
Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many
Channels

Michael A. Gibson* and Jehoshua Bruck
California Institute of Technology, Department of Computation and Neural Systems, Mail Code 136-93,
Pasadena, CA 91125

ReceiVed: October 19, 1999; In Final Form: December 14, 1999

There are two fundamental ways to view coupled systems of chemical equations: as continuous, represented
by differential equations whose variables are concentrations, or as discrete, represented by stochastic processes
whose variables are numbers of molecules. Although the former is by far more common, systems with very
small numbers of molecules are important in some applications (e.g., in small biological cells or in surface
processes). In both views, most complicated systems with multiple reaction channels and multiple chemical
species cannot be solved analytically. There areexactnumerical simulation methods to simulate trajectories
of discrete, stochastic systems, (methods that are rigorously equivalent to the Master Equation approach) but
these do not scale well to systems with many reaction pathways. This paper presents the Next Reaction
Method, an exact algorithm to simulate coupled chemical reactions that is alsoefficient: it (a) uses only a
single random number per simulation event, and (b) takes time proportional to thelogarithm of the number
of reactions, not to the number of reactions itself. The Next Reaction Method is extended to include time-
dependent rate constants and non-Markov processes and is applied to a sample application in biology (the
lysis/lysogeny decision circuit of lambda phage). The performance of the Next Reaction Method on this
application is compared with one standard method and an optimized version of that standard method.

1. Introduction

The process of creating a mechanistic, predictive model of a
system can be broken into two steps: (a) creating a complete
description of the chemical, physical, and biological processes
involved; and (b) using mathematics to generate predictions.
For chemical processes, the first step is accomplished by writing
a system of chemical equations and perhaps a description of
certain physical processes (e.g., temperature, volume, electric
field, diffusion, stirring). In principle, (a) can be accomplished
without any thought about or care for (b); one may describe a
system completely without reference to the subsequent process
of calculation. In fact, such a calculation-independent model is
more fundamental than calculation-based models: the same
process (e.g.,A + B f C) occurs whether there are 20 or 1020

molecules ofA andB. Themathematicalproblem, (b), is very
much different if there are 20 or 1020 molecules ofA andB.1

Additional mathematical or computational assumptions may be
used to simplify calculations. These assumptions are just
simplifying computational assumptions; they have nothing to
do with the process, but rather with how one represents that
process to allow efficient computation.

1.1. Mathematical Descriptions of Chemical Processes.A
coupled system of chemical reactions, of the form:

states that one molecule of substanceX1 reacts with one of
substanceX2 to give one molecule of substanceX3, etc. A
complicated chemical process can be decomposed into a set of
many such reactions. (Although it is possible to write arbitrarily

high-order reactions, virtually all real systems can be broken
up into elementaryreactions that have at most two reactants
and rarely more than three products.)

One may make certain computational assumptions and
proceed through to predictions. For example, one mayassume
that there are sufficiently many molecules that the number of
molecules can beapproximatedas a continously varying
quantity that varies deterministically over time. In this approach,
one writes a coupled system of differential equations for the
concentration of each substance in terms of the concentrations
of all others:

and so on. Solving these differential equations results in the
concentration of each substance as a function of time.

Sometimes, oneassumesthat the process in question is fast
compared with the time scale of interest, and can be considered
to have reached equilibrium. In that case, one replaces the
differential equation (eq 1) with the algebraic equations

and so on, whose solutions give only equilibrium concentrations
not dynamics. The assertion “the system is in equilibrium” is
recognized as anassumption; it is not true in general. In fact,
the very statement of eq 1 was based on another assumption,

* Corresponding author. E-mail:{gibson, bruck}@paradise.caltech.edu.
Fax: (626) 568-1522.

d[X1]

dt
) f1([X1], [X2], [X3] ...)

d[X2]

dt
) f2([X1], [X2], [X3] ...) (1)

0) f1([X1], [X2], [X3] ...)

0) f2([X1], [X2], [X3] ...)

X1 + X2 f X3 + ...

1876 J. Phys. Chem. A2000,104,1876-1889

10.1021/jp993732q CCC: $19.00 © 2000 American Chemical Society
Published on Web 02/15/2000

namely, that the number of molecules can be approximated as
acontinouslyvarying quantity that variesdeterministicallyover
time. This assumption is so fundamental to the majority of
chemical kinetics that it is frequently not even viewed as an
assumption but as a rigorous consequence of chemical theory.
Although this assumption holds for most systems with which
one deals, it does not hold in very small systems (which are
very important in biology).

Where does that leave us?
One may assume only that all molecules involved obey the

laws of quantum mechanics; for systems consisting of complex
molecules interacting in complex ways over long times, this
approach is completely intractable. One may assume that
quantum effects are small and that molecules obey Newton’s
laws of motion. For very simple systems, this molecular
dynamics approach has some merit, but for systems with
complex macromolecules (e.g., biological proteins), long time
scales, and interactions of several different molecule types, this
approach too becomes intractable.

Finally, one may assume that the solution is well mixeds
that nonreactive collisions occur far more often than reactive
collisions and, hence, that the fast dynamics of motion can be
neglectedsand one may represent the system simply by the
number of each kind of molecule. This approach leads rigorously
to the following statement2: the probability that a certain
reactionµ will take place in the next instant of time dt is given
by aµdt + o(dt), whereaµ is independent of dt, ando(dt) denotes
terms that are negligible for small dt. However,aµ may depend
on (a)µ, (b) the current number of molecules of each kind, and
(c) the current time. (In particular,aµ depends on temperature
and volume, which may change with time.) The remainder of
this paper will assume the stochastic framework.

1.2. Objective. An important problem in the stochastic
framework is how to develop numerical methods that allow
efficient computation. The remainder of this paper presents an
exact stochastic simulation algorithm, which we call the Next
Reaction Method, that is more efficient than existing methods3,4

both in terms of number of operations and number of random
numbers used. Section 2 provides the theory of the stochastic
framework and details of existing algorithms for exact stochastic
simulation. Section 3 introduces the Next Reaction Method and
its data structures, and proves this algorithm is correct. Section
4 shows how to extend the Next Reaction Method to time-
dependent stochastic processes. Section 5 applies the extended
algorithm to the Arkin et al.5 model of lambda phage.

2. Theoretical and Computational Background

This section introduces the theory of the stochastic framework
and summarizes existing methods for exact stochastic simula-
tion; that is, numerical methods for performing calculations in
the stochastic framework.

2.1. The Stochastic Framework.2,6 Consider, for example,
the set of reactions

The propensities of the reactions are given byk1, k2, ... k5. For
example, the probability that a given molecule ofA reacts with
a given molecule ofB in a small time dt is k1dt + o(dt). The
‘constants’ ki may be a function of volume, temperature,
electrolyte concentration, etc.

Remark 1. Note that the reaction constants giVen here are
not the traditional macroscopic or deterministic rate constants
but rather are mesoscopic rate constants, which are related to,
but not identical to, macroscopic rate constants.3 In particular,
macroscopic rate constants do not depend onVolume but
concentrations of molecules do, whereas mesoscopic reaction
constants do depend onVolume but the number of molecules
does not.

One way to proceed is to label each molecule ofA (A1,
A2, ... A#A) and each molecule ofB (B1, B2, ... B#B), etc. Now
there are (#A) × (#B) distinct copies of Reaction 1 that can
occur, (#B) × (#C) distinct copies of Reaction 2, etc. (Morton-
Firth’s algorithm7 uses this approach; that is, it picks random
molecules ofA andB and sees whether they react.) Previous
work on efficient simulation4 focused on surface processes,
where reactions may take place on a large matrix of (x, y)
positions. The current work focuses on reactions in solution,
for which position is not important, and one can groupby
molecule type. The (#A) × (#B) copies of Reaction 1 are
thus grouped into a single reaction, whose propensity isk1 ×
(#A) × (#B) × dt + o(dt). (One can also do such grouping if
position is important; but, in that case, grouping by molecule
type provides no real benefits because the time-consuming part
of the simulation is maintaining the data structures that store
position information.)

The state of the system in the stochastic framework is defined
by the number of molecules of each species and changes
discretely whenever one of the reactions is executed. The
probability that a certain reactionµ will take place in the next
instant of time dt is given byaµdt + o(dt). For example, the
stateS) (#A, #B, #C, #D, #E, #F, #G) will change toS′)
(#A - 1, #B - 1, #C + 1, #D, #E, #F, #G) if Reaction 1 is
executed. The probability of this occurrence is given by

(Note that because the transition probability depends only on
the current state and not on previous states, the underlying
process is Markov.) Grouping by molecule type allows immense
improvements. Specifically, this paper will demonstrate speed-
ups above and beyond those previously reported4 (again, these
are possible because the current paper does not care about
positional information). However, there are also cases in which
other kinds of groupings are even better; for example, the case
study in Section 4.2.1.

One standard way to deal with the stochastic framework is
to create one probability variable for each possible state (#A,
#B, #C, #D, #E, #F, #G). Then, using eq 3 and the definition
of the ais as a function of state, one writes out a system of
coupled differential equations that defines the system. This
coupled set of differential equations hasprobabilities as
Variablesand is called a Master Equation. For a system with
very few states, such as an ion channel,8 one may write out
this entire system of equations and solve it. For larger systems,
however, this approach quickly becomes unreasonable. In the
example just given, suppose 0e #A e 9, 0 e #B e 9, etc.
Then, there are 107 states in this simple 5-equation system. In
the Arkin et al.5 model of lambda phage, reasonable limits on
the number of each kind of molecule lead to a number of states

A + B 98
k1

C

B + C 98
k2

D

D + E 98
k3

E + F

F 98
k4

D + G

E + G 98
k5

A (2)

P(S′,t + dt|S,t)) a1dt + o(dt) (3)

Stochastic Simulation of Chemical Species J. Phys. Chem. A, Vol. 104, No. 9, 20001877

on the order of 1070. Even if this estimate is off, or a clever
reduction of the number of states is possible, say by a factor of
1050, that still leaves 1020 states, which is still untractable. Exact
stochastic simulation provides a more feasible approach.

2.2. Exact Stochastic Simulation.As a different way of
dealing with the stochastic framework, consider the problem
of generating a single sample trajectory of a chemical process
in the stochastic framework, as in Figure 1a. The (intractable)
Master Equation approach tries to write a system of equations
and solve simultaneously for the probability ofall possible
trajectories. Generatinga singletrajectory is signficantly easier;
as in Figure lb, one needs to generate a sequence of state
transitions and the times at which they occur. A naive way to
generate legal trajectories is to start with the initial state and
repeatedly pick reactions arbitrarily and execute them, thus
generating a legal trajectory. A better way to generate trajectories
is to pick reactions and timesaccording to the correct
probability distributionsso that the probability of generating a
given trajectory with the simulation algorithm is exactly the
probability that would come out of the solution of the Master
Equation. Amazingly, it is possible to create an algorithm that
has this property,eVen if it is not possible to write out the entire
Master Equation explicitly, let alone solve it. (There are also
inexactstochastic simulation algorithms that generate trajectories
according to approximately the correct distribution. However,
our interest is only in exact methods.)

Given the ability to generate a single trajectory with the
correct probability, one may estimate any parameter of interest
by generating many trajectories, calculating the value of the
parameter for each trajectory, and observing the statistics of
those calculated values. For example, to find the average number
of molecules ofB present at timet, one can run many trajectories
(hundreds or thousands) and plot a histogram of the values of
the number of molecules ofB at time t.

Gillespie3,9 developed twoexact stochastic simulationalgo-
rithms, which are discussed in the next section. The tricky
mathematical part of such an algorithm is specifying how to
generate random numbers so that they will have the correct
distributions. The tremendous success of these exact stochastic
simulation algorithms has led to them being applied to much
larger systems than was originally anticipated. For example,
Arkin et al.5 used exact stochastic simulation to simulate a model
of a simple virus, lambda phage, containing 75 equations in 57
chemical species. Because the original algorithms do not scale
readily to large systems, we have developed new versions that
do scale well with number of reactions. (The tricky computer
science part is to developefficientalgorithms that do the right
thing.)

2.3. Algorithms. Consider a system ofr reactions as in eq
2. For now, assume that all rate constants (e.g.,k1 ... k5 in eq 2)
are true constants; time-varying rate constants will be covered
in Section 4. Gillespie3 proposed twoexact stochastic simulation
algorithms. At each time step, the system is in exactly one state.
A transition consists of executing a reaction so there are at most
r possible transitions from a given state. The key is to choose
random numbers using a computer random number generator
and to use those random numbers to pick transitions. One must
be careful to choose from the correct distribution at each point
in the algorithm.

Gillespie proposed two methods for accomplishing the
simulation. The first method, which he calls theDirect Method,
calculates explicitlywhich reaction occurs next andwhen it
occurs. The second method, which he calls theFirst Reaction
Method, generates for each reactionµ a putative timeτµ at which
reactionµ occurs, then chooses the reactionµ* with the smallest
τµ
/ (the first reaction) and executes reactionµ* at time τµ

/. Both
of these methods are described now.

2.4. Gillespie’s Direct Method.For a system in a given state,
Gillespie’s direct algorithm asks two questions:

• Which reaction occurs next?
• When does it occur?

Clearly, both of these questions must be answered probabilis-
tically by specifying the probability densityP(µ,τ) that the next
reaction isµ and it occurs at timeτ. It can be shown3 that

This equation leads directly to the answers of the two afore-
mentioned questions. First, what is the probability distribution
for reactions? IntegratingP(µ,τ) over all τ from 0 to ∞ results
in

Second, what is the probability distribution for times? Summing
P(µ,τ) over all µ results in

These two distributions lead to Gillespie’s direct algorithm:3

Algorithm 1. Exact Stochastic Simulations Direct Method
(Gillespie)

1. Initialize(i.e., set initial numbers of molecules, set
t r 0).

2. Calculate the propensity function, ai, for all i.
3. Chooseµ according to the distribution in eq 5.

Figure 1. Example trajectory. (a) Graphical representation. Legend:
A-X, B-circle, C-triangle, D-square, E-diamond, F-star, G-line. (b) State
representation. The ‘Reaction’ row merely indicates which reaction
occured; it is not part of the state.

P(µ,τ)dτ) aµ exp(-τ∑
j

aj) dτ (4)

Pr(Reaction) µ)) aµ/∑
j

aj (5)

P(τ)dτ) (∑
j

aj) exp (-τ∑
j

aj) dτ (6)

1878 J. Phys. Chem. A, Vol. 104, No. 9, 2000 Gibson et al.

4. Chooseτ according to an exponential with parameter
∑j aj (as in eq 6).

5. Change the number of molecules to reflect execution of
reactionµ. Set tr t + τ.

6. Go to Step 2.
As written, this algorithm uses two random numbers per
iteration, takes time proportional to the number of reactions to
update theais, and takes time proportional to the number of
reactions to calculate∑j aj and to generate a random number
according to the distribution in eq 5. The ideas in the rest of
this paper can be used to make the algorithm more efficient so
that the time it takes is proportional to the logarithm of the
number of reactions (see discussion in theAppendix). The rest
of the paper will focus ways of improving the First Reaction
Method.

2.5. Gillespie’s First Reaction Method.The algorithm of
the previous subsection is direct in the sense that it generatesµ
and τ directly. Gillespie also developed the First Reaction
Method,9 which generates a putative timeτi for each reaction
to occurs a time the reaction would occur if no other reaction
occurred firsts then letsµ be the reaction whose putative time
is first, and letsτ be the putative timeτµ. Formally, the algorithm
for the First Reaction Method is as follows:

Algorithm 2. (Exact Stochastic Simulations First Reaction
Method)

1. Initialize(i.e., set initial numbers of molecules, set
t r 0).

2. Calculate the propensity function, ai, for all i.
3. For each i, generate a putatiVe time,τi, according to

an exponential distribution with parameter ai.
4. Letµ be the reaction whose putatiVe time,τµ, is least.
5. Let τ be τµ.
6. Change the number of molecules to reflect execution of

reactionµ. Set tr t + τ.
7. Go to Step 2.

At first glance, these two algorithms may seem very different,
but they are provably equivalent;9 that is, the probability
distributions used to chooseµ andτ are the same. We shall not
repeat the proof here. As written, this algorithm usesr random
numbers per iteration (wherer is the number of reactions), takes
time proportional to r to update theais, and takes time
proportional tor to identify the smallestτµ.

3. The Next Reaction Method

The following three activities (which occur during every
iteration of Gillespie’s First Reaction Method) take time
proportional to the number of reactions,r: (1) updating allr of
the ais; (2) generating a putative time,τi, for eachi; and (3)
identifying the smallest putative time,τµ.

The Next Reaction Methodwill do away with each of these
activities in turn. The main ideas used are:

• Storeτi, not just ai.
• Be extremely sensitiVe in recalculating ai (and τi); recal-

culate ai only if it changes.The preceeding statement may seem
circular: how can one know thatai has changed or not changed
without calculating it and comparing to its old value? In fact,
one can analyze the set of reactions beforehand and determine
which reactions change whichais. Section 3.1 will introduce a
data structure, called adependency graph, which allows one to
update the minimum number ofais.

• Re-useτis where appropriate.In general, Monte Carlo
simulations assume statistically independent random numbers,
so it isusually notlegitimate to re-use random numbers. In this
particular special case, we shall prove that itis legitimate.

Specifically, Theorem 1 in Section 3.4 plus two simple
transformations make it possible to re-use allτis except forτµ,
the time of the reaction that was just executed. Because re-
using random numbers is not valid in general, it is critically
important to justify such re-use in this specific case.

• Switch from relatiVe time (time between reactions) to
absolute time.This switch will obviate the need for one of the
two aforementioned transformations: for reactions whose
underlyingai has not changed, the putative timeτi will not have
to change either.

• Use appropriate data structures to store ais (andτis) so
that updating those that change will be aVery efficient
operation.Section 3.2 shows a data structure, called anindexed
priority queue,that achieves this goal.
The formal statement of the algorithm is in Section 3.3,
following the definitions of the data structures used.

3.1. Dependency Graphs.Consider, once again, the reactions
in eq 2.

Definition 1. Let Reactants(F) andProducts(F) be the sets of
reactants and products, respectiVely, of reactionF. So, for
example,Reactants(Reaction 1)) {A, B} andProducts(Reac-
tion 1)) {C}.

Definition 2. Let DependsOn(aµ) be the set of substances
that affect theValue aµ.

Evidently, Reactants(µ)) DependsOn(aµ). It is sometimes
useful to add additional dependencies (e.g., in the lambda model
of Section 5), so we make this distinction.

Definition 3. Let Affects(µ) be the set of substances that
change quantity when reactionµ is executed.

Typically, Affects(µ)) Reactants(µ)∪Products(µ); but again,
there may be exceptions (e.g., catalytic reactions, such as
Reaction 3). Table 1 illustrates each of these concepts.

Definition 4. (Dependency Graph).Let a set of reactions
R be giVen. LetG(V, E) be a directed graph withVertex set
V) R and with a directed edge fromVi to Vj if and only if
Affects(Vi) ∩ DependsOn(aVj) * L. (If for some strange reason,
the self edges fromVi to Vi are not included in this definition,
include them as well.) ThenG is called the dependency graph
of the set of reactionsR.

In other words, a dependency graph is a data structure that
tells preciselywhich ais to change when a given reaction is
executed. Using the dependency graph allows one to recalculate
only the minimum number ofais in Step 5 of the Next Reaction
Method. The dependency graph of the sample reactions is
illustrated in Figure 2.

3.2. Indexed Priority Queues.Typically, the dependency
graph issparse(i.e., the number of edges from a given vertex
is small), and only a few propensities will need to be updated
at each time step. It is important to have data structures that
are very efficient at handlinga small numberof updates.

The Next Reaction Method deals with two kinds of variables,
τis andais. The latter are easy to handle: the operations required
are READ and UPDATE, and they can be stored in a simple
array. (A purist might not even store them, but rather recalculate

TABLE 1: Illustration of Definitions 1 -3

reaction aµ DependsOn(aµ) Affects(µ)

A + B 98
k1

C k1 × (#A) × (#B) A, B A, B, C

B + C 98
k2

D k2 × (#B) × (#C) B, C B, C, D

D + E 98
k3

E + F k3 × (#D) × (#E) D, E D, F

F 98
k4

D + G k3 × (#F) F D, F, G

E + G 98
k5

A k5 × (#E) × (#G) E, G A, E, G

Stochastic Simulation of Chemical Species J. Phys. Chem. A, Vol. 104, No. 9, 20001879

them as needed.) Theτis require the operations FIND•
MINIMUM (in Step 2) and UPDATE (in Step 5d). The former
operation is one of the standard operations of a priority queue
(which is often implemented as a heap), and with a little thought,
the other can be implemented in terms of the standard priority
queue algorithms ADD•ELEMENT and DELETE•ELE-
MENT.10 However, the standard algorithms, although used in
some contexts for this speedup,4 are not really what is called
for in this context. A better UPDATE, which takes into account
the structure of the data, requires an indexing scheme and a
separate UPDATE algorithm.

Definition 5. An indexed priority queueconsists of (a) a tree
structure of ordered pairs of the form (i,τi), where i is the
number of a reaction andτi is the putatiVe time when reaction
i occurs, and (b) an index structure whose ith element is a pointer
to the position in the tree that contains (i,τi). The tree structure
in (a) has the property that each parent has a lowerτi than
either of its children.

Figure 3 shows an example of an indexed priority queue.
Note the following: (a) finding the minimum element takes
constant times it is always in the top node; (b) the ordering is
onlyvertical, not horizontal; (c) the number of nodes is precisely
the number of reactionsr, not twice the number of reactions as
in the efficient version of the Direct Method in the Appendix;
(d) because of the indexing scheme, it is possible to find any
arbitrary reaction in constant time, and (e)τ3) ∞, which
corresponds to Reaction 3 never occuring (i.e.,a3) 0). In fact,
∞ is a perfectly legitimate floating point number, so it is possible
to implement this feature (in the C programming language, for
example) without any major headaches.

There are several algorithms that need to be defined to use
the indexed priority queue. Most of them are analogous to
algorithms for standard priority queues.10 In particular, one needs

• SWAP (i, j), which swaps the tree nodesi andj and updates
the index structure appropriately;

• BUILD, which takes a tree and an index structure and moves
entries until the tree has the property that each parent is less
than its children; and

• UPDATE (r), which updates a given reaction number.
SWAP is easy to implement. BUILD is completely analogous
to the standard heap/priority queue BUILD operation but uses
SWAP to keep the index structure correct. UPDATE is
nonstandard and deserves comment.

Algorithm 3. UPDATE(noden, Value new•Walue)
ChangeValue ofn to new•Walue
UPDATE•AUX(n)

Algorithm 4. UPDATE•AUX(noden)
If Value(n) < Value(parent(n))

SWAPn and parent(n)
Update•aux(parent(n))

Else If Value(n) > minimumValue(children(n))
SWAPn and minimum child(n)
Update•aux(minimum child(n))

Else
Return

An example of the algorithms will provide clarification.

Example 1. Suppose theValue of τ1 changes from 4.2 to 16.
Looking in the index array,τ1 is stored in node B. In the tree
structure, one changes theτ Value of node B to 16. Calling
UPDATE•AUX on node B, one executes the ‘Else If’ statement
and swaps the ordered pairs in nodes B and E and the
corresponding indices (1 and 4) in the array. Calling
UPDATE•AUX recursiVely on node E, one notes that the new
Value of 16 is in the correct position (5.5< 16 < ∞), so the
final ‘Else’ clause is executed and the algorithm stops with
ordered pair (4, 5.5) in node B, (1, 16) in node E, index ‘E’ in
position 1 of the array, and index ‘B’ at position 4. The rest of
the structure remains unchanged.

The converse case, where the new value is less than the old
value, is completely analogous.

One way to implement UPDATE is simply to delete the
offending node, and insert a new node with the same reaction
number but a different time value. This implementation takes
something like 2 logr operations. Our approach, on the other
hand, changes the node in place, then bubbles it up or down
the tree structure until the priority property is re-established.
This approach evidently takes logr, but has the advantage that
if there are a small number of reactions that have fast rate
constants compared with the others (e.g., there arer′ such
reactions), then most of the updates will involve those reactions
and take logr′ time. This savings occurs because once the
algorithm reaches a node that is already in the right spot, it
does not continue further. For example, if some of the reactions
are “disabled” or “not possible” in the given state and have
a) 0 andτ) ∞, they will not slow down the computation.
This effect can be significant; for example, the chemotaxis
system of Morton-Firth7 contains a large number of reactions
that will not be “active” at any given time. Because of these
inactive reactions, previous work7 avoided the standard Gillespie
algorithm (i.e., the Direct Method), which grows with the
number of reactions, and instead developed one that is not exact
but scales with number of molecules because the number of

Figure 2. Dependency graphs for example equations from Table 1.

Figure 3. Example indexed priority queue. Top: tree structure. The
positions in the tree structure are labeled with letters A-J for
pedigogical purposes. Bottom: Index structure. Each number has a
pointer to the corresponding position in the tree structure; these pointers
are illustrated as letters A-J.

1880 J. Phys. Chem. A, Vol. 104, No. 9, 2000 Gibson et al.

molecules is much less than the number of possible reactions.
Note that our algorithm is not only exact but also scales with
the logarithm of the number of “actiVe” reactions. The Ap-
plication Section (Section 5) gives some performance numbers.

3.3. Statement of Algorithm and Timing Analysis.
Algorithm 5. (Exact Stochastic Simulations Next Reaction

Method)
1. Initialize:

(a) set initial numbers of molecules, set tr 0, generate
a dependency graphG;

(b) calculate the propensity function, ai, for all i;
(c) for each i, generate a putatiVe time,τi, according to

an exponential distribution with parameter ai;
(d) store theτi Values in an indexed priority queueP.

2. Letµ be the reaction whose putatiVe time,τµ, stored in
P, is least.

3. Let τ be τµ.
4. Change the number of molecules to reflect execution of

reactionµ. Set tr τ.
5. For each edge (µ, R) in the dependency graphG,

(a) update aR;
(b) if R * µ, set τR r (aR,old/aR,new)(τR - t) + t (see

note 11);
(c) If R) µ, generate a random number,F, according

to an exponential distribution with parameter aµ, and
setτR r F + t;

(d) replace the oldτR Value in P with the newValue.
6. Go to Step 2.

Consider the time used by the algorithm. Step 1 of the Next
Reaction Method is only executed once; Steps 2-6 are executed
once for each simulation event. Steps 3, 4, and 6 do not depend
on the number of reactions,r. Step 2 does not either, because
of the properties of indexed priority queues. Step 5 is executed
once for every edge (µ, R) in G. Suppose there arek such edges,
wherek is typically much less thanr. Step 5a, executedk times,
depends on the number of reactants for each (elementary)
reaction so it should take no more than three multiplications
(as was explained in theIntroduction). Step 5b, executed
k - 1 times, requires an addition, a subtraction, a multiplication,
and a division. Step 5c, executed 1 time, requires a call to the
random number generator, which can be very slow compared
with the other operations discussed (a simple test on our system
indicates that a single call to the random number generator takes
10 times as long as a division). Step 5d, executedk times,
requiresat most2 log r operations, although it may effectively
take far fewer (see the discussion in Section 3.2). (Throughout
this paper, log means logarithm base 2, as per the typical
computer science usage.)

The total number of operations per iteration is at most
c2,3,4,5a,6 + c5b(k - 1) + c5c + c5d(k)(2 log r), where eachc is
a machine specific constant. From a computer science perspec-
tive, this isO(log r); that is, for very larger, only the last term
will matter. From a more practical perspective, forr of 50 or
100, the other terms, particularlyc5c, may not be negligible.
Let us be very clear on this point: the Next Reaction Method
works even ifk is large but will achieve more of a speedup if
k is small relative to the number of reactions. (An equivalent
way of saying the same thing is ‘if the dependency graph is
sparse.’)

Lukkien et al.4 discuss ways to improve the Direct Method
and the First Reaction Method (a more detailed treatment can
be found in Segers12). Their improved First Reaction Method,
which we shall call the Absolute Time First Reaction Method,

consists of switching from relative to absolute times and using
a standard priority queue. They conclude that for time-invariant
processes, the Direct Method is preferable to the Absolute Time
First Reaction Method for two reasons that do not apply to the
Next Reaction Method. First, in their domain, in which position
is important, it is difficult to do the indexing necessary to
implement the efficient update algorithm (Algorithm 3 of
Section 3.2); specifically, the time-consuming part of their
problem is not the priority queue but rather maintaining the data
structures that store position-dependent information, which is
irrelevant in the present position-independent context. Second,
the Absolute Time First Reaction Method generates too many
random numbers. Because typical computer pseudo-random
number generators cycle with some regularity, using too many
random numbers will quickly exhaust the abilities of the
generator and should be avoided with extreme prejudice. (Also,
from a purely practical standpoint, generating random numbers
is relatively slow.)

Amazingly, the Next Reaction Method uses just a single
random number per iteration. Clearly, the optimum would be
exactly one random number per iteration. Our algorithm is
slightly suboptimal in that the initialization step will generate
an extrar random numbers and at the end of the algorithmr
random numbers will be left over. As the number of iterations
increases, this initialization effect becomes negligible by
comparison. The only new random number generated,τµ,
corresponds to the reaction that was just executed and is
generated in Step 5c. It is clear that reactionµ requires a new
random number because the value of the old random number
has been used explicitly, thus reducing it to a sure variable.
Section 3.4 will show that it is correct to do the other
manipulations in Step 5, so as not to regenerate any other
random numbers. For this reason we assert that the Next
Reaction Method is superior to the Direct Method.

3.4. Re-usingτis.This section will demonstrate that the Next
Reaction Method, with its switch from relative to absolute times
and all of the strangeness in Step 5, is equivalent to the First
Reaction Method. This demonstration, necessary to show that
the algorithm works and why it works, is somewhat more
mathematical than the rest of the paper. The reader whose
primary interest is implementing the Next Reaction Method may
skip ahead with impunity. As mentioned before, it is usually
not legitimate to re-use random numbers; this section will prove
that it is permissible in this special case. (In what follows,Ti

will denote therandomVariablecorresponding to theith reaction,
and τi, a number, will denote asample from that random
variable.)

One of the differences between the First Reaction Method
and the Next Reaction Method is that the former uses relative
times, whereas the latter uses absolute times. This difference
should not be a stumbling block or a source of confusion.
Suppose that during thenth iteration of the First Reaction
Method, the random variables are denotedRR, for 1 e R e
(number of reactions). ThenRR) Exp(aR), and the density of
RR is given by PRR(τ)) θ(τ)aRexp(-aRτ). [The Heaviside
function,θ(τ), is 0 forτ < 0 and 1 forτ g 0.] The corresponding
absolute time is given by the random variableTR) RR + tn,
the sum of the relative time and the variablet during thenth

iteration. (Thenth iteration ends, and then + 1st begins whent
is updated in Step 5.) What is the density ofTR? By the random
variable transformation (RVT) theorem,l3

PTR
(τ)) ∫-∞

∞
PRR

(τ′)δ(τ - [τ′ + tn])dτ′) PRR
(τ - tn))

θ(τ - tn)aR exp(-aR(τ - tn))

Stochastic Simulation of Chemical Species J. Phys. Chem. A, Vol. 104, No. 9, 20001881

or, equivalently,

Clearly, an absolute-time version of the First Reaction Method
with no other changes would be entirely equivalent to the
original relative-time version.

Now we turn our attention to the Next Reaction Method. After
Step 1, the random variables follow the distribution in eq 7;t0
was set to 0 in Step 1a. The real core of the Next Reaction
Method is that each subsequent iteration maintains eq 7.

At the risk of being overly mathematical, we state the key
property that allows the Next Reaction Method as a theorem:

Theorem 1.Assume that eq 7 holds at the beginning of Step 2.
Then, before Step 5 of the nth iteration, for all i * µ, τi is
distributed according to

Proof. By assumption, before Step 2 of thenth iteration,τi is
distributed according to eq 7. Steps 2 and 3 identify the leastτ,
namely,τµ. The act of identification reduces uncertainty. In
particular,Tµ becomes the sure variableτµ, and all of the other
τis must be larger thanτµ. Hence, each of the otherTis is
distributed according to Pr(Ti > u|Ti > τµ); which by definition
is Pr((Ti > u) AND (Ti > τµ))/Pr(Ti > τµ). There are two cases.
In Case 1, foru > τµ, the numerator simplifies to Pr(Ti > u),
and the resulting division is exp(-ai,n(u - tn))/exp(-ai,n(τµ -
tn))) exp(-ai,n(u - τµ)). In Case 2, foru e τµ, the numerator
simplifies to Pr(Ti > τµ). In this case, the numerator cancels
the denominator, leaving 1. In Step 4,tn+1 is set toτ (which
was set toτµ in Step 3), so the theorem holds.

Showing that eq 7 is maintained is just a matter of collecting
the details:

• For thosei * µ whoseai remains constant from thenth to
n + 1st iteration, ai,n+1) ai,n, so eq 8 is equivalent to eq 7.
There is no need to change theseτis in Step 5. In fact, reactions
whoseai does not change are not in the dependency graph, so
the τis are not changed.

• For thosei * µ whoseai doeschange,τi is now distributed
according to eq 8. Simply plugging into the RVT theorem shows
that the random variableT ′i, constructed byτ′i) (ai,n/ai,n+1)
(τi - tn+1) + tn+1, is distributed according to eq 7.14 What is
the intuition behind this transformation? By the theorem,τi is
distributed according to eq 8. Going back to relative times,
τi - tn+1 is distributed according to Exp(ai,n). It can be shown
(by the RVT, for example) that (ai,n/ai,n+1)Exp(ai,n)) Exp(ai,n+l).
Returning to absolute times gives the transformation. This
transformation is applied to all the appropriatei values in Step
5b.

• Finally, for i) µ, it is necessary to generate a new random
number. Note that the theorem only holds fori * µ. For i) µ,
the variableTµ was reduced to a sure variable in Step 3, so a
new random variable is needed. That new value is supplied in
Step 5c.

One key point has been overlooked thus far: the First
Reaction Method requiresstatistically independentrandom
numbers. To complete the correctness argument, it must be
shown that the manipulations done by the Next Reaction Method
do not introduce any statistical dependencies.

At each step in the algorithmTi) fi(Ri), each random variable
in the Next Reaction Method is a transformed version of the

corresponding random variable in the First Reaction Method
and there are no cross dependencies. By the RVT theorem,

The “product form” of this joint distribution function tells us
that because theoriginal variablesRi were statistically inde-
pendent, then thetransformedvariablesTi are as well.

In summary, Step 1 sets up theTi according to eq 7. Each
subsequent iteration maintains that distribution, without intro-
ducing any statistical dependencies between the random vari-
ables. Thus, the Next Reaction Method is equivalent to the First
Reaction Method and, in turn, to the Direct Method and the
Master Equation approach.

4. Extension: Time-Dependent and Non-Markov
Processes

The two approaches for efficient calculation of trajectories
of chemical reactions in the stochastic framework presented thus
far assume that the probability of a reactionµ occurring in a
little bit of time dt (a) is given byaµ × dt, whereaµ is a constant,
and (b) depends only on the current state, not on the previous
state or states of the system. It can be shown2 that many
reasonable chemical systems have these properties.

This section will show how to deal with systems in which
(a) and (b) do not hold: in particular, it first relaxes assumption
(a) by lettingaµ be a function of time (as is necessary to model
systems whose rate “constants” change, due to changing
temperature, volume, etc.), and second it relaxes assumption
(b), showing how to deal with non-Markov processes. Even
thoughelementaryreactions in the stochastic framework are
Markov [i.e., have property (b)], it is sometimes useful to group
consecutive steps to form a composite process. The full model
of that process is, of course, still Markov, but if one is only
interested in a subset of the variables, the resulting mathematical
process is not guaranteed to be Markov.

4.1. Time-Dependent Markov Processes.Consider a system
in which the probability of a reactionµ occurring in a little bit
of time dt is given byaµ × dt, but aµ is a function of time. For
now, assume that the transition probabilities do not depend on
history, but only on the current state. For example, Reaction 1
in Table 1 has propensitya1) k1 × (#A) × (#B). The rate
constantk1 is a function of temperature and of volume. In an
engineering system, one typically affects the rate constants by
heating or cooling the reaction. In a biological system, cell
growth changes the volume. Either of these mechanisms, or
others, might change rate constants as a function of time, which
requires a modification to the algorithms presented.

In place of the simple exponential distribution, the putative
times are distributed according to13

Notice two things: first, it is not easy in general to find a closed
form solution of eq 9 for arbitrary functions of timeaµ; and
second, for nonconstantaµ, the resulting answer will not be a
simple exponential distribution and hence, will not have

Pr(TR,n > u)) {exp(-aR,n(u - tn)) if u > tn
1 otherwise

(7)

Pr(Ti > u)) {exp(-ai,n(u - tn+1)) if u > tn+1

1 otherwise
(8)

PT1‚‚‚TN
(τ1,‚‚‚τN))

∫-∞

∞
‚‚‚∫-∞

∞
{∏

i)1

N

θ(ri) exp(-airi)}∏
j)1

N

δ(τj - fj(rj)) dr1‚‚‚drN

) ∏
i)1

N

{∫-∞

∞
θ(ri) exp(-airi)δ(τi - fi(ri)) dri}

Pµ(τ|S,tn)) aµ(S,τ) exp(-∫tn

τ
aµ(S,t)dt) (9)

1882 J. Phys. Chem. A, Vol. 104, No. 9, 2000 Gibson et al.

the temporal homogeneity property that Pr(Ti > u|Ti > τµ))
Pr(Ti > u - τµ). As a consequence of the latter, it will not, in
general, be possible to lett0) 0, so absolute times should be
used.

4.1.1. How To Do It: Next Reaction Method, MarkoV
Processes.To extend the Next Reaction Method to arbitrary
Markov processes, one simply changes Step 3 to generateτi

according to the new process.15 This change has the following
two advantages over the time-variant version of the Direct
Method in theAppendix:

• Because one considers each reaction separately, the com-
putation is easier and may be analytically solvable for some
processes (e.g., in the example of the next section). The Direct
Method, which considers all reactions at once, involves a sum
within the integral in eq 9; the exact form is given in the
Appendix.

• Because the Next Reaction Method storesτis and not just
ais, it does not have to recondition on each iteration. Specifically,
after executing reactionµ it does not need to regenerateτi

according to Pr(Ti > u|Ti > τµ). The fact that the algorithm
chose to execute reactionµ implies Ti > τµ. Therefore,Ti is
already distributed according to the correct distribution for all
i * µ whoseai has not changed.

We now show an example of how to generalize the Next
Reaction Method for time-varying Markov processes, then
consider the problem of re-using random numbers with the
generalization.

4.1.2. Example: Changing Volume.Reaction 1 in Table 1
has propensityk × (#A) × (#B). For second-order reactions,
such as this one, thek term depends on the volume and should
be replaced withk′/V(t), whereV(t) is the volume andk′ is
independent of volume. This change leads to the propensity
a′/V(t), wherea′) k′ × (#A) × (#B) is a constant independent
of volume (and hence time). For simpleV(t), eq 9 can be solved
analytically; for example, in Arkin et al.,5 the volume is modeled
as increasing linearly. Thus,V(t)) V0 + ct, which leads (by a
simple integration) to the distribution

Note also that in the limit asc goes to zero, this distribution
reduces to an exponential with parametera′/V0, as expected.

It is a straightforward operation to generate random numbers
according to this distribution, using the inversion-generating
method:13,16one calculates the cumulative distribution function
F (a simple integral ofP) and takes a sampleU from a uniform
random number generator, and then the variableF-1(U) has
the correct distribution. For the preceeding example, the variable
R) V(t0)[U-c/a′ - 1]/c is distributed according to eq 10.

4.1.3. Generating Fewer Random Numbers.It was remarkably
simple in the time-independent, exponential case to re-use the
same random numbers. The extension is somewhat more
difficult. The method presented here works for re-using random
variables generated by the inversion-generating method. Of
course, not every random variable is generated that way, and
in practice it may be hard to re-use other random numbers.

Theorem 2. Let τ be a random number generated according
to an arbitrary distribution with parameter an and distribution
Fa,n. Suppose the current simulation time is tn, and the new
parameter (after the update in Step 2) is an+1. Then, the
transformationτ′) Fa,n+1

-1 ([Fa,n(τ) - Fa,n(tn)]/[1 - Fa,n(tn)])
generates a new randomVariable from the correct (new)
distribution.

The proof of this theorem is in theAppendix. Here are some
examples:

Example 2.For exponentials,

and

So, by the theorem,

This is the transformation used by the Next Reaction Method.

Example 3.The preVious section considered a process with

and

By the theorem, one can re-use random numbers by the
transformation

In some cases, as in the examples just presented, it is possible
to calculate a closed-form solution of the equations that is
relatively simple; and, this method is practical. In general, it
may not be at all practical and it may be easier to generate fresh
random numbers.

4.2. Non-Markov Processes.Even though elementary reac-
tions are Markov (i.e., do not depend on history) in the stochastic
framework, it is sometimes useful to deal with non-Markov
processes. For example, one may model a system using a certain
set of variables for which the system is Markov or one may

P(t|t0))
a′(V(t0) + ct)-a′/c-1

V(t0)
-a′/c (10)

Fa,n(u)) Pr(Tn e u))

{1 - exp(-an(u - tn-1)) if u > tn-1

0 otherwise

Fa,n
-1(U)) {-ln(1 - U)/an + tn-1 if 0 e Ue 1

undefined otherwise

τ′) Fa,n+1
-1 ([Fa,n(τ) - Fa,n(tn)]/[1 - Fa,n(tn)])

) -1
an+1

ln(1 -

[1 - exp(-an(τ - tn-1))] - [1 - exp(-an(tn - tn-1))]

1 - [1 - exp(-an(tn - tn-1))]) + tn

) (an/an+1)(τ - tn) + tn

V(t)) V(tn-1) + c(t - tn-1)

Fa,n(u)) 1 - (V(t)

V(tn-1))
-an/c

Fa,n
-1(U)) V(tn-1)[(1 - U)-c/an - 1]/c + tn-1

τ′) Fa,n+1
-1 ([Fa,n(τ) - Fa,n(tn)]/[1 - Fa,n(tn)])

)
V(tn)

c [(1 -

(1 - (V(τ)

V(tn-1))
-an/c) - (1 - (V(tn)

V(tn-1))
-an/c)

(V(tn)

V(tn-1))
-an/c)-c/an+1

- 1] + tn

)
V(tn)

c [(V(τ)

V(tn))
an/an+1

- 1] + tn

Stochastic Simulation of Chemical Species J. Phys. Chem. A, Vol. 104, No. 9, 20001883

use a smaller set for which the system is not. Provided the
simulation algorithm still works for non-Markov processes, a
smaller number of variables may be significantly faster to
simulate.

For Markov processes, one generatesτi directly from the state
and the time, as in Figure 4a. For example, in the time-
independent case, the valueai is calculated from the state, and
τi is the sum oft and a random variable with exponential
distribution and parameterai. Notice that (1)fi is a random
function (i.e., calling it multiple times with the same parameters
will give multiple answers), and (2)fi is a function in the
mathematical usage or in the computer science sense of
functional programming (i.e., it does not contain any internal
state). For non-Markov processes, as in Figure 4b, the distribu-
tion of τi depends on the history of (possibly all) states of the
system from the initial time to the present. Hence, one must
use aprocedure(in the computer science sense of procedural
programming) that can store previous values of the system state
and time.

In general, non-Markov processes are very difficult to
handle.13 The distribution of next states or of transition times
to the next state may depend on the entire history of the system.
Fortunately, the sort of non-Markov processes that occur in
chemical reaction simulations have some nice properties that
make dealing with them easier. First, the complete history of
the system is uniquely determined by the series ofdiscrete
transitions and transition times. Given the transitions and
transition times, the state at any timet is the same as the state
after the last transition beforet. This simplification is enor-
mous: because continuous transitions are not possible, one can
hope to store the entire state history. Second, one may not even
need the entire history. For any given reactionµ, one only needs
to store that fraction of the history that affects (in the dependency
graph sense) the reactionµ, which for systems with many
reactions, leads to another significant reduction in the amount
of storage.

For arbitrary non-Markov chemical reaction models, even
this reduction in storage may not be enough. It may be very
difficult to generateτi given the appropriate subset of history.
In that case, it may be preferable to include the full gamut of
variables to make the system Markov. In those special cases
where itis possible to generateτi, one may achieve a substantial
performance improvement. An example follows.

4.2.1. Example: Gamma Distribution.Consider the set of
equations

Systems of equations very much like this come up in the Arkin
et al.5 model of lambda phage, both for transcription and for
translation. Physically, this means that at some time a molecule
of type S0 is produced and then undergoes ann-step process.
Subsequently, the resulting molecule,Sn, affects the rest of the
system.

The first and last equations are different, but all then
intervening equations are identical. Assuming time independence
(as is the case in the model; first-order reactions are not affected
by change in volume), one may solve thesen equations
analytically. Rather thann exponentials, the combined waiting
time is a gamma distribution. Specifically, consider a single
molecule ofS0, produced att0, with no other molecules ofS0

produced. Then,

This equation is simply a gamma distribution, and there are
efficient ways to generate random numbers according to this
distribution.

Now consider several molecules undergoing this process. This
composite system can be described by ordered pairs of the form
(molecule identity, state). There are two ways to simplify this
system: grouping by state and grouping by molecule identity.
Thus far, the grouping has always been by state (i.e., the number
of molecules in stateS0, the number in state molecules ofS1,
etc.). For the context in which this problem occurs, with many
more states than molecules, one achieves a smaller system by
grouping by molecule identity. Using eq 11, one can simplify
the n-step exponential process into a 1-step gamma process;
thus, the number of processes to consider is equal to the number
of distinct molecules, which is much less than the number of
states. (Note that this simplification is possible because the
reactions involved are first-order.) These two possibilities are
shown schematically in Figure 5.

The procedurefi is as follows: rather than store state and
time directly,fi will keep a listL of processed valuesτ′. Every
time a new molecule ofS0 is produced,fi generates aτ′ value
for it according to eq 11 and adds that value toL. The value of
τ′i that fi returns is simply the minimum of theτ values inL.
(The astute reader will note that the operations required onL
are insert, delete, and minimum, so one could implementL as
a priority queue. This implementation ofL as a priority queue
should not be confused with the indexed priority queue in
Section 3.2.)

Figure 4. Procedures,f, for generating random numbers. (a) A Markov
process, in which no history is stored. (b) A non-Markov process, which
requires storing history.

A + B 98
k1

S0

S0 98
k

S1

S1 98
k

S2

...

Sn-1 98
k

Sn

Sn 98
k2

C + D

Pr (one molecule ofSn is produced between

t andt + dt | one molecule ofS0, t0)

)
k[k(t - t0)]

n-1

(n - 1)!
exp[-k(t - t0)] × dt (11)

1884 J. Phys. Chem. A, Vol. 104, No. 9, 2000 Gibson et al.

In the current context, the transcription or translation lengths,
and hence then values, may be in the hundreds or even
thousands, so this enhancement achieves quite a speedup (see
Section 5).

5. Application

The Arkin et al.5 model of the bacteriophage lambda provides
a good, large test case for the scalability of stochastic simulation
algorithms. The details of the model can be found in the original
paper; this paper shall just sketch out the model and focus on
how the algorithmic improvements described apply to it.

5.1. The Model.The model consists of the complete set of
equations governing the regulation of five genes in the temperate
bacteriophage lambda. The key reactions are summarized in
Table 2. The model considers five genessN, cro, cI, cII, and
cIIIsand their protein products. There are five sets of equations
similar to those in Table 2. Two of the five genes have protein
products that dimerize; that is, can exist as a protein2 form, as
in Reactions 9 and 10 in Table 2. The other three proteins exist
only as monomers, so Reactions 9 and 10 do not apply to those
proteins.

The key phenomenon in gene regulation is that the expression
of certain genes regulates the expression of other genes: the
“constants”ki in the equations may depend in some way on the
number of proteins present. This extra dependency is the sort
that was alluded to in the definition ofDependsOn(aµ). For the
lambda model in particular, thek1s can be calculated from the
concentrations of the various proteins using a straightforward
equilbrium thermodynamics model. See Arkin et al.5 or Shea
et al.17 for a complete description of how to calculate thek1

values.
In addition to the equations shown, Arkin et al.5 provide a

more detailed model of degradation for two of the proteins and
also a more detailed model of transcriptional termination. Also,
these reactions take place in a growingEscherichia colihost
cell, so they model the volume increase over time as well (see
the discussion in Section 4.1.2).

5.2. Results.Table 3a shows performance data for the Next
Reaction Method, with all the enhancements of Section 4,
on the (full) Arkin et al.5 model. Note that the average out-
degrees the average number of edges from a given vertex in
the dependency graphs is significantly lower than the number
of reactions, so the dependency graph is sparse, as mentioned
in Section 3.1. Five hundred trajectories were generated for the
condition “1 phage per cell”; each required∼70 000 simulation
events.

Based on the number of simulation events and the average
out-degree, one would expect 150 million updates (executions
of Step 5), or one update per out-edge per simulation event.
The actual number is substantially higher at 210 million because
certain reactions are executed much more often than others.
Under the conditions used (one phage per host cell), the two

TABLE 2: Key Reactions of the Model of the Bacteriophage Lambda

no. reaction condition

1 RNAPfree + DNAfree98
k1

RNAP•DNAopen, 0

2 RNAP•DNAopen, n98
k2

RNAP•DNAopen,n+1 for n) 0...DMAX - 1

3 RNAP•DNAopen, DMAX98
k3

RNAPfree + DNAfree + RNAfree

4 RNase+ RNAfree98
k4

RNase

5 ribosome+ RNAfree98
k5

ribosome•RNA0

6 ribosome•RNAn 98
k6

ribosome•RNAn+1 for n) 0...RMAX- 1

7 ribosome•RNARMAX 98
k7

ribosomefree + RNAfree + protein

8 protein98
k8

no protein

9 protein+ protein98
k9

protein•protein

10 protein•protein98
k10

protein+ protein

Figure 5. Ways of splitting reactions. (a) By state, (b) by molecule.

TABLE 3: Performance Data

a. Next Reaction Method
reactions 78
average out-degree 4.2
trajectories generated 500
simulation events 35 000 000
updates 206 000 000
operations 760 000 000
operations/event 22
operations/update 3.7

b. Gamma Distribution
gamma reactions 21
equivalent elementary reactions 10 000
gamma simulation events 380 000
equivalent elementary events 99 000 000

Stochastic Simulation of Chemical Species J. Phys. Chem. A, Vol. 104, No. 9, 20001885

most frequent reactions constitute nearly 90% of all simulation
events. Both of these most-frequent reactions have out-degree
6, which explains why the number of updates per simulation
event is∼6, not 4.2 as would be expected.

Which reactions are executed most often? By definition, those
reactions with high propensities are more likely to be executed.
Unfortunately, because propensity is a function of rate constant
and of state, it is very difficult to calculate which reactions will
occur most frequently without just running the whole simulation.
(For example, by changing the conditions to “six phages per
host cell”, with all the same rate constants, two additional
reactions occur with approximately the same frequency as the
original two. Under these conditions, these four most likely
reactions are responsible for 95% of the the total of 180 million
simulation events.) It is not obvious whether there is a way to
identify such reactions and deal with them separately (e.g., by
separation of time scales)without affecting the results.

Fortunately, as Figure 6b shows, the optimizations mentioned
have the effect that the most frequently executed reactions are
also the most efficient. Note that each time a reaction is executed
and a newτi has to bubble down, at least two comparison
operations are required, namely, comparing with the left and
right children. (Bubbling up only requires a single comparison.)
The fact that the most frequently executed reactions have
efficiencies around 3 and the overall total is 3.7 means that the

updatedτis do not typically move very far from their original
positions in the indexed priority queue, as mentioned in Section
3.2.

Also notice that by re-using random numbers, the number of
calls to the pseudo random number generator is approximately
equal to the number of simulation events, not to the number of
updates. This re-use decreases the number of random number
generator calls sixfold from the Absolute Time First Reaction
Method.4 Equivalently, one can simulate six times as much
without having to worry about numerical problems.

Another big time savings comes from using the gamma
distribution, as detailed in Table 3b for the condition “one phage
per host cell”. One could, in principle, write the composite
reactions as their elementary steps; however, there would be
nearly 500 times more reactions under that scheme. Furthermore,
that scheme would involve 260 times the number of simulation
eventss nearly three times thetotal number of simulation
eventss just for the gamma reactions. The total simulation
would take four times as long without this particular refinement.
Thus, using the gamma distribution provides enormous sav-
ings: all 21 gamma reactions together were only 1% of the
simulation events.

Table 4 compares a simple implementation of Gillespie’s
Direct Method with the optimized version of the Direct Method
in the Appendixand with our Next Reaction Method for the
lambda model. All methods include the gamma optimization
(note that said optimization is possible for both the Direct and
Next Reaction methods, but slightly easier to implement in the
Next Reaction Method because one already has the queuing
structure in place). All numbers are rounded. (For the analysis
that follows, we shall treat each “gamma reaction” just like any
other reaction, rather than doing any detailed analysis of these
special cases. Because those reactions constitute 1% of the total,
and because log(78)/log(78- 21) is within 10% of unity, we
shall not introduce huge errors.) The simplest implementation
of the Direct Method updates allais each iteration. The
Optimized Direct Method and the Next Reaction Method use
dependency graphs (Section 3.1) to minimize the number of
updates. The Direct Method requires 78 additions per iteration
to calculate the cumulative sumsa1, a1 + a2, a1 + a2 + a3, ...,
a1 + a2 + a3 + ... + a78, and log 78 comparisons to do a binary
search and find the appropriateµ. The Optimized Direct Method
takes log 78 additions perupdateand log 78 comparisons per
iteration to generateµ. The Next Reaction Method requires an
addition, a subtraction, a multiplication, and a division per re-
usedτ, of which there are #updates- #events, and it also
requires 2 log(78) operations per simulation eventin the worst
case, but the efficient UPDATE algorithm (Algorithm 3) may
cut down on that number substantially. Finally, recall that the
Direct Method uses two random numbers per simulation event,
whereas the Next Reaction Method uses one. Different opera-
tions take different amounts of time, so Table 4 does not attempt
to combine all operations into a single number.

Figure 6. Performance data for lambda model. (a) Number of times
each reaction is executed. (b) Number of update operations per executed
reaction.

TABLE 4: Comparison of Methods for the Lambda Modela

parameter
direct

method
optimized

direct method
next reaction

method

ai calculations 2700 210 210
Other×, ÷ 0 0 340
+, -, comparison 2900 1500 1100
exp random numbers 35 35 35
uniform random numbers 35 35 0

a All numbers are in millions.

1886 J. Phys. Chem. A, Vol. 104, No. 9, 2000 Gibson et al.

As can be seen from the table, the Optimized Direct Method
and the Next Reaction Method both outperform the Direct
Method. The relative performances of the Optimized Direct
Method and the Next Reaction Method are hard to compare
quantitatively without more specific data about speeds of various
steps but, qualitatively, the Next Reaction Method will evidently
outperform the Optimized Direct Method.

6. Conclusions

This paper presents an exact, efficient way to do calculations
for large systems of loosely coupled reactions in the stochastic
framework. The algorithms presented areexact(i.e., provably
equivalent to the chemical Master Equation approach) and they
are efficient, both in running time and in number of random
numbers generated. For both the Direct and the Next Reaction
Method, the amount of time required per iteration is proportional
to the logarithm of the number of reactions, not the number
itself. The number of random numbers generated by the Next
Reaction Method is(reactions)+ (simulation eVents),which
is only slightly higher than the optimal number,simulation
eVents.(For comparison, the Direct Method takes 2× simulation
eVents.)

The paper extends the Next Reaction Method to time-varying
rate constants while maintaining both types of efficiency. As
an aside, theAppendixshows how to extend the Direct Method
to time-varying rate constants, but it is not clear whether this is
useful.

The paper also provides one specific example of extending
of the Next Reaction Method to non-Markov processes and
sketches a framework in which other examples might be
formulated.

For loosely coupled chemical reaction systems in solution,
the Next Reaction Method is preferable to the Direct Method
for the following reasons:

• although the efficiency of updates in each isO(log r), if
some reactions are much faster than others, the Next Reaction
Method may be effectivelyO(log r′), wherer′ , r;

• the Next Reaction Method can easily be enhanced to re-
use random-numbers, which reduces the number of random
numbers to half as many as used by the Direct Method; and

• the Next Reaction Method is easily extended to both Markov
and non-Markov time-varying processes.

Finally, the paper presents an example of the performance
of these algorithmic improvements on a test case from the
biology literature.

Acknowledgment. The authors thank Daniel Gillespie and
Tau-Mu Yi for their careful reading of an earlier version of
this paper. We also appreciate several comments from the
anonymous reviewers that improved the clarity of this paper.
Supported in part by ONR grant N00014-97-1-0293, by a JPL-
CISM grant, by NSF Young Investigator Award CCR-9457811,
and by a Sloan Research Fellowship.

7. Appendix

7.1. Proof of Theorem 2.The random numberτ is orginally
distributed according to distributionFa,n, with densityPa,n. After
Step 6, it is distributed accordingP′a,n) Pa,n(u|T > tn), which
is equal to

By the Random Variable Transform Theorem,13 the random
variableY) [Fa,n(τ) - Fa,n(tn)]/[1 - Fa,n(tn)] has the density

The second line is just the definition ofP′a,n(u). The third
line comes from the transformationV) Fa,n(u), dV)
[dFa,n(u)/du]du) Pa,n(u)du. The fourth line comes from
the transformationw) [V-Fa,n(tn)]/[1-Fa,n(tn)], dw)
(1/[1-Fa,n(tn)])dV. The final line comes from the definition of
the delta function.

Hence, the random variableY is distributed uniformly on
(0, 1]. Finally, the inverse generation method works by
transforming a uniform random numberU to F-1 (U). Here,Y
is such a uniform random number, which proves the theorem.

7.2. Enhancing the Direct Method.The underlying ideas
of the Next Reaction Methods use a dependency graph to
update the minimal number of variables and use an efficient
data structures can be applied to the Direct Method as well.

Algorithm 6. (Efficient Exact Stochastic Simulations Direct
Method), Replace Steps 1 and 2 of the Direct Method with:

1. Initialize (i.e., set initial numbers of molecules, set
t r 0, generate a dependency graphG).

2. Calculate the propensity function, ai, for the
following i:

If this is the initial iteration, calculate ai for all i;
Otherwise, letµ be the reaction that was just executed.

For each edge(µ,R) in the dependency graphG,
update aR.

It is clear from the definition of the dependency graph that this
will update only theais that need to be updated. The only thing
remaining is to use the right data structure to speed up the
updates.

To complete the speed up of the Direct Method, one must
do Steps 2, 3, and 4 efficiently. One might consider using a
simple array to store each of theais. In this scheme, updates
would be very fast. However, Step 3 of the Direct Method would
then take time proportional to the number of reactions. A better
data structure, which takes time proportional to the logarithm
of the number of reactions, follows.

Store theais as the leaves of a complete tree and store in
each non-leaf node the sum of its left child and right child (see
Figure 7a). Thus, the root will have value∑i ai. When ais
change, update (1) thoseais that have changed and (2) their
ancestors. Notice that the tree containsr leaves andr/2 +
r/4 + r/8 + ... + 1 = r non-leaves. The height of the tree is
simply log 2r) 1 + log r. Each update affects one node at
each level, hence isO(log r).

Generating the random numbersτ will be easy because the
root of the tree contains the appropriate parameter. For theµP′a,n(u)) {Pa,n(u)/[1 - Fa,n(tn)] if u > tn

0 otherwise

Q(y)) ∫-∞

∞
P′a,n(u)δ (y -

Fa,n(u) - Fa,n(tn)

1 - Fa,n(tn)) du

) 1
1 - Fa,n(tn)

∫tn

∞
Pa,n(u)δ(y -

Fa,n(u) - Fa,n(tn)

1 - Fa,n(tn)) du

) 1
1 - Fa,n(tn)

∫Fa,n(tn)

Fa,n(∞))1
δ(y -

V - Fa,n(tn)

1 - Fa,n(tn)) dV

) ∫0

1
δ(y - w) dw

) {1 0 < y e 1
0 otherwise

Stochastic Simulation of Chemical Species J. Phys. Chem. A, Vol. 104, No. 9, 20001887

value, generate a random numberx between 0 and∑i ai (which
can be found at the root) and then use the following algorithm,
starting at the root.

Algorithm 7. (Efficient Uniform Random Number Genera-
tion).

1. If the current node is a leaf, letµ be its index.
2. Otherwise, if 0e x e (left child value), then call

this algorithm recursively on the left child with
parameterx.

3. Otherwise, (left child value)e x; so call this algorithm
recursively on the right child with parameterx -
(left child value).

The discussion thus far has been somewhat abstract and calls
for an example.

Example 4. Consider the numericalValues in Figure 7b, the
tree structure for a1) 6, a2) 2, a3) 7, a4) 1 and a5) 9.
To calculateτ, generate an exponential randomVariable with
parameter 25. For theµ Value, generate a random number x
between 0 and 25. Suppose x) 15.5. Because x> 15 (the left
child), go to Step 3 of the algorithm and descend the right
subtree (i.e., the one whose root is “10”) with parameter x′)
x - 15) 0.5. Now, 0e x′ e 1, so use Step 2 of the algorithm
and go to the left node, labeled “1”. Finally, this is the leaf
corresponding to a4, so stop and letµ be “4” .

One standard method of generating a random number of this
distribution is to generate a random numberR between 0 and
1, then find the indexµ such that∑i)1

µ-1 ai e R × (∑i ai) < ∑i)1
µ

ai. In fact, Algorithm 7 does precisely that, in an efficient way,
and takes time proportional to the height of the tree, not the
total number of nodes in the tree.

With this algorithm, an update takes 1+ log r operations,
and generatingµ takes logr operations. By the sparseness

assumption, each simulation event (time through the loop) takes
at most k (1 + log r) operations, wherek is a constant
independent ofr. For E simulation events, the algorithm takes
O(E log r) operations, not counting the initialization in Step 1.

As a side note, there are other efficient ways to generate
random variates of a discrete distribution,18 which are somewhat
esoteric but have better expected times. One could do a thorough
analysis of the trade-off between programming complexity, run
time, numerical stability, and number of uniform random
numbers required. However, because the Next Reaction Method
is more easily enhanced to use fewer uniform random numbers
and handle time-varying processes, both Markov and non-
Markov, we shall favor it.

7.3. Time-Varying Direct Method, Markov Processes.It
is well known how to generalize the Direct Method to arbitrary
functions of time ai(t).13,19 One writes an equation that is
analogous to eq 4. IfS is the state at timet0, then the equation
is

At each subsequent step of the algorithm, one must recondition;
that is, change the densityP(µ,τ|S,ti) to the densityP(µ,τ|S,ti+1).
Reconditioning works out to changing the lower limit of
integration.

It may be hard to generate random numbers according to this
distribution for arbitrary functions of timeai. (Note, in particular,
that the lower limit of integration changes each iteration, so
methods that involve numerical storage of partial values of the
integral will have to do significant recalculation each iteration.)
If all the ais changein the same way,then one can use the
enhancements of the previous section; if not, it is not im-
mediately clear how to run this algorithm efficiently for many
reaction channels. Once again, the Next Reaction Method is
preferable.

References and Notes

(1) Gibson, M. A.; Mjolsness, E.;Computational Methods for Modeling
Biochemical Networks; Bower, J., Bolouri, H., Eds.; MIT Press: Cambridge,
MA, in press.

(2) Gillespie, D. T.Physica A1992, 188, 404.
(3) Gillespie, D. T.J. Phys. Chem. 1977, 81, 2340.
(4) Lukkien, J. J.; Segers, J. P. L.; Hilbers, P. A. J.; Gelten, R. J.;

Jansen, A. P. J.Phys. ReV. E 1998, 58, 2598.
(5) Arkin, A. P.; Ross, J.; McAdams, H. H.Genetics1998, 149, 1633.
(6) van Kampen, N. G.Stochastic Processes in Physics and Chemistry;

Elsevier: Amsterdam, The Netherlands, 1992.
(7) Morton-Firth, C. J. Stochastic Simulation of Cell Signalling

Pathways, Thesis, University of Cambridge, 1998.
(8) Colquhoun, D.; Hawkes, A. G.Phil. Trans. R. Soc. Lond. B1982,

300, 1.
(9) Gillespie, D. T.J. Comput. Phys. 1976, 22, 403.

(10) Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.Introduction to
Algorithms; The MIT Press and McGraw-Hill Book Company: Cambridge,
MA and New York, NY, 1990; Chapter 7.

(11) It may happen thataR) 0 for someR * µ, in which case Step 5b
is incomplete. As long asaR) 0, τ0 should be set to∞. Let t1 be the time
at whichaR first becomes 0, lett2 be the time at whichaR ceases to be 0,
let aR,old be the last pre-0 propensity, and letaR,new be the first post-0
propensity. Then, the correct transformation for Step 5b isτR r (aR,old/
aa,new)(τR - t1) + t2.

(12) Segers, J.Algorithms for the Simulation of Surface Processes,
Thesis, Eindhoven University of Technology, 1999.

(13) Gillespie, D. T.MarkoV Processes: An Introduction for Physical
Scientists; Academic: San Diego, CA, 1992.

(14) Similarly, plugging into the RVT theorem shows directly that the
formula for the caseai) 0 produces the the correct new distribution forT′i.
We shall outline a more intuitive argument, but not make it entirely
rigorous: Intuitively, one can multiply the original transformation byai,n+1,
giving ai,n+1τ′i) ai,nτi - ai,ntn+1 + ai,n+1tn+1. One can view this as a
transformationr′) r - ai,ntn+1 + ai,n+1tn+1 of a new random variabler,

Figure 7. Data structure used forais for an efficient version of the
Direct Method. Each leaf contains anai value. Each other node contains
the sum of its left and right child. (a) Generic construction, (b) numerical
example used in text.

P(µ,τ|S,t0)) aµ(S,τ) exp (-∫t0

τ∑
j

aj(S,t)dt)

1888 J. Phys. Chem. A, Vol. 104, No. 9, 2000 Gibson et al.

which is well defined even ifa) 0. Applying ther f r′ transformation
for each time thatai,n+1) 0 and the first non-zeroai,n+l, and applyingr)
ai,nτi to the last pre-zeroai and the first post-zeroai, gives the desired
transformation.

(15) For time-varying processes, there may be a non-zero probability
that a given reaction does not occur at all (in other words, integrating eq 9
from tn, to ∞ may result in somep < 1). In this case, one must choose
random numbers in such a way thatPµ(∞|S,tn)) 1 - p. This choice is
easy to make in the Next Reaction Method, one generates a uniform random

numberr: if r > p, the reaction never occurs soτ) ∞; otherwise one
transformsr (or uses some other method) to findτ < ∞.

(16) Leon-Garcia, A.Probability and Random Processes for Electrical
Engineering; Addison-Wesley Publishing: Reading, MA, 1994.

(17) Shea, M. A.; Ackers, G. K.J. Mol. Biol. 1985, 181, 211.
(18) Matias, Y.; Vitter, J. S.; Ni, W. C. “Dynamic Generation of Discrete

Random Variates”, Technical Report, Bell Labs, 1997.
(19) Jansen, A. P. J.Comput. Phys. Commun. 1995, 86, 1.

Stochastic Simulation of Chemical Species J. Phys. Chem. A, Vol. 104, No. 9, 20001889

