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Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many

Channels

1. Introduction

The process of creating a mechanistic, predictive model of a
system can be broken into two steps: (a) creating a complete
description of the chemical, physical, and biological processes
involved; and (b) using mathematics to generate predictions.
For chemical processes, the first step is accomplished by writing
a system of chemical equations and perhaps a description of
certain physical processes (e.g., temperature, volume, electric
field, diffusion, stirring). In principle, (a) can be accomplished
without any thought about or care for (b); one may describe a
system completely without reference to the subsequent process
of calculation. In fact, such a calculation-independent model is
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There are two fundamental ways to view coupled systems of chemical equations: as continuous, represented
by differential equations whose variables are concentrations, or as discrete, represented by stochastic processes
whose variables are numbers of molecules. Although the former is by far more common, systems with very
small numbers of molecules are important in some applications (e.g., in small biological cells or in surface
processes). In both views, most complicated systems with multiple reaction channels and multiple chemical
species cannot be solved analytically. Thereest@ctnumerical simulation methods to simulate trajectories

of discrete, stochastic systems, (methods that are rigorously equivalent to the Master Equation approach) but
these do not scale well to systems with many reaction pathways. This paper presents the Next Reaction
Method, an exact algorithm to simulate coupled chemical reactions that igffilgent it (a) uses only a

single random number per simulation event, and (b) takes time proportional lmgdmthm of the number

of reactions, not to the number of reactions itself. The Next Reaction Method is extended to include time-
dependent rate constants and non-Markov processes and is applied to a sample application in biology (the
lysis/lysogeny decision circuit of lambda phage). The performance of the Next Reaction Method on this
application is compared with one standard method and an optimized version of that standard method.

high-order reactions, virtually all real systems can be broken
up into elementaryreactions that have at most two reactants
and rarely more than three products.)

One may make certain computational assumptions and
proceed through to predictions. For example, one assume
that there are sufficiently many molecules that the number of
molecules can beapproximatedas a continously varying
guantity that varies deterministically over time. In this approach,
one writes a coupled system of differential equations for the
concentration of each substance in terms of the concentrations
of all others:

diXy]

more fundamental than calculation-based models: the same — 2 = 1% %], [Xd] -.2)

process (e.gA + B — C) occurs whether there are 20 or220 dt ! ' ’

molecules ofA andB. The mathematicaproblem, (b), is very d[x,]

much different if there are 20 or #®molecules ofA andB.! 5 (X, X, [Xd] -..) (1)

Additional mathematical or computational assumptions may be

used to simplify calculations. These assumptions are just
simplifying computational assumptions; they have nothing to

and so on. Solving these differential equations results in the

do with the process, but rather with how one represents that oncentration of each substance as a function of time.

process to allow efficient computation.
1.1. Mathematical Descriptions of Chemical ProcesseA.
coupled system of chemical reactions, of the form:

Sometimes, onassumeshat the process in question is fast
compared with the time scale of interest, and can be considered
to have reached equilibrium. In that case, one replaces the
differential equation (eq 1) with the algebraic equations

X, + X — Xy + ...
0=1,([X,, [XJ), [Xq )

states that one molecule of substanGereacts with one of _
substanceX, to give one molecule of substancg, etc. A 0= 15X, [Xal. [X4] --.)

complicated chemical process can be decomposed into a set of
many such reactions. (Although it is possible to write arbitrarily

and so on, whose solutions give only equilibrium concentrations
not dynamics. The assertion “the system is in equilibrium” is

* Corresponding author. E-maikgibson, bruck@paradise.caltech.edu. ~ '€COgnized as amssumptionit is not true in general. In fact, )
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namely, that the number of molecules can be approximated asThe propensities of the reactions are giverkhyky, ... ks. For
acontinouslyarying quantity that variedeterministicallyover example, the probability that a given moleculefofeacts with
time. This assumption is so fundamental to the majority of a given molecule oB in a small time dis k;dt + o(dt). The
chemical kinetics that it is frequently not even viewed as an ‘constants’ ki may be a function of volume, temperature,
assumption but as a rigorous consequence of chemical theoryelectrolyte concentration, etc.

Although this assumption holds for most systems with which
one deals, it does not hold in very small systems (which are

very important in biology). but rather are mesoscopic rate constants, which are related to,
Where does that leave us? _ but not identical to, macroscopic rate constahts. particular,
One may assume only. that all molecules |n.vollved obey the macroscopic rate constants do not depend miume but
laws of quantum mechanics; for systems consisting of complex concentrations of molecules do, whereas mesoscopic reaction

molecules interacting in complex ways over long times, this constants do depend amlume but the number of molecules
approach is completely intractable. One may assume thatygeg not.

quantum effects are small and that molecules obey Newton’s )

laws of motion. For very simple systems, this molecular =~ One way to proceed is to label each moleculefofA,,
dynamics approach has some merit, but for systems with A2 --- As) and each molecule d (By, By, ... Bis), etc. Now
complex macromolecules (e.g., biological proteins), long time there are (#&) x (#B) distinct copies of Reaction 1 that can

scales, and interactions of several different molecule types, thisCCur, () x (#C) distinct copies of Reaction 2, etc. (Morten
approach too becomes intractable. Firth's algorithnf uses this approach; that is, it picks random

molecules ofA and B and sees whether they react.) Previous

that nonreactive collisions occur far more often than reactive Work on efficient simulatiofi focused on surface processes,
collisions and, hence, that the fast dynamics of motion can be where reactions may take place on a large matrboofyf
neglectee-and one may represent the system simply by the positions. The current work focuses on reactions in solution,

number of each kind of molecule. This approach leads rigorously O Which' position is not important, and one can grooyp
to the following statemedt the probability that a certain ~ Mmolecule typeThe (#) x (#B) copies of Reaction 1 are

reactionu will take place in the next instant of time & given thus grouped into a single reaction, whose propensity is

by a,dt + o(ct), wherea, is independent oftdando(dt) denotes ~ (#A) > (#B) x dt + o(df). (One can also do such grouping if
terms that are negligible for smaft.However,a, may depend ~ POSition is important; but, in that case, grouping by molecule
on (a)u, (b) the current number of molecules of each kind, and P& Provides no real benefits because the time-consuming part
(c) the current time. (In particulag, depends on temperature of the simulation is maintaining the data structures that store

and volume, which may change with time.) The remainder of POSition information.) _ o
this paper will assume the stochastic framework. The state of the system in the stochastic framework is defined

1.2. Objective. An important problem in the stochastic by the number of molecules of each species and changes

framework is how to develop numerical methods that allow discret(_al_y whenever one of Fhe r_eactions is gxecuted. The
efficient computation. The remainder of this paper presents an probabmty _that a certain reactignwill take place in the next
exact stochastic simulation algorithm, which we call the Next instant of time dis given bya,dt + O(dt)'. For example, the
Reaction Method, that is more efficient than existing metk6ds stateS = (#A, #B, #C, #D, #E, #, #G) will _change _toS =
both in terms of number of operations and number of random (#A =1, #8 — 1, #C +1 D, #E #F, #G) if Rea_ct|on Lis
numbers used. Section 2 provides the theory of the stochasticexecmed' The probability of this occurrence is given by
framework and details of existing algorithms for exact stochastic _

simulation. Section 3 introduces the Next Reaction Method and P(S.t+diSt = a,dt + ofdt) )
its data structures, and proves this algorithm is correct. Section
4 shows how to extend the Next Reaction Method to time-
dependent stochastic processes. Section 5 applies the extend

algorithm to the Arkin et a¥.model of lambda phage.

Remark 1. Note that the reaction constantsvgh here are
not the traditional macroscopic or deterministic rate constants

Finally, one may assume that the solution is well mixed

(Note that because the transition probability depends only on
etge current state and not on previous states, the underlying
process is Markov.) Grouping by molecule type allows immense
improvements. Specifically, this paper will demonstrate speed-
ups above and beyond those previously repdrtadain, these
are possible because the current paper does not care about
This section introduces the theory of the stochastic framework positional information). However, there are also cases in which
and summarizes existing methods for exact stochastic simula-other kinds of groupings are even better; for example, the case
tion; that is, numerical methods for performing calculations in Study in Section 4.2.1.

2. Theoretical and Computational Background

the stochastic framework. One standard way to deal with the stochastic framework is
2.1. The Stochastic Framework® Consider, for example, ~ t0 create one probability variable for each possible stafe (#
the set of reactions #B, #C, #D, #E, #F, #G). Then, using eq 3 and the definition

of the gs as a function of state, one writes out a system of

K, coupled differential equations that defines the system. This
A+B—C coupled set of differential equations hasobabilities as
K variablesand is called a Master Equation. For a system with
B+C—D very few states, such as an ion charfhehe may write out
s this entire system of equations and solve it. For larger systems,
D+E—E+F however, this approach quickly becomes unreasonable. In the
Kk, example just given, supposeD#A < 9, 0 < #B < 9, etc.
F—D+G Then, there are ¥Gstates in this simple 5-equation system. In
ks the Arkin et al® model of lambda phage, reasonable limits on

E+G—A (2) the number of each kind of molecule lead to a number of states
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a Gillespie®® developed twaxact stochastic simulatioaigo-
15} rithms, which are discussed in the next section. The tricky
+._._._r—.—.-.-JH_-—L-< mathematical part of such an algorithm is specifying how to
generate random numbers so that they will have the correct
distributions. The tremendous success of these exact stochastic
simulation algorithms has led to them being applied to much
larger systems than was originally anticipated. For example,
Arkin et al® used exact stochastic simulation to simulate a model
of a simple virus, lambda phage, containing 75 equations in 57
chemical species. Because the original algorithms do not scale
readily to large systems, we have developed new versions that
do scale well with number of reactions. (The tricky computer
science part is to develogfficientalgorithms that do the right

Number of molecules

. . . thing.)
00 50 100 150 200 2.3. Algorithms. Consider a system afreactions as in eq
Time (arbitrary units) 2. For now, assume _that all rate constants (&49., k_c_, ineq 2)
are true constants; time-varying rate constants will be covered
b in Section 4. Gillespigproposed tw@xact stochastic simulation
Time 0 17 50 60 93 108 121 150 155 175 algorithms. At each time step, the system is in exactly one state.
#A 6 5 4 4 5 5 6 7 T8 A transition consists of executing a reaction so there are at most
#B 4 13 12 11 11 11 11 11 10 10 r possible transitions from a given state. The key is to choose
#C 8 9 10 9 9 9 9 9 8 8 random numbers using a computer random number generator
ig 192 192 192 193 183 184 174 164 165 155 and to use those random numbers to pi_ck _tran_sitions. One must
W 3 3 3 3 3 9 9 2 2 2 be careful to choose from the correct distribution at each point
4G 5 5 5 5 4 5 4 3 3 2 in the algorithm.
Reaction | — 1 1 2 5 4 5 5 2 5 Gillespie proposed two methods for accomplishing the

simulation. The first method, which he calls theéect Method

Figure 1. Example trajectory. (a) Graphical representation. Legend: . . . .
A-X, B-circle, C-triangle, D-square, E-diamond, F-star, G-line. (b) State calculates explicitlywhich reaction occurs next andhenit

representation. The ‘Reaction’ row merely indicates which reaction OCCUrs. The second method, which he callsFirst Reaction

occured; it is not part of the state. Method generates for each reactiora putative timer, at which
reactioru occurs, then chooses the reactigrwith the smallest

on the order of 1®. Even if this estimate is Off, or a clever -L—z (theﬂrst reaction) and executes reacti@’hat time Tz' Both

reduction of the number of states is possible, say by a factor of of these methods are described now. :

1@0, that still leaves 1¢9 states, which is still untractable. Exact 2.4. Gi”espie’s Direct Method.For a System ina given state,

stochastic simulation provides a more feasible approach. Gillespie’s direct algorithm asks two questions:

2.2. Exact Stochastic Simulation.As a different way of « Which reaction occurs next?

dealing with the stochastic framework, consider the problem 4 \When does it occur?

of generating a single sample trajectory of a chemical processciearly, both of these questions must be answered probabilis-

in the stochastic framework, as in Figure 1a. The (intractable) tically by specifying the probability densif(«,7) that the next

Master Equation approach tries to write a system of equationsreaction isu and it occurs at time. It can be showhthat

and solve simultaneously for the probability all possible

trajectories. Generatingsingletrajectory is signficantly easier; P(u,r)dr = a exp(—rZaj) dr (4)

as in Figure Ib, one needs to generate a sequence of state ' " :

transitions and the times at which they occur. A naive way to

generate legal trajectories is to start with the initial state and This equation leads directly to the answers of the two afore-

repeatedly pick reactions arbitrarily and execute them, thus mentioned questions. First, what is the probability distribution

generating a legal trajectory. A better way to generate trajectoriesfor reactions? Integrating(u,z) over allz from 0 to o results

is to pick reactions and timesccording to the correct in

probability distributionsso that the probability of generating a

given trajectory with the simulation algorithm is exactly the Pr(Reaction= u) = a /zal' (5)

probability that would come out of the solution of the Master " 7

Equation. Amazingly, it is possible to create an algorithm that

has this propertyeven ifit is not possible to write out the entire  Second, what is the probability distribution for times? Summing

Master Equation explicitly, let alone solve it. (There are also P(u,r) over allu results in

inexactstochastic simulation algorithms that generate trajectories

according to approximately the correct distribution. However, P(r)dr = (za‘_) exp (‘TZ%) dr (6)

our interest is only in exact methods.) 7 T

Given the ability to generate a single trajectory with the

correct probability, one may estimate any parameter of interest These two distributions lead to Gillespie’s direct algorithm:

by generating many trajectories, calculating the value of the Algorithm 1. Exact Stochastic Simulatiort Direct Method

parameter for each trajectory, and observing the statistics of (Gillespie)

those calculated values. For example, to find the average number 1. Initialize(i.e., set initial numbers of molecules, set

of molecules oB present at timé& one can run many trajectories t<—0).

(hundreds or thousands) and plot a histogram of the values of 2. Calculate the propensity function;, or all i.

the number of molecules @& at timet. 3. Choosex according to the distribution in eq 5.
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4. Chooser according to an exponential with parameter TABLE 1: lllustration of Definitions 1 —3

>i & (asin eq 6).

) reaction a, DependsOfa,) Affectgu)
5. Change the number of molecules to reflect execution of "
reactionu. Set t—t + . A+B—C ki x (#A) x (#B) A B A B,C
6. Go to Step 2. te
As written, this algorithm uses two random numbers per B+C ks D ke x (#8) x (#C) B,C B.C.D
iteration, takes time proportional to the number of reactionsto D+ E—E+F ks x (#D) x (#E) D E D, F
update theg;s, and takes time proportional to the number of Fﬁ, D+G ks X (#F) E D,F.G
reactions to calculatg; & and to generate a random number ks
according to the distribution in eq 5. The ideas in the rest of ETG—A ks x (#E) x (#G) E.G AE G

this paper can be used to make the algorithm more efficient so -~ ) ) )

that the time it takes is proportional to the logarithm of the Specifically, Theorem 1 in Section 3.4 plus two simple
number of reactions (see discussion in &mpendiy. The rest ~ transformations make it possible to re-usezalexcept forz,,

of the paper will focus ways of improving the First Reaction the time of the reaction that was just executed. Because re-

Method.
2.5. Gillespie’s First Reaction Method.The algorithm of

the previous subsection is direct in the sense that it generates

using random numbers is not valid in general, it is critically
important to justify such re-use in this specific case.
e Switch from relatie time (time between reactions) to

and 7 directly. Gillespie also developed the First Reaction absolute imeThis switch will obviate the need for one of the

Method? which generates a putative timefor each reaction

two aforementioned transformations: for reactions whose

to occur— a time the reaction would occur if no other reaction underlyinga; has not changed, the putative timevill not have

occurred first—then letsu be the reaction whose putative time
is first, and letsr be the putative time,. Formally, the algorithm
for the First Reaction Method is as follows:

Algorithm 2. (Exact Stochastic Simulation First Reaction
Method)

to change either.

o Use appropriate data structures to stores dandzis) so
that updating those that change will be @ery efficient
operation.Section 3.2 shows a data structure, callechaexed
priority queue,that achieves this goal.

1. Initialize(i.e., set initial numbers of molecules, set |N€ formal statement of the algorithm is in Section 3.3,

t<—0).
2. Calculate the propensity function, éor all i.
3. For each i, generate a puta® time,r;, according to
an exponential distribution with parameter. a
4. Letu be the reaction whose putaé time,z,, is least.
5. Lett bet,.

6. Change the number of molecules to reflect execution of

reactionu. Set t—t + .
7. Go to Step 2.

At first glance, these two algorithms may seem very different,

but they are provably equivalehtthat is, the probability
distributions used to choogeandr are the same. We shall not
repeat the proof here. As written, this algorithm usesndom
numbers per iteration (wheras the number of reactions), takes
time proportional tor to update theas, and takes time
proportional tor to identify the smallest,.

3. The Next Reaction Method

The following three activities (which occur during every
iteration of Gillespie’s First Reaction Method) take time
proportional to the number of reactioms, (1) updating alr of
the as; (2) generating a putative time, for eachi; and (3)
identifying the smallest putative time,.

The Next Reaction Methodiill do away with each of these
activities in turn. The main ideas used are:

e Storet;, not just

o Be extremely sensit in recalculating a(and z;); recal-

following the definitions of the data structures used.

3.1. Dependency GraphsConsider, once again, the reactions
ineq 2.

Definition 1. Let Reactantg{) and Productsg) be the sets of
reactants and products, respegaly, of reactionp. So, for
exampleReactantdeaction 1= { A, B} and ProductéReac-
tion 1) = {C}.

Definition 2. Let DependsOrd,) be the set of substances
that affect thevalue ..

Evidently, Reactantg) = DependsOn(g. It is sometimes
useful to add additional dependencies (e.g., in the lambda model
of Section 5), so we make this distinction.

Definition 3. Let Affects(«) be the set of substances that
change quantity when reactignis executed.

Typically, Affectsft) = Reactantg()UProductsf); but again,
there may be exceptions (e.g., catalytic reactions, such as
Reaction 3). Table 1 illustrates each of these concepts.

Definition 4. (Dependency Graph).Let a set of reactions
R be gien. LetG(V, E) be a directed graph withertex set
V = R and with a directed edge from to y; if and only if
Affects(i) N DependsOrd,) = @. (If for some strange reason,
the self edges from; to »; are not included in this definition,
include them as well.) The@ is called the dependency graph
of the set of reactionR.

In other words, a dependency graph is a data structure that
tells preciselywhich as to change when a given reaction is
executed. Using the dependency graph allows one to recalculate
only the minimum number adis in Step 5 of the Next Reaction

culate aonly if it changesThe preceeding statement may seem Method. The dependency graph of the sample reactions is

circular: how can one know that has changed or not changed

without calculating it and comparing to its old value? In fact,

illustrated in Figure 2.
3.2. Indexed Priority Queues.Typically, the dependency

one can analyze the set of reactions beforehand and determingraph issparse(i.e., the number of edges from a given vertex

which reactions change whiahs. Section 3.1 will introduce a
data structure, called@ependency graptwhich allows one to
update the minimum number afs.

o Re-useris where appropriateln general, Monte Carlo

is small), and only a few propensities will need to be updated
at each time step. It is important to have data structures that
are very efficient at handling small numbeiof updates.

The Next Reaction Method deals with two kinds of variables,

simulations assume statistically independent random numberszis anda;s. The latter are easy to handle: the operations required
so it isusually notlegitimate to re-use random numbers. In this are READ and UPDATE, and they can be stored in a simple
particular special case, we shall prove thaisitlegitimate. array. (A purist might not even store them, but rather recalculate
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There are several algorithms that need to be defined to use
' the indexed priority queue. Most of them are analogous to
algorithms for standard priority queu¥dn particular, one needs

e SWAP (, j), which swaps the tree nodeandj and updates
/ ﬂ the index structure appropriately
¢ BUILD, which takes a tree and an index structure and moves
@ @ entries until the tree has the property that each parent is less
than its children; and
o« UPDATE (r), which updates a given reaction number.
@ @ SWAP is easy to implement. BUILD is completely analogous

)P to the standard heap/priority queue BUILD operation but uses
SWAP to keep the index structure correct. UPDATE is
nonstandard and deserves comment.
Figure 2. Dependency graphs for example equations from Table 1. A|gorithm 3. UPDATE(noden, value new_value)

Changevalue ofn to new_value

(8,}}.3) UPDATE_AUX(n)
5 et Algorithm 4. UPDATE_AUX(noden)
(1,4.2) (6, 2.0) If value) < value(parentq))
o D\ o SWAPN and parentf)
D E F G Update_aux(parentf))
O 7] [E39)] 1@ 3N] [(7.89) Else If value() > minimumuvalue(children())
H/\I \J SWAPN and minimum childf)
(5,9.1)] 1310,10.1){|(3, =) Update_aux(minimum childg))
Else
Return
BIF|JIEH|CIG|AID] I An example of the algorithms will provide clarification.
1121314151617 181]9 |10

Figure 3. Example indexed priority queue. Top: tree structure. The Exalr(’rjple. 1 Euppé)se th@alug ofzy CZQngesdfrog I4.2ht0 16.
positions in the tree structure are labeled with lettersJAfor ooking In the index arrayr Is stored in node B. In the tree

pedigogical purposes. Bottom: Index structure. Each number has astructure, one changes thevalue of node B to 16. Calling
pointer to the corresponding position in the tree structure; these pointersUPDATE_AUX on node B, one executes the ‘Else If statement

are illustrated as letters-AJ. and swaps the ordered pairs in nodes B and E and the
corresponding indices (1 and 4) in the array. Calling
them as needed.) Thes require the operations FIND UPDATE_AUX recursiely on node E, one notes that the new

MINIMUM (in Step 2) and UPDATE (in Step 5d). The former  value of 16 is in the correct position (5.5 16 < «), so the
operation is one of the standard operations of a priority queue final ‘Else’ clause is executed and the algorithm stops with
(which is often implemented as a heap), and with a little thought, ordered pair (4, 5.5) in node B, (1, 16) in node E, index ‘E’ in
the other can be implemented in terms of the standard priority position 1 of the array, and index ‘B’ at position 4. The rest of
queue algorithms ADDELEMENT and DELETE_ELE- the structure remains unchanged.

MENT .10 However, the standard algorithms, although used in
some contexts for this speedtigre not really what is called .
for in this context. A better UPDATE, which takes into account value, is completely analogous.

the structure of the data, requires an indexing scheme and a ffOng_ way go |mp(Ije_mentt UPDATEd'S S'.T;]ptl%/ to delete tht(_a
separate UPDATE algorithm. offending node, and insert a new node wi e same reaction

finiti indexed priori . ¢ number but a different time value. This implementation takes
Definition 5. Anin exe prlforlk:y ?cueueqnsstrs] 0 (f?‘)_at;]ee something like 2 log operations. Our approach, on the other
structure of ordered pairs of the form (i), where i is the 4 changes the node in place, then bubbles it up or down
number of a reaction and is the putatie time when reaction

. . Sex - - the tree structure until the priority property is re-established.
toccurs, and (b) an index structure whoSesiementis a pointer s anproach evidently takes logbut has the advantage that

to the position in the tree that contains ¢j). The tree structure it there are a small number of reactions that have fast rate
in (a) has the property that each parent has a lowethan constants compared with the others (e.g., thereramuch
either of its children. reactions), then most of the updates will involve those reactions
Figure 3 shows an example of an indexed priority queue. and take logr' time. This savings occurs because once the
Note the following: (a) finding the minimum element takes algorithm reaches a node that is already in the right spot, it
constant time— it is always in the top node; (b) the ordering is  does not continue further. For example, if some of the reactions
only vertical, not horizontal; (c) the number of nodes is precisely are “disabled” or “not possible” in the given state and have
the number of reactions not twice the number of reactions as a = 0 andr = o, they will not slow down the computation.
in the efficient version of the Direct Method in the Appendix; This effect can be significant; for example, the chemotaxis
(d) because of the indexing scheme, it is possible to find any system of Morton-Firth contains a large number of reactions
arbitrary reaction in constant time, and (& = o, which that will not be “active” at any given time. Because of these
corresponds to Reaction 3 never occuring (ag= 0). In fact, inactive reactions, previous wdrivoided the standard Gillespie
« is a perfectly legitimate floating point number, so it is possible algorithm (i.e., the Direct Method), which grows with the
to implement this feature (in the C programming language, for number of reactions, and instead developed one that is not exact
example) without any major headaches. but scales with number of molecules because the number of

The converse case, where the new value is less than the old
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molecules is much less than the number of possible reactions.consists of switching from relative to absolute times and using
Note that our algorithm is not only exact but also scales with a standard priority queue. They conclude that for time-invariant

the logarithm of the number of active” reactions. The Ap- processes, the Direct Method is preferable to the Absolute Time

plication Section (Section 5) gives some performance numbers.First Reaction Method for two reasons that do not apply to the
3.3. Statement of Algorithm and Timing Analysis. Next Reaction Method. First, in their domain, in which position
Algorithm 5. (Exact Stochastic Simulation Next Reaction IS important, it is difficult to do the indexing necessary to
Method) implement the efficient update algorithm (Algorithm 3 of
1. Initialize: Section 3.2); specifically, the time-consuming part of their

problem is not the priority queue but rather maintaining the data
structures that store position-dependent information, which is
irrelevant in the present position-independent context. Second,
the Absolute Time First Reaction Method generates too many
A . random numbers. Because typical computer pseudo-random

an exponential dlsmbuuo‘n with pargm_eter, a number generators cycle with some regularity, using too many

(d) store ther; values in an indexed priority queu. random numbers will quickly exhaust the abilities of the

2. Letu be the reaction whose putaé time, 7, stored in  generator and should be avoided with extreme prejudice. (Also,

(a) set initial numbers of molecules, sett0, generate
a dependency grap@;

(b) calculate the propensity function;, or all i;

(c) for each i, generate a putag time,r;, according to

P, is least. from a purely practical standpoint, generating random numbers
3. Letr bet,. is relatively slow.)
4. Change the number of molecules to reflect execution of  Amazingly, the Next Reaction Method uses just a single
reactionu. Set t— . random number per iteration. Clearly, the optimum would be
5. For each edgey o) in the dependency grap®, exactly one random number per iteration. Our algorithm is
(a) update g; slightly suboptimal in that the initialization step will generate
(b) if o # i, settq — (Auod@uned)(Ta — 1) + t (€€ an extrar random numbers and at the end of the algorithm
note 11); random numbers will be left over. As the number of iterations

increases, this initialization effect becomes negligible by
comparison. The only new random number generated,
corresponds to the reaction that was just executed and is
generated in Step 5c. It is clear that reactiorequires a new
random number because the value of the old random number

: i ) has been used explicitly, thus reducing it to a sure variable.
Consider the time used by the algorithm. Step 1 of the Next ggction 3.4 will show that it is correct to do the other

Reaction Method is only executed once; Step$ 2re executed manipulations in Step 5, so as not to regenerate any other
once for each simulation event. Steps 3, 4, and 6 do not depengiangom numbers. For this reason we assert that the Next
on the number of reactions, Step 2 does not either, because Reaction Method is superior to the Direct Method.

of the properties of indexed priority queues. Step 5 is executed 3 4 Re-usingrs. This section will demonstrate that the Next
once for every edge:(a) in G. Suppose there atesuch edges,  Reaction Method, with its switch from relative to absolute times
wherekis typically much less than Step 5a, executddtimes, — anq gl of the strangeness in Step 5, is equivalent to the First
depends on the number of reactants for each (elementary)zeaction Method. This demonstration, necessary to show that
reaction so it should take no more than three multiplications o algorithm works and why it works, is somewhat more
(@s was explained in théntroduction). Step Sb, executed  athematical than the rest of the paper. The reader whose
k— 1 times, requires an addition, a subtraction, a multiplication, pimary interest is implementing the Next Reaction Method may

and a division. Step 5c, executgd 1 time, requires a call to theskip ahead with impunity. As mentioned before, it is usually
random number generator, which can be very slow compared s jegitimate to re-use random numbers; this section will prove

with the other operations discussed (a simple test on our systemy, ¢ jt js permissible in this special case. (In what follots,
indicates that a single call to the random number generator takesyiii denote therandomeariable corresponding to thi#" reaction,

10 times as long as a division). Step 5d, execiketimes, and 7;, a number, will denote @amplefrom that random
requiresat most2 log r operations, although it may effectively variable.)

take far fewer (see the discussion in Section 3.2). (Throughout

this paper, log means logarithm base 2, as per the typical gpq the Next Reaction Method is that the former uses relative
computer science usage.) . S times, whereas the latter uses absolute times. This difference
The total number of operations per iteration is at most should not be a stumbling block or a source of confusion.
C234m6 T Cap(k — 1) + Osc + Csa(K)(2 logr), where eacte is Suppose that during the® iteration of the First Reaction
a machine SpE‘CIfIC constant. From a Computer science perspeCMethod’ the random variables are denom forl <o =<
ti\(e, this isO(log r); that is, for very large, onlly the last term (number of reactions). TheR, = Exp(a,), and the density of
will matter. From a more practical perspective, foof 50 or R, is given by Pr(7) = 6(r)aexp(—a.r). [The Heaviside
100, the other terms, particularkg., may not be negligible.  function,6(z), is 0 forr < 0 and 1 forr = 0.] The corresponding
Let us be very clear on this point: the Next Reaction Method gphsolute time is given by the random variable= R, + tn,
works even ifk is large but will achieve more of a speedup if the sum of the relative time and the variablduring thenth
k is small relative to the number of reactions. (An equivalent jteration. (Thent iteration ends, and the+ 15t begins whert
way of saying the same thing is ‘if the dependency graph is s updated in Step 5.) What is the densityTgP By the random
sparse) variable transformation (RVT) theoref,
Lukkien et al? discuss ways to improve the Direct Method
and the First Reaction Method (a more detailed treatment can P; (1) = f‘” P, (7)0(r — [¢' +t])dr’ =P (r —t) =
be found in Segetd). Their improved First Reaction Method, o o R " R "
which we shall call the Absolute Time First Reaction Method, 0(r — t)a, exp(—a,(r — t,))

(c) If o = u, generate a random numbey, according
to an exponential distribution with parametey, and
setty —p + 1t

(d) replace the oldr, value in P with the newvalue.

6. Go to Step 2.

One of the differences between the First Reaction Method



1882 J. Phys. Chem. A, Vol. 104, No. 9, 2000 Gibson et al.

or, equivalently, corresponding random variable in the First Reaction Method
and there are no cross dependencies. By the RVT theorem,

exp(—au n(u - tn)) if u> tn

> = ! —

PI’(Tg,n U) { 1 otherwise ( ) PTl"'TN (Tl’".rN) =

with no other changes would be entirely equivalent to the
original relative-time version.
Now we turn our attention to the Next Reaction Method. After N .
Step 1, the random variables follow the distribution in edy7; = ”{fﬂxﬁ(ri) expar)o(r; — fi(ry)) dr;}
was set to 0 in Step 1a. The real core of the Next Reaction I=
Method is that each subsequent iteration maintains eq 7.
At the risk of being overly mathematical, we state the key The “product form” of this joint distribution function tells us

property that allows the Next Reaction Method as a theorem: that because theriginal variablesR; were statistically inde-
pendent, then theansformedvariablesT; are as well.

In summary, Step 1 sets up tigaccording to eq 7. Each
subsequent iteration maintains that distribution, without intro-
ducing any statistical dependencies between the random vari-
ables. Thus, the Next Reaction Method is equivalent to the First

N N
Clearly, an absolute-time version of the First Reaction Method f‘” ...f"“{ o(r)) exp(—ar,)} ”6(1- —f(r)) drye-+dry
—oo —oo i i J I
1= 1=

Theorem 1.Assume that eq 7 holds at the beginning of Step 2.
Then, before Step 5 of thd'nteration, for all i = u, 7 is
distributed according to

PI(T, > U) = expa (U —t,y) ifu>t,, ®) Reaction Method and, in turn, to the Direct Method and the
: 1 otherwise Master Equation approach.
Proof. By assumption, before Step 2 of th& iteration,; is 4. Extension: Time-Dependent and Non-Markov

distributed according to eq 7. Steps 2 and 3 identify the lgast  prgcesses
namely,7,. The act of identification reduces uncertainty. In o ) ) )
particular,T, becomes the sure variabig and all of the other The two approaches for efficient calculation of trajectories
zis must be larger tham,. Hence, each of the othéfs is of chemical reactions in the gtpchastlc framgwork prgsented thus
distributed according to PF(> u|T; > z,); which by definition far assume that the probability of a reactieroccurring in a
is Pr((T; > u) AND (T; > 7,))/Pr(T; > 7,). There are two cases. little bit of time dt (a) is given bya, x dt, wherea, is a constant,
In Case 1, fouu > 7, the numerator simplifies to PR(> u), and (b) depends only on the current state, not on the previous
and the resulting division is exp@ (U — t))/expan(t, — state or states o_f the system. It can be sr?owmat many
t)) = exp(-a (U — 7). In Case 2, fou < 1,, the numerator reasonable chemical systems have these properties.
simplifies to Prl; > 7,). In this case, the numerator cancels ~ This section will show how to deal with systems in which
the denominator, leaving 1. In Step#;1 is set tor (which (a) and (b) do not hold: in particular, it first relaxes assumption
was set tor, in Step 3), so the theorem holds. (a) by lettinga, be a function of time (as is necessary to modgl
) ) o o ~ systems whose rate “constants” change, due to changing
Showing that eq 7 is maintained is just a matter of collecting temperature, volume, etc.), and second it relaxes assumption
the details: ) (b), showing how to deal with non-Markov processes. Even
« For thosei # 4 whosea; remains constant from the" to though elementaryreactions in the stochastic framework are
n + 1%t iteration, an+1 = ain, SO €q 8 is equivalent to eq 7. Markov [i.e., have property (b)], it is sometimes useful to group
There is no need to change thesin Step 5. In fact, reactions  ¢onsecutive steps to form a composite process. The full model
whosea; does not change are not in the dependency graph, soof that process is, of course, still Markov, but if one is only
the zis are not changed. interested in a subset of the variables, the resulting mathematical
o For thosd = u whoseg; doeschangey; is now distributed process is not guaranteed to be Markov.

according to eq 8. Simply plugging into the RVT theorem shows 4 1. Time-Dependent Markov Processe€onsider a system

that the random variabl&;, constructed byr; = (ain/ain+1) in which the probability of a reaction occurring in a little bit
(ti — thr1) + tas, is distributed according to eq'? What is  of time d is given bya, x dt, but g, is a function of timeFor
the intuition behind this transformation? By the theoremis now, assume that the transition probabilities do not depend on

distributed according to eq 8. Going back to relative times, history, but only on the current state. For example, Reaction 1
7i — thy1 is distributed according to Exa(y). It can be shown in Table 1 has propensityy = ki x (#A) x (#B). The rate

(by the RVT, for example) thag(v/ai n+1)Exp(@in) = EXp@n+).  constantk, is a function of temperature and of volume. In an
Returning to absolute times gives the transformation. This engineering system, one typically affects the rate constants by
transformation is applied to all the appropriatealues in Step  peating or cooling the reaction. In a biological system, cell

5b. ] ] o growth changes the volume. Either of these mechanisms, or
» Finally, fori = u, itis necessary to generate a new random others, might change rate constants as a function of time, which
number. Note that the theorem only holds ifer u. Fori = u, requires a modification to the algorithms presented.

the variableT, was reduced to a sure variable in Step 3, so & | place of the simple exponential distribution, the putative
new random variable is needed. That new value is supplied in times are distributed accordingfo

Step 5c.

One key point has been overlooked thus far: the First T
Reaction Method requirestatistically independentandom P.(tISt) = ,(S7) eXp(_l/;n a,(SHdt) 9
numbers. To complete the correctness argument, it must be
shown that the manipulations done by the Next Reaction Method Notice two things: first, it is not easy in general to find a closed
do not introduce any statistical dependencies. form solution of eq 9 for arbitrary functions of tima,; and

At each step in the algorithify = fi(R)), each random variable ~ second, for nonconstaaf, the resulting answer will not be a
in the Next Reaction Method is a transformed version of the simple exponential distribution and hence, will not have
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the temporal homogeneity property that®r¢ ulT; > 7,) =
Pr(Ti > u — 7). As a consequence of the latter, it will not, in
general, be possible to lef = 0, so absolute times should be
used.

4.1.1. How To Do It: Next Reaction Method, Marko
ProcessesTo extend the Next Reaction Method to arbitrary
Markov processes, one simply changes Step 3 to generate
according to the new proce¥sThis change has the following
two advantages over the time-variant version of the Direct
Method in theAppendix

» Because one considers each reaction separately, the com
putation is easier and may be analytically solvable for some
processes (e.g., in the example of the next section). The Direct
Method, which considers all reactions at once, involves a sum
within the integral in eq 9; the exact form is given in the
Appendix

o Because the Next Reaction Method storgsand not just
as, it does not have to recondition on each iteration. Specifically,
after executing reactiop it does not need to regenerate
according to Pi; > ulT; > 7,). The fact that the algorithm
chose to execute reactignimplies T; > 7,. Therefore,T; is
already distributed according to the correct distribution for all
i # u whosea; has not changed.

We now show an example of how to generalize the Next
Reaction Method for time-varying Markov processes, then
consider the problem of re-using random numbers with the
generalization.

4.1.2. Example: Changing VolumReaction 1 in Table 1
has propensitk x (#A) x (#B). For second-order reactions,
such as this one, theterm depends on the volume and should
be replaced withk'/V(t), whereV(t) is the volume and' is
independent of volume. This change leads to the propensity
a'/V(t), wherea’ =K' x (#A) x (#B) is a constant independent
of volume (and hence time). For simplé), eq 9 can be solved
analytically; for example, in Arkin et af.the volume is modeled
as increasing linearly. Thu¥/(t) = Vo + ct, which leads (by a
simple integration) to the distribution

a(V(ty) + cfy 2t
V(to) —a'lc

P(tlt) = (10)

Note also that in the limit as goes to zero, this distribution
reduces to an exponential with paramedé¥/,, as expected.

It is a straightforward operation to generate random numbers
according to this distribution, using the inversion-generating
method!316one calculates the cumulative distribution function
F (a simple integral oP) and takes a samplé from a uniform
random number generator, and then the varidbigU) has
the correct distribution. For the preceeding example, the variable
R = V(to)[U~92 — 1]/c is distributed according to eq 10.

4.1.3. Generating Fewer Random Numbéraas remarkably

simple in the time-independent, exponential case to re-use the
same random numbers. The extension is somewhat more

difficult. The method presented here works for re-using random
variables generated by the inversion-generating method. Of
course, not every random variable is generated that way, and
in practice it may be hard to re-use other random numbers.

Theorem 2. Let 7 be a random number generated according
to an arbitrary distribution with parameter,gand distribution
Fan Suppose the current simulation time js and the new
parameter (after the update in Step 2) ig+a Then, the
transformationt’ = F, 1([Fan(t) — Fartn)l/[1 — Fart)])
generates a new randomariable from the correct (new)
distribution
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The proof of this theorem is in th&ppendix Here are some
examples:

Example 2. For exponentials,

Fanlt) = Pr(T, < U) =

—In(1—U)/a,+t,_, f0<U=<1
undefined otherwise

1-exp-a(u—t, ) ifu>t,,
0 otherwise

and

Far(U) = {

So, by the theorem,

7 = Fonia([Far(®) = Fo (tVL — Fo ()]

nfi-

[ —expay(® — th-))] — [1 — expay(t, — t-1))]
1-[1—exptayty, — t-0)]

= (@fa, )T —t) + 1,

-1

+1

)-i-tn

This is the transformation used by the Next Reaction Method
Example 3. The preious section considered a process with

V(t) = V(tn—l) + C(t - tn—1)
V(t) )-anfc

V(t, )
Far(U) = V(t, )I(1 — V) ®* —1)/c+1,,

Fa,n(u) =1- (
and

By the theorem, one can re-use random numbers by the
transformation

T = Fope1([Far(® — Fadt)VIL — Fo ()]

V(t,)

V(@)
V(t,-0)

V(t)
V(ty-0)

o)~

V(t,) )*aﬂ'c

1| +t,

-

()
_ V(tn) V('[) a/ant1 B
= T[(th)) 1] +t,

In some cases, as in the examples just presented, it is possible
to calculate a closed-form solution of the equations that is
relatively simple; and, this method is practical. In general, it
may not be at all practical and it may be easier to generate fresh
random numbers.

4.2. Non-Markov ProcessesEven though elementary reac-
tions are Markov (i.e., do not depend on history) in the stochastic
framework, it is sometimes useful to deal with non-Markov
processes. For example, one may model a system using a certain
set of variables for which the system is Markov or one may
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a 4.2.1. Example: Gamma Distributiol€onsider the set of
equations
statte, ' fi ' T,
k.
A+B—S
b K
state S) - Sl
’ _’ f, _» T
t k
S—S
1 k
S$17S
state,, t,
state,, t, *
states, t3 Sy c+D

Systems of equations very much like this come up in the Arkin
et al> model of lambda phage, both for transcription and for
Figure 4. Procedured, for generating random numbers. (a) A Markov  translation. Physically, this means that at some time a molecule
process, in which no history is stored. (b) A non-Markov process, which of type & is produced and then undergoesrastep process.
requires storing history. Subsequently, the resulting molecui, affects the rest of the
system.

use a smaller set for which the system is not. Provided the yThe first and last equations are different, but all the
simulation algorithm still works for non-Markov processes, a intervening equations are identical. Assuming time independence
smaller number of variables may be significantly faster to (as is the case in the model; first-order reactions are not affected
simulate. by change in volume), one may solve theseequations

For Markov processes, one generatafirectly from the state analytically. Rather than exponentials, the combined waiting
and the time, as in Figure 4a. For example, in the time- time is a gamma distribution. Specifically, consider a single
independent case, the valags calculated from the state, and molecule ofS, produced ato, with no other molecules of
7; is the sum oft and a random variable with exponential produced. Then,
distribution and parametes. Notice that (1)f; is a random
function (i.e., calling it multiple times with the same parameters Pr (one molecule 08, is produced between
will give multiple answers), and (2 is a function in the tandt + dt | one molecule o0&, t,)
mathematical usage or in the computer science sense of ' o
functional programming (i.e., it does not contain any internal K[kt — to)]"*
state). For non-Markov processes, as in Figure 4b, the distribu- = (n—1)! exp[—k(t — t)] x dt (11)
tion of 7; depends on the history of (possibly all) states of the

system from the. initial time to the present. Hence, one must This equation is simply a gamma distribution, and there are
use aprocedure(in the computer science sense of procedural efficient ways to generate random numbers according to this
programming) that can store previous values of the system stateg;istripution.
and time. » Now consider several molecules undergoing this process. This
In general, non-Markov processes are very difficult to composite system can be described by ordered pairs of the form
handle!® The distribution of next states or of transition times (molecule identity, state). There are two ways to simplify this
to the next state may depend on the entire history of the system.system: grouping by state and grouping by molecule identity.
Fortunately, the sort of non-Markov processes that occur in Thus far, the grouping has always been by state (i.e., the number
chemical reaction simulations have some nice properties thatof molecules in stat&, the number in state molecules 8f
make dealing with them easier. First, the complete history of etc.). For the context in which this problem occurs, with many
the system is uniquely determined by the serieglistrete more states than molecules, one achieves a smaller system by
transitions and transition times. Given the transitions and grouping by molecule identity. Using eq 11, one can simplify
transition times, the state at any tirhis the same as the state  the n-step exponential process into a 1-step gamma process;
after the last transition before This simplification is enor-  thus, the number of processes to consider is equal to the number
mous: because continuous transitions are not possible, one canf distinct molecules, which is much less than the number of
hope to store the entire state history. Second, one may not everstates. (Note that this simplification is possible because the
need the entire history. For any given reactione only needs  reactions involved are first-order.) These two possibilities are
to store that fraction of the history that affects (in the dependency shown schematically in Figure 5.

state

n-1»

t

n-1

graph sense) the reactign which for systems with many The procedurd; is as follows: rather than store state and
reactions, leads to another significant reduction in the amount time directly,f; will keep a listL of processed values. Every
of storage. time a new molecule 0% is producedf; generates &' value

For arbitrary non-Markov chemical reaction models, even for it according to eq 11 and adds that valud_tdrhe value of
this reduction in storage may not be enough. It may be very 7 thatf; returns is simply the minimum of the values inL.
difficult to generater; given the appropriate subset of history. (The astute reader will note that the operations requiretl on
In that case, it may be preferable to include the full gamut of are insert, delete, and minimum, so one could implenhezas
variables to make the system Markov. In those special casesa priority queue. This implementation bfas a priority queue
where itis possible to generatg, one may achieve a substantial should not be confused with the indexed priority queue in
performance improvement. An example follows. Section 3.2.)
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TABLE 2: Key Reactions of the Model of the Bacteriophage Lambda

no. reaction condition
K,
1 RNAP; . + DNAfree—1> RNAPDNA ., o
K
2 RNAPDNA, ., n—2> RNAPeDNA e, 1 forn=0..DMAX -1
I<3
3 RNAPDNA o, pmax — RNAP;ge T DNAgee + RNA( .
k
4 RNaset RNA; ., — RNase
. ks .
5 ribosomet RNA; . — ribosomeRNA,
. ks .
6 ribosomeRNA,, — ribosomeRNA,,; forn=0..RMAX—1
k
7 ribosomeRNAgzax — ribosome,, + RNA;. + protein
.k .
8 protein— no protein
. .k . .
9 protein+ protein— proteirprotein
k
10 proteinproteini protein+ protein
a TABLE 3: Performance Data
a. Next Reaction Method
molecule, [-»{|S,IBS, PS> - —=||S, [ reactions 78
! average out-degree 4.2
trajectories generated 500
molecule, |- » ig(E2l | ngliiing g simulation events 35 000 000
updates 206 000 000
molecule =Sy (IS, |»[So | -+ = ([S.]> operations 760 000 000
operations/event 22
operations/update 3.7
molecule,, il § s s, [ - =|lS. | b. Gamma Distribution
gamma reactions 21
equivalent elementary reactions 10000
gamma simulation events 380 000
b equivalent elementary events 99 000 000
molecule, ""* > > "’ The key phenomenon in gene regulation is that the expression
of certain genes regulates the expression of other genes: the
molecule, —» ** > > —> “constants’k; in the equations may depend in some way on the
number of proteins present. This extra dependency is the sort
molecule, —>>>—> o —> that was alluded to in the definition @fependsO(a,). For the
lambda model in particular, thigs can be calculated from the
— concentrations of the various proteins using a straightforward
moleculem—>->*—> e —> equilbrium thermodynamics model. See Arkin ef @it Shea

et all” for a complete description of how to calculate the
Figure 5. Ways of splitting reactions. (a) By state, (b) by molecule. \gjyes.

In the current context, the transcription or translation lengths, In addition to the equations shown, Arkin et>gbrovide a
and hence then values, may be in the hundreds or even MOre detailed model of degradation for two of the proteins and

thousands, so this enhancement achieves quite a speedup (sé'gso a more detailed model of transcriptional termination. Also,

Section 5). these reactions take place in a growiﬁgcheric_hia colihost
T cell, so they model the volume increase over time as well (see
5. Application the discussion in Section 4.1.2).

The Arkin et al® model of the bacteriophage lambda provides ~ 5.2. Results.Table 3a shows performance data for the Next
a good, large test case for the scalability of stochastic simulation Reaction Method, with all the enhancements of Section 4,
algorithms. The details of the model can be found in the original on the (full) Arkin et al® model. Note that the average out-
paper; this paper shall just sketch out the model and focus ondegree— the average number of edges from a given vertex in
how the algorithmic improvements described apply to it. the dependency graph is significantly lower than the number

5.1. The Model. The model consists of the complete set of of reactions, so the dependency graph is sparse, as mentioned
equations governing the regulation of five genes in the temperatein Section 3.1. Five hundred trajectories were generated for the
bacteriophage lambda. The key reactions are summarized incondition “1 phage per cell’; each required0 000 simulation
Table 2. The model considers five genés, cro, cl, cll, and events.
clll—and their protein products. There are five sets of equations Based on the number of simulation events and the average
similar to those in Table 2. Two of the five genes have protein out-degree, one would expect 150 million updates (executions
products that dimerize; that is, can exist as a pret&im, as of Step 5), or one update per out-edge per simulation event.
in Reactions 9 and 10 in Table 2. The other three proteins exist The actual number is substantially higher at 210 million because
only as monomers, so Reactions 9 and 10 do not apply to thosecertain reactions are executed much more often than others.
proteins. Under the conditions used (one phage per host cell), the two
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TABLE 4: Comparison of Methods for the Lambda Model?

a
30
direct optimized  next reaction
o5 parameter method direct method method
o a; calculations 2700 210 210
5 Otherx, + 0 0 340
5 207 +, —, comparison 2900 1500 1100
3 exp random numbers 35 35 35
- 15} uniform random numbers 35 35 0
o]
5 a All numbers are in millions.
£ 10
2 updatedrzis do not typically move very far from their original
5 positions in the indexed priority queue, as mentioned in Section
3.2.
0 Also notice that by re-using random numbers, the number of
8 calls to the pseudo random number generator is approximately
jog ( Number of times executed) equal to the number of simulation events, not to the number of
updates. This re-use decreases the number of random number
b 12 generator calls sixfold from the Absolute Time First Reaction

Method? Equivalently, one can simulate six times as much
without having to worry about numerical problems.

Another big time savings comes from using the gamma
distribution, as detailed in Table 3b for the condition “one phage
per host cell”. One could, in principle, write the composite
reactions as their elementary steps; however, there would be
nearly 500 times more reactions under that scheme. Furthermore,
that scheme would involve 260 times the number of simulation
events— nearly three times théotal number of simulation
events— just for the gamma reactions. The total simulation
4r Q o) would take four times as long without this particular refinement.
Thus, using the gamma distribution provides enormous sav-

. ings: all 21 gamma reactions together were only 1% of the
10° 10° 10* 10° 108 simulation events.
Number of times executed Table 4 compares a simple implementation of Gillespie’s
] ) Direct Method with the optimized version of the Direct Method
Figure 6. Performance data for lambda model. (a) Number of times i, yhe Appendixand with our Next Reaction Method for the
each reaction is executed. (b) Number of update operations per execute(]ln . L
reaction. ambda model. All methods include the gamma optimization
(note that said optimization is possible for both the Direct and

most frequent reactions constitute nearly 90% of all simulation Next Reaction methods, but slightly easier to implement in the

events. Both of these most-frequent reactions have out-degred\ext Reaction Method because one already has the queuing
6, which explains why the number of updates per simulation structure in place). All numbers are rounded. (For the analysis
event is~6, not 4.2 as would be expected. that follows, we shall treat each “gamma reaction” just like any

. . . other reaction, rather than doing any detailed analysis of these
? : : :
Wh'Ch regctlops are execgt.ed most often.. By definition, those special cases. Because those reactions constitute 1% of the total,
reactions with high propensities are more likely to be executed.

Unfortunately, because propensity is a function of rate constantanOI because log(78)/log(78 21) is within 10% of unity, we
Y o use propensity | uncti ) ; shall not introduce huge errors.) The simplest implementation
and of stateit is very difficult to calculate which reactions will

tf tv without iust ina the whole simulati of the Direct Method updates ays each iteration. The
occur mostirequently without Just running the whole simulation. Optimized Direct Method and the Next Reaction Method use

(For example, by changing the conditions to *six phages per yonengency graphs (Section 3.1) to minimize the number of
host cell’, with all the same rate constants, two additional ;165 The Direct Method requires 78 additions per iteration
refa(;nons occur with approxmat_e_ly the same frequency as theto calculate the cumulative suras, a; + a,, a; + a + as, ...,
original two. Under these conditions, these four most likely a1+ a + as + ... + az, and log 78 comparisons to do a binary
reactions are responsible for 95% of the the total of 180 million ¢o5cch and find the appropriateThe Optimized Direct Method
simulation events.) It is not obvious whether there is a way t0 {51eg log 78 additions pempdateand log 78 comparisons per
identify such reactions and deal with them separately (€.9., bY jteration to generate. The Next Reaction Method requires an
separation of time scales)ithout affecting the results addition, a subtraction, a multiplication, and a division per re-

Fortunately, as Figure 6b shows, the optimizations mentioned usedr, of which there are #updates #events, and it also
have the effect that the most frequently executed reactions arerequires 2 log(78) operations per simulation evierthe worst
also the most efficient. Note that each time a reaction is executedcase but the efficient UPDATE algorithm (Algorithm 3) may
and a newr; has to bubble down, at least two comparison cut down on that number substantially. Finally, recall that the
operations are required, namely, comparing with the left and Direct Method uses two random numbers per simulation event,
right children. (Bubbling up only requires a single comparison.) whereas the Next Reaction Method uses one. Different opera-
The fact that the most frequently executed reactions have tions take different amounts of time, so Table 4 does not attempt
efficiencies around 3 and the overall total is 3.7 means that theto combine all operations into a single number.
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As can be seen from the table, the Optimized Direct Method By the Random Variable Transform Theoréfthe random
and the Next Reaction Method both outperform the Direct variableY = [Fan(t) — Fan(tn)l/[1 — Fan(ts)] has the density
Method. The relative performances of the Optimized Direct
Method and the Next Reaction Method are hard to compare - F. (U — F(t)
guantitatively without more specific data about speeds of various ~ Q(y) = f L Panuoly— TIFE L d
steps but, qualitatively, the Next Reaction Method will evidently anto)
outperform the Optimized Direct Method.

Fa,n(u) - Fa,n(tn)) du

1 foo
=—~J. P (u)é(y—
— t,  an —
6. Conclusions 1-F{t) 1-Fyqt)

This paper presents an exact, efficient way to do calculations -1 f':avr(""):l(;(y — L"i"(t")) dv
for large systems of loosely coupled reactions in the stochastic 1—F, (t)/ Fart 1-F,(t)
framework. The algorithms presented apeact(i.e., provably 1
equivalent to the chemical Master Equation approach) and they = j;) oy — w) dw
are efficient, both in running time and in number of random
numbers generated. For both the Direct and the Next Reaction _J1 0<y=x1
Method, the amount of time required per iteration is proportional ~ |0 otherwise

to the logarithm of the number of reactions, not the number o o _
itself. The number of random numbers generated by the Next The second line is just the definition d¥, (u). The third

Reaction Method igreactions)+ (simulation eents),which line comes from the transformatiom = Faqu), dv =
is only slightly higher than the optimal numbesimulation [dFan(u)/duldu = Pan(u)du. The fourth line comes from
events.(For comparison, the Direct Method takes Zimulation the transformationw = [v—Fan(tn)//[1—Fan(tn)], dw =
events) (U[1-F4 (ty)])de. The final line comes from the definition of

The paper extends the Next Reaction Method to time-varying the delta function.
rate constants while maintaining both types of efficiency. As  Hence, the random variablé is distributed uniformly on
an aside, thé\ppendixshows how to extend the Direct Method (0, 1]. Finally, the inverse generation method works by
to time-varying rate constants, but it is not clear whether this is transforming a uniform random numberto F~* (U). Here,Y
useful. is such a uniform random number, which proves the theorem.

The paper also provides one specific example of extending 7.2. Enhancing the Direct Method.The underlying ideas
of the Next Reaction Method to non-Markov processes and of the Next Reaction Method- use a dependency graph to
sketches a framework in which other examples might be update the minimal number of variables and use an efficient
formulated. data structure— can be applied to the Direct Method as well.
For loosely coupled chemical reaction systems in solution,  Algorithm 6. (Efficient Exact Stochastic SimulatienDirect
the Next Reaction Method is preferable to the Direct Method Method), Replace Steps 1 and 2 of the Direct Method with:

for the following reasons: 1. Initialize (i.e., set initial numbers of molecules, set
« although the efficiency of updates in eachGfog r), if t < 0, generate a dependency gra@h
some reactions are much faster than others, the Next Reaction 2 calculate the propensity function,, afor the
Method may be effectivel(log r'), wherer’ < r; following i:
« the Next Reaction Method can easily be enhanced to re- If this is the initial iteration, calculate afor all i;

use random-numbers, which reduces the number of random
numbers to half as many as used by the Direct Method; and
« the Next Reaction Method is easily extended to both Markov
and non-Markov time-varying processes.
Finally, the paper presents an example of the performance
of these algorithmic improvements on a test case from the
biology literature.

Otherwise, lejx be the reaction that was just executed.
For each edge(u,0) in the dependency grap8,
update a.
It is clear from the definition of the dependency graph that this
will update only thegs that need to be updated. The only thing
remaining is to use the right data structure to speed up the
updates.

To complete the speed up of the Direct Method, one must
do Steps 2, 3, and 4 efficiently. One might consider using a
simple array to store each of tlags. In this scheme, updates
would be very fast. However, Step 3 of the Direct Method would
then take time proportional to the number of reactions. A better
data structure, which takes time proportional to the logarithm
of the number of reactions, follows.

Store theas as the leaves of a complete tree and store in
each non-leaf node the sum of its left child and right child (see
Figure 7a). Thus, the root will have valle a. When as
7.1. Proof of Theorem 2.The random numberis orginally change, update (1) thosgs that have changed and (2) their
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7. Appendix

distributed according to distributidfy, , with densityP, . After ancestors. Notice that the tree contamieaves and/2 +

Step 6, it is distributed accordirg, , = Pa(ulT > t,), which r'4 +r/8 + ... + 1 = r non-leaves. The height of the tree is

is equal to simply log 2 = 1 + log r. Each update affects one node at
each level, hence i©(log r).

’ P, (W1 —F, ()] ifu>t, Generating the random numberwvill be easy because the
Pant) = 0 ’ ’ otherwise root of the tree contains the appropriate parameter. Forthe
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a

assumption, each simulation event (time through the loop) takes
at mostk (1 + log r) operations, where&k is a constant
independent of. For E simulation events, the algorithm takes
O(E log r) operations, not counting the initialization in Step 1.
As a side note, there are other efficient ways to generate
random variates of a discrete distributitfwyhich are somewhat
esoteric but have better expected times. One could do a thorough
analysis of the trade-off between programming complexity, run
time, numerical stability, and number of uniform random
@ numbers required. However, because the Next Reaction Method
is more easily enhanced to use fewer uniform random numbers
@ e and handle time-varying processes, both Markov and non-
Markov, we shall favor it.
7.3. Time-Varying Direct Method, Markov Processest

a+a,+az+a+...+a +a

A+ a,+ as+ a,

b is well known how to generalize the Direct Method to arbitrary
functions of time a(t).131° One writes an equation that is
analogous to eq 4. Bis the state at timé&, then the equation

x P(u.7|S,t) = a,(S7) exp (- ﬁoz a(Stydt)
(2 '
° a o : At each subsequent step of the algorithm, one must recondition;
& A 5 that is, change the densi®(u,7|St;) to the densityP(u,7|S,t+1).
Reconditioning works out to changing the lower limit of
- : integration.
1 2

It may be hard to generate random numbers according to this
Figure 7. Data structure used faxs for an efficient version of the  djstribution for arbitrary functions of tima. (Note, in particular,
ggesjr'r\]"imgdléﬁ?i%'ﬁa‘;]fgﬂitg'”é ?g:rlw%erfci?)%gghﬁigﬂo?t%%?Jrg?;zial that the lower limit of integration changes each iteration, so
example used in text. 9 ) ’ methods that involve numerical storage of partial values of the

integral will have to do significant recalculation each iteration.)
If all the as changein the same waythen one can use the
enhancements of the previous section; if not, it is not im-
mediately clear how to run this algorithm efficiently for many
reaction channels. Once again, the Next Reaction Method is
preferable.

value, generate a random numlbdretween 0 and; & (which
can be found at the root) and then use the following algorithm,
starting at the root.
Algorithm 7. (Efficient Uniform Random Number Genera-
tion).
1. If the current node is a leaf, let be its index.
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