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Physical and biological systems are often involved with coupled
processes of different time scales. In the system with electronic
and atomic motions, for example, the interplay between the atomic
motion along the same energy landscape and the electronic hopping
between different landscapes is critical: the system behavior largely
depends on whether the intralandscape motion is slower (adiabatic)
or faster (nonadiabatic) than the interlandscape hopping. For general
nonequilibrium dynamics where Hamiltonian or energy function is
unknown a priori, the challenge is how to extend the concepts of
the intra- and interlandscape dynamics. In this paper we establish
a theoretical framework for describing global nonequilibrium and
nonadiabatic complex system dynamics by transforming the cou-
pled landscapes into a single landscape but with additional di-
mensions. On this single landscape, dynamics is driven by gradient
of the potential landscape, which is closely related to the steady-
state probability distribution of the enlarged dimensions, and the
probability flux, which has a curl nature. Through an example of
a self-regulating gene circuit, we show that the curl flux has
dramatic effects on gene regulatory dynamics. The curl flux and
landscape framework developed here are easy to visualize and
can be used to guide further investigation of physical and biological
nonequilibrium systems.
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Heterogeneity among coupled processes is a hallmark of com-
plex behaviors of physical and biological systems. A photoex-

cited molecule, for example, may relax into different low-energy
states depending on the difference among time scales of electronic
and atomic motions. Molecular motors are fueled by ATP hydro-
lysis and move into the different structural states, where the het-
erogeneous distribution of time scales of reactions and structural
changes should characterize the motor performance. Dynamical
complexity owing to the interplay of heterogeneous processes with
multiple time scales can give rise to rich phenomena.
In a system having multiple time scales, some dynamical quan-

tities may take discrete values whereas others are continuous. An
example of such heterogeneity is found in the electron-transfer
reaction, in which the electronic state is discrete and atomic
motions are continuous (1). Then, the system can be represented
by multiple electronic energy surfaces and the change in atomic
positions is motion along individual surfaces. Complex behaviors
of the system are explained by the combined process of intra-
surface motion along the same and intersurface hopping between
different electronic energy surface(s). If the intrasurface motion
is slower (faster) than the intersurface hopping, the process is
called adiabatic (nonadiabatic). We here extend this notion, the
significance of adiabatic and nonadiabatic effects, beyond the
Hamiltonian systems to general nonequilibrium problems. In-
deed, important complex systems such as reaction networks,
gene switches, and molecular motors are constantly exchanging
energy, materials, and information with their environments. For
these pumped nonequilibrium systems, there is no Hamiltonian
or energy surface given a priori, unlike the above example of the
electron-transfer reaction.

For nonequilibrium systems, the concept of energy surface can
be extended to the more general landscape picture: We pre-
viously showed that the driving force of stochastic motion in
nonequilibrium systems is a sum of the gradient of the landscape
and the curl flux on the landscape (2–7). Although the established
framework is useful for addressing the global natures of complex
systems (2–8), it has been applied only to a single landscape and is
not directly applicable for multiple coupled landscapes. However,
the adiabatic and nonadiabatic treatment of multiple energy
surfaces taking into account the multiple time scales applies for
the Hamiltonian systems where the energy function is a prior
known for individual surfaces but does not directly apply to the
case where the underlying process is nonequilibrium in nature.
Adiabatic and nonadiabatic nonequilibrium dynamics has

been studied computationally or theoretically on gene switches
(9–21) and molecular motors (22–24). However, a global de-
scription and framework of understanding is still challenging and
in demand. Furthermore, although some systems have been
studied computationally, the general complex systems require
more intensive computations, and theoretical guidance is needed
to develop an efficient algorithm for studying global dynamics.
Finally, the ultimate goal is to uncover the underlying organi-
zation principle of the complex system and apply it to the design
and engineering. Therefore, for general nonequilibrium complex
dynamics where Hamiltonian or energy function is unknown
a priori, the challenge is how to study the multiple time-scale
problem (adiabatic and nonadiabatic processes) of the non-
equilibrium system dynamics.
In this paper we show, through mathematical transformation,

that the coupled nonequilibrium landscapes become equivalent
to a single landscape but with additional degrees of freedom:
Intra- and interlandscape motion on the coupled landscapes be-
come motion along the multidimensional surface of the unique
landscape. On this single landscape, dynamics can be decom-
posed to two determining factors: the gradient of the potential
landscape, which is closely related to the steady-state probability
distribution of the enlarged dimensions, and the probability flux,
which has the curl nature. We have summarized the approach in
Fig. 1. Fig. 1A shows the equilibrium adiabatic dynamics, which is
determined by the gradient of the single energy landscape known
a priori. Fig. 1B shows the nonequilibrium adiabatic dynamics
determined by both gradient and curl flux on the single non-
equilibrium landscape (2). Fig. 1C shows the nonadiabatic mul-
tiple equilibrium landscape surfaces with the known energy
function of each individual surface where the dynamics is de-
termined by the combination of the gradient of the surface and
hopping between surfaces, which has been traditionally the focus
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of studies on nonadiabaticity (1). Fig. 1D shows nonadiabatic,
multiple nonequilibrium landscapes without energy function a
priori known. The nonadiabatic dynamics is determined by both
gradient and curl flux along each landscape as well as the addi-
tional interlandscape hopping. In the context of gene switching,
this coupled intra- and interlandscape dynamics has been referred
to as “eddy” or “churn” (19). Finally Fig. 1E shows the equivalent
description of Fig. 1D, in which nonadiabatic dynamics is de-
scribed with a single landscape by expressing the eddy current as
the curl flux in the expanded dimensions.
The more general stochastic case can be described by the

discrete processes such as molecular number changes rather than
a continuous process such as concentration changes. Our starting
point is the general discrete process in this study. As seen, when
the molecular number is sufficiently large, the discrete picture
with molecular numbers emerges to the continuous picture with
concentrations. An important example is a self-regulating gene
circuit, which has two landscapes for the gene off and on states
and the motion along each landscape quantifies the protein
concentration change. We show in this paper that eddy current
has dramatic effects on this system: (i) the broadening of the
basin of attraction through nonadiabatic skewing, (ii) irrevers-
ibility of the kinetic paths, (iii) increased amplitude of noise, (iv)
emerging oscillatory component in relaxation, (v) time reversal
symmetry breaking in three-point correlation function, and (vi)
entropy production and dissipation raised from the nonadiabatic
condition. These properties are essential for quantifying the
nonequilibrium complex system dynamics.
The eddy current and landscape framework developed here is

easy to visualize for the underlying physical process and can be
used to guide further investigation of the physical and biological
nonequilibrium systems.

Theory for Nonequilibrium Eddy Current
To illustrate the concepts and the methods, we here focus on the
simplest case that the system has two landscapes labeled with s= 0
or 1 and a one-dimensional continuous variable ψ that represents
the motion along individual landscapes. SeeMaterials and Methods
for more general cases of N landscapes with M dimensions. We
consider P0ðψÞ and P1ðψÞ, the probability density at ψ in the
landscapes of s= 0 and s= 1, respectively, with the normalizationR
dψ
P1

s=0PsðψÞ= 1. As explained in Materials and Methods and SI

Text, this N = 2 and M = 1 problem is converted to the M + 1 di-
mensional single landscape problem by using the method similar to
the coherent-state representation of a quantum spin: Considering
the probability to select two landscapes, cos2ðθ=2Þ and sin2ðθ=2Þ,
PsðψÞ can be written as P1ðψÞ =

R
sin θ  dθðcos2ðθ=2ÞÞPθðψÞ and

P0ðψÞ =
R
sin θ  dθðsin2ðθ=2ÞÞPθðψÞ. Then, the problem is to de-

termine the 2D distribution PθðψÞ in the θ–ψ space. We apply this
method of the coherent-state representation to a circuit of a self-
regulating gene.

Example Self-Regulating Gene. Dynamics of the self-regulating
gene shown in Fig. 2A can be described by the DNA state, which
we represent as s= 1 and 0, and the copy number of protein, n.
When the regulator protein is an activator (repressor), the gene is
on (off) upon its binding to DNA. When the gene is on, through
transcription and translation the protein is actively synthesized. In
the self-regulating gene system, the protein produced by the gene
will act back to its own gene. The dynamics of such a system can be
described by the underlying chemical reactions for protein syn-
thesis and degradation, and the binding/unbinding of the regu-
lating protein to DNA. Because there are only a finite number of
molecules (typically n< 104) in a cell, the statistical fluctuations in
n need to be taken into consideration. The system dynamics can
be thus described by the following master equation:

∂PðnÞ
∂t

=

 
g1 0

0 g0

!
½Pðn− 1Þ−PðnÞ�

+ kðn+ 1ÞPðn+ 1Þ− knPðnÞ

+

 
−hðnÞ f

hðnÞ −f

!
PðnÞ:

[1]

Here, PðnÞ is a vector with two components, P1ðnÞ and P0ðnÞ,
and PsðnÞ is the probability of the protein-copy number n in the
DNA state with the regulator protein unbound ðs= 1Þ or bound
ðs= 0Þ. gs is the synthesis rate of protein at the DNA state s.
g1 > g0 for the self-repressor and g1 < g0 for the self-activator
case. k is the degradation rate constant of the protein. h is the

Fig. 1. Illustrations of the equilibrium/nonequilibrium and adiabatic/non-
adiabatic landscapes. (A) The adiabatic single landscape that underlies the
equilibrium gradient dynamics. (B) The adiabatic single landscape that
underlies the nonequilibrium dynamics determined by both the landscape
gradient and curl flux. (C) The nonadiabatic multiple landscapes where the
dynamics is determined by the combination of the gradient of the individual
landscape and hopping between the landscapes. (D) The nonadiabatic
multiple landscapes where dynamics is determined by both the landscape
gradient and curl flux as well as the additional interlandscape hopping. (E)
The description equivalent to D with the single landscape for nonadiabatic
nonequilibrium systems in the continuous representation, where the dy-
namics is determined by the gradient of the landscape and curl flux or eddy
current on the expanded space.

Fig. 2. Illustrations of self-regulating gene dynamics. (A) Reaction scheme
in the self-regulating gene circuit. (B) The multiple landscapes and dynamics
of the self-regulating gene based on the view of Fig. 1D (dimension of in-
dividual landscapes is one in B and two in Fig. 1D). Two parabolas are
landscapes at the gene off and on states and vertical arrows are hopping
between landscapes. (C) The equivalent single landscape and dynamics on
the expanded space of the protein concentration ρ and the gene state ξ.
Dotted lines show the basin of attractor and arrows represent the curl flux.
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binding rate of the regulator protein to DNA and f is the un-
binding rate of the regulator protein from DNA. We assume
that the regulator is a dimer of the product protein, so that
hðnÞ= h0nðn− 1Þ with a rate coefficient h0. The important di-
mensionless parameter is

ω = f=k; [2]

which is the adiabaticity parameter. When ω is large, the binding/
unbinding of the proteins to/from DNA is much faster than the
synthesis and degradation of the protein; the system is in the adi-
abatic limit. When ω is small, the binding/unbinding of the protein
to/from DNA is comparable to or slower than the protein-copy
number change; the system is in the nonadiabatic regime. The ω
parameter characterizes the relative dynamic time scales of the
system and will be the focus of our discussion, as mentioned earlier.
Because the discrete variable n is typically n � 1, it is con-

venient to transform it to a continuous variable ψ by expand-
ing PsðnÞ with bases of the Poisson distribution functions as
PsðnÞ =

R
dψPsðψÞPðn;ψÞ, where Pðn;ψÞ is the Poisson distri-

bution of n at around the average ψ , and PsðψÞ is the weight
distribution on the sth landscape. In this way we can regard the
self-regulating gene dynamics as an s–ψ problem of coupled
landscapes withN = 2 andM = 1. As mentioned, the global physical
principle of this kind of dynamics on the coupled landscapes is
challenging to describe despite the computational efforts. We will
solve this issue by transforming the representation of discrete on
and off states of the gene into the continuous representation.
For the convenience of our mathematical transformation, we

write Eq. 1 in the conventional quantum mechanical second
quantized form (17, 25) by following the method of Doi (26, 27)
and Peliti (28). Then, the master equation can be exactly trans-
formed into the path-integral form by using the coherent-state
representation of Eq. 7 and the identify of Eq. 8 in Materials and
Methods. With this path-integral representation, the transition
probability between the states of different protein-copy numbers
is expressed by the functional of θðtÞ and ψðtÞ and their conjugate
auxiliary variables ϕðtÞ and χðtÞ. When we expand the functional
in terms of ϕ and χ and retain up to the second-order terms, that
is, to take the Gaussian approximation (29), then the problem is
transformed into the M + 1 dimensional θ–ψ problem. With this
approximation, the coupled Langevin equations are derived for
ξ= cos θ and ρ=ψ=Ω0, with Ω0 being the system volume, as

_ρ = − ρ+ xad + ξδx+ ∊ρ [3]

1
ω
_ξ = − κð1+ ξÞρ2 + ð1− ξÞ+ ∊θ; [4]

with

<∊ρðtÞ∊ρ
�
t′
�
> =

1
Ω0

�
ρ+ xad + ξδx

�
δ
�
t− t′

�
;

<∊θðtÞ∊θ
�
t′
�
> =

2
ω

�
κð1+ ξÞρ2 + ð1− ξÞ�δ�t− t′

�
:

Here, t in Eqs. 3 and 4 is normalized by the unit of 1=k. xad =
ðg1 + g0Þ=ð2kΩ0Þ is the typical value of the protein concentration,
δx = ðg1 − g0Þ=ð2kΩ0Þ is the difference in the typical protein concen-
tration between the gene on and off states, and κ= h0Ω2

0=f mimics
the equilibrium binding constant of the protein to DNA. Notice
that ξ is an experimentally observable quantity with ð1+ ξðtÞÞ=2
being the probability that the gene is on and ð1− ξðtÞÞ=2 being the
probability that the gene is off at a given time instance.
ρ in Eq. 3 represents the protein concentration, so that Eq. 3

is a usual Langevin equation of the large volume Ω expansion,
representing the statistical fluctuations due to the finite number
of molecules, and we can write that Eq. 4 is the corresponding

equation of the adiabaticity parameter ω expansion, representing
the time-scale fluctuations deviating from the adiabatic case.
To obtain quantitatively more reliable results, we can further

extend the present method by using the distribution of the form
Pθðψ1;ψ0Þ including more variables instead of PθðψÞ used here.
See SI Text for the explicit derivation of Eqs. 3 and 4 and
their extension.

Adiabatic Limit. In the strong adiabatic limit of ω→∞, both
the left-hand side of Eq. 4 and the noise term tend to zero
because they are inversely proportional to the ω and

ffiffiffiffi
ω

p
,

respectively. As a result, we can see that Eq. 4 turns to
−κð1+ ξÞρ2 + ð1− ξÞ = 0 or ξ = 1− κρ2

1+ κρ2. If we substitute this ex-

pression to Eq. 3, we get _ρ =− ρ+ xad + 1− κρ2

1+ κρ2 δx+ eρ or equiv-
alently _ρ= − ∂U

∂ρ + eρ, where U is the effective potential given as

U = 1
2ρ

2 − xadρ− δx
�
2arctan½ ffiffiκp

ρ�ffiffi
κ

p − ρ
�
. Therefore, for the self-regu-

lating gene in the adiabatic limit, due to the strong interactions
causing frequent flipping of the gene states, we reduce this to
a one-dimensional problem. Because of the one-dimensional
nature of the problem, dynamics is represented as a pure gra-
dient dynamics with an effective potential landscape U.

Extreme Nonadiabatic Limit. In the extreme nonadiabatic condi-
tion of ω→ 0, Eq. 4 becomes _ξ= 0 so that ξ= const: and the
motion is fixed at a specific ξ along ρ. Again, the effective dynamics
is a gradient of the potential landscape along one-dimensional
protein concentration coordinates ρ with effective potential U =
1
2ρ

2 − ðxad + ξδxÞρ. There is essentially no jumping between the
energy surfaces because the binding/unbinding of regulators to
DNA is so slow. Therefore, the dynamics becomes very simple,
following the gradient of the potential along a single energy land-
scape surface without any curl flux component. In this way, for both
extreme cases of fast or slow binding/unbinding of proteins to DNA
relative to the synthesis and degradation of the proteins, the dy-
namics of the self-regulator is driven by the pure gradient of the
underlying single potential landscape.

Potential and Curl Flux in the Moderate Nonadiabatic Regime. If ω is
not necessarily large, that is, in the moderately nonadiabatic
regime, we do not have the time-scale separation any more as in
the adiabatic or nonadiabatic limit, and hence there is no ap-
proximation we can use for simplifying Eqs. 3 and 4 further.
Therefore, the system is inherently two dimensions. In this case,
we can write down the corresponding Fokker–Planck equation as
the probability conservation with the local change of the prob-
ability due to the incoming or outgoing 2D flux:

∂P=∂t = −∇ · J= −∇ · ½FP− ð1=2Þ∇ · ðDPÞ�: [5]

Here, the driving force F and the diffusion matrix D are derived
from Eqs. 3 and 4. We can explore the steady-state probability
distribution Pss =Pðt→∞Þ from ∂Pss=∂t = −∇ · Jss = 0. Thus, the
steady-state probability flux Jss is divergent-free and is written
as Jss =FPss − 1=2∇ · ðDPssÞ. Then, using the population poten-
tial U = − ln  Pss, the driving force F can be decomposed into
three terms: F = − 1=2D ·∇U + Jss=Pss + 1=2∇ ·D. Because the
third term can be absorbed to the total driving force, the main
components of the driving force are −D ·∇U and Jss=Pss.
In the equilibrium system, unlike the present example genetic

system, we have Jss = 0, so that there is no net flux and the de-
tailed balance is preserved. The corresponding dynamics is de-
termined by the force from the gradient of the potential. In the
nonadiabatic case, as in the present example system, Jss ≠ 0 and
Jss depends on the system variables. Therefore, the detailed
balance is broken and the system becomes nonequilibrium. The
divergent free Jss has no sources or sinks to start or end up, so
that Jss has a curl rotating nature. In this nonadiabatic case,
where the detailed balance is broken explicitly, the degree of
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nonequilibriumness or detailed balance breaking is quantified by the
strength of Jss. So, in the 2D space of ρ and ξ in the nonadiabatic
regime, the dynamics is determined by both the gradient of the
landscapeU and the curl flux. Instead of straightly going down to the
gradient, the motion proceeds curly-spiraling down the gradient.
In the conventional view, the self-regulating gene system is

described by two landscapes each in ρ space with the discrete
gene-state labeling of ξ = − 1 and ξ= 1. In the nonadiabatic re-
gime, stochastic dynamics mainly moves along one landscape and
occasionally jumps to another landscape. Moving along the new
landscape for a while, then the system jumps back to the original
landscape. This process keeps on iterating, so the stochastic
trajectory along and between the two landscapes forms a cyclic
churn- or eddy-like spiraling motion (Fig. 2B). In the present
view, although dynamics along the specific gene state can be
determined by the gradient of the single potential surface, the
motion in the 2D space of ρ and ξ can no longer be seen in this
way. In fact, the dynamics can be described by a single potential
landscape U instead of two individual landscapes, giving the
gradient part of the dynamics, and the curl probability flux
provides the origin of the eddy current motion in dynamic tra-
jectories (Fig. 2C). From this continuous representation, we can
quantify the origin of the eddy current motion found in simu-
lations by the strengths of the curl steady-state probability flux.
We must point out that for general complex dynamical systems

withM ≥ 2, even in the adiabatic limit of time-scale separation, the
dynamics in general is not driven by a pure gradient of a single
potential landscape but in addition a curl flux force. The origin of
this curl is from the underlying dynamics on the adiabatic landscape.
However, in the nonadiabatic regime, the curl flux has two con-
tributions, one from the adiabatic part and the other from the
nonadiabatic part with the time-scale consideration (Fig. 1E).

Eddy Current in a Self-Repressing Gene. The curl flux leading to the
eddy current brings about the dramatic effects on the self-regu-
lating gene dynamics. Here, these effects are analyzed by solving
Eqs. 3 and 4 numerically for the self-repressing case.
Shown in Fig. 3 are 2D contourmaps of the probability landscape

U = − ln  Pss in the protein concentration ρ and the gene state ξ.
The landscape has a single basin of attraction. When the ω is
large, the orientation of landscape is vertical and therefore the
corresponding projections to the protein-concentration variable at
the two gene states of ξ = − 1 and ξ = 1 give the same result at the
same location. Therefore, only a single peak for the distribution at
the protein concentration space is expected. However, when the ω
becomes smaller, the landscape still has a single basin of attraction,
but the orientation of the landscape is tilted. The smaller the ω is,

the more tilted the landscape is. This leads to the corresponding
projections to the protein concentration variable at ξ = − 1 and
ξ = 1 giving the different results at the two different locations.
Therefore, two peaks for the distribution at the protein concen-
tration space are expected when ω is small in the nonadiabatic
regime, which is the possibility ignored in the conventional view of
gene switches (9–21). Fig. S1 shows the calculated two-peak dis-
tribution for the lowω. The two peaks of the protein concentration
distribution, therefore, are originated from the tilted landscape,
which breaks the symmetry of the original one-peak distribution.
Arrows superimposed in Fig. 3 are fluxes Jss curling around the

basin, and lines in Fig. 3 are the dominant kinetic paths (kinetic
paths with the largest weight) from the gene on state to the off
state and back, which are quantitatively obtained using our path
integral method for nonequilibrium systems (4). When the ω is
large, the orientation of the landscape is vertical and the forward
and the backward dominant kinetic paths are almost identical
and opposite in direction, which is expected because the un-
derlying dynamics is driven by the gradient of the potential
landscape. Therefore, Jpath, which is the integration of Jss along
a circle or closed loop of the dominant kinetic paths, is negligibly
small. However, when the ω becomes smaller, the orientation of
the landscape is tilted. Then, the forward and backward domi-
nant kinetic paths are significantly different from each other, and
Jpath becomes large. Jpath, therefore, is a measure of the effective
strength of curl flux or eddy current and is plotted in Fig. 4A as
a function of ω. Increase of curl flux Jpath in small ω shows the
irreversibility of the dominant kinetic paths and implies the vi-
olated time-reversal symmetry.
The distribution width of protein concentration is quantified in

Fig. 4B. We found that when curl flux is small and the ω is large,
the binding/unbinding is frequent, and therefore the gene states
are strongly coupled. This leads to the narrower Poisson distri-
bution (Fano factor equal to 1) of the peak in the distribution of
protein concentration, that is, because the dynamics essentially
follows the gradient of the effective landscape and motion is
convergent to the same location. However, when curl flux is large
and the ω is smaller, the coupling between the gene states is
weaker. The large curl flux will increase the dispersion of the
motion, leading the distribution of the protein concentration
to split from one peak to two peaks. We see the broader non-
Poisson distribution (Fano factor significantly larger than 1) of
the protein concentration with the intense curl flux.
The curl flux breaks the detailed balance and gives irrevers-

ibility. This irreversibility is evident in the higher-order correlation
function. In Fig. 4C, we calculated the difference between the
forward and backward three-point correlation functions in time as

Fig. 3. Calculated single composite landscape on the expanded space of the protein concentration ρ and the gene state ξ at (A) ω= 0:01, (B) ω= 0:1, and (C)
ω= 100. Superimposed on the landscape are Jss (white arrows) and the dominant kinetic paths between the gene on and off states (black lines and blue lines).
Red lines are distributions of ρ in the gene off (ξ= − 1) and on (ξ= 1) states.
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ΔC3 =
Z

t1≥0

dt1

Z
t2≥0

dt2ðC3ðt1; t2Þ−C3ð−t1; − t2ÞÞ2;

with

C3ðt1; t2Þ= hδρðτÞδρðτ+ t1Þδρðτ+ t1 + t2Þi
��

δρ2
	3=2

;

where δρðtÞ is the fluctuation of the protein concentration,
δρðtÞ= ρðtÞ− hρi. We found ΔC3 is small for small curl flux. This
is because for the adiabatic case the detailed balance is effec-
tively preserved, which leads to this time symmetry. However, for
the nonadiabatic case of large curl flux, the dynamics of the
system is driven by the gradient of the potential landscape and
in addition the curl flux. We can see ΔC3 becomes larger as the
curl flux increases in small ω. The three-point correlation func-
tion can be measured experimentally, which should provide a di-
rect probe to the effect of the curl flux (30, 31).
The curl flux manifests itself also in the oscillatory behavior of

the gene dynamics. As shown in Fig. S2, the two-time correlation
function C2ðtÞ= hδρðτÞδρðτ+ tÞi=hδρ2i apparently starts to have
oscillations when ω is smaller. Also shown in Fig. S2 are Fourier
transform spectra of the two-time correlation functions, which
show the Lorentzian-like curve at large ω but are peaked at small
ω, implying oscillation. The curling nature of the flux is the origin
of this oscillation, so that the complexity in the time correlation
function deviating from single exponential or the peaked power
spectrum deviating from Lorentzian is a quantitative signature of
the curl flux and detailed balance breaking.
In Fig. 4D, we plot the entropy production during a cycle of on–

off switching, which was calculated by normalizing the average
entropy production rate RS by a typical turnover time for
switching ∼ 1=ω as RS=ω. RS is the product of the potential

gradient and the curl flux analogous to voltage and electric current
in an electrical circuit, which gives dissipation. We found the
entropy production per switching is nearly zero in the adiabatic
regime where the curl flux is small. This is because in the adiabatic
regime the system is in effective equilibrium state without sig-
nificant curl flux. This leads to the effective zero entropy pro-
duction rate per switching. However, the entropy production
increases as curl flux increases. When the flux in and out of the
system owing to the energy, entropy, or material exchange
becomes larger, the dissipation is naturally larger, analogous to
increasing the current in an electric circuit leading to more ther-
mal dissipations. Again the curl flux is the origin of the entropy
production or dissipations.
Quantities shown in Fig. 4 and Figs. S1 and S2, the shape and

width of the protein concentration distribution, the two-point
and three-point correlations, and dissipations in gene switching
are experimentally measurable quantities, which should highlight
the eddy-current effects in experimental observations.

Summary and Discussion
In this work, we have established a theoretical framework to
study the nonadiabatic nonequilibrium dynamics of complex sys-
tems, or in other words, the nonequilibrium dynamics with the
dynamical time scales involved. Whereas the nonequilibrium com-
plex systems are often dictated by both the single landscape gradi-
ent and curl flux, the nonadiabatic dynamics is typically involved
with time scales, which gives multiple landscapes. The challenge
is how to incorporate both natures into one unified picture. We
have found this problem can be equivalently quantified by the
dynamics in a single landscape with expanded dimensions. The
nonadiabatic motion from dynamical time scales can give the non-
zero curl flux in this expanded space, leading to detailed balance
breaking. Fig. 1 gives a summary of the previous (Fig. 1 A–D)
and our unified (Fig. 1E) approaches.
We investigated the effects of the curl flux caused by the non-

adiabaticity of the dynamic time scales. We found that this nonzero
curl flux can give rise to eddy current with curling motions. Specif-
ically, Fig. 4 implies that the nonadiabaticity owing to the time scales
gives the emergence of the extra dimensionality (different land-
scapes) and is the source of the flux from the extra dimension to the
original system. The nonzero flux is the source of the spread of
protein concentration distribution, the irreversibility measured by
the three-point correlation functions, and the dissipation cost. The
nonzero flux provides the possibility of multiple states owing to
curling and stretching and the two-point correlation function
reveals the time-scale complexity of the resulting multiple states.
In most previous studies, gene switches have been analyzed

under the assumption of the adiabatic limit (32). Although this
assumption should be reasonable for many bacterial switches in
which gene switching is regulated by the fast binding/unbinding
of repressors or activators to/from DNA, this approximation
should not hold true in the complex gene switches of eukaryotes.
Indeed, in embryonic stem cells derived from early mammalian
embryos, the two-peak distribution of the expression level of a
key factor protein Nanog has been observed. Individual cells
strongly oscillate to bring about dynamical fluctuations between
the two states having the different Nanog expression strength
(33, 34). Another factor of embryonic stem cell, Hes1, shows
a clear oscillation pattern in the expression level (35). These data
suggest the dynamical time scales of gene switches are essential
to understand cell biology of higher organisms. It is important
to examine whether the concepts and techniques developed in
this paper are applicable to those problems of eukaryotic gene
switches. It is straightforward to extend the present results to
cases in which multiple genes are coupled to form a network. We
expect that the eddy current or the nonadiabatic curl flux in the
gene network decisively affects cell behavior. We expect that our
general theoretical framework can be applied to many physical
and biological processes where the underlying dynamics is either
in equilibrium or nonequilibrium involving dynamic time scales.

Fig. 4. Anomalies arising from the nonadiabatic curl flux in the self-
repressing gene. Quantities calculated from the Langevin equations for ρ
and ξ are plotted. (A) The effective strength of curl flux Jpath is anticorrelated
with ω and largely increases in the nonadiabatic regime of ω< 1. (B) The
Fano factor, which is the variance divided by the mean, showing the relative
width of the steady-state probability distribution of protein concentration,
(C) difference between the forward and backward three-point correlation
functions of protein concentration, and (D) the entropy production per turn
of the on/off gene switching are plotted as functions of Jpath, showing that
these quantities are correlated with curl flux.
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Materials and Methods
Consider the case that the system has a discrete variable s that can take the
value from 0 to N− 1, and a set of M continuous variables ψ̂ . The system,
therefore, has N landscapes with M dimensions, where the change in s
quantifies the hopping between landscapes and the change in ψ̂ quantifies
the motion along individual landscapes. We here describe the idea of the
coherent-state representation to transform s into a continuous variable θ.

By defining a vector Æsj= ð0; . . . ; 1; . . . ; 0Þwhose sth component is 1 but other
N− 1 components are 0, and jsæ= ÆsjT , where T represents transpose, the prob-
ability density at ψ̂ in the sth landscape, Psðψ̂Þ, can be represented in a vector
form as Pðψ̂Þ=PsPsðψ̂Þjsæ. In analogy with the coherent-state representation
of a quantum spin, fjsæg can be transformed to the basis set fjΩæg as

P
�
ψ̂
�
=
Z

dΩPΩ
�
ψ̂
�jΩæ; [6]

where Ω= ðθ;ϕÞ is the solid angle,
R
dΩ= 1

4π

R 2π
0 dϕ

R π
0 sin θ  dθ, and fjΩæg and

fjsæg are related to each other by

jΩæ=
XN−1
s= 0

N− 1Cs

�
uðθÞeiϕ=2

�s�
vðθÞe−iϕ=2

�N−1−s
jsæ; [7]

with N−1Cs = ðN− 1Þ!=ðs!ðN− 1− sÞ!Þ,uðθÞ= cos2ðθ=2Þ, and vðθÞ= sin2ðθ=2Þ. By in-
troducing a conjugate vector, ÆΩ̂ j=NeiϕðN−1Þ=2

PN−1
s=0 e

−isϕÆsj;we have the relation

Z
dΩjΩæ ÆΩ̂





= XN−1
s= 0

jsæ Æsj= 1; [8]

which shows fjΩæg is an overcomplete basis set. Notice that unlike the usual
expression for quantum spins, jΩæ and ÆΩ̂ j are not Hermite conjugate of each
other, but this representation was chosen here to reflect the constraint to
normalize the probability distribution (SI Text). As shown explicitly in the
example of gene switching in the section Example Self-Regulating Gene, ϕ
plays a role of an auxiliary variable to determine the fluctuation width of θ.
In this way, the original s–ψ̂ problem, that is, the N landscape problem, is
transformed into the θ–ψ̂ problem, that is, the single landscape problem of
M+ 1 dimensions.

It should be noted that when the system is composed of K subsystems
(K genes, for example), the system should have NK landscapes represented
by K variables s1; s2; . . . ; sK , each of which can take a value from 0 to N− 1.
Then, through the coherent-state representation explained above, the sys-
tem is described by K continuous variables θ1; θ2; . . . ; θK and the M di-
mensional variable, ψ̂ , so that the problem is converted to the M+K
dimensional single-landscape problem. Extensions to the further complex
cases are straightforward.

Eq. 7 is particularly simple when N= 2 as jΩæ=uðθÞeiϕ=2j1æ+ vðθÞe−iϕ=2j0æ:
Combining with Eq. 6, we have Pðψ̂Þ =

R
sin θ  dθðcos2ðθ=2ÞP1

θ ðψ̂Þj1æ +
sin2ðθ=2ÞP0

θ ðψ̂Þj0æÞ, with P1
θ ðψ̂Þ =

R dϕ
2π PΩðψ̂Þeiϕ=2 and P0

θ ðψ̂Þ =
R dϕ

2π PΩðψ̂Þe−iϕ=2:
When PΩðψ̂Þ has a Gaussian distribution at around ϕ = 0, we can put
P1
θ ðψ̂Þ = P0

θ ðψ̂Þ = Pθðψ̂Þ, with which the notions used in the section Theory
for Nonequilibrium Eddy Current are obtained.
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SI Text
In this SI Text, we explain the derivation of Eqs. 3 and 4 in the main
text and how the 3D expression for ψ1, ψ0 and ξ= cos  θ is ob-
tained by extending the 2D expression of Eqs. 3 and 4 for ψ and ξ.

2D Representation of the Gene Circuit
We first derive the Langevin equations Eqs. 3 and 4 in the 2D
representation of the self-regulating gene circuit. The stochastic
process of gene expression in the circuit of self-regulating single
gene is expressed by the master equation Eq. 1 in the main text as

∂PðnÞ
∂t

=

 
g1 0

0 g0

!
½Pðn− 1Þ−PðnÞ�

+ kðn+ 1ÞPðn+ 1Þ− knPðnÞ

+

 
−h f

h −f

!
PðnÞ;

[S1]

where PðnÞ=
�
P1ðnÞ
P0ðnÞ

�
, with PsðnÞ being the probability for the

system having the protein copy number n at the gene state s= 0
or 1 with the normalization

P
s
P

nPsðnÞ= 1. The generating
function jΨi of PsðnÞ can be defined by using a basis set fjnig as

jΨi=
�P

nP1ðnÞjniP
nP0ðnÞjni

�
: [S2]

Then, the master equation of Eq. 1 is represented in a “second
quantized” form (1–5) as

∂
∂t
jΨi= −HjΨi; [S3]

where H is an operator having the form

H=
�
g1 0
0 g0

��
1− a†

�
+ k
�
a†a− a

�
+
�
−h f
h −f

�
; [S4]

with ½a; a†�= 1. We assume that the regulation factor is a dimer of
product proteins, so that h= h0ða†Þ2a2. We define the parameters,

Xad = ðg1 + g0Þ=ð2kÞ;
δX = ðg1 − g0Þ=ð2kÞ;
K = h0=f ;

ω = f=k;

[S5]

where Xad is the representative copy number of protein and ω is
the adiabaticity parameter. By absorbing k into t (i.e., writing kt
as t) in Eq. 3, we have

H=
�
Xad + δX 0

0 Xad − δX

��
1− a†

�
+ a†a− a

+ω

 
−K
�
a†
�2a2 1

K
�
a†
�2a2 −1

!
;

[S6]

We consider the transition probability Pðnf ; τjni; 0Þ of finding the
copy number of protein nf at time t= τ starting from ni at t= 0,

P
�
nf ; τjni; 0

�
=

1
nf !

�
nf jexp −

Zτ
0

dtH
0
@

1
Ajnii: [S7]

Pðnf ; τjni; 0Þ can be represented in a path-integral form by using
an identity 1= Is ⊗ Ib with

Ib =
Z∞
0

dψ
Zπ
−π

dχ
2π

jzi�~z��e−ψ ; [S8]

where

jzi= exp
�
a†z
�j0i;  

�
~z
��= h0jexp�a~z*�; [S9]

with

z=ψ   expð−iχÞ;  ~z* = expðiχÞ;

and

Is =
1
2π

Zπ
0

sin θ  dθ
Z2π
0

dϕ
��̂s��s��; [S10]

with

��̂s�=� eiϕ=2 cos2 θ=2
e−iϕ=2 sin2 θ=2

�
;  

�
s
��=	e−iϕ=2; eiϕ=2
: [S11]

Note that jzi is the coherent state wavefunction. The correspond-
ing PðnÞ for jzi is the Poisson distribution, so that jzj=ψ is the
average copy number of protein of the state jzi.
Inserting Is ⊗ Ib into Pðnf ; τjni; 0Þ as

P
�
nf ; τjni; 0

�
= lim

N→∞

1
nf !

�
nf
�� ∏N−1

r= 1
ð1−HΔtÞ��ni

�

= lim
N→∞

1
nf !

�
nf jIs ⊗ Ib ∏

N−1

r= 1
½ð1−HΔtÞIs ⊗ Ib�jni

�
;

[S12]

we have

P
�
nf ; τjni; 0

�
= const:

Z
DϕDθDψDχ exp

�
−
Z

dtL
�
; [S13]

with the effective “Lagrangian,”

L= iϕ
d
dt

�
1− cos θ

2

�
+ iχ

dψ
dt

+
�
1− eiϕ

�
ω
1+ cos θ

2
Kψ2 +

�
1− e−iϕ

�
ω
1− cos θ

2

+
�
1− e−iχ

�
ψ +

�
1− eiχ

��
Xad + cos θδX

�
:

[S14]

Note that the first term, ϕd
dt

�
1 −  cos θ

2

�
, is the Berry phase when we

consider the time-dependent closed trajectory of ϕðtÞ and θðtÞ:
Integration of this term represents the surface area of the sphere
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of radius 1 enclosed by the closed circuit of ϕðtÞ and θðtÞ, or the
solid angle of that area.

Classical Approximation. The “classical” trajectory is obtained by
retaining the lowest order of ϕðtÞ and χðtÞ as

Lcl = iϕ
ω

2

�
−
1
ω
_ξ+Fðψ ; θÞ

�
+   iχ

�
_ψ +

∂Uðψ ; θÞ
∂ψ

�
; [S15]

where ξ= cos θ and U is the potential,

Uðψ ; θÞ=ψ2

2
−
�
Xad + ξδX

�
ψ ; [S16]

and F is the force

Fðψ ; θÞ= −Kð1+ ξÞψ2 + ð1− ξÞ: [S17]

By putting L=Lcl in Eq. S13, we obtain

P
�
nf ; τjni; 0

�
= const:

Z
DθDψ

∏
t
δ

�
_ψ +

∂Uðψ ; θÞ
∂ψ

�
δ

�
−
1
ω
_ξ+Fðψ ; θÞ

�
;

[S18]

which leads to the deterministic equations,

_ψ = −
∂Uðψ ; θÞ

∂ψ
; [S19]

1
ω
_ξ=Fðψ ; θÞ: [S20]

The classical trajectory is the sequence of the continuously chang-
ing (or stationary) Poisson distributions. In the adiabatic limit of
ω→∞, the DNA state θ is determined by the equilibrium re-
lation, Fðψ ; θÞ= 0.

Semiclassical Approximation. In the next level of approximation
(i.e., in the “semiclassical” approximation), the Lagrangian is
obtained by retaining the second-order terms of χðtÞ and ϕðtÞ as

L=Lcl −
1
2
ðiχÞ2�ψ +Xad + ξδX

�
−
ω

4
ðiϕÞ2�Kð1+ ξÞψ2 + ð1− ξÞ�:

[S21]

Using the Hubbard–Stratonovich transformation (6),

exp
	
ðiχÞ2 J1dt



=

1ffiffiffiffiffi
2π

p
Z∞
−∞

dy1   exp 
�
−
y21
2
+

ffiffiffiffiffiffiffiffiffiffi
2J1dt

p
ðiχÞ y1

�
;

and

exp
	
ðiϕÞ2 J2dt



=

1ffiffiffiffiffi
2π

p
Z

dy2   exp 
�
−
y22
2
+

ffiffiffiffiffiffiffiffiffiffi
2J2dt

p
ðiϕÞ y2

�
;

[S22]

with

J1 =
1
2
�
ψ +Xad + ξδX

�
;

J2 =
ω

4
�
Kð1+ ξÞψ2 + ð1− ξÞ�; [S23]

we have

P
�
nf ; τjni; 0

�
= const:

Z
DθDψDy1Dy2

exp
�
−
Z

dt
y21 + y22

2

�
∏
t
δ

�
_ψ +

∂Uðψ ; θÞ
∂ψ

+
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2J1=dt

p
y1

�

×   δ

 
−
1
ω
_ξ+Fðψ ; θÞ+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2J2=dt

p
ω

y2

!
;

[S24]

which leads to the coupled-Langevin equations,

_ψ = −ψ +Xad + ξδX + ηψ ; [S25]

1
ω
_ξ= −Kð1+ ξÞψ2 + ð1− ξÞ+ ηθ; [S26]

where ηψ and ηθ are Gaussian random numbers with < ηψ > = 0,
hηθi= 0, and

�
ηψ ðtÞηψ

�
t′
��

=
�
ψ +Xad + ξδX

�
δ
�
t− t′

�
;

�
ηθðtÞηθ

�
t′
��

=
2
ω

�
Kð1+ ξÞψ2 + ð1− ξÞ�δ�t− t′

�
:

[S27]

In the strong adiabatic limit, we can see that Eq. S26 returns to
Fðψ ; θÞ= 0 as expected. ηθ in Eq. S26 represents the “eddy” or
“churn” effect of nonadiabaticity. If we rewrite Eq. S25 by using
the system volume Ω0 and defining ρ=ψ=Ω0, xad =Xad=Ω0, δx=
δX=Ω0, and κ=KΩ2

0, the Langevin equations are more symmet-
rical as

_ρ= − ρ+ xad + ξδx+ eρ; [S28]

1
ω
_ξ= − κð1+ ξÞρ2 + ð1− ξÞ+ eθ; [S29]

and

�
eρðtÞeρ

�
t′
��

=
1
Ω0

�
ρ+ xad + ξδx

�
δ
�
t− t′

�
;

�
eθðtÞeθ

�
t′
��

=
2
ω

�
κð1+ ξÞρ2 + ð1− ξÞ�δ�t− t′

�
;

[S30]

which are Eqs. 3 and 4 in the main text. By solving these
equations, we can obtain the various types of time correlation
functions and the 2D distribution, PθðψÞ, discussed in the
main text.

Extension to the 3D Representation
We start from Eq. S7 but in this time we consider the identity

1= Ib1 =
Z∞
0

dψ1

Zπ
−π

dχ1
2π

jz1i
�ez1��; [S31]

for the case that the regulatory protein is not bound to DNA, and

1= Ib0 =
Z∞
0

dψ0

Zπ
−π

dχ0
2π

jz0i
�ez0��; [S32]

for the case that the regulatory protein is bound to DNA, where
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jz1i= exp 
	
a†z1 − z1 ez1 p
j0i;  

�ez1��= h0j  exp 
	
aez1 p
; [S33]

and

jz0i= exp
	
a†z0 − z0 ez0*
j0i;  

�ez0��= h0j exp 
	
aez0*
; [S34]

with z1 =ψ1   exp  ð−iχ1Þ, ez1p = exp  ðiχ1Þ, z0 =ψ0   exp  ð−iχ0Þ, andez0p = exp  ðiχ0Þ. Then, instead of using Is ⊗ Ib of the previous
section, we use a form of

1= Isb =
Z∞
0

dψ0dψ1

Zπ
−π

dχ0dχ1
2π

1
2π

Zπ
0

sin θdθ
Z2π
0

dϕ

0
@ eiϕ=2 cos2 θ=2jz1i

e−iϕ=2 sin2 θ=2jz0i

1
A	Dez1je−iϕ=2; �ez0��eiϕ=2
:

[S35]

Here, ψ1 = hez1ja†ajz1i and ψ0 = hez0ja†ajz0i. ψ1 and ψ0 are, there-
fore, the expectation values of the copy number of proteins in
the DNA unbound and bound states, respectively, when the
Poisson distributions for the number of proteins are assumed
(the coherent state represents the Poisson distribution). The
classical trajectory is the sequence of the continuously changing
(or stationary) Poisson distributions.
Inserting Isb of Eq. S35 into Pðn1f ; n0f ; τjn1i; n0i; 0Þ, we have

P
�
n1f ; n0f ; τjn1i; n0i; 0

�
= lim

N→∞

 �
n1f j
n1f !

;

�
n0f j
n0f !

!
∏
N−1

r= 1
ð1−HΔtÞ

 jn1ii
jn0ii

!

= lim
N→∞

 �
n1f j
n1f !

;

�
n0f j
n0f !

!
Isb ∏

N−1

r= 1
½ð1−HΔtÞIsb�

 jn1ii
jn0ii

!
:

[S36]

Then, Pðn1f ; n0f ; τjn1i; n0i; 0Þ is represented by the path-integral
form,

P
�
nf ; τjni; 0

�
= const

Z
DϕDθDψ1Dψ0Dχ1Dχ0   exp 

�
−
Z

dtL
�
;

[S37]

with the effective Lagrangian,

L= iϕ
d
dt

�
sin2

θ

2

�

+ iχ1
d
dt

�
ψ1   cos

2 θ

2

�
+ iχ0

d
dt

�
ψ0   sin

2 θ

2

�

+ωKψ2
1ð1− exp½F1 + iϕ�Þcos2 θ

2

+ωð1− exp½F0 − iϕ�Þsin2 θ
2

+
�
1− e−iχ1

�
ψ1   cos2

θ

2
+
�
1− e−iχ0

�
ψ0   sin

2 θ

2

+
�
1− eiχ1

��
Xad + δX

�
cos2

θ

2

+
�
1− eiχ0

��
Xad − δX

�
sin2

θ

2
;

[S38]

where F1 = 2iðχ0 − χ1Þ+ψ1ðeiðχ0−χ1Þ − 1Þ and F0 =ψ0ðeiðχ1−χ0Þ − 1Þ.
Note that this expression is reduced to the Lagrangian Eq. S14
when we put ψ1 =ψ0 and χ1 = χ0.

Classical Approximation. The classical trajectory is obtained by
retaining the lowest order of ϕðtÞ, χ1ðtÞ, and χ0ðtÞ as

Lcl = iϕ
�
d
dt

�
sin2

θ

2

�
−ω

�
Kψ2

1   cos
2 θ

2
− sin2

θ

2

��

+ iχ1

�
d
dt

�
ψ1 cos

2 θ

2

�
−
�
Xad + δX −ψ1

�
cos2

θ

2

+ω

�
Kψ2

1G1 cos2
θ

2
−ψ0 sin

2 θ

2

��

+ iχ0

�
d
dt

�
ψ0 sin

2 θ

2

�
−
�
Xad − δX −ψ0

�
sin2

θ

2

−ω
�
Kψ2

1G1   cos2
θ

2
−ψ0   sin

2 θ

2

��
;

[S39]

where G1 = ðψ1 + 2Þ. By writing ξ= cos θ, ψ = ðψ1 +ψ0Þ=2, ψ̂ =
ðψ1−ψ0Þ=2, ψ =ψ1   cos2 θ2+ψ0   sin

2θ
2=ψ +ξψ̂ , χ=ðχ1+χ0Þ=2, and

χ̂= ðχ1−χ0Þ=2, the classical Lagrangian is

Lcl = iϕ
�
d
dt

�
sin2

θ

2

�
−ω

�
Kψ2

1   cos
2 θ

2
− sin2

θ

2

��

+ iχ
�
d
dt
ψ −

�
Xad + ξδX −ψ

��
;

+ iχ̂
�
d
dt

	
ξψ + ψ̂



−
	
ξXad + δX − ξψ − ψ̂



+ω
�
Kψ2

1ðψ1 + 2Þð1+ ξÞ−ψ0ð1− ξÞ��:

[S40]

Then, the classical equations are obtained as

d
dt
ψ =Xad + ξδX −ψ ; [S41]

1
ω

d
dt

	
ξψ + ψ̂



=
1
ω

h�
ξXad + δX

�
−
	
ξψ + ψ̂


i

−Kψ2
1ð1+ ξÞðψ1 + 2Þ+ ð1− ξÞψ0;

[S42]

1
ω

d
dt
ξ= −Kψ2

1ð1+ ξÞ+ ð1− ξÞ: [S43]

Note that Eq. S41 is the same as Eq. S19, and Eq. S43 is obtained
by replacing ψ in Eq. S20 with ψ1 =ψ + ψ̂ . Eq. S42 is a new one,
representing the nonadiabatic effects.
We can see that Eqs. S41–S43 behave suitably in both the

adiabatic and nonadiabatic limits: In the adiabatic limit of large
ω, terms of 1=ω become small and we have,

d
dt
ψ =

�
Xad + ξδX

�
−ψ ; [S44]

0= −Kψ2
1ð1+ ξÞðψ1 + 2Þ+ ð1− ξÞψ0; [S45]

0= −Kψ2
1ð1+ ξÞ+ ð1− ξÞ: [S46]

By inserting Eq. S46 into Eq. S45, we find ψ1 + 2=ψ0. This
result is reasonable when we consider that in the state 1 all
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copies of the regulatory protein are in the solution, but in the
state 0 a dimer protein is absorbed onto DNA and is lost from
the solution. In this adiabatic limit, therefore, we essentially
have ψ1 ≈ψ0.
In the nonadiabatic limit of small ω, however, 1=ω terms domi-

nate, so that

d
dt
ψ =

�
Xad + ξδX

�
−ψ ; [S47]

d
dt

	
ξ ψ + ψ̂



=
h�
ξXad + δX

�
−
	
ξ ψ + ψ̂


i
; [S48]

d
dt
ξ= 0: [S49]

From Eq. S49, θ= const: and we can see ψ =Xad and ψ̂ = δX , that
is, ψ1 =Xad + δX and ψ0 =Xad − δX satisfy Eqs. S47 and S48,
which are the expected results for the nonadiabatic limit.

Semiclassical Approximation. In the next level of approximation
(i.e., in the semiclassical approximation), the Lagrangian is obtained
by retaining the second-order terms of ϕðtÞ, χ1ðtÞ, and χ0ðtÞ as
L=Lcl +LG with

LG = −
ω

4
ðiϕÞ2�Kð1+ ξÞψ2

1 + ð1− ξÞ�
−
1
2
½iðχ0 − χ1Þ�ðiϕÞω

�
Kð1+ ξÞψ2

1ðψ1 + 2Þ+ ð1− ξÞψ0
�

−
1
4
ðiχ1Þ2ð1+ ξÞ�ψ1 +Xad + δX

�
−
1
4
ðiχ0Þ2ð1− ξÞ�ψ0 +Xad − δX

�
−
1
4
½iðχ0 − χ1Þ�2ω

�
Kð1+ ξÞψ2

1f + ð1− ξÞg�;

[S50]

where f =ψ2
1 + 5ψ1 + 4 and g=ψ2

0 +ψ0.
Using χ = ðχ1 + χ0Þ=2 and χ̂ = ðχ1 − χ0Þ=2, Eq. S50 can be re-

written as

LG = −
ω

4
ðiϕÞ2�Kð1+ ξÞψ2

1 + ð1− ξÞ�
+
�
iχ̂
�ðiϕÞω�Kð1+ ξÞψ2

1ðψ1 + 2Þ+ ð1− ξÞψ0
�

−
�
iχ̂
�2
ω
�
Kð1+ ξÞψ2

1 f + ð1− ξÞg�
−
1
2

h�
iχ
�2

+
�
iχ̂
�2i�

ψ +Xad + ξδX
�

−
�
iχ
��
iχ̂
�	

ψ̂ + δX + ξ
�
ψ +Xad

�

:

[S51]

By defining a vector,

iφ=

0
@ iϕ

iχ̂
iχ

1
A; [S52]

Eq. S51 is written as LG = − 1
2 ðiφ†ÞQðiφÞ with

where A=Kð1+ ξÞψ2
1 and B= 1− ξ. The Hubbard–Stratonovich

transformation we should consider is based on the Gaussian in-
tegral for the vector y† = ðyp; yh; ybÞ asZ∞

−∞

dy  exp
�
−
1
2
ðy− iφÞ†Qðy− iφÞdt

�
=
ð2π=dtÞ32
ðdet QÞ12

: [S54]

Because Q† =Q, we have

exp
�
1
2
�
iφ†
�
QðiφÞdt

�
=
ðdet QÞ12
ð2π=dtÞ32

Z∞
−∞

dy  exp
�
−
1
2
y†Qydt+ ðiφÞ†Qydt

�
:

[S55]

This expression leads to the coupled-Langevin equations,

_ψ = −ψ +Xad + ξδX + η3; [S56]

d
dt

	
ξψ + ψ̂



= ξXad + δX −

	
ξψ + ψ̂



−ω
�
Kψ2

1ðψ1 + 2Þð1+ ξÞ−ψ0ð1− ξÞ�+ η2;

[S57]

1
ω
_ξ= −Kð1+ ξÞψ2

1 + ð1− ξÞ+ η1: [S58]

Here, η1, η2, and η3 are

η1 =
2
ω

	
Q11yp +Q21yh



;

η2 =Q21yp +Q22yh +Q23yb;

η3 =Q32yh +Q33yb;

[S59]

with Qij being the ði; jÞcomponent of the matrix Q. yb, yh, and yp
are Gaussian random numbers with hybi= hyhi= hypi= 0, and�

ypðtÞyp
�
t′
��

=
δtt′
dt

�
Q−1�

11;  
�
yhðtÞyh

�
t′
��

=
δtt′
dt

�
Q−1�

22

�
ybðtÞyb

�
t′
�� δtt′

dt

�
Q−1�

33;  
�
ypðtÞyh

�
t′
��

=
δtt′
dt

�
Q−1�

12;

�
ypðtÞyb

�
t′
��

=
δtt′
dt

�
Q−1�

13;  
�
yhðtÞyb

�
t′
��

=
δtt′
dt

�
Q−1�

23:

[S60]

In the limit of dt→ 0, δtt′
dt in the above expression will approach

δðt− t′Þ. If we want to go back to the expression of ψ1 and ψ0, we
can use

Q=

0
BBBB@

ω

2
ðA+BÞ −ωðAðψ1 + 2Þ+Bψ0Þ 0

−ωðAðψ1 + 2Þ+Bψ0Þ; 2ωðAf +BgÞ+ �ψ +Xad + ξδX
�
; ψ̂ + δX + ξ

�
ψ +Xad

�
0 ψ̂ + δX + ξ

�
ψ +Xad

�
ψ +Xad + ξδX

1
CCCCA; [S53]
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ψ =ψ1   cos2
θ

2
+ψ0   sin

2 θ

2
;

ξ ψ + ψ̂ =ψ1   cos2
θ

2
−ψ0   sin

2 θ

2
;

ξ= cos θ:

[S61]

In this way, Eqs. S56–S60 are the extension of Eqs. S28–S30. By
solving Eqs. S56–S60, we can obtain the distribution Pθðψ1;ψ0Þ.
Eqs. S56–S60 give quantitatively better results than Eqs. S28–
S30, although the qualitative features of the results obtained
with Eqs. S56–S60 are the same as those obtained with Eqs.
S28–S30.
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Fig. S1. Distribution of protein density ρ for ω= 0:001 calculated from the Langevin dynamics in the extended dimensional space (Eqs. 3 and 4 in the main text,
green line) is compared with the one calculated with the Gillespie algorithm from the master equation (Eq. 1 in the main text, blue line).
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Fig. S2. The two time correlation functions in protein concentration and their Fourier transformation. The correlation functions (A–C) and their Fourier
spectra (D–F) are calculated with Eqs. 3 and 4 in the main text with (A and D) ω= 0:01, (B and E) ω= 0:1, and (C and F) ω= 100. The Fourier spectra are shown in
the log-log plot.
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