2, 3π/2]. Let
G1 : {(t, x)|t ∈ R,−π/2 < x ≤ π/2},
G2 : {(t, x)|t ∈ R, π/2 < x ≤ 3π/2}

be two ring-shaped regions on the cylinder E2. Obviously, there is no equilibrium point in G1 and G2. Any orbit moving along
the boundary of G1 will eventually enter G1 and any orbit moving along the boundary of G2 will eventually leave G2. So by
Poincaré–Bendixson theorem on a cylinder, at least one stable limit cycle (SLC) lies in region G1 and at least one unstable
limit cycle (ULC) lies in G2.

There exists at most one SLC in G1 and at most one ULC in G2. Otherwise, if there are two limit cycles in G1, then the
corresponding solutions to (C.1) can be written as:

LC1 :

x1 = f1(t),
y1 = A cosωt,
z1 = A sinωt.

LC2 :

x2 = f2(t),
y2 = A cosωt,
z2 = A sinωt.

Obviously, LC1 and LC2 should have the same periodicity T =
2π
ω
.

It follows from Eq. (C.1) that
ẋ2(t)− ẋ1(t) = sin x1 − sin x2.

Then

[x2(t)− x1(t)] − [x2(0)− x1(0)] =

∫ t

0
(sin x1 − sin x2)dt.

Suppose that x1 < x2. Since x1, x2 ∈ (−π
2 ,

π
2 ), then sin x1 − sin x2 < 0. As a result, [x2(T )− x1(T )]− [x2(0)− x1(0)] < 0.

This contradicts the fact that x1(t), x2(t) are two periodic solutions to Eq. (C.1). Therefore, there is only one SLC in region G1.
Similarly, only one ULC can exist in G2.

C.2. Case 2: A > 1 − b

Firstly, let us investigate the situation for ω ≫ 1. We introduce the following transformation:

Γ :


ξ = exy,
η = exz.

Obviously, the transformation Γ is a homeomorphism. It maps a ring-shaped region on E2 to a ring-shaped region on
ξ–η plane and maps a cycle C : x = xc on E2 to a circle C ′

: ξ 2 + η2 = A2e2xc on the ξ–η plane. The inverse transformation
of Γ can be expressed as:

Γ −1
:



x =
1
2
ln

ξ 2

A2
+
η2

A2


,

y = ξ


ξ 2

A2
+
η2

A2

−
1
2

,

z = η


ξ 2

A2
+
η2

A2

−
1
2

.

So we only need to study the dynamics of the following equivalent system:
dξ
dt

= ẋξ − ωη,

dη
dt

= ẋη + ωξ,

(C.2)

where ẋ = b − sin( 12 ln ξ2+η2

A2
)+ ξ(

ξ2

A2
+

η2

A2
)−1/2.
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Let t =
s
ω
, then

dξ
dt

= −η +
1
ω
ẋξ,

dη
dt

= ξ +
1
ω
ẋη.

(C.3)

To judge the existence of limit cycles of system (C.3) for ω ≫ 1, we cite the following Lemma without proof [239]:

Lemma C.1. Let
ẋ = −y + λf1(x, y),
ẏ = x + λf2(x, y)

(C.4)

be a perturbation of a linear dynamical system
ẋ = −y,
ẏ = x. (C.5)

Suppose that the equilibrium point (0, 0) of Eq. (C.5) is still the unique equilibrium point of system (C.4), but no longer of central
type for λ ≠ 0. Let

Φ(r) =

∫ 2π

0
[xf1(x, y)+ yf2(x, y)]dt,

where x = r sin t, y = r cos t, then
(1) For λ ≪ 1, the necessary condition for Eq. (C.4) to have a closed orbit near the orbit Lr0 : x = r0 sin t, y = r0 cos t of

Eq. (C.5) isΦ(r0) = 0.
(2) If r0 > 0,Φ(r0) = 0 and r0 is not the extreme point of Φ(r0), then for λ ≪ 1, Eq. (C.4) has a closed orbit near Lr0 .
(3) If Φ(r0) = · · · = Φ(2k)(r0) = 0, and Φ(2k+1)(r0) < 0, then for λ ≪ 1, Eq. (7) has a limit cycle near Lr0 . It is stable for

λ > 0 and unstable for λ < 0. �

For Eq. (6), let ξ = r sin s, η = r cos s, f1 = ξ ẋ, f2 = ηẋ, we have

Φ(r) =
2πr
ω


b − sin


ln

r
A


.

The roots of Φ(r) = 0 are: r0 = 0 (discarded), r1 = A exp(arcsin b) and r2 = A exp(π − arcsin b), the corresponding
derivatives are:Φ ′(r1) = −

2π
ω

√
1 − b2 < 0 andΦ ′(r1) =

2π
ω

√
1 − b2 > 0.

According to Lemma C.1, we know that for ω ≫ 1, system (C.3) has a SLC at ξ = r1 sin s, η = r1 cos s and a ULC at
ξ = r2 sin s, η = r2 cos s. Except these two limit cycles, no other limit cycle exists for x ∈ (−3π/2, π/2]. Correspondingly,
system (C.1) has a unique SLC at x = arcsin b and a unique ULC at x = π − arcsin b in (−3π/2, π/2].

Now let us consider the situation for ω ≪ 1. Here we take the case 1 − b < A < 1 + b for example to prove the
nonexistence of the limit cycle. LetHk : {(z, y, x)|2kπ−π/2 < x ≤ 2kπ+3π/2} be a ring-shaped region of system (C.1) on
the cylinder (k ∈ Z). If there is a limit cycle, obviously it could not interact with both Hk and Hk+1. Otherwise, it contradicts
the direction of the vector fields. So the limit cycle can only exist in the region Hk, hence its amplitude is smaller than 2π .

Let {(z(t), y(t), x(t))}t≥0 be any limit cycle in Hk, a = (A − (1 − b))/2, and

F(t) = sinωt −
1 − b + a

A
ωt.

Then F(0) = 0, F ′(t) = ω[cosωt − (1 − b + a)/A]. If t ∈

0, 1

ω
arccos 1−b+a

A


, then F ′(t) ≥ 0. For a sufficiently small

ω

0 < ω < a

2π · arccos 1−b+a
A


, we can select t1 ∈

 2π
a ,

1
ω
arccos 1−b+a

A


, such that t1a > 2π . Then F(t1) ≥ 0, i.e.,

sinωt1
ωt1

≥
1 − b + a

A
.

So for these ω, we have

x(t1)− x(0) = bt1 −

∫ t1

0
sin x(s)ds + A ·

sinωt1
ω

> t1


b − 1 + A ·

sinωt1
ωt1


> t1


b − 1 + A ·

1 − b + a
A


= t1a > 2π.

This contradicts the fact that any periodic solution can only lie in the region Hk with amplitude smaller than 2π . So for
ω ≪ 1, and 1 − b < A < 1 + b, system (C.1) has no limit cycle on the cylinder.
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