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Gene expression originates from individual DNA molecules within living cells. Like many single-molecule processes, gene 
expression and regulation are stochastic, that is, sporadic in time. This leads to heterogeneity in the messenger-RNA and 
protein copy numbers in a population of cells with identical genomes. With advanced single-cell fluorescence micros-
copy, it is now possible to quantify transcriptomes and proteomes with single-molecule sensitivity. Dynamic processes 
such as transcription-factor binding, transcription and translation can be monitored in real time, providing quantitative 
descriptions of the central dogma of molecular biology and the demonstration that a stochastic single-molecule event 
can determine the phenotype of a cell. 

This year marks the thirty-fifth anniversary of single-molecule 
optical detection and imaging. In 1976, Thomas Hirschfeld 
successfully detected single molecules at room temperature 

using an optical microscope to reduce probe volume and hence the 
background signal1. Figure 1a shows his one-dimensional (1D) 
fluorescence image of individual immobilized protein molecules, each 
labelled with tens of fluorophores. The use of tightly focused laser 
beams eventually allowed single-fluorophore detection in solution 
phase at room temperature, more than a decade later2. The imaging 
of single fluorophores in ambient environments was first reported 
with a scanning probe method3, and was followed by much easier and 
improved methods4–8 akin to Hirschfeld’s, which remain the methods of 
choice for imaging single molecules. In the past decade, improvements 
in photodetectors and optical components have allowed extensive 
single-molecule fluorescence studies on a variety of biological problems, 
first in vitro and more recently in living cells.

In a single-molecule experiment, one often observes stochastic 
behaviour, which would otherwise be obscured in an ensemble 
measurement. Figure 1b shows an early real-time observation of 
enzymatic turnovers of a single enzyme molecule, cholesterol oxidase9. 
The enzyme contains a flavin moiety that is naturally fluorescent in 
its oxidized form, but not in its reduced form. Each on/off cycle of 
fluorescence emission corresponds to an enzymatic turnover. This time 
trace resembles the electrical signal of a single ion channel recorded 
using a patch clamp — the first single-molecule technique in biology10. 
However, in this case, stochastic chemical reaction events of a single 
enzyme molecule are seen. Here, stochastic means that each fluorescence 
on/off time is probabilistic. Unlike the deterministic chemical kinetics 
of ensembles, each time trace is different, although their statistical 
properties are reproducible. On a single-molecule basis, when a chemical 
reaction occurs, a chemical bond is formed in less than 1 ps and the 
process cannot be resolved in a single-molecule experiment. However, 
the waiting time for the event is much longer and is probabilistic. 
When the kinetic scheme of a reaction includes a rate-limiting step, the 
distribution of the waiting times follows a single exponential distribution, 
and the number of events in a fixed time interval follows a Poisson 
distribution.

By contrast, if the overall reaction does not have one rate-limiting 
step but instead consists of identical sequential steps, the total waiting 

time is less stochastic. An example of this is DNA replication by a single 
DNA polymerase, which is the basis of single-molecule sequencing11, 
a key application of single-molecule enzymology in biotechnology. 
A stochastic time trace of individual nucleotides incorporated into a 
single-stranded DNA template by a single DNA polymerase molecule is 
shown in Fig. 1c. Although the waiting time for each base incorporation 
step is exponentially distributed, the total waiting time for replicating 
the long DNA is narrowly distributed12 — a consequence of the central 
limit theorem. Bacterial cell-cycle time, when limited by chromosome 
replication, is not stochastic for this reason13. The experiments 
in Fig. 1b, c were conducted under non-equilibrium steady-state 
conditions, in which the substrate concentration (thermodynamic 
driving force) does not change while substrate molecules are 
continuously converted to product molecules. This is similar to many 
non-equilibrium processes in a living cell, such as gene expression. 

The central dogma of molecular biology states that genetic information 
encoded in DNA is transcribed to mRNA by RNA polymerases, and 
mRNA is translated to protein by ribosomes. In a living cell, DNA exists 
as individual molecules from which the regulation of gene expression 
originates. But our knowledge of gene expression has come mainly from 
genetic and biochemical studies conducted with large populations of 
cells and purified biomolecules, which often obscure the single-molecule 
nature of gene expression. In recent years, single-molecule experiments 
in vitro have provided mechanistic insight into the functions of 
macromolecules involved in gene expression, including transcriptional 
and translational machineries14–18. Compelling areas of further 
investigation involve the observation and quantitative description of 
gene expression and regulation in a living cell. 

Not only is there only one copy (or a few copies) of a particular gene, 
but the copy number of a particular mRNA is also small owing to short 
intracellular mRNA lifetimes19, at least in a bacterial cell. The copy 
number of particular proteins ranges from zero to 10,000 (refs 20, 21); 
many important proteins, such as transcription factors, which regulate 
gene expression, have small copy numbers22. Consequently, single-
molecule sensitivity for mRNA and protein is needed to quantify gene 
expression in individual cells. 

Because of the stochasticity associated with the single or low copy-
number macromolecules, the gene expression of individual cells 
cannot be synchronized. It is therefore necessary to make real-time 
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observations of gene expression and regulation in single living cells. In 
particular, stochastic binding or unbinding of transcription factors to 
a particular gene, when rate limiting, must result in stochastic mRNA 
production, just like the single enzyme traces in Fig. 1b, c. Stochastic 
degradation of individual mRNA molecules further contributes to 
fluctuations in protein production. These temporal fluctuations of the 
mRNA and protein numbers (see sketches in Fig. 2) result in cell-to-cell 
variation of the copy numbers, or gene expression ‘noise’. Under the 
steady-state condition, the connection between temporal fluctuations 
and variation within the population is similar to ergodicity in statistical 
physics — the time average of a system equals the ensemble average of 
identical systems. 

Here we review recent single-molecule experiments that provide 
quantitative descriptions of the central dogma in living bacterial 
cells, although the strategies and technical advances highlighted are 
applicable to future studies in eukaryotic cells. We show that single-
molecule stochastic events have important biological consequences, 
such as determining the phenotype of a cell.

Imaging single molecules in living cells
To image a particular biomolecule in a living cell with fluorescence 
microscopy, specific labelling is required. The advent of genetically 
encodable fluorescent proteins has provided the highest specificity so 
far, with minimal perturbation for live-cell imaging23, allowing real-time 
observations of fusion proteins of interest. Although the weak signal 
of a single fluorescent-protein molecule is detectable in vitro using a 
fluorescent microscope together with a combination of laser excitation 
and modern charge-coupled-device detectors (Fig. 3a), the detection 
of single fluorescent-protein reporters in living cells is challenging 
owing to strong cellular autofluorescence. This obstacle can be partly 
overcome by selecting fluorescent proteins that are spectrally separated 
from the autofluorescence, which is generally blue-green24. Yellow- or 
red-emitting fluorescent proteins are therefore favourable for live-cell 
single-molecule imaging. Furthermore, in the same spirit as Hirschfeld’s 
experiment, the signal can be improved by reducing the detection 
volume to minimize autofluorescence background. For example, total 
internal reflection fluorescence microscopy (TIRFM) can limit the axial 
depth by illuminating with an evanescent wave that penetrates only a 
few hundred nanometres into a sample (Fig. 3b). TIRFM is therefore 
ideal for studying membrane protein dynamics25,26, but it does not allow 
imaging of the whole cell body. However, single fluorescent-protein 
imaging using wide-field illumination is possible in bacterial cells owing 
to their compact sizes (Fig. 3a). 

In living eukaryotic cells, imaging a single fluorescent protein is more 
difficult. A typical mammalian nucleus is 5–10 μm in diameter, compared 
with 1 μm for a bacterial cell. In a wide-field microscope, such a large 
cell volume gives rise to a strong out-of-focus autofluorescence signal, 
which overwhelms the signal of a single fluorescent protein. Probing 
DNA–protein interactions therefore requires three-dimensional (3D) 
sectioning. Although confocal fluorescence microscopy with one-photon 
excitation could be used, it also causes photobleaching outside the focal 
plane27. One solution to this problem is to use two-photon fluorescence 
microscopy28,29 (Fig. 3c), which allows localized excitation only at the 
laser focus, considerably reducing out-of-focus photobleaching while 
providing 3D sectioning in living eukaryotic cells. But, like confocal 
microscopy, it requires point scanning, thus limiting its time resolution. 
Alternatively, sheet illumination30,31, in which a thin light sheet illuminates 
only the image plane (Fig. 3d), provides low fluorescence background and 
high sensitivity, as well as high temporal resolution, because it does not 
require point scanning. These techniques are being adapted for single-
fluorescent-protein imaging in living eukaryotic cells. 

In a bacterial cell, a freely diffusing protein is difficult to image 
because its fast diffusion spreads the signal throughout the whole 
cell32,33. However, if a single fluorescent protein is localized, it can be 
imaged above the cellular autofluorescence background34. This method, 
termed detection by localization (Fig. 4a), works as long as there is only 

one immobilized molecule in a diffraction-limited volume (less than 
10 molecules within a bacterial cell). Detection by localization can be 
done by tethering on a membrane34, or by specific or even transient 
nonspecific binding to DNA35.

In cases in which the frame rate of the camera is insufficient to detect 
transient localization (<10 ms), a shorter pulse of laser excitation can 
be provided with each imaging frame33,35, an idea borrowed from strobe 
photography. Detection by localization therefore allows single-molecule 
observations with millisecond time resolution.

The width of a single-molecule image is about half of the optical 
wavelength, owing to the diffraction limit. However, the accuracy of 
determining the centre position of a single isolated fluorescent protein 
can be as high as a few nanometres36. To image more concentrated 
samples, higher spatial resolution can also be achieved by selectively 
observing only one molecule at a time using photoactivatable 
fluorescent proteins. This is the idea behind recent developments in 
single-molecule-based super-resolution imaging, such as stochastic 
optical reconstruction microscopy37 and photoactivated localization 
microscopy38,39, in which high-resolution images are reconstructed 
from many single-molecule images. Future applications of super-
resolution techniques will probably change the way we view intracellular 
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Figure 1 | Stochastic nature of single-molecule processes. a, Optical imaging 
of single protein molecules at room temperature. In his 1976 work, Hirschfeld 
demonstrated the detection of single protein molecules using a fluorescence 
microscope. A line scan of eight protein molecules was recorded. Div, division; 
adapted, with permission, from ref. 1. b, Stochastic turnovers of a single 
enzyme molecule. The fluorescence signal of a cholesterol oxidase molecule 
(E) shows stochastic switching between a fluorescent (oxidized flavin, FAD*) 
and non-fluorescent (reduced flavin, FADH2) state as enzymatic turnovers take 
place. Adapted from ref. 9. c, Single-molecule DNA sequencing. A single DNA 
polymerase is used to sequence DNA by incorporating fluorescently labelled 
nucleotides of four different colours. Although each incorporation happens 
stochastically with variable waiting times, the overall time for DNA replication, 
which is a sum of many sequential steps, is narrowly distributed. a.u., arbitrary 
units; adapted, with permission,  from ref. 11.
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processes40 such as gene expression. Single-fluorophore detection, as 
discussed above, remains a prerequisite for super-resolution imaging.

Transcription-factor dynamics 
As the first step of gene expression, transcription factors must bind to 
or unbind from DNA in response to environmental signals. Because 
transcription factors interact with DNA at one location, gene expression 
is stochastic when the binding and unbinding of a transcription factor 
become rate limiting (Fig. 2). In the classic example of the lac operon, 
the transcription factor known as the lac repressor (LacI), which is 
expressed at fewer than five copies per cell35, binds to or unbinds from 
operator sites to control transcription. With detection by localization, 
a single lac repressor fused to yellow fluorescent protein (YFP) can be 
visualized when bound to its operator in the lac operon35. When the 
inducer isopropyl-β-d-thiogalactoside (IPTG) is added to the cell, 
localized fluorescent spots disappear as a result of LacI dissociation 

(Fig. 4b). This living-cell assay allows single-molecule measurements 
of transcription-factor dissociation kinetics. 

In addition, the binding kinetics can be measured. When IPTG is 
removed from the medium, the localized signal reappears, indicating 
the rebinding of LacI (Fig. 4c). This experiment allowed the first 
measurement of the time required for a LacI molecule to find a vacant 
operator site on DNA. It takes less than 360 s for one repressor to search 
for one specific binding site35. This 360-s search time is a result of complex 
molecular processes. The protein–DNA search problem was extensively 
studied in the 1970s and 1980s41,42. It was observed that the DNA-binding 
rate constant of transcription factors significantly exceeds that expected 
from the 3D diffusion limit for bimolecular binding43. This observation 
led to the prevailing model of facilitated diffusion. For a transcription 
factor or any DNA-binding protein to find a target sequence on DNA, 
it first binds somewhere along the DNA nonspecifically and undergoes 
1D diffusion in search of the target. If the target is not found, the 
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Figure 2 | Central dogma at the single-molecule level. In a living bacterial cell, 
there is usually one copy of a particular gene, which is regulated by transcription 
factors (TFs), and transcribed into mRNA and translated into protein. A rate-
limiting event, such as transcription-factor binding to and unbinding from DNA, 

in this single-molecule process results in stochasticity. The expression levels of 
mRNA (middle panel) and protein (bottom panel) show temporal fluctuations 
in a single-cell lineage. This gives rise to variations of mRNA and protein copy 
numbers among a population of cells at a particular time (right panels).

a Wide-�eld illumination b Total internal re�ection c Two-photon illumination d Sheet illumination

Cell

Figure 3 | Methods for imaging single molecules in living cells. Single-
molecule fluorescence can be imaged using multiple laser illumination 
geometries that reduce the probe volume. a, In wide-field illumination, the 
entire cell is subject to laser exposure. For bacterial cells that have small 
volume, no further probe volume reduction is necessary. b, With total internal 
reflection, only the region within a few hundred nanometres of the coverslip 

is illuminated. This method is often used to image single membrane proteins, 
but cannot detect molecules deep in the cells. c, Two-photon excitation 
suppresses out-of-focus background, but suffers from slower time resolution 
owing to the need for point scanning. d, Sheet illumination has reduced 
background, as well as increased time resolution, because it does not require 
point scanning.
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transcription factor dissociates from the DNA to avoid a long search time 
imposed by 1D diffusion. The 3D diffusion through the cytoplasm is 
much faster, allowing the transcription factor to reach distant segments 
of DNA quickly. This combined 1D and 3D search is repeated until 
the transcription factor finds the DNA segment containing the target 
sequence. With single-molecule experiments, one can probe these 
phenomena in real time and quantify the process. 

In a series of single-molecule studies in vitro, 1D diffusion has 
been directly observed for fluorescently labelled transcription factors 
and other DNA-binding proteins along nonspecific DNA under 
a microscope44–49. The observed 1D diffusion rate (of the order of 
0.05 μm2 s−1) is much slower than the 3D diffusion in a living cell 
(~3 μm2 s−1) because the 1D diffusion of the transcription factor is 

coupled to simultaneous rotation around the DNA, tracking the 
pitch of the DNA double helix50,51. In the in vitro experiments, low salt 
concentrations were used to ensure long nonspecific residence times so 
that long trajectories of 1D diffusion could be recorded. In a living cell, 
high salt concentration shortens the residence time, but the diffusion 
constant often remains the same46. Consequently, the number of bases 
inspected in each 1D search segment is reduced.

A key question is whether such facilitated diffusion occurs in living 
cells. Recent single-molecule experiments suggest that it does. During 
the search process, a transcription factor spends 90% of its time on 
nonspecific DNA, and the residence time of nonspecific binding is less 
than 5 ms (ref. 35). Given the 1D diffusion constant in vitro, the protein 
inspects ~100 base pairs (bp), which implies a 100-fold acceleration 
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Figure 4 | Real-time measurements of gene expression with single-
molecule sensitivity. a, Detection by localization. The cellular 
autofluorescence makes it difficult to detect a freely diffusing fluorescent 
protein. However, a localized single molecule can be imaged above the 
autofluorescence background. b, Detection of single transcription factors 
in living cells. A lac repressor (LacI) labelled with YFP can be imaged when 
bound to its operator site on DNA. The localized fluorescence disappears 
after dissociation caused by the inducer IPTG. DIC, differential interference 
contrast microscopy; adapted from ref. 35. c, Rebinding of LacI to the 
operator on dilution of IPTG, as evident from the reappearance of the 
fluorescence localization. The average rebinding time is 60 s, which can be 
explained by the facilitated diffusion model for a target search. Adapted 
from ref. 35. d, Real-time observation of protein synthesis under repressed 

conditions. Individual YFP fusion protein molecules are visualized after being 
immobilized to the cell membrane, and are synthesized in bursts, each due to 
a single copy of mRNA. Time-lapse images of dividing Escherichia coli cells 
are shown together with the protein-production trace of a cell lineage. Dotted 
lines are cell division time. Adapted from ref. 34. e, The number of fluorescent 
protein molecules detected in each gene-expression burst follows a geometric 
distribution (exponential distribution for discrete numbers, solid line), giving 
an average number of molecules per burst of 4.2. Adapted from ref. 34. f, The 
mRNA copy number does not correlate with the protein copy number for the 
same gene in an E. coli cell because mRNA is short-lived, whereas a protein 
is long-lived. The protein copy-number distribution (red) follows a gamma 
distribution; the mRNA copy-number distribution (blue) is broader than a 
Poisson distribution. Adapted from ref. 21. 
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of target search compared with the case with no 1D diffusion52. This 
observation is consistent with mounting evidence that the length of 
the DNA segment that a transcription factor inspects is shorter than 
1,000 bp53–57, the value estimated from early in vitro experiments43. This 
100-bp range indicates that for a 5 × 106 bp genome, a transcription 
factor must inspect 5 × 106/100 = 5 × 104 segments before reaching the 
target site. Therefore, the total search time for one transcription factor 
in a cell is ~5 × 104 × 5 ms = 250 s, in close agreement with the measured 
search time35.

The combination of different single-molecule approaches has 
resolved the search problem and led to a quantitative understanding 
of the facilitated diffusion of transcription factors in bacteria. Similar 
single-molecule experiments should be able to address the same search 
problem in mammalian cells, which is complicated by nucleosomes. 

Gene expression in real time
Transcription-factor binding or unbinding leads to transcription and 
translation. Although the central dogma has been well established, 
real-time observation and quantitative description of transcription 
and translation in a single cell, at the single-molecule level, have only 
become possible in recent years. These studies have yielded unexpected 
observations of these fundamental processes in living cells34,58–62. 

We first discuss protein production, as it is better understood at 
the single-molecule level under repressed (non-induced) conditions. 
Under these conditions, single-molecule experiments have shown that 
proteins are synthesized in bursts34, and that the characteristics of the 
bursts can be understood quantitatively at the molecular level. The sto-
chastic production of individual molecules of a YFP-fused membrane 
protein has been monitored in real time in Escherichia coli34 (Fig. 4d). 
Newly synthesized YFPs were visualized one by one as diffraction-lim-
ited spots through detection by localization, and they were purposely 
photo bleached after being detected. A fast-maturing YFP, Venus63, was 
used to achieve 7-min time resolution in the observation of translation. 
Using this approach, translational bursting from the lac operon under 
repressed conditions was observed34. Each burst creates four proteins on 
average, at a frequency of about one burst per generation time (although 
not synchronized to the cell cycle). The number of bursts per cell cycle 
follows the Poisson distribution. 

Because it was shown that each burst results from transcription of 
a single mRNA (generated owing to the occasional dissociation of the 
LacI repressor), the observed translational burst must therefore be due 
to several rounds of ribosomal initiation on the same transcript. This 
transcript is degraded by nucleases with a stochastic cellular lifetime 
that is exponentially distributed with a time constant of 1.5 min. The 
longer an mRNA lives, the more proteins it produces. Consequently, as 
theoretically predicted in the 1970s64–66, the burst size is exponentially 
distributed (Fig. 4e). This observation of exponentially distributed 
protein copy numbers per burst was independently confirmed by 
another single-molecule assay using β-galactosidase activity as a 
reporter62. As we discuss later, such stochastic expression due to 
transcription-factor unbinding can be important in determining how 
a gene is induced in the presence of external stimuli67.

Under repressed conditions in E. coli, the mRNA production is 
Poissonian. Under induced conditions, however, mRNA too is produced 
in bursts. One widely adopted method to detect single mRNA molecules 
in living cells uses the bacteriophage coat proteins (MS2) that stably bind 
to specific RNA sequences68. To visualize single copies of mRNA, cell 
lines are engineered to express both MS2–green fluorescent protein (GFP) 
and mRNA containing several MS2-binding sites. First developed by the 
Singer group, this method allows real-time observation of transcript pro-
duction, and is ideal for probing transcriptional dynamics in living cells by 
tracking and counting single mRNA–MS2–GFP complexes69,70. A caveat 
is that the secondary structure associated with the binding sites and MS2 
binding often interferes with the native mRNA degradation pathways71, 
preventing the profiling of endogenous mRNA expression levels. 

When MS2-containing mRNA is expressed under fully induced 

conditions, the production of transcripts is found to be intermittent58. 
If transcript production were to have a single rate-limiting step, such 
as RNA polymerase binding or initiation, the waiting time between 
the birth of each mRNA would be exponentially distributed, and the 
copy-number distribution would be Poissonian (with a variance equal 
to the mean). Surprisingly, short bursts (average 6 min) of mRNA 
synthesis followed by long periods (average 37 min) of inactivity 
have been observed58. The burst-like transcription is similar to that 
shown in Fig. 4d, even though there is no known transcription-factor 
binding or unbinding in this case. This burst-like transcription was also 
observed using fluorescence correlation spectroscopy on MS2-bound 
mRNA in E. coli59, as well as in eukaryotic cells60,61. Although the overall 
waiting time between each mRNA synthesis event is not exponentially 
distributed58, the waiting times for transition between the active and the 
inactive states are. Accordingly, the copy-number distribution is super-
Poissonian, meaning that the variance of the distribution is greater 
than the mean. In other words, the cell-to-cell variation is significantly 
greater than what would be expected from a single rate-limiting process. 

This important finding pointed out that transcription from a sup-
posedly constitutive promoter is not as simple as RNA polymerases 
transcribing with a constant flux. Rather, it is a much noisier process, 
and the origin of this noise is unknown. Possible candidates include the 
role of nucleoid-associated proteins that are analogous to eukaryotic 
histones, global fluctuations of chromosome supercoiling states and 
RNA polymerase availability. In vivo single-molecule approaches are 
poised to further reveal the workings of these fundamental processes.

Characterization of cell-to-cell variation
Under steady-state conditions, temporal fluctuations of gene expression 
in each cell lineage, as discussed in the previous section and Fig. 2, lead 
to variation in copy number in an isogenic population of cells. A typical 
copy-number distribution, which is often asymmetrical, is shown in 
Fig. 4f. A rigorous mathematical relationship between fluctuations in 
expression and the distribution of protein copy number in a population 
of cells has been lacking. A log-normal function has often been used 
as a convenient phenomenological fit, but it offers no physical insight.

For each gene, the dynamics of the central dogma can be described 
by two parameters — the burst frequency, a, which is the number of 
bursts per cell cycle; and the burst size, b, which is the average number 
of molecules produced per burst. Experimentally, a and b can be 
determined by single-cell trajectories, such as in Fig. 2. Alternatively, 
the fact that temporal fluctuations in a cell lineage are related to cell-to-
cell variation of copy numbers suggests that a and b can also be inferred 
from a population of isogenic cells at a particular moment, as observed 
with a microscope or flow cytometer. 

To find the relationship, we needed a governing equation for gene-
expression dynamics. This is the chemical master equation, which was 
first used by Delbrück72 in 1940. In the late 1970s, the chemical master 
equation was applied to obtain protein copy-number distributions 
resulting from stochastic gene expression64,65. It was not until a decade 
ago that this approach regained attention66,73,74. Given the chemical 
kinetics scheme and rate constants connecting all the macromolecules 
involved in the central dogma, one can, in principle, solve the chemical 
master equation, which naturally yields time-dependent fluctuations. 
In practice, this can be simulated numerically using the Gillespie 
algorithm75. Under certain conditions, analytical results can be 
obtained. For example, under steady-state conditions with uncorrelated 
and exponentially distributed bursts, the chemical master equation can 
be solved76, and the protein copy-number distribution, p(n), can be 
approximated as a gamma distribution when the copy number (n) is 
approximated as a continuous variable77:

p(n) = na − 1e−n/b/baΓ(a)

The gamma distribution has two kinetic parameters — a and b, 
as defined earlier — providing a clear physical interpretation of the 
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copy-number distribution. This mathematical relationship allows 
extraction of intrinsic kinetic parameters (a and b) from fitting a gamma 
function to the measured copy-number distribution. At low expression 
levels, the values for a and b determined in this way are consistent with 
those derived from the single-cell trajectories34,62. As discussed in the 
next section, the cell-to-cell variation at high expression levels is more 
complicated but remains well described by a gamma distribution.

Gene-expression profiling
The ability to image single molecules in bacteria has offered an 
opportunity to profile protein expression globally, at any abundance level. 
Pioneering work using a yeast GFP fusion library78 surveyed the cell-to-
cell variation of more than 2,500 genes under various growth conditions, 
yielding several important observations79,80. First, the noise, or the 
variance divided by the mean squared, scales inversely with abundance. 
Second, the deviation of noise in a particular gene away from the global 
trend reflects the protein function and perhaps the underlying regulation. 
However, because single-molecule sensitivity in yeast cells had not been 
achieved at the time, 30% of the genes that were weakly expressed in the 
GFP library were undetectable.

To profile global variation at all expression levels, an E. coli YFP fusion 
library was constructed, and included more than 1,000 genes with 
expression levels ranging from 0.1 to 104 proteins per cell21. Of all the 
tagged proteins, approximately 99% of the copy-number distributions 
are well fit with the gamma distribution. About 50% of the proteins 
are expressed at an average level of fewer than ten molecules per cell, 
which argues for the necessity of single-molecule sensitivity in single-
cell analyses. 

Protein-expression noise has two distinct scaling properties relative 
to the mean. Below ten molecules per cell, the noise is inversely 
proportional to protein abundance. This scaling is the same as that 
observed in yeast, indicating that the noise from random birth and 
death of molecules, also known as intrinsic noise81,82, dominates the 
expression variation for low-abundance proteins. By contrast, at 
abundances above ten molecules per cell, the noise reaches a plateau of 
30% and does not decrease any further. This noise plateau is common, 
or ‘extrinsic’, to most high-abundance proteins, as the expression levels 
of different proteins have a large covariance from cell to cell. Notably, 
time-lapse movies have shown that the extrinsic noise fluctuates at a 
timescale much longer than the cell cycle, suggesting that a slow global-
regulation process is at work83.

At the transcriptional level, the same YFP library has been used to 
simultaneously survey mRNA and protein variation for 137 highly 
expressed genes21. Instead of labelling with MS2, which requires further 
cloning steps, mRNA was visualized using single-molecule fluorescence 
in situ hybridization (FISH)84,85 in fixed cells. Unlike conventional 
approaches that use several hybridization probes against the mRNA, the 
YFP mRNA was targeted using a universal singly labelled FISH probe 
optimized for both hybridization efficiency towards its targets and 
specificity against off-targets. It was found that, even for highly expressed 
genes, the average mRNA copy number is fewer than five per cell. Among 
a population of genetically identical cells, every mRNA species has a 
distribution that is broader than a Poisson distribution (Fig. 4f), which is 
related to the transcriptional bursts observed in the real-time experiments 
and suggests that this is a general phenomenon for most genes. 

The simultaneous profiling of mRNA and protein21 revealed that 
the mRNA and protein copy numbers of a single cell for any given gene 
are uncorrelated; that is, a cell that has more mRNA molecules than 
average does not necessarily have more proteins (Fig. 4f). This perhaps 
counter-intuitive result can be explained by the fact that mRNA has a 
much shorter lifetime than protein in bacteria19. This finding argues for 
the necessity of single-cell proteomics analyses, and offers a warning for 
interpretations of single-cell transcriptome data, at least for bacteria. 
A mammalian cell, by contrast, has comparable mRNA and protein 
lifetimes, and hence is expected to have more-correlated mRNA and 
protein levels than a bacterial cell. 

Gene regulation and phenotypic switching 
How cells with identical genomes have different phenotypes is an 
interesting question. Phenotypes are the physical, chemical and 
physiological states of the cell as related to function, determined by both 
the genome and environment. Given the ubiquitous and substantial 
noise described earlier, it is evident that the phenotype of a cell cannot 
be solely defined by its transcriptome and proteome. Cells can tolerate 
rather large noise in protein and mRNA abundance while tightly 
maintaining their phenotypes. A compelling question is what molecular 
actions dictate the transition between phenotypes.

In some cases, the cell phenotype can be clearly defined when there 
are bimodal or multimodal distributions of proteins, in contrast to the 
unimodal copy-number distribution that is most often observed21. 
As shown in Fig. 5b, a population of isogenic E. coli cells, in which 
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Figure 5 | Phenotype switching due to a single-molecule event. a, Bistability 
of the lac operon. The positive feedback by the normally repressed Lac permease 
(LacY, labelled with YFP) results in bimodal distribution at an intermediate 
inducer concentration, with two distinct phenotypes: strongly or weakly 
fluorescent. b, Fluorescence-microscope images show two phenotypes. The 
copy number of LacY in uninduced cells ranges from 0 to 10 molecules per 
cell, suggesting that one molecule of LacY is not enough to trigger the positive 
feedback. c, Bimodal distribution of LacY expression for isogenic cells at 
intermediate concentrations of an inducer (TMG, a lactose analogue). d, Time-
lapse images capture the transition of a cell from one phenotype to another. 
A large expression burst of LacY (~300 molecules) is necessary to trigger the 
switching, which results from the complete dissociation of a single transcription 
factor, LacI, from DNA. This experiment shows that a low-probability, single-
molecule stochastic event can determine cell fate. Adapted from ref. 67.
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Lac permease is labelled with YFP, shows bistability. The lac operon in 
E. coli, consisting of lacZ, lacY and lacA genes, is normally repressed 
by the lac transcription-factor repressor (LacI) in the absence of an 
inducer (Fig. 5a). When the inducer is present, it inactivates LacI and 
triggers expression of the lac operon86. The synthesis of the permease 
increases the inducer influx, which inactivates more LacI, creating a 
positive feedback on permease expression87. Without an inducer, no 
cells are induced, whereas with high inducer concentrations, all cells 
are induced. At moderate inducer concentrations, only a fraction of the 
cells are induced (Fig. 5c). This bistability is controlled by the positive 
feedback of the lac operon88.

Bistability is commonly exploited by bacteria to generate alternative 
phenotypes89, such as persistence against antibiotics90, lysis or lysogeny 
after phage infection91 and induction of the lac operon in E. coli87. 
Although much is known about the genetic switches, what drives the 
transition between two phenotypic states is unclear in many cases. How 
does a single cell make a decision about which phenotype to choose? 
With single-molecule imaging, uninduced E. coli cells have been shown 
to contain 0–10 copies of the permease enzyme, which is below the 
threshold for positive feedback (more than 300 molecules per cell)67. 
Transition to the fully induced state therefore requires a large burst of 
protein synthesis (Fig. 5d). 

The transcription factor controlling permease synthesis, LacI, is a 
tetramer that binds to two DNA-binding sites, creating a DNA loop. 
Partial dissociation of LacI and rapid rebinding to DNA result in a single 
copy of mRNA and a small burst of permease, as was observed in the 
aforementioned real-time studies of the repressed lac promoters. When 
the repressor completely dissociates from both operators on DNA, a 
large burst of permease arises, because it takes a few minutes for the 
repressor to rebind35. Indeed, bistability was eliminated in strains 
without DNA looping67. It is the stochastic single-molecule event 
of complete repressor dissociation from DNA that triggers the cell’s 
phenotypic switching.

Looking forward
We have shown that in the case of the lac operon, the workings of 
the genetic switch can be quantitatively understood at the molecular 
level. This is an example of low probability, stochastic events of a single 
molecule having important biological consequences. Another simple 
example is point mutations in the course of evolution.

It is well recognized that such stochastic events are connected to cell-
fate determination in other systems92. For example, there is considerable 
evidence that bacterial persistence against antibiotics is a stochastic 
process involving gene expression90. Persisters are not drug resistant 
but are drug tolerant. Drug resistance is related to a changing genome, 
whereas persisters have identical genomes, but different phenotypes. 
The phenomenon exists for many bacterial species and antibiotics. 
The molecular mechanism behind persistence is largely unknown, 
partly because the tools are not available. Understanding the molecular 
mechanism of persistence may be crucial to drug development, 
especially for diseases such as tuberculosis, caused by the bacterium 
Mycobacterium tuberculosis, which kills almost 2 million people every 
year worldwide. Single-cell gene-expression profiling may shed light on 
the mechanism of persistence.

Similarly, the reprogramming of somatic cells into induced 
pluripotent stem cells in the presence of certain transcription factors 
is also stochastic93. There are no elite cells, and every cell has a 
certain probability of being reprogrammed in the presence of some 
transcription factors, which is analogous to stochastic switching in 
the E. coli lac operon at low inducer concentrations. Yet, unlike the lac 
operon, the molecular mechanism is unknown. Extension of single-
molecule approaches to mammalian cells and stem cells will allow 
real-time monitoring over long periods so that low-probability events 
with considerable biological consequences can be observed directly. 
We anticipate that the single-molecule approaches summarized in this 
Review will lead to more biological discoveries for many years to come. ■
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