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Cells are intrinsically noisy biochemical reactors: low reactant num-
bers can lead to significant statistical fluctuations in molecule num-
bers and reaction rates. Here we use an analytic model to investigate
the emergent noise properties of genetic systems. We find for a single
gene that noise is essentially determined at the translational level,
and that the mean and variance of protein concentration can be
independently controlled. The noise strength immediately following
single gene induction is almost twice the final steady-state value. We
find that fluctuations in the concentrations of a regulatory protein can
propagate through a genetic cascade; translational noise control
could explain the inefficient translation rates observed for genes
encoding such regulatory proteins. For an autoregulatory protein, we
demonstrate that negative feedback efficiently decreases system
noise. The model can be used to predict the noise characteristics of
networks of arbitrary connectivity. The general procedure is further
illustrated for an autocatalytic protein and a bistable genetic switch.
The analysis of intrinsic noise reveals biological roles of gene network
structures and can lead to a deeper understanding of their evolution-
ary origin.

N oise is often perceived as being undesirable and unpredict-
able; however, living systems are inherently noisy and are
optimized to function in the presence of stochastic fluctuations
(1). Some organisms can exploit stochasticity to introduce
diversity into a population, as occurs with the lysis-lysogeny
bifurcation in phage A (2) or the DNA inversion mechanism in
bacteria (3). In contrast, stability against fluctuations is essential
for the case of a gene regulatory cascade controlling cell
differentiation in a developing embryo (4). These fluctuations
are intrinsic: they are determined by the structure, reaction rates,
and species concentrations of the underlying biochemical net-
works. Here our goal is to quantify the macroscopic statistics of
genetic networks given the microscopic rate constants and
interactions and to investigate the evolutionary and biological
implications of noise.

Several models have been proposed that incorporate stochas-
ticity in gene expression. For example, numerical and analytic
methods have been used to investigate stochastic gene induction
and repressor action (5-7), and analytic results have been
obtained for the stochastic expression of a single gene in
eukaryotes (8) and in a growing cell population (9). In living
systems, however, groups of genes and proteins work in concert.
The introduction of regulatory interactions creates a gene net-
work with complex emergent properties (10). One approach to
studying the resulting network noise might involve running
detailed numerical simulations incorporating all known reac-
tions, rates, and species. This technique has been used in the
analysis of the phage A lysis-lysogeny decision circuit (2). The
numerical predictions match experimental data, but they provide
no intuition into underlying correlations and interactions. An-
alytic results can be obtained by applying the Langevin tech-
nique, where the noise source is specified externally (11).
However, reconciling external and intrinsic noise becomes a
subtle exercise.

We consider a simple and intuitive model for gene expression in
prokaryotes that contains all of the essential features of transcrip-
tion, translation, and interactions between genes in a regulatory
network (see Appendix; Fig. 1a). For simplicity, we do not treat the
random partitioning of proteins during cell division. Both the time
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dependence and the steady-state statistics of this model can be
obtained analytically. Here we focus on exploring the mean (<g>)
and the variance (8¢?) of the number of molecules of each species
q in the steady state for several gene regulatory modules. These
system properties are simple to understand, clear to interpret, and
most importantly, they are easily accessible experimentally.

Theory

Noise Strength. Noise strength is usually reported in terms of the
standard deviation o of a stochastic variable g. The Fano factor,
defined as v = 8¢°/(g), is related to the standard deviation by
o/{q) = \/‘%; because g measures molecule number, v is a
dimensionless quantity. When number fluctuations are because
of a Poisson process, we have v = 1. The Fano factor of an
arbitrary stochastic system reveals deviations from Poissonian
behavior. It is a sensitive measure of noise and the unit in which
we report our results.

Network Model. The biochemical genetic system is assumed to be
specified at any time ¢ by the total number of mRNA molecules
(r) and protein molecules (p) present. We neglect other state
variables such as various configurations of the DNA operator
region (e.g., free or bound to a repressor), the mRNA molecule
(e.g., ribosome occupancy), and the protein (e.g., partially folded
states). Such approximations are valid for reasonable parameter
ranges (see Appendix).

For the simple case of single gene expression, nRNA molecules
are synthesized constitutively off the template DNA strand and are
translated at some constant rate (Figs. la and 4a). The probability
that the system is in a given state {r,p} is specified by the joint
probability distribution f,,;, (¢) that evolves according to Scheme 1:
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Scheme 1.

For the case of a gene network with many interacting species
indexed by i, the phase space generalizes to {r;,p;}, and the rate
constants go over to kg;, kpi, yri» yri. We can specify network
connectivity by making the reaction rates (possibly nonlinear)
functions of the state of the system. In the simplest case, when
these rates are constant, Scheme 1 is a special case of Scheme 2,

This paper was submitted directly (Track Il) to the PNAS office.
*To whom reprint requests should be addressed. E-mail: avano@mit.edu.

The publication costs of this article were defrayed in part by page charge payment. This
article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C.
§1734 solely to indicate this fact.

www.pnas.org/cgi/doi/10.1073/pnas.151588598



a.
Protei é
rotein 7P ¢
=2
o]
Tr
P A
mMRNA ===~ — ¢
b
C . ]
DNA
b.
p

v

3p’l<p>

Poisson noise

0 500 1000 1500 2000

Fig. 1. Modeling single gene expression. (a) MRNA molecules are synthe-
sized at rate kg from the template DNA strand. Proteins are translated at arate
kp off each mMRNA molecule. Proteins and mRNA degrade at rates yp and yg,
respectively. Degradation into constituents is denoted by ¢. All reactions are
assumed to be Poisson, so that the probability of a reaction with rate k
happening in a time dt is given by kdt, and the waiting times between
successive reactions are exponentially distributed. (b) A simplified timecourse
illustrates the intuition behind the result of Eq. 1. Transcription initiation
events occur with average frequency kg and are indicated by arrows; each
mRNA transcript releases a burst of proteins of average size b, and proteins
decay between bursts. (c) Controlling mean and variance of protein number
by varying system parameters for single gene expression. The Fano factor ratio
(8p?/<p> = variance/mean) is plotted versus the mean. The mRNA half-life is
fixed at 2 min. The base case corresponds to a burst size b = 20, a transcript
initiation rate kg = 0.01 s~' and a protein half-life In(2)/yr = 1 h. The three
curves are produced by varying one of these parameters while keeping the
other two fixed. b is varied between 5 and 40 (circles); kg is varied between
0.0025s~"and 0.02 s~ (triangles); protein half-life is varied from 15 minto 2 h
(squares). The Poisson value of §p2/<p> = 1 is marked for comparison. Monte
Carlo results (symbols) match analytic values given by Eq. 1 exactly (solid lines).

shown below, where the rates are taken to be linear functions of
the state variables {g;}:
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Here, A shows how the rate of creation of species i is influenced
by the number of molecules of speciesj. Similarly, I" gives the rate
of destruction of species i in terms of the number of molecules
of species j. To obtain Scheme 1 from Scheme 2, let the species
gi range over the DNA (D), mRNA molecules (r), and proteins
(p). Thatis: {g;} = {D, r, p}. The matrices 4 and I" for single gene
expression are:

(D) () (p) (D) (r) (p)

D)y o o o0 D)y o o o0

A= (| kg 0 0 r= | 0 vy 0
L0 kp O L O 0 vp

I' is typically diagonal because the rate of decay of species i
usually depends only on the number of molecules of i present.
The steady-state statistics of Scheme 2 are obtained as solutions
of simple linear equations involving the A and I' matrices (see
Appendix).

Results

Single Gene. The single gene is the fundamental module of gene
regulatory circuits. Fluctuations in the concentration of a single
gene product are significant because they will affect multiple
regulatory processes. In steady state, the mRNA molecules
equilibrate independent of the protein molecules and reach a
Poisson distribution with <r> = kg/yg and &72/<r> = 1. The
rate of creation of proteins, however, depends on the number of
mRNA molecules present. Protein numbers have a distribution
that is much broader than Poisson:

et o (o
D= o ey

where n = yp/yr is the ratio of mRNA to protein lifetimes, and
b = kp/vyr is the average number of proteins produced per
transcript. Between the synthesis and degradation of an mRNA
molecule, it is translated by ribosomes, releasing a burst of
proteins into the cytoplasm. It can be demonstrated for this
model that the number of proteins in each burst is geometrically
distributed, with average value b (refs. 9 and 12; Fig. 1b). Typical
values for b are 40 for lacZ and 5 for lacA (13). mRNA molecules
usually decay much faster than proteins, so 7 is typically a small
quantity. Eq. 1 shows that the width of the protein distribution
in this approximation is determined primarily by the average
burst size b: intrinsic noise is controlled at the translational level.

The time dependence of Scheme 1 can be obtained exactly and
reveals that noise for a single gene system out of equilibrium is
stronger than noise at steady state. Consider a system in which
the gene is induced at time ¢ = 0. In the limit that 1) goes to zero,
the system evolves according to:

By W (12
<p> - vp ( e ) <p> - 1— ef'w»t

>+1Eb+1, [

)-b +1. [2]

Roughly, the variance 8p? relaxes to its steady-state value at a
rate 2ypt, twice as quickly as the mean. For small times, 8p2/<p>
= 2b + 1is almost twice the steady-state value. Fig. 2 illustrates
this transient noise behavior and compares the exact result for
finite m to the simplified result of Eq. 2.

Autoregulatory System. Autoregulation is a ubiquitous motif in
biochemical pathways, essential in the management of protein
and chemical concentrations through feedback (ref. 14; Figs. 3
and 4b). Autoregulation can be modeled by taking the rate of
transcript initiation to be a nonlinear decreasing function of
protein concentration, such as a Hill repression function (Fig.
3a). In steady state, the distribution of protein number has a
finite width and samples only a small region of the repression
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Fig. 2. Transient noise for a single gene. The protein half-life is fixed at 1 h,
b = 20, and kg = 0.01 s~'. Exact analytic results are plotted for an mRNA
half-life of 120, 24, and 0 s, corresponding to n = 1/30, 1/150, and O,
respectively. 8p2/<p> is plotted versus time in seconds. The n = 0 case
corresponds to Eq. 2; the steady-state value from Eq. 1 is shown as a dashed
line. The transient noise reaches almost twice the steady-state strength, as n
tends to zero.

curve (Fig. 3a). In that region, the function is well approximated
by its linearization about the mean value of p: kg = ko —kip. The
network matrices for the autoregulatory system are:

(D) (n () (D) () ()

D)y o o0 0 b)Yy o o0 0

A= (r) ko 0 _kl = (}’) 0 YR 0
()L O kp 0 )L O 0 Yp

These produce the following protein number statistics:

1 kob  8p? 1-4¢ b
0 =(1355) "2 T (L () 0 @
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where b and m are as defined previously, and ¢ = k;/yp describes
the strength of the negative feedback. Eq. 3 shows that auto-
regulation has an effect not only in controlling the protein
concentration but also in reducing the relative size of fluctua-
tions. Fig. 3b compares the predictions of this model to the
results of Monte Carlo simulations of the fully nonlinear system;
the match is excellent.

Extension to Complex Networks. Bistability is an important feature
of several gene regulatory structures (2). An autocatalytic
system, in which a protein enhances its own production (Fig. 4¢),
typically has two stable states: one at low protein concentrations,
where protein creation is near its basal level, and another at high
protein concentrations. This is the “all-or-none” phenomenon
seen for autocatalytic systems such as the ara (15) and lac (16)
operons. A bistable switch can also be constructed from two
mutually repressing proteins (ref. 17; Fig. 4d). Fig. 4 shows how
the noise analysis would proceed for the systems discussed here,
as well as for a feed-forward cascade of three genes (Fig. 4e).
These examples indicate how the theory can be applied to
arbitrary regulatory networks. In the general case, nonlinear
interactions between various species typically lead to multiple
stable fixed points; each such fixed point induces a distinct
linearized system, and the linearized systems can be solved by
using analytic theory.

Range of Validity of the Analytic Model. First, cell division and the
random partitioning of proteins between daughter cells are a
source of stochastic fluctuations that will modify the results
presented above. For example, Berg (9) has analyzed the ex-
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Fig.3. Noise control by autoregulation. (a) The histogram (scale on left axis)
to the right shows the unrepressed distribution, the one to the left the
distribution when repression is turned on. The rate of protein production at
any given protein number p is given by a Hill repression function (dashed line,
scale on right axis): kg/kg®* = 1/(1 + [p/Kq]"). Here, Kq4 is the dissociation
constant that specifies the threshold protein concentration at which the
transcription rate is at half its maximum value. n is the Hill coefficient and
determines the steepness of the repression curve. For example, the cl repressor
protein acts on the promoters Pg and Pry of phage A with a K4 of about 50 and
1,000 nM, respectively (26). Typical biological values for n range from 1
(hyperbolic control) to over 30 (sharp switching). Note that the repression
curve is very nearly linear in the region where it intersects the repressed
histogram. (b) Noise control by autoregulation: comparing analytic results
(solid lines, Eq. 3) with Monte Carlo simulations, as K4 is varied (triangles), and
n is varied (circles). As in Fig. 1¢, the Fano factor (variance/mean) is plotted
versus the mean. The protein half-life is fixed at 1 h, mRNA half-life at 2 min,
and the burst size at 10; the unrepressed mean value is <p>ynrep = 1,200. Note
that n = 0 corresponds to a fixed transcription initiation rate that is half the
base value, therefore giving a mean protein number of 600. Ky is varied
(triangles) from 100 to 2,000 in increments of 100, and then from 2,000 to
5,000 in increments of 1,000, with n set to 2. (Kq is given in molecule number;
one molecule per cell corresponds to a concentration of ~1 nanomolar.) The
unrepressed (Kq is infinite) limit is also shown. n is varied (circles) from 0 to 20,
with Kq4 set at 800. The Monte Carlo simulations (symbols) are very well
reproduced by the analytical values (solid lines) given by Eq. 3.

pression of a single gene in a dividing cell population (in the
absence of protein degradation). He calculates the Fano factor
as a function of cell age ¢ in a population with cell division time 7

B (Zt + 2T/3)b
v= TIr T + 1. [4]

This implies v = (4/3)b + 1 just before and v = (2/3)b + 1 just
after cell division, compared with v=b+1 predicted by our
simplified model.

Second, in this paper, we have described a linearized stochastic
model. However, biochemical systems are invariably nonlinear.
Indeed, it is nonlinearity that creates much of the rich variety of
behavior exhibited by biological networks. When the resulting
system displays limit cycles or oscillations (e.g., ref. 18), it will not
yield to naive linearization. Linearization is also invalid around
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Fig. 4. Analysis of various gene regulatory networks. (a) Single gene. (b)

Autoregulatory protein. Parameters are the same as in a but with repression
turned on. (c) Autocatalytic protein. Both steady states are shown. (d) Bistable
switch with two mutually repressing proteins. This system occasionally makes
a transition from one steady state to the other, leading to a shallow valley
between the two peaks not predicted by the analytic model. (e) Feed-forward
cascade of three genes. A histogram is shown for each protein. In each case,
the network is represented schematically and the network matrix A is shown
(with entries + or — showing the sign of each quantity). The matrixT"is omitted
because it is always diagonal. The results from a typical Monte Carlo simula-
tion of the network are shown. The numerical histograms for protein number
are overlaid with Gaussians (solid lines), with the mean and variance predicted
by the analytic model.

or near unstable or quasistable (also known as critical) fixed
points. For example, the threshold or saddle point of a bistable
system (Fig. 4d) is not well approximated by our approach.
However, nonlinear networks often display multiple stable fixed
points; about these points, linearization is a valid approximation,
as with the examples treated above. The range of validity will
vary from case to case, with the approximation becoming exact
in the limit of small fluctuations.

Third, the biochemical reactions we have described are all
birth and death processes with first-order rates. Other types of
reactions, such as modifications or second- and higher-order
interactions between biochemical species, will introduce stochas-
ticity of a different character. For example, fluctuations in
DNA-repressor interactions (7) can contribute significantly to
system noise. When such interactions are much faster than the
reactions we have considered, they can be treated determinis-
tically and then linearized within our analytic framework.

Finally, we have presented mainly steady-state results, whereas
many biologically interesting systems are driven or out of equi-
librium. We have shown above that for a single gene, noise out
of equilibrium can be significantly higher than that at steady
state. Nevertheless, the burst size b enters both Egs. 1 and 2
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in an essential way. In a similar manner, steady-state results
for other systems might shed light on their out-of-equilibrium
noise properties and will be a useful indicator of their noise
characteristics.

Discussion

Noise control can play a major role in determining the structure
of gene regulatory networks. For example, Eq. 1 shows that the
two-step process of transcription followed by translation has
given biochemical circuits the freedom to independently adjust
the average concentration of a protein and the spread of that
concentration in a population (Fig. 1¢). Thus a gene can produce
a given protein concentration in two very different ways. At low
transcription but high translation rates, few mRNA molecules
are synthesized in a cell generation, but each one produces a
large variable burst of proteins. This causes significant fluctua-
tions over time and in a population. The same concentration can
be achieved with high transcription and low translation rates and
therefore a smaller burst size. In this case, many mRNA mole-
cules decay without ever being translated; this procedure is
inefficient because high energy phosphate groups are hydrolyzed
to drive the synthesis of unused or little-used transcripts. How-
ever, inefficient translation results in a steady stream of proteins
with much smaller fluctuations. During evolutionary adaptation,
living systems have made tradeoffs between energy efficiency
and noise reduction in choosing between these two alternatives.

For a regulatory protein that controls the synthesis of several
downstream products, fluctuations in regulator concentration
will propagate through the cascade (Figs. 4e and 5). Transla-
tional noise control is a means by which genetic circuits can
reduce noise in such cascades. Regulatory genes such as the c/
gene of phage A (2) and the malT gene of Escherichia coli (19)
are often poorly translated. It has been pointed out by other
researchers (e.g., ref. 19) that this translational inefficiency
might be sustained in the genome through the resulting bene-
ficial reduction in noise. However, we note that in some situa-
tions, the intrinsic noise of a regulator can actually increase the
sensitivity with which its signal is transmitted (20, 21).

The primary function of autoregulation lies in the control of
biochemical concentrations in metabolic and genetic pathways.
However, we find that it is also a very economical method of
noise reduction. Translational noise control is wasteful in that
only a small fraction of mRNA molecules are successfully
translated into proteins. In contrast, in an autoregulatory system,
mRNA molecules are synthesized only when required and are
then efficiently translated. Eq. 3 shows that even linear auto-
regulation can dramatically reduce fluctuations in protein num-
ber, down to a small fraction of the unregulated value. Although
this result is intuitive and has been directly observed experimen-
tally (14), it is not explicitly predicted by methods such as
stability analysis (14) or Langevin analysis; a systematic treat-
ment of intrinsic noise is essential for understanding biologically
relevant system properties.

Although stochasticity is evident even in the expression of a
single gene, the behavior of a system of genes can be understood
only by treating the network as a whole. The analytic model used
here provides a quick accurate estimate of the emergent noise
properties of genetic networks preferable to that provided by
long numerical simulations. The predictions of the model can be
used in the design of quantitative experiments in stochastic gene
expression. The robustness of network motifs like negative
feedback can be quickly tested over a range of parameters, and
the importance of particular connections to overall network
noise can be estimated (Figs. 3-5). Quantifying the intrinsic
noise of genetic and biochemical networks in this manner is
essential for understanding the design principles of stable and
robust synthetic biochemical systems (14, 17). Conversely, living
systems could possess novel regulatory structures whose major or
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Fig. 5. Propagation of noise in a regulatory cascade. Analytic results are
shown for asix gene cascade with gene products Py, P,. . . Pg (similar to Fig. 4e).
As described below, mean values of all proteins are fixed so that effects purely
caused by propagated noise can be seen. P is the regulator protein, P, ... Pg
are downstream proteins, and i is the protein index of P;. For all six genes,
In(2)/ve = 1h, In(2)/yr = 2 min. The transcript initiation rate of downstream
genes depends hyperbolically on the amount of protein in the previous step
of the cascade: kgi/kR®™ =1 — 1/(1 + p;i—1/Kq) with K = 500. As in previous
figures, we focus on the Fano factor v = §p2/<P>. (a) For the regulator gene,
b is varied from 0 to 20, thereby changing the variance of P (Eq. 1); for
downstream genes, b = 20. kg, and kz** are chosen so that P; = Kq for all i. »(P;)
... v(P4) are plotted against ¥(P). (Data for i = 5, 6 are difficult to distinguish
from those for i = 4.) The predicted value of v for a burst size b = 20 in the
absence of input noise (Eq. 1) is shown as a dashed line. The results indicate
that fluctuations in the concentration of a regulatory protein are an impor-
tant source of noise in a cascade. (b) Now b is fixed at 20 for all genes, and
parameters are again chosen so P; = Kq for all i. v(P;) is shown as a function of
protein index i. For visual clarity, the results are fitted to a hyperbola. We see
that propagated noise makes a significant contribution to the noise of down-
stream proteins, although saturating after a few steps of the cascade.

sole function is the control or use of noise (7, 20, 21); such structures
can be discovered and understood only through the investigation of
emergent network noise properties. As with the examples discussed
here, studying noise in gene regulatory networks, as their structure
and parameters are varied, can provide new insights into their
evolutionary origin and biological function.

Appendix

Modeling Gene Expression in Prokaryotes: Biochemical Assumptions.
During transcription initiation, the initial reversible binding of
an RNA polymerase (RNAP) to the promoter region and
subsequent formation of an open complex achieve rapid
equilibrium (22): initiation from the final open complex is the
rate-limiting step (23). The amount of free RNAP in a cell is
buffered against cell growth and other time variations by a
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large pool of nonspecifically bound molecules (24). Transcript
initiation is therefore assumed to be a pseudofirst-order
reaction with rate kg. Interactions between species in a
network are embodied by transacting factors such as repressor
proteins. Such regulatory proteins tend to act by binding the
promoter region and shielding it from RNAP, as is the case for
the lac repressor (25) or for the Cro protein of phage A (26).
These reactions are considered to be in equilibrium and simply
change the fraction of RNAP bound as a closed complex,
thereby changing the effective rate kr of transcript initiation
(25). Ribosomes can begin binding the newly synthesized
ribosome-binding site almost immediately as transcription
begins. Analogous to transcript initiation, translation initia-
tion off a single mRNA molecule is assumed to proceed with
a pseudofirst-order rate kp. For most E. coli operons, initiation
and elongation rates are such that ribosome queuing does not
occur (13, 27). We therefore take each transcription and
translation initiation reaction to be independent. Finally, we
assume that mRNA and protein molecules degrade with rates
yr and +yp, respectively. A decay rate vy gives a half-life of
In(2)/v.If growth in cell volume is exponential, rising as e¥, the
resulting dilution of species concentrations can be incorpo-
rated by replacing vy; with y; + k for all species i (other than
the DNA, which is replicated at a rate exactly matching cell
growth). The mRNA decay rate depends on the ribosome-
binding rate, because actively translating ribosomes shield the
mRNA molecule from the action of nucleases (12, 27).

Construction and Solution of the Master Equation. Scheme 2 gen-
erates the following Master Equation:

For = E = DX Aya)fy, + B = D Tya)f,,

where E is the step operator (28) defined by EXf(q;, . . .) = f(q; +
k, ...). For simplicity, the joint probability distribution
Javap- + »q, 1S written simply as f, , indexing the variable of
interest by i ranging from 1 to n, the number of species. This
equation is linear in the state variables {g;} and can be solved by
constructing the moment generating function F(z;,t) = Eqﬂzl,_,_,m

[A1]

(I,—, . nZZ")fqv _Simplify to the case where I' is diagonal: I'; = §,T}.
The function F then obeys the equation

F= Ei(l —z)(IF; — szzjijF.f)

where F; denotes o, F. In steady state, F = 0.. We now use the
following properties of the moment generating function:
Fli = LFl = @)5Fli = @) — (q), where |; signifies
evaluation of F at z; = 1 for allj. Successive differentiation of Eq.
A2 will generate linear equations for successively higher mo-
ments. Define the vector J; = F; and the matrix Kj; = Fj; (where
subscripts on F denote differentiation). Differentiating up to
second moments gives:

[A2]

MA-T)J=0, [U-DK+L]=-[A-DK+L]", [A3]
where L; = A;/; (no summation). These linear equations can be

solved for means (/) and variances (K).

Monte Carlo Simulations. Simulations were implemented by using
Gillespie’s algorithm for stochastic coupled chemical reactions
(29). The reactions simulated were precisely those shown in
Scheme 1 with multiple species, where the reaction rates were
allowed to depend nonlinearly on species concentrations. No
linearization approximation was used. Steady state was assumed
to have been reached at a time equal to 10 times the protein
half-life. Each data point or histogram was the result of 10,000
trials.
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