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We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising
from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and
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1. Introduction
In Monte Carlo path simulations that are used extensively
in computational finance, one is interested in the expected
value of a quantity that is a functional of the solution to a
stochastic differential equation (SDE). To be specific, sup-
pose that we have a multidimensional SDE with general
drift and volatility terms,

dS�t�= a�S� t�dt+ b�S� t�dW�t�� 0< t < T � (1)

and given initial data S0 we want to compute the expected
value of f �S�T ��, where f �S� is a scalar function with
a uniform Lipschitz bound; i.e., there exists a constant c
such that

�f �U�− f �V ��� c�U −V � ∀U�V � (2)

A simple Euler discretisation of this SDE with time-
step h is

�Sn+1 = �Sn+ a� �Sn� tn�h+ b� �Sn� tn��Wn�

and the simplest estimate for E�f �ST �� is the mean
of the payoff values f � �ST /h�, from N independent path
simulations

�Y =N−1
N∑
i=1

f � �S�i�T /h��

It is well established that, provided a�S� t� and b�S� t� sat-
isfy certain conditions (Bally and Talay 1995, Kloeden and
Platen 1992, Talay and Tubaro 1990), the expected mean-
square error (MSE) in the estimate �Y is asymptotically of
the form

MSE≈ c1N
−1 + c2h

2�

where c1, c2 are positive constants. The first term corre-
sponds to the variance in �Y due to the Monte Carlo sam-
pling, and the second term is the square of the O�h� bias
introduced by the Euler discretisation.
To make the MSE O��2�, so that the root-mean-square

error (RSME) is O���, requires that N = O��−2� and h=
O���, and hence the computational complexity (cost) is
O��−3� (Duffie and Glynn 1995). The main theorem in
this paper proves that the computational complexity for
this simple case can be reduced to O��−2�log ��2� through
the use of a multilevel method that reduces the variance,
leaving unchanged the bias due to the Euler discretisa-
tion. The multilevel method is very easy to implement and
can be combined, in principle, with other variance reduc-
tion methods such as stratified sampling (Glasserman 2004)
and quasi-Monte Carlo methods (Kuo and Sloan 2005,
L’Ecuyer 2004, Niederreiter 1992) to obtain even greater
savings.
The method extends the recent work of Kebaier (2005),

who proved that the computational cost of the simple prob-
lem described above can be reduced to O��−2�5� through
the appropriate combination of results obtained using two
levels of timestep, h and O�h1/2�. This is closely related
to a more generally applicable approach of quasi-control
variates analysed by Emsermann and Simon (2002).
Our technique generalises Kebaier’s (2005) approach to

multiple levels, using a geometric sequence of different
timesteps hl = M−lT , l = 0�1� � � � �L, for integer M � 2,
with the smallest timestep hL corresponding to the origi-
nal h, which determines the size of the Euler discretisation
bias. This idea of using a geometric sequence of timesteps
comes from the multigrid method for the iterative solution
of linear systems of equations arising from the discretisa-
tion of elliptic partial differential equations (Briggs et al.
2000, Wesseling 1992). The multigrid method uses a geo-
metric sequence of grids, each typically twice as fine in
each direction as its predecessor. If one were to use only the
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finest grid, the discretisation error would be very small, but
the computational cost of a Jacobi or Gauss-Seidel iteration
would be very large. On a much coarser grid, the accu-
racy is much less, but the cost is also much less. Multigrid
solves the equations on the finest grid by computing cor-
rections using all the grids, thereby achieving the fine grid
accuracy at a much lower cost. This is a very simplified
explanation of multigrid, but it is the same essential idea
that will be used here, retaining the accuracy/bias associ-
ated with the smallest timestep but using calculations with
larger timesteps to reduce the variance in a way that min-
imises the overall computational complexity.
A similar multilevel Monte Carlo idea has been used by

Heinrich (2001) for parametric integration, in which one is
interested in evaluating a quantity I� �, which is defined as
a multidimensional integral of a function that has a para-
metric dependence on  . Although the details of the method
are quite different from Monte Carlo path simulation, the
analysis of the computational complexity is quite similar.
This paper begins with the introduction of the new

multilevel method and an outline of its asymptotic accu-
racy and computational complexity for the simple problem
described above. The main theorem and its proof are then
presented. This establishes the computational complexity
for a broad category of applications and numerical dis-
cretisations with certain properties. The applicability of the
theorem to the Euler discretisation is a consequence of its
well-established weak and strong convergence properties.
Then, some refinements to the method and its implemen-
tation, and the effects of different payoff functions and
numerical discretisations are discussed. Finally, numerical
results are presented to provide support for the theoretical
analysis, and directions for further research are outlined.

2. Multilevel Monte Carlo Method
Consider Monte Carlo path simulations with different
timesteps hl =M−lT , l= 0�1� � � � �L. For a given Brownian
path W�t�, let P denote the payoff f �S�T ��, and let �Sl�Ml

and �Pl denote the approximations to S�T � and P using a
numerical discretisation with timestep hl.
It is clearly true that

E� �PL�=E� �P0�+
L∑
l=1

E� �Pl − �Pl−1��

The multilevel method independently estimates each of the
expectations on the right-hand side in a way that minimises
the computational complexity.
Let �Y0 be an estimator for E� �P0� using N0 samples, and

let �Yl for l > 0 be an estimator for E� �Pl − �Pl−1� using Nl

paths. The simplest estimator that one might use is a mean
of Nl independent samples, which for l > 0 is

�Yl =N−1
l

Nl∑
i=1

( �P�i�
l − �P�i�

l−1
)
� (3)

The key point here is that the quantity �P�i�
l − �P�i�

l−1 comes
from two discrete approximations with different timesteps
but the same Brownian path. This is easily implemented by
first constructing the Brownian increments for the simula-
tion of the discrete path leading to the evaluation of �P�i�

l ,
and then summing them in groups of size M to give the
discrete Brownian increments for the evaluation of �P�i�

l−1.
The variance of this simple estimator is V ��Yl� = N−1

l Vl,
where Vl is the variance of a single sample. The same
inverse dependence on Nl would apply in the case of a
more sophisticated estimator using stratified sampling or a
zero-mean control variate to reduce the variance.
The variance of the combined estimator �Y =∑L

l=0 �Yl is

V ��Y �=
L∑
l=0

N−1
l Vl�

The computational cost, if one ignores the asymptotically
negligible cost of the final payoff evaluation, is propor-
tional to

L∑
l=0

Nl h
−1
l �

Treating the Nl as continuous variables, the variance is min-
imised for a fixed computational cost by choosing Nl to
be proportional to

√
Vl hl. This calculation of an optimal

number of samples Nl is similar to the approach used in
optimal stratified sampling (Glasserman 2004), except that
in this case we also include the effect of the different com-
putational cost of the samples on different levels.
The above analysis holds for any value of L. We now

assume that L 
 1, and consider the behaviour of Vl as
l→�. In the particular case of the Euler discretisation and
the Lipschitz payoff function, provided a�S� t� and b�S� t�
satisfy certain conditions (Bally and Talay 1995, Kloeden
and Platen 1992, Talay and Tubaro 1990), there is O�h�
weak convergence and O�h1/2� strong convergence. Hence,
as l→�,

E� �Pl −P�=O�hl� (4)

and

E�� �Sl�Ml − S�T ��2�=O�hl�� (5)

From the Lipschitz property (2), it follows that

V � �Pl −P��E�� �Pl −P�2�� c2E�� �Sl�Ml − S�T ��2��

Combining this with (5) gives V � �Pl−P�=O�hl�. Further-
more,

� �Pl − �Pl−1�= � �Pl −P�− � �Pl−1 −P�

=⇒ V � �Pl − �Pl−1��
(
�V � �Pl −P��1/2 + �V � �Pl−1 −P��1/2

)2
�
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Hence, for the simple estimator (3), the single sample vari-
ance Vl is O�hl�, and the optimal choice for Nl is asymp-
totically proportional to hl. Setting Nl = O��−2Lhl�, the
variance of the combined estimator �Y is O��2�.
If L is now chosen such that

L= log �−1

logM
+O�1��

as � → 0, then hL = M−L = O���� and so the bias error
E� �PL−P� is O���, due to (4). Consequently, we obtain an
MSE that is O��2�, with a computational complexity that
is O��−2L2�=O��−2�log ��2�.

3. Complexity Theorem
The main theorem is worded quite generally so that it can
be applied to a variety of financial models with output func-
tionals that are not necessarily Lipschitz functions of the
terminal state, but might instead be a discontinuous func-
tion of the terminal state, or even path dependent as in
the case of barrier and lookback options. The theorem also
does not specify which numerical approximation is used.
Instead, it proves a result concerning the computational
complexity of the multilevel method conditional on certain
features of the underlying numerical approximation and the
multilevel estimators. This approach is similar to that used
by Duffie and Glynn (1995).

Theorem 3.1. Let P denote a functional of the solution
of SDE (1) for a given Brownian path W�t�, and let �Pl
denote the corresponding approximation using a numerical
discretisation with timestep hl =M−lT .
If there exist independent estimators �Yl based on Nl

Monte Carlo samples, and positive constants #� 1
2 �$� c1�

c2� c3 such that
(i) E� �Pl −P�� c1 h

#
l ,

(ii) E��Yl�=
{
E� �P0�� l= 0�

E� �Pl − �Pl−1�� l > 0�

(iii) V ��Yl�� c2N
−1
l h

$
l ,

(iv) Cl, the computational complexity of �Yl, is bounded by
Cl � c3Nlh

−1
l �

then there exists a positive constant c4 such that for any
� < e−1, there are values L and Nl for which the multilevel
estimator

�Y =
L∑
l=0

�Yl
has an MSE with bound

MSE ≡E���Y −E�P��2� < �2�

with a computational complexity C with bound

C �



c4�

−2� $ > 1�

c4�
−2�log ��2� $= 1�

c4�
−2−�1−$�/#� 0<$< 1�

Proof. Using the notation �x� to denote the unique integer
n satisfying the inequalities x � n < x + 1, we start by
choosing L to be

L=
⌈
log�

√
2c1T

#�−1�
# logM

⌉
�

so that

1√
2
M−#� < c1h

#
L �

1√
2
�� (6)

and hence, because of properties (i) and (ii),

�E��Y �−E�P��2 � 1
2�

2�

This 1
2�

2 upper bound on the square of the bias error,
together with the 1

2�
2 upper bound on the variance of the

estimator to be proved later, gives an �2 upper bound on
the estimator MSE.
Also,

L∑
l=0

h−1
l = h−1

L

L∑
l=0

M−l <
M

M − 1
h−1
L

using the standard result for a geometric series, and

h−1
L <M

(
�√
2c1

)−1/#
�

due to the first inequality in (6). These two inequalities,
combined with the observation that �−1/# � �−2 for #� 1

2
and � < e−1, give the following result, which will be used
later:

L∑
l=0

h−1
l <

M2

M − 1
�
√
2c1�

1/#�−2� (7)

We now need to consider the different possible values
for $.
(a) If $= 1, we set Nl = �2�−2�L+ 1�c2hl� so that

V ��Y �=
L∑
l=0

V ��Yl��
L∑
l=0

c2N
−1
l hl �

1
2�

2�

which is the required upper bound on the variance of the
estimator.
To bound the computational complexity C, we begin

with an upper bound on L given by

L�
log �−1

# logM
+ log�

√
2 c1 T

#�

# logM
+ 1�

Given that 1< log �−1 for � < e−1, it follows that

L+ 1� c5 log �
−1�

where

c5 =
1

# logM
+max

(
0�

log�
√
2c1T

#�

# logM

)
+ 2�



Giles: Multilevel Monte Carlo Path Simulation
610 Operations Research 56(3), pp. 607–617, © 2008 INFORMS

Upper bounds for Nl are given by

Nl � 2�−2�L+ 1�c2hl + 1�

Hence, the computational complexity is bounded by

C � c3

L∑
l=0

Nlh
−1
l � c3

(
2�−2�L+ 1�2c2 +

L∑
l=0

h−1
l

)
�

Using the upper bound for L+ 1 and inequality (7), and
the fact that 1 < log �−1 for � < e−1, it follows that C �

c4�
−2�log ��2, where

c4 = 2c3c
2
5c2 + c3

M2

M − 1
�
√
2c1�

1/#�

(b) For $> 1, setting

Nl =
⌈
2�−2c2T

�$−1�/2�1−M−�$−1�/2�−1h�$+1�/2l

⌉
�

then

L∑
l=0

V ��Yl�� 1
2�

2T −�$−1�/2�1−M−�$−1�/2�
L∑
l=0

h
�$−1�/2
l �

Using the standard result for a geometric series,

L∑
l=0

h
�$−1�/2
l = T �$−1�/2

L∑
l=0
�M−�$−1�/2�l

< T �$−1�/2�1−M−�$−1�/2�−1� (8)

and hence we obtain a 1
2�

2 upper bound on the variance of
the estimator.
Using the Nl upper bound

Nl < 2�−2c2T
�$−1�/2�1−M−�$−1�/2�−1h�$+1�/2l + 1�

the computational complexity is bounded by

C � c3

(
2�−2c2T

�$−1�/2�1−M−�$−1�/2�−1

·
L∑
l=0

h
�$−1�/2
l +

L∑
l=0

h−1
l

)
�

Using inequalities (7) and (8) gives C � c4�
−2, where

c4 = 2c3c2T
$−1�1−M−�$−1�/2�−2 + c3

M2

M − 1
�
√
2c1�

1/#�

(c) For $< 1, setting

Nl =
⌈
2�−2c2h

−�1−$�/2
L �1−M−�1−$�/2�−1h�$+1�/2l

⌉
�

then

L∑
l=0

V ��Yl� <
1
2
�2h

�1−$�/2
L �1−M−�1−$�/2�

L∑
l=0

h
−�1−$�/2
l �

Because

L∑
l=0

h
−�1−$�/2
l = h

−�1−$�/2
L

L∑
l=0
�M−�1−$�/2�l

< h
−�1−$�/2
L �1−M−�1−$�/2�−1� (9)

we again obtain a 1
2�

2 upper bound on the variance of the
estimator.
Using the Nl upper bound

Nl < 2�−2c2h
−�1−$�/2
L �1−M−�1−$�/2�−1h�$+1�/2l + 1�

the computational complexity is bounded by

C � c3

(
2�−2c2h

−�1−$�/2
L �1−M−�1−$�/2�−1

·
L∑
l=0

h
−�1−$�/2
l +

L∑
l=0

h−1
l

)
�

Using inequality (9) gives

h
−�1−$�/2
L �1−M−�1−$�/2�−1

L∑
l=0

h
−�1−$�/2
l

< h
−�1−$�
L �1−M−�1−$�/2�−2�

The first inequality in (6) gives

h
−�1−$�
L < �

√
2c1�

�1−$�/#M1−$�−�1−$�/#�

Combining the above two inequalities, and also using in-
equality (7) and the fact that �−2 < �−2−�1−$�/# for � < e−1,
gives C � c4�

−2−�1−$�/#, where

c4 = 2c3c2�
√
2c1�

�1−$�/#M1−$�1−M−�1−$�/2�−2

+ c3
M2

M − 1
�
√
2c1�

1/#� �

The theorem and proof show the importance of the
parameter $, which defines the convergence of the variance
Vl as l→�. In this limit, the optimal Nl is proportional
to

√
Vlhl =O�h

�$+1�/2
l �, and hence the computational effort

Nlh
−1
l is proportional to O�h

�$−1�/2
l �. This shows that for

$ > 1, the computational effort is primarily expended on
the coarsest levels; for $< 1, it is on the finest levels; and
for $= 1, it is roughly evenly spread across all levels.
In applying the theorem in different contexts, there will

often be existing literature on weak convergence that will
establish the correct exponent # for condition (i). Con-
structing estimators with properties (ii) and (iv) is also
straightforward. The main challenge will be in determining
and proving the appropriate exponent $ for (iii). An even
bigger challenge might be to develop better estimators with
a higher value for $.
In the case of the Euler discretisation with a Lipschitz

payoff, there is existing literature on the conditions on
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a�S� t� and b�S� t� for O�h� weak convergence and O�h1/2�
strong convergence (Bally and Talay 1995, Kloeden and
Platen 1992, Talay and Tubaro 1990), which in turn gives
$= 1 as explained earlier.
The convergence is degraded if the payoff function

f �S�T �� has a discontinuity. In this case, for a given
timestep hl, a fraction of the paths of size O�h

1/2
l � will have

a final �Sl�Ml that is O�h1/2l � from the discontinuity. With
the Euler discretisation, this fraction of the paths has an
O�1� probability of �Pl − �Pl−1 being O�1�, due to �Sl�Ml and
�Sl−1�Ml−1 being on opposite sides of the discontinuity, and
therefore Vl =O�h

1/2
l � and $= 1

2 . Because the weak order
of convergence is still O�hl� (Bally and Talay 1995) so
#= 1, the overall complexity is O��−2�5�, which is still bet-
ter than the O��−3� complexity of the standard Monte Carlo
method with an Euler discretisation. Further improvement
could be possible through the use of adaptive sampling
techniques which increase the sampling of those paths with
large values for �Pl − �Pl−1 (Glasserman et al. 1999, Kahn
1956, Liu 2001).
If the Euler discretisation is replaced by Milstein’s

method for a scalar SDE, its O�h� strong convergence re-
sults in Vl =O�h2l � for a Lipschitz payoff. Current research
is investigating how to achieve a similar improvement in the
convergence rate for lookback, barrier, and digital options,
based on the appropriate use of Brownian interpolation
(Glasserman 2004), as well as the extension to multidimen-
sional SDEs.

4. Extensions

4.1. Optimal M

The analysis so far has not specified the value of the inte-
ger M , which is the factor by which the timestep is refined
at each level. In the multigrid method for the iterative solu-
tion of discretisations of elliptic PDEs, it is usually optimal
to use M = 2, but that is not necessarily the case with the
multilevel Monte Carlo method introduced in this paper.
For the simple Euler discretisation with a Lipschitz pay-

off, V � �Pl−P�≈ c0hl asymptotically, for some positive con-
stant c0. This corresponds to the case $= 1 in Theorem 3.1.
From the identity

� �Pl − �Pl−1�= � �Pl −P�− � �Pl−1 −P�

we obtain, asymptotically, the upper and lower bounds

�
√
M − 1�2c0hl � V � �Pl − �Pl−1�� �

√
M + 1�2c0hl�

with the two extremes corresponding to perfect correlation
and anticorrelation between �Pl −P and �Pl−1 −P .
Suppose now that the value of V � �Pl − �Pl−1� is given

approximately by the geometric mean of the two bounds,

V � �Pl − �Pl−1�≈ �M − 1�c0hl�

which corresponds to c2 = �M −1�c0 in Theorem 3.1. This
results in

Nl ≈ 2�−2�L+ 1��M − 1�c0hl�

so the computational cost of evaluating �Yl is proportional to
Nl�h

−1
l +h−1

l−1�=Nlh
−1
l �1+M−1�

≈ 2�−2�L+ 1��M −M−1�c0�

Because L = O�log �−1/ logM�, summing the costs of all
levels, we conclude that asymptotically, as �→ 0, the total
computational cost is roughly proportional to

2�−2�log ��2f �M��

where

f �M�= M −M−1

�logM�2
�

This function is illustrated in Figure 1. Its minimum near
M = 7 is about half the value at M = 2, giving twice the
computational efficiency. The numerical results presented
later are all obtained using M = 4. This gives most of the
benefits of a larger value of M , but at the same time M is
small enough to give a reasonable number of levels from
which to estimate the bias, as explained in the next section.

4.2. Bias Estimation and Richardson
Extrapolation

In the multilevel method, the estimates for the correction
E� �Pl− �Pl−1� at each level give information that can be used
to estimate the remaining bias. In particular, for the Euler
discretisation with a Lipschitz payoff, asymptotically, as
l→�,

E�P − �Pl�≈ c1hl

Figure 1. A plot of the function �M −M−1�/�logM�2.
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for some constant c1, and hence

E� �Pl − �Pl−1�≈ �M − 1�c1hl ≈ �M − 1�E�P − �Pl��

This information can be used in one of two ways. The
first is to use it as an approximate bound on the remaining
bias, so that to obtain a bias which has magnitude less than
�/
√
2, one increases the value for L until

��YL�< 1√
2
�M − 1���

Being more cautious, the condition we use in the numerical
results presented later is

max(M−1��YL−1�� ��YL�) < 1√
2
�M − 1��� (10)

This ensures that the remaining error based on an extrapo-
lation from either of the two finest timesteps is within the
desired range. This modification is designed to avoid pos-
sible problems due to a change in sign of the correction,
E� �Pl − �Pl−1�, on successive refinement levels.
An alternative approach is to use Richardson extrapola-

tion to eliminate the leading order bias. Because E�P − �PL�
≈ �M − 1�−1E� �PL − �PL−1�, by changing the combined
estimator to

( L∑
l=0

�Yl
)
+�M−1�−1�YL=

M

M−1

{
�Y0+

L∑
l=1
��Yl−M−1�Yl−1�

}
�

the leading order bias is eliminated and the remaining bias
is o�hL�, usually either O�h3/2L � or O�h2L�. The advantage
of rewriting the new combined estimator in the form shown
above on the right-hand side is that one can monitor the
convergence of the terms �Yl−M−1�Yl−1 to decide when the
remaining bias is sufficiently small, in exactly the same way
as described previously for �Yl. Assuming the remaining bias
is O�h2L�, the appropriate convergence test is

��YL−M−1�YL−1�< 1√
2
�M2 − 1��� (11)

5. Numerical Algorithm
Putting together the elements already discussed, the multi-
level algorithm used for the numerical tests is as follows:
Step 1. Start with L= 0.
Step 2. Estimate VL using an initial set of NL = 104 sam-

ples.
Step 3. Define optimal Nl, l = 0� � � � �L, using Equa-

tion (12).
Step 4. Evaluate extra samples at each level as needed

for new Nl.
Step 5. If L � 2, test for convergence using Equa-

tion (10) or Equation (11).
Step 6. If L < 2 or it is not converged, set L += L+ 1

and go to Step 2.

The equation for the optimal Nl is

Nl =
⌈
2�−2

√
Vlhl

( L∑
l=0

√
Vl/hl

)⌉
� (12)

This makes the estimated variance of the combined multi-
level estimator less than 1

2�
2, while Equation (10) tries to

ensure that the bias is less than 1√
2
�. Together, they should

give an MSE that is less than �2, with � being a user-
specified r.m.s. accuracy.
In Step 4, the optimal Nl from Step 3 is compared to

the number of samples already calculated at that level. If
the optimal Nl is larger, then the appropriate number of
additional samples are calculated. The estimate for Vl is
then updated, and this improved estimate is used if Step 3
is revisited.
It is important to note that this algorithm is heuristic; it

is not guaranteed to achieve an MSE error that is O��2�.
The main theorem in §3 does provide a guarantee, but the
conditions of the theorem assume a priori knowledge of the
constants c1 and c2 governing the weak convergence and
the variance convergence as h→ 0. These two constants
are in effect being estimated in the numerical algorithm
described above.
The accuracy of the variance estimate at each level

depends on the size of the initial sample set. If this initial
sample size were made proportional to �−p for some expo-
nent 0 < p < 2− 1/#, then as �→ 0, it could be proved
that the variance estimate will converge to the true value
with probability 1, without an increase in the order of the
computational complexity.
The weakness in the heuristic algorithm lies in the bias

estimation, and it does not appear to be easily resolved.
Suppose that the numerical algorithm determines that L
levels are required. If p�S� represents the probability den-
sity function for the final state S�T � defined by the SDE,
and pl�S�, l= 0�1� � � � �L are the corresponding probability
densities for the level l numerical approximations, then in
general p�S� and pl�S� are likely to be linearly indepen-
dent, so

p�S�= g�S�+
L∑
l=0

alpl�S�

for some set of coefficients al and a nonzero function g�S�
that is orthogonal to pl�S�. If we consider g�S� to be an
increment to the payoff function, then its numerical expec-
tation on each level is zero because

Epl
�g�=

∫
g�S�pl�S�dS = 0�

while its true expectation is

Ep�g�=
∫
g�S�p�S�dS =

∫
g2�S�dS > 0�

Hence, by adding an arbitrary amount of g�S� to the
payoff, we obtain an arbitrary perturbation of the true
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expected payoff, but the heuristic algorithm will on aver-
age terminate at the same level L with the same expected
value.
This is a fundamental problem that also applies to

the standard Monte Carlo algorithm. In practice, it might
require additional a priori knowledge or experience to
choose an appropriate minimum value for L to achieve a
given accuracy. Being cautious, one is likely to use a value
for L that is larger than required in most cases. In this
case, the use of the multilevel method will yield significant
additional benefits. For the standard Monte Carlo method,
the computational cost is proportional to ML, the number
of timesteps on the finest level, whereas for the multilevel
method with the Euler discretisation and a Lipschitz payoff,
the cost is proportional to L2. Thus, the computational cost
of being cautious in the choice of L is much less severe
for the multilevel algorithm than for the standard Monte
Carlo.
Even better would be a multilevel application with a vari-

ance convergence rate $ > 1; for this, the computational
cost is approximately independent of L, suggesting that one
could use a value for L that is much larger than necessary.
If there is a known value for L that is guaranteed to give
a bias that is much less than �, then it might be possible
to define a numerical algorithm that will provably achieve
an MSE error of �2 at a cost that is O��−2�; this will be an
area for future research.
In reporting the numerical results later, we define the

computational cost as the total number of timesteps per-
formed on all levels,

C =N0 +
L∑
l=1

Nl�M
l +Ml−1��

The term Ml +Ml−1 reflects the fact that each sample at
level l > 0 requires the computation of one fine path with
Ml timesteps and one coarse path with Ml−1 timesteps.
The computational costs are compared to those of the

standard Monte Carlo method, which is calculated as

C∗ =
L∑
l=0

N ∗
l M

l�

where N ∗
l = 2�−2V �Pl� so that the variance of the esti-

mator is 1
2�

2 as with the multilevel method. The summa-
tion over the grid levels corresponds to an application of
the standard Monte Carlo algorithm on each grid level
to enable the estimation of the bias in order to apply
the same heuristic termination criterion as the multilevel
method.
Results are also shown for Richardson extrapolation in

conjunction with both the multilevel and standard Monte
Carlo methods. The costs for these are defined in the same
way; the difference is in the choice of L, and the definition
of the extrapolated estimator that has a slightly different
variance.

6. Numerical Results

6.1. Geometric Brownian Motion

Figures 2–5 present results for a simple geometric Brownian
motion,

dS = rS dt+/S dW� 0< t < 1�

with S�0� = 1, r = 0�05, and / = 0�2, and four different
payoff options.
By switching to the new variable X = logS, it is pos-

sible to construct a numerical approximation that is exact,
but here we directly simulate the geometric Brownian
motion using the Euler discretisation as an indication of the
behaviour with more complex models, for example, those
with a local volatility function /�S� t�.

6.1.1. European Option. The results in Figure 2 are
for the European call option for which the discounted pay-
off function is

P = exp�−r�max�0� S�1�− 1��

The top left plot shows the behaviour of the variance of
both �Pl and �Pl− �Pl−1. The quantity plotted is the logarithm
base M (M = 4 for all numerical results in this paper) ver-
sus the grid level. The reason for this choice is that a slope
of −1 corresponds to a variance that is exactly proportional
to M−l, which in turn is proportional to hl. The slope of the
line for �Pl − �Pl−1 is indeed approximately −1, indicating
that Vl = V � �Pl − �Pl−1�= O�h�. For l = 4, Vl is more than

Figure 2. Geometric Brownian motion with European
option (value ≈ 0�10).

0 1 2 3 4
–10

–8

–6

–4

–2

0

l

lo
g M

 v
ar

ia
nc

e

Pl

Pl –Pl–1

Pl

Pl –Pl–1

Yl –Yl–1/M

0 1 2 3 4
–12

–10

–8

–6

–4

–2

0

l

lo
g M

 |m
ea

n|

0 1 2 3 4

104

106

108

1010

l

N
l

ε = 0.00005
ε = 0.0001
ε = 0.0002
ε = 0.0005
ε = 0.001

10–4 10–3

10–2

10–1

100

101

ε

ε2  c
os

t

Std MC
Std MC ext
MLMC
MLMC ext



Giles: Multilevel Monte Carlo Path Simulation
614 Operations Research 56(3), pp. 607–617, © 2008 INFORMS

1,000 times smaller than the variance V � �Pl� of the standard
Monte Carlo method with the same timestep.
The top right plot shows the mean value and correc-

tion at each level. Both top plots are based on results from
4×106 paths. The slope of approximately −1 again implies
an O�h� convergence of E� �Pl− �Pl−1�. Even at l= 3, the rel-
ative error E�P − �Pl�/E�P� is less than 10−3. Also plotted
is a line for the multilevel method with Richardson extrap-
olation, showing significantly faster weak convergence.
The bottom two plots have results from two sets of mul-

tilevel calculations, with and without Richardson extrap-
olation, for five different values of �. Each line in the
bottom left plot corresponds to one multilevel calculation
and shows the values for Nl, l= 0� � � � �L, with the values
decreasing with l because of the decrease in both Vl and hl.
It also shows that the value for L, the maximum level of
timestep refinement, increases as the value for � decreases.
The bottom right plot shows the variation of the compu-

tational complexity C (as defined in the previous section)
with the desired accuracy �. The plot is of �2C versus �
because we expect to see that �2C is only very weakly
dependent on � for the multilevel method. Indeed, it can
be seen that without Richardson extrapolation, �2C is a
very slowly increasing function of �−1 for the multilevel
methods, in agreement with the theory that predicts it to
be asymptotically proportional to �log ��2. For the stan-
dard Monte Carlo method, theory predicts that �2C should
be proportional to the number of timesteps on the finest
level, which in turn is roughly proportional to �−1 due to
the weak convergence property. This is shown in the fig-
ure, with the “staircase” effect corresponding to the fact
that L = 2 for � = 0�001�0�0005, and L = 3 for � =
0�0002�0�0001�0�0005.
With Richardson extrapolation, a priori theoretical anal-

ysis predicts that �2C for the standard Monte Carlo method
should be approximately proportional to �−1/2. However,
with extrapolation the numerical results require no more
than the minimum two levels of refinement to achieve the
desired accuracy, and so �2C is found to be independent of
� for the range of � in the tests. Nevertheless, for the most
accurate case with � = 5× 10−5, the multilevel method is
still approximately 10 times more efficient than the stan-
dard Monte Carlo method when using extrapolation, and
more than 60 times more efficient without extrapolation.
As a final check on the reliability of the heuristics in the

multilevel numerical algorithm, 10 sets of multilevel calcu-
lations have been performed for each value of �, and the
root-mean-square error (RMSE) is computed and compared
to the target accuracy of �. For all cases, with and without
Richardson extrapolation, the ratio RMSE/� was found to
be in the range 0.43–0.96, indicating that the algorithm is
correctly achieving the desired accuracy.

6.1.2. Asian Option. Figure 3 has results for the Asian
option payoff, P = exp�−r�max�0� S̄− 1�, where

S̄ =
∫ 1

0
S�t�dt�

Figure 3. Geometric Brownian motion with Asian
option (value ≈ 0�058).
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which is approximated numerically by

S̄l =
Nl∑
n=1

1
2
� �Sn+ �Sn−1�hl�

The O�hl� convergence of both Vl and E�Pl − Pl−1� is
similar to the European option case, but in this case the
Richardson extrapolation does not seem to have improved
the order of weak convergence. Hence, the reliability of the
bias estimation and grid level termination must be ques-
tioned for the Richardson extrapolation. Without extrapola-
tion, the multilevel method is up to 30 times more efficient
than the standard Monte Carlo method.

6.1.3. Lookback Option. The results in Figure 4 are
for the lookback option

P = exp�−r�
(
S�1�− min

0<t<1
S�t�

)
�

The minimum value of S�t� over the path is approximated
numerically by

�Smin� l =
(
min
n

�Sn
)
�1−$∗/

√
hl��

$∗ ≈ 0�5826 is a constant that corrects the O�h1/2� lead-
ing order error due to the discrete sampling of the path,
and thereby restores O�h� weak convergence (Broadie et al.
1997). Richardson extrapolation clearly works well in this
case, improving the weak convergence to second order.
This has a significant effect on the number of grid levels
required, so that the multilevel method gives savings of up
to factor 65 without extrapolation, but up to only four with
extrapolation.
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Figure 4. Geometric Brownian motion with lookback
option (value ≈ 0�17).
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6.1.4. Digital Option. The final payoff that is consid-
ered is a digital option, P = exp�−r�H�S�1�− 1�, where
H�x� is the Heaviside function. The results in Figure 5
show that Vl = O�h

1/2
l �, instead of the O�hl� convergence

of all of the previous options. Because of this, much larger
values for Nl on the finer refinement levels are required to

Figure 5. Geometric Brownian motion with digital
option (value ≈ 0�53).
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achieve comparable accuracy, and the efficiency gains of
the multilevel method are reduced accordingly. Richardson
extrapolation is extremely effective in this case, although
the resulting order of weak convergence is unclear, but
the multilevel method still offers some additional compu-
tational savings.
The accuracy of the heuristic algorithm is again tested by

performing 10 sets of multilevel calculations and compar-
ing the RMSE error to the target accuracy �. The ratio is
in the range 0.55–1.0 for all cases, with and without
extrapolation.

6.2. Heston Stochastic Volatility Model

Figure 6 presents results for the same European call payoff
considered previously, but this time based on the Heston
stochastic volatility model (Heston 1993):

dS = rS dt+√
V S dW1� 0< t < 1�

dV =  �/2 −V �dt+ 2
√
V dW2�

with S�0� = 1, V �0� = 0�04, r = 0�05, / = 0�2,  = 5,
2 = 0�25, and correlation 3=−0�5 between dW1 and dW2.
The accuracy and variance are both improved by defining

a new variable

W = e t�V −/2��

and applying the Euler discretisation to the SDEs for W
and S, which results in the discrete equations

�Sn+1 = �Sn+ r �Snh+
√
�V +
n
�Sn�W1� n�

�Vn+1 = /2 + e− h
(
��Vn−/2�+ 2

√
�V +
n �W2� n

)
�

Figure 6. Heston model with European option
(value ≈ 0�10).
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Note that
√
V is replaced by

√
V + ≡√

max�V �0�, but as
h→ 0, the probability of the discrete approximation to the
volatility becoming negative approaches zero for the chosen
values of  , / , 2 (Kahl and Jäckel 2006).
Because the volatility does not satisfy a global Lipschitz

condition, there is no existing theory to predict the order
of weak and strong convergence. The numerical results
suggest the variance is decaying slightly slower than first
order, while the weak convergence appears slightly faster
than first order. The multilevel method without Richardson
extrapolation gives savings of up to factor 10 compared to
the standard Monte Carlo method. Using a reference value
computed using the numerical method of Kahl and Jäckel
(2005), the ratio of the RMSE error to the target accuracy �
is found to be in the range 0.49–1.01.
The results with Richardson extrapolation are harder to

interpret. The order of weak convergence does not appear
to be improved. The computational cost is reduced, but this
is due to the heuristic termination criterion that assumes the
remaining error after extrapolation is second order, which
it is not. Consequently, the ratio of the RMSE error to the
target accuracy � is in the range 0.66–1.23, demonstrating
that the termination criterion is not reliable in combination
with extrapolation for this application.

7. Concluding Remarks
In this paper, we have shown that a multilevel approach,
using a geometric sequence of timesteps, can reduce the
order of complexity of Monte Carlo path simulations. If we
consider the generation of a discrete Brownian path through
a recursive Brownian bridge construction, starting with the
end points W0 and WT at level 0, then computing the mid-
point WT/2 at level 1, then the interval midpoints WT/4,
W3T /4 at level 2, and so on, then an interpretation of the
multilevel method is that the level l correction, E� �Pl− �Pl−1�,
corresponds to the effect on the expected payoff due to the
extra detail that is brought into the Brownian bridge con-
struction at level l.
The numerical results for a range of model problems

show that the multilevel algorithm is efficient and reliable
in achieving the desired accuracy, whereas the use of
Richardson extrapolation is more problematic; in some
cases it works well, but in other cases it fails to double the
weak order of convergence and hence does not achieve the
target accuracy.
A number of areas for further research arise this work.

One is the development of improved estimators giving a
convergence order $ > 1. For scalar SDEs, the Milstein
discretisation gives $ = 2 for Lipschitz payoffs, but more
work is required to obtain improved convergence for
lookback, barrier, and digital options. The extension to
multidimensional SDEs is also challenging because, in
most cases, the Milstein discretisation requires the simu-
lation of Lévy areas (Gaines and Lyons 1994, Glasserman
2004).

A second area for research concerns the heuristic nature
of the multilevel numerical procedure. It would clearly be
desirable to have a numerical procedure that is guaranteed
to give an MSE of less than �2. This might be achievable
by using estimators with $ > 1, so that one can use an
excessively large value for L without significant computa-
tional penalty, thereby avoiding the problems with the bias
estimation.
Third, the multilevel method needs to be tested on much

more complex applications, more representative of the chal-
lenges faced in the finance community. This includes pay-
offs that involve evaluations at multiple intermediate times
in addition to the value at maturity, and basket options that
involve high-dimensional SDEs.
Finally, it may be possible to further reduce the com-

putational complexity by switching to quasi Monte Carlo
methods such as Sobol sequences and lattice rules (Kuo
and Sloan 2005, L’Ecuyer 2004). This is likely to be par-
ticularly effective in conjunction with improved estimators
with $> 1 because in this case, the optimal Nl for the true
Monte Carlo sampling leads to the majority of the com-
putational effort being applied to extremely coarse paths.
These are ideally suited to the use of quasi Monte Carlo
techniques, which might be able to lower the computational
cost toward O��−1� to achieve an MSE of �2.
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