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This paper summarizes our present theoretical understanding of single-molecule kinetics associated with the
Michaelis-Menten mechanism of enzymatic reactions. Single-molecule enzymatic turnover experiments
typically measure the probability densityf(t) of the stochastic waiting timet for individual turnovers. While
f(t) can be reconciled with ensemble kinetics, it contains more information than the ensemble data; in particular,
it provides crucial information on dynamic disorder, the apparent fluctuation of the catalytic rates due to the
interconversion among the enzyme’s conformers with different catalytic rate constants. In the presence of
dynamic disorder,f(t) exhibits a highly stretched multiexponential decay at high substrate concentrations and
a monoexponential decay at low substrate concentrations. We derive a single-molecule Michaelis-Menten
equation for the reciprocal of the first moment off(t), 1/〈t〉, which shows a hyperbolic dependence on the
substrate concentration [S], similar to the ensemble enzymatic velocity. We prove that this single-molecule
Michaelis-Menten equation holds under many conditions, in particular when the intercoversion rates among
different enzyme conformers are slower than the catalytic rate. However, unlike the conventional interpretation,
the apparent catalytic rate constant and the apparent Michaelis constant in this single-molecule Michaelis-
Menten equation are complicated functions of the catalytic rate constants of individual conformers. We also
suggest that the randomness parameterr, defined as〈(t - 〈t〉)2〉/〈t〉2, can serve as an indicator for dynamic
disorder in the catalytic step of the enzymatic reaction, as it becomes larger than unity at high substrate
concentrations in the presence of dynamic disorder.

1. Introduction

The catalytic activity of enzymes has long been understood
in terms of the Michaelis-Menten mechanism:1 a substrate S
binds reversibly with an enzyme E to form an enzyme-substrate
complex ES that undergoes unimolecular decomposition to form
a product P, regenerating the original enzyme E via E0.

The rate of product formationV has a hyperbolic dependence
on the substrate concentration [S], i.e.,V ) k2[E]T[S]/([S] +
KM), whereKM ) (k-1 + k2)/k1 and [E]T is the total enzyme
concentration. This rate expression, the Michaelis-Menten
equation, provides a highly satisfactory description of ensemble-
averaged enzyme kinetics.

Recent advances in single-molecule spectroscopy and
manipulation2-16 have now made it possible to study enzymatic
reactions at the level ofsingle molecules, thus raising the
question of whether the Michaelis-Menten equation remains
an adequate description of single-molecule kinetics. It is
therefore of both conceptual and practical importance to
understand how single molecule and ensemble kinetics are

reconciled, and what new information is available from single
molecule data.

At the single-molecule level, an enzymatic reaction is a
stochastic event, and a single-molecule experiment typically
measures the waiting times for the completion of the enzymatic
reaction. The probability density of these waiting times,f(t),
can be obtained by recording the histogram of many turnovers
over a long period of time. Therefore, single-molecule kinetics
cannot be formulated in terms of enzyme concentrations, but
must be formulated instead in terms of the probabilities for the
enzyme to be in one of the possible states in the reaction
pathway.17

We will show that single-molecule and steady-state ensemble
kinetics are consistent, in that the reciprocal of the first moment
of f(t), 1/〈t〉, has the same hyperbolic dependence on the substrate
concentration as the enzymatic velocity described by the
conventional Michaelis-Menten equation. However,f(t) pro-
vides much more kinetic information, such as the existence of
reaction intermediates and dynamic disorder, which are often
obscured by ensemble-averaged measurements. In particular,
multiexponentiality in f(t) is a manifestation of dynamic
disorder,4,11,18-34 which refers to fluctuations in the rate constants
of the reaction caused by transitions among different enzyme
conformers. These fluctuations can occur on a time scale
comparable to or longer than that of the enzymatic reaction, so
the rate of product formation is no longer governed by a single
rate constant, but effectively by a distribution of rate con-
stants.11,18,26,29
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A theory of the waiting time distributionf(t) should account
for two sets of single-molecule experimental results. The first
is the initial rise and subsequent decay off(t) observed in
experiments carried out by Lu et al.,4 Asbury et al.,35 and Yasuda
et al.7 Such rise and decay off(t) is generally attributed to the
formation of one or more intermediates and is often character-
ized by the randomness parameterr introduced by Block and
co-workers36,37 as a measure of the relative magnitudes of the
variance and the mean of the waiting time,r ≡ 〈(t - 〈t〉)2〉/〈t〉2.
In the absence of dynamic disorder, it has been shown36,37 that
if the reaction has only one rate-limiting step,r ) 1, whereas
if the reaction has more than one rate-limiting step,r < 1.

The second result is the observation made by English et al.16

that f(t) is a highly stretched multiexponential decay at high
substrate concentrations and a monoexponential decay at low
substrate concentrations. The nonexponential decay off(t) is
generally attributed to dynamic disorder.4,11,18-34 Furthermore,
Lu et al.,4 Velonia et al.,14 and English et al.16 have observed
dynamical correlations between successive enzymatic turnover
events. Such memory effects are generally associated with slow
conformational fluctuations of the enzyme during the course
of the experiment.

In this article, we present models based on the Michaelis-
Menten mechanism to account for these experimental observa-
tions.

Section 2 discusses the single-molecule Michaelis-Menten
equation in the absence of dynamic disorder starting from the
differential equations that define both the ensemble-averaged
and single-molecule Michaelis-Menten kinetics. The conven-
tional Michaelis-Menten equation is obtained from these
equations by assuming a steady-state condition.38 The corre-
sponding single molecule differential equations, on the other
hand, can be solved exactly forf(t) without making this
assumption.f(t) itself exhibits a rise and decay due to the
formation of an enzyme-substrate complex. The steady state
condition actually corresponds to a very fast initial rise off(t).
The substrate concentration dependence of the enzymatic rate
1/〈t〉, calculated fromf(t), obeys the Michaelis-Menten like
equation.

Section 3 discusses the single-molecule Michaelis-Menten
equation in the presence of dynamic disorder. We first consider
the simplest case, in which each of the enzyme species in the
reaction (E, ES, and E0) exists in two interconverting conformers
with different catalytic rate constants. Expressions forf(t) and
1/〈t〉 are derived. Under the condition of slow interconversion
between the conformers, the dependence of 1/〈t〉 on [S] is again
found to be identical to the ensemble Michaelis-Menten
equation, except that the apparentk2 and KM of the single-
molecule Michaelis-Menten equation have meanings different
from their conventional interpretations. Consistent with experi-
mental findings,16 f(t) changes from a highly stretched multi-
exponential decay to a monoexponential decay as substrate
binding becomes rate limiting. As a generalization of this model,
we also consider the physically more realistic case of an arbitrary
number of interconverting conformers, which leads to substan-
tially the same conclusions as the two-state model. The slow
interconversion among conformers results in the memory effect
associated with the correlations between successive enzymatic
turnover times.

Section 4 introduces a semi-Markovian (or memoryless)
approximation to the kinetic scheme of the previous section in
which the catalytic step is assumed to be non-Poissonian with
a general multiexponential waiting time distribution. Again,
we arrive at the important conclusion that 1/〈t〉 obeys the
Michaelis-Menten equation. We also find, as before, that the
kinetic parameters of the single-molecule Michaelis-Menten
equation (corresponding tok2 and KM in ensemble measure-
ments) have meanings different from their conventional inter-
pretations.

Section 5 discusses the substrate concentration dependence
of the randomness parameterr (which is related to the second
moment of f(t)), with and without dynamic disorder, the
treatment of dynamic disorder following the approach discussed
in section 3. While it is known thatr can be less than unity
because of the existence of more than one rate-limiting step,36,37

we show thatr can also be larger than unity because of dynamic
disorder. Thus,r can potentially serve as an indicator of dynamic
disorder.

A summary of the main results is presented in the final section
of the paper. Relevant mathematical details of the calculations
are provided in the Appendices.

2. Single-Molecule Michaelis-Menten Kinetics in the
Absence of Dynamic Disorder

The Michaelis-Menten mechanism for the enzymatic con-
version of substrate S to product P by enzyme E is described
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in eq 1. The rate equations for the concentrations of the chemical
species in the first reaction are therefore given by

where t is the elapsed time from the onset of an ensemble-
averaged experiment. The initial conditions are [ES]) 0 and
[E0] ) 0 at t ) 0. At early times, when very little substrate has
been converted to product, the second reaction in eq 1 can be
neglected. Because both [E] and [S] are time dependent, eqs
2-4 are nonlinear differential equations and cannot be solved
exactly. However, an approximate solution forV ) d[P]/dt can
be obtained if the concentration of the complex, [ES], is assumed
to reach a steady state shortly after the onset of the reaction.
This steady-state approximation corresponds to the condition
d[ES]/dt ) 0, and its application to eqs 2-4 is easily shown to
lead to the classic Michaelis-Menten equation38

whereVmax, defined asVmax ) k2[E]T, with [E]T ) [E] + [ES]
the total enzyme concentration, is the reaction velocity at
saturating substrate concentration, andKM, the Michaelis
constant, defined asKM ) (k-1 + k2)/k1, is the substrate
concentration at which the enzymatic velocity is half ofVmax.

In a turnover experiment, a single enzyme molecule is
monitored continuously as it cycles repetitively through the
states E, ES, and E0 in eq 1. The time for the first reaction to
complete is now a stochastic variable that can be completely
characterized by a waiting time distributionf(t). To derive the
rate equations that describe the corresponding single-molecule
Michaelis-Menten kinetics, the concentrations in eqs 2-4 are
replaced by the probabilitiesP of finding the single enzyme
molecule in the states E, ES, and E0, leading to the equations

which must satisfy the initial conditionsPE(0) ) 1, PES(0) )
0, andPE0(0) ) 0 at t ) 0 (the time of onset of the reaction),
along with the constraintPE(t) + PES(t) + PE0(t) ) 1. Also, the
rate constant for the forward step,k1

0, is treated as a pseudo-
first-order rate constant that can be written ask1

0 ) k1[S], with
[S] assumed to be time-independent. This is reasonable, as there
is essentially no depletion of substrate by a single enzyme
molecule, and [S] can be considered as a constant. E0 is
converted back to E through the second half reaction in eq 1.
Depending on the enzyme system, this can occur either
instantaneously (E and E0, thereby becoming effectively identi-
cal16), or through another chemical reaction via the ping-pong
mechanism.4

Consequently, eqs 6-8 become a system oflinear first-order
differential equations, and they can be solved exactly forPE(t),
PES(t), andPE0(t). KnowingPE0(t), the waiting time distribution
f(t), which is normalized such that∫0

∞ dt f(t) ) 1, is obtained as
follows: The probability that a turnover occurs betweent and
t + ∆t is f(t)∆t; f(t)∆t is the same as the probability that the
enzyme is in the state E0 in the interval betweent andt + ∆t,
which is∆PE0(t) ) k2PES(t)∆t. Thus, in the limit of infinitesimal
∆t,

From the solutions of eqs 6-8, and using the above relation
for f(t), it is easily shown that4

whereA ) x(k1[S] + k-1 + k2)
2/4 - k1k2[S] andB ) -(k1[S]

+ k-1 + k2)/2, and the substrate concentration dependence [S]
has been shown explicitly through the relationk1

0 ) k1[S].
A plot of f(t) vs t at fixed values of [S] (0.005 mM),k1 (107

M-1 s-1), and k2 (250 s-1) is shown in Figure 1 for three
different values ofk-1 (0, 50, and 2000 s-1.) These values of
k-1 are illustrative of reactions in which (i) the dissociation of
ES to E and S does not occur (top panel), (ii) the catalytic and
dissociation rates are roughly comparable (middle panel), and
(iii) the rate of dissociation of ES to E and S is significantly
larger than the catalytic rate, leading to steady-state formation
of ES (bottom panel).

The limit k-1 f 0 of the top panel describes the sequential

reaction S+ E f
k1

0

ESf
k2

E0 + P. The waiting time distribution
f(t) of such a reaction is the convolution of the waiting time
distributionsf1(t) andf2(t) of the two separate steps, i.e.,f(t) )
(f1 X f2)(t), or f(t) ) ∫0

t dt′ f1(t - t′)f2(t′). If f1(t) and f2(t) are
k1[S] exp(-k1[S]t) andk2 exp(-k2t), respectively, (implying that
the steps E+ Sf ES and ESf E0 + P are Poisson processes),
then f(t) is given exactly by

d[E]
dt

) -k1[E][S] + k-1[ES] (2)

d[ES]
dt

) k1[E][S] - (k-1 + k2)[ES] (3)

d[E0]
dt

)
d[P]
dt

) k2[ES] (4)

V )
Vmax[S]

[S] + KM

(5)

dPE(t)

dt
) -k1

0PE(t) + k-1PES(t) (6)

dPES(t)

dt
) k1

0PE(t) - (k-1 + k2)PES(t) (7)

dPE0(t)

dt
) k2PES(t) (8)

Figure 1. Probability density of the waiting time,f(t), in the absence
of dynamic disorder, as calculated from eq 10, for three different values
of k-1 (0, 50, and 2000 s-1) with k1 ) 107 M-1 s-1 , k2 ) 250 s-1, and
[S] ) 0.005 mM.

f(t) ) dPE0(t)/dt ) k2PES(t) (9)

f(t) )
k1k2[S]

2A
[exp(A + B)t - exp(B - A)t] (10)

f(t) )
k1k2[S]

k2 - k1[S]
(exp(-k1[S]t) - exp(-k2t)) (11)

19070 J. Phys. Chem. B, Vol. 109, No. 41, 2005 Kou et al.



and exhibits an exponential rise followed by an exponential
decay, corresponding to the generation of the intermediate ES,
with the faster ofk1 andk2 being the rate constant of the rise,
and the slower ofk1 andk2 being the rate constant of the decay.17

Another limit of f(t), shown in the bottom panel, exhibits only
a single-exponential decay and corresponds to the steady-state
limit in which ES is generated essentially immediately. In
analogy with the ensemble steady-state approximation, this limit
can be expressed analytically as dPES(t)/dt ) 0, and typically
holds whenk2 , k-1. Combined with the constraintPE(t) +
PES(t) + PE0(t) ) 1 and the initial conditionPE0(0) ) 0, the
steady-state limit dPES(t)/dt ) 0 applied to eqs 6-8 can be
shown to lead to

which, using eq 9, leads in turn to

confirming the single-exponential decay off(t). Furthermore,
in the limit of high concentration,f(t) reduces tok2 exp(-k2t),
as expected.

The middle panel describes an intermediate case between the
two limits described above. At such an intermediate value of
k-1, the dependence off(t) on [S] is illustrated in Figure 2 for
fixed valuesk1, k-1, andk2 (107 M-1 s-1, 50 s-1, and 250 s-1,
respectively.)

The first moment off(t), 〈t〉 ) ∫0
∞ dt tf(t), gives the mean

waiting time 〈t〉 for the reaction, from which the connection
with the ensemble measurements under steady-state conditions
can be made. The reciprocal of〈t〉 can be interpreted as an
average reaction rate.39,40 Generally, this arises from the
equivalence between time averaging and ensemble averaging.
From eq 10, we deduce that

A comparison of eqs 5 and 14b indicates thatV/Vmax ) 1/(k2〈t〉)
or thatV/[E]T ) 1/〈t〉.

This is a gratifying result, indicating that the first moment of
f(t) does indeed recover the classic Michaelis-Menten equation,
regardless of whether the steady-state approximation is used in
the single-molecule probability calculation. We regard eq 14b
as the single-molecule Michaelis-Menten equation.

A plot of 1/〈t〉 against [S] for the parameters used in the
middle panel of Figure 1 is shown in Figure 3, exhibiting the
characteristic hyperbolic profile of the classic Michaelis-
Menten saturation curve. The fact that 1/〈t〉 calculated from
eq 14b exactly coincides with eq 5 highlights the consistency
between the single-molecule and ensemble-averaged kinetics.
However, it is important to stress thatf(t) does provide more
information than only the first moment, such as higher mo-
ments and the existence of intermediates. This is particularly
true in the presence of dynamic disorder, as will be discussed
next.

3. Single-Molecule Michaelis-Menten Kinetics in the
Presence of Dynamic Disorder

The expressions forf(t) derived in section 2 are not consistent
with measurements on some enzyme systems,14-16 which show
significant multiexponentiality in the waiting time distribution
at high substrate concentrations. This behavior can be attributed
to dynamic disorder. One way to model dynamic disorder is to
assume, as in the approach used by Zwanzig20 and by Yang
and Cao,28 that the rate constantk2, or the parameters on which
it depends, are stochastic variables that fluctuate according to
some prescribed statistics. However, the main goal of the rest
of the paper is not to provide specific models for the fluctuations
of these stochastic variables, but to explain the multiexponen-
tiality of f(t) and its concentration dependence, and to establish
the general applicability of the Michaelis-Menten equation to
single-molecule kinetics even in the presence of dynamic
disorder.

(i) Two-State Model. To this end, we first consider the
simplest extension of the Michaelis-Menten mechanism that
incorporates the notion of dynamic disorder. This is the kinetic
scheme in which the three states of the enzyme, E, ES, and E0,

Figure 2. Probability density of the waiting time,f(t), in the absence
of dynamic disorder, as calculated from eq 10, for three different values
of [S] (0.020 mM, 0.010 mM, and 0.005 mM) withk1 ) 107 M-1 s-1,
k2 ) 250 s-1, andk-1 ) 50 s-1, respectively.

Figure 3. Average reaction rate 1/〈t〉 or its equivalentV/[E]T, as calc-
ulated from eq 14b, the single-molecule Michaelis-Menten equation,
as a function of substrate concentration [S] forKM ) 30 µM (the value
corresponding tok-1 ) 50 s-1, k2 ) 250 s-1, andk1 ) 107 M-1 s-1).

PE0(t) ) 1 - exp[-
k1

0k2t

k1
0 + k-1 + k2

] (12)

f(t) )
k1k2[S]

k1[S] + k-1 + k2

exp[-
k1k2[S]t

k1[S] + k-1 + k2
] (13)

1
〈t〉

) -
(A2 - B2)2

2Bk1k2[S]
(14a)

)
k2[S]

[S] + KM

(14b)
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can each exist in two interconverting conformations, as shown
below:

Even this simple generalization presents theoretical challenges
in the calculation off(t) and its first moment. An immediate
complication is that over the course of a long time trajectory,
each new reaction cycle begins from either E1 or E2 with a
probability that reflects the steady-state populations of the
various intermediates. This means thatf(t) must be calculated
from the weighted average

where fTE1
(t) and fTE2

(t) are the distributions of the waiting
times TE1 and TE2 for the enzyme to complete the reaction
starting from E1 and E2, respectively, andw1 and w2 are the
corresponding steady-state probabilities for the enzyme to exist
in one or other of these conformations. We find that whilew1

andw2 can be calculated from the master equation formalism
used to derive eqs 6-8, the calculation off(t) requires a different
approach and can only be found in closed form in the Laplace
domain. Details of the complete calculation are provided in
Appendix A; here we state only the final result, which can be
written as

where f̂(s) is the Laplace transform off(t), and f̂(s) ≡ ( f̂TE1
(s),

f̂TE2
(s), f̂TES1

(s), f̂TES2
(s))T is defined by

whereI is the identity matrix,r ≡ (0, 0, k21, k22)T, fTES1
(t) and

fTES2
(t) are the distributions of the waiting timesTES1 andTES2

for the enzyme to complete the reaction starting from ES1 and
ES2, respectively, and

In the limit of the fast reset of E10 and E2
0 to E1 and E2,

corresponding to the conditionδ1, δ2 . 1, the steady-state
weightsw1 andw2, which satisfy

can be found from

Equations 16-21 provide the complete solution in Laplace
space to the waiting time distribution of the two-state model of
dynamic disorder. The first moment off(t), 〈t〉, is easily obtained
from the formula〈t〉 ) -df̂(s)/ds|s)0. After lengthy but straight-
forward algebra, one can show that

where the constantsF, G, H, andK are given by

Interpreting 1/〈t〉 as the ensemble rate (by the assumption of
ergodicity), one sees from eq 22 that this rate does not always
obey the Michaelis-Menten equation, which is characteristically
hyperbolic in the substrate concentration [S]. However, there
are a number of limiting conditions that do produce this
hyperbolic relationship. In particular, a Michaelis-Menten-like
equation is recovered if one of the following conditions (a-f)
holds: (a)k21 . â, k22 . â, corresponding to the limit in which
the catalytic ratesk21 and k22 are much larger than the
interconversion rateâ between ES1 and ES2; (b) â f 0,
corresponding to the limit of slow interconversion between
ES1 and ES2; (c) R f 0, corresponding to the limit of slow
interconversion between E1 and E2; (d) R f ∞, correspon-
ding to the limit of fast interconversion between E1 and E2;
(e) (k21 + k-11)/k11 ) (k22 + k-22)/k12, corresponding to the
case where the two channels E1 + S T ES1 f E1

0 + P and
E2 + S T ES2 f E2

0 + P have identical Michaelis constants;
and (f)â f ∞ andk11 ) k12, corresponding to the limit of fast
interconversion between ES1 and ES2, and an identical rate
constant of interconversion for the steps E1 to ES1 and E2 to
ES2.

Condition (a) is not very stringent, especially in light of recent
observations of slow conformational fluctuations.12,34 If after
imposing this condition, one also takesR, the interconversion
rate constant between E1 and E2, to be small, the disorder is
effectively quasi-static. In this quasi-static disorder limit, there
is a time scale separation between the fast catalytic reaction
and the sluggish interconversions between the conformers of
the enzyme and the enzyme-substrate complex. In this limit,
it can be shown (see Appendix B) that the steady-state waiting
time distribution is well approximated by

S + E1 {\}
k11[S]

k-11
ES1 98

k21
P + E1

0 98
δ1

E1

RVvR âVvâ γVvγ

S + E2 {\}
k12[S]

k-12
ES2 98

k22
P + E2

0 98
δ2

E2

(15)

f(t) ) w1 fTE1
(t) + w2 fTE2

(t) (16)

f̂(s) ) (w1, w2, 0, 0)f̂(s) (17)

f̂(s) ) (sI - Q)-1r (18)

Q )

(-(R + k11[S]) R k11[S] 0

R -(R + k12[S]) 0 k12[S]

k-11 0 -(â + k-11 + k21) â

0 k-12 â -(â + k-12 + k22)
)

(19)

w1 + w2 ) 1 (20)

w1

w2
)

k21[R(k11k22 + k11k-12) + Râ(k11 + k12) + âk11k12[S]]

k22[R(k12k21 + k12k-11) + Râ(k11 + k12) + âk11k12[S]]
(21)

1
〈t〉

)
F-1[S]

[S] +
G[S] + H

FJ[S] + FK

(22)

F ) 2
k21 + k22

(23a)

G ) R(k21 - k22)
k12(k21 + k-11) - k11(k22 + k-12)

k21 + k22
+

â[k12(k21 + k-11) + k11(k22 + k-12)] (23b)

H ) 2R(k22 + k-12)(k21 + k-11) +
2Râ(k21 + k22 + k-11 + k-12) (23c)

J ) âk11k12(k21 + k22) (23d)

K ) R[k11k21(k22 + k-12) + k12k22(k21 + k-11)] +
Râ(k11 + k12)(k21 + k22) (23e)

f(t) ) ∑
i)1

2

wi

k1ik2i[S]

2Ai

[exp(Ai + Bi)t - exp(Bi - Ai)t] (24)
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whereAi ) x(k1i[S] + k-1i + k2i)
2/4 - k1ik2i[S], Bi ) -(k1i[S]

+ k-1i + k2i)/2, and the weightsw1 andw2 are

If 1/〈t〉 is calculated from eq 24, we arrive at the single-molecule
Michaelis-Menten equation for the two conformer case,

where the apparent catalytic rate constantø′2 and the apparent
Michaelis constantC′M, unlike k2 andKM in eq 5, are found to
be

with KMi ≡ (k-1i + k2i)/k1i. ø′2 is nothing but the weighted
harmonic mean of the catalytic rate constants in the two
channels, whileC′M is a more complex function of the catalytic
and Michaelis constants of the two conformers.

The significance of eq 26 and eq 27 is that single molecule
Michaelis-Menten equation holds even under the condition of
dynamic disorder, thoughø′2 andC′M have different meanings
from k2 andKM in the conventional Michaelis-Menten equation.
We note that at theensemblelevel, kinetic schemes involving
multiple states similar to eq 15 have been shown38 to lead to
the Michaelis-Menten equation with redefinedk2 and KM.
However, we will show below that this is true for an arbitrary
number of conformers.

(ii) Multistate Model. The two-state model of the foregoing
section illustrates the effects on single molecule enzymatic
trajectories of fluctuations betweenpairsof conformers, but real
enzyme systems are likely to interconvert among a much larger
number of conformational substates.12,16,33,34In this section we
therefore consider a generalization of the two-state model in
which each of the enzyme species in eq 1, E, ES, and E0,
is allowed to exist in any numbern of mutually inter-
converting conformers. Thisn-state model of the Michaelis-
Menten mechanism leads to the kinetic scheme shown
below:

In this scheme, it should be understood that Ei not only
interconverts with Ei+1 or Ei-1, but does so with all the other
conformers as well. And the same is true for the conformer

ESi. The calculation of the waiting time distribution for this
scheme follows exactly the approach used earlier, except that
many of the steps must be reformulated in terms of matrices.
We first calculate the waiting time distributions through different
channels; we then determine their steady-state average to obtain
the overall waiting time distributionf(t), the experimentally
observed quantity. The details of the calculation are lengthy,
and are provided in Appendix B. Here we point out only that
when the reset of E10, E2

0, ... to E1, E2, ... is much faster than
any of the other interconversion steps, it can be shown that under
physically meaningful conditions the average enzymatic rate,
1/〈t〉, again follows a Michaelis-Menten-like equation in which
the apparent catalytic rate constant and the apparent Michaelis
constant are complicated functions of the various interconversion
rates (see Appendix B).

The conditions leading to the Michaelis-Menten form
include: (a) the limit in which the catalytic rates are much
greater than the interconversion rates of the enzyme-substrate
complex ESi, (b) the limit of extremely slow interconversion
between the enzyme-substrate complexes ESi, (c) the limit of
extremely slow interconversion between the enzymes Ei, (d)
the limit in which interconversion rates between the Ei’s are
much greater than all the other rates, (e) the limit in which the
Michaelis constants for a given reaction channel are nearly the
same, (k21 + k-11)/k11 ) (k22 + k-22)/k12 ) ... ) (k2n + k-1n)/
k1n, and the interconversion rates between the different conform-
ers are symmetric:Rij ) Rji, âij ) âji, and (f) the limit in which
the interconversion ratesâij and âji are equal, and are much
faster than the other rates.

As in the two-state model, condition (a) is of direct relevance
to real enzyme systems. If, after imposing this condition, the
interconversion rates between the conformers of the enzyme
are also made small, the disorder is effectively quasi-static, and
as shown in Appendix B, the waiting time distributionf(t) is
then well approximated by

where thewi are the steady-state weights with which each
reaction channeli contributes to the overall waiting time
distribution, and the parametersAi and Bi have the same
definitions as the corresponding parameters in eq 24.

The use of eq 29 to calculate the mean enzymatic rate leads
once again to the single-molecule Michaelis-Menten equation,
in the form

where the apparent catalytic rate constantø2 and the apparent
Michaelis constantCM can be written as

Thus,ø2 andCM have the same structure as the corresponding
kinetic constants for the two-state model; i.e.,ø2 is the

w1 )
k11k21(k22 + k-12)

k11k21(k22 + k-12) + k12k22(k21 + k-11)

w2 )
k12k22(k21 + k-11)

k11k21(k22 + k-12) + k12k22(k21 + k-11)
(25)

1
〈t〉

)
ø′2[S]

[S] + C′M
(26)

1/ø′2 ) w1/k21 + w2/k22 (27a)

C′M ) ø′2[w1KM1/k21 + w2KM2/k22] (27b)

S + E1 {\}
k11[S]

k-11
ES1 98

k21
P + E1

0 98
δ1

E1

R12 Vv R21 â12 Vv â21 γ12 Vv γ21

S + E2 {\}
k12[S]

k-12
ES2 98

k22
P + E2

0 98
δ2

E2

l l l
Vv Vv Vv

l l l

S + En {\}
k1n[S]

k-1n
ESn 98

k2n
P + En

0 98
δn

En

(28)

f(t) )
1

∑
i)1

n

wi

∑
i)1

n

wi

k1ik2i[S]

2Ai

[exp(Ai + Bi)t - exp(Bi - Ai)t]

(29)

1
〈t〉

)
ø2[S]

[S] + CM

(30)

1/ø2 ) ∑
i)1

n

wi/k2i (30a)

CM ) ø2∑
i)1

n

wiKMi/k2i ) ø2∑
i)1

n

wi(k-1i + k2i)/(k1ik2i) (30b)
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weighted harmonic mean of the catalytic rate constants along
the individual reaction channels, andCM is a more complex
function of the interconversion rates.

It is also interesting to note that the weightswi can them-
selves be expressed in terms of the catalytic efficiency of
individual conformers. The catalytic efficiencyKEi of an
individual conformer is defined as the ratio of its catalytic
rate constantk2i to its Michaelis constantKMi, i.e., KEi )
k2i/KMi ) k2ik1i/(k-1i + k2i); wi can be shown to bewi )
KEi/∑i)1

n KEi.
For the purpose of comparison with experiment, it is

convenient to simplify eq 29 further by assuming thatk11 ) k12

) ... ) k1n ≡ k1, and thatk-11 ) k-12 ) ... ) k-1n ≡ k-1.
Additionally, if n is large (as is generally the case), a continuum
approximation can be invoked. These simplifications then lead
to

whereA andB are identical to the corresponding expressions
that appear in eq 10. It is reasonable to further assume that the
weight functionw(k2) is a gamma distribution, such thatw(k2)
) [1/baΓ(a)]k2

a-1 exp(-k2/b), a andb being adjustable param-
eters. With this choice of weight function, the integral in eq 31
can be evaluated exactly. The resultingf(t) is shown in Figure
4 as a function oft at different [S] for the following arbitrary
parameter values:a ) 6, b ) 35,k1 ) 107 M-1 s-1, andk-1 )
50 s-1. The curves clearly illustrate how, as the substrate
concentration increases,f(t) increasingly departs from single-
exponential decay behavior.

These trends are in complete qualitative agreement with
experimental results,16 and they may be explained as follows.
At low substrate concentrations, the binding of the enzyme to
the substrate is the rate-limiting step in the reaction, sof(t)
reflects the statistics of this Poissonian step, which is therefore
governed by an exponential distribution. At high substrate
concentrations, the dissociation of the enzyme-substrate com-
plex to product is the rate-limiting step in the reaction, sof(t)
now reflects the statistics of this step, which is no longer
Poissonian (because of dynamic disorder).

The calculation of 1/〈t〉 from eq 31 using the given expression
for w(k2) readily establishes thatø2 ) (a - 1)b and CM )

(k-1 + ø2)/k1. Figure 5, showing the variation of 1/〈t〉 with [S]
for the same set of parameters used in Figure 4, is char-
acteristically hyperbolic, as is the ensemble enzymatic velocity.

Since the mean of the gamma distribution,kh2, is ab, and the
variance,∆, is ab2, the apparent catalytic rate constant can be
written ø2 ) kh2 - ∆/kh2. Assuminga ) 6, b ) 35, if kh2 is kept
constant at 210 s-1 and ∆ is increased by a factor of 4,ø2

decreases from 175 s-1 to 70 s-1. This result has interesting
implications for the interpretation of different apparent catalytic
constants,ø2. A decrease inø2 need not be associated with an
overall decrease in the mean catalytic constant,kh2, but could
arise from a larger variance,∆.

The single-molecule Michaelis-Menten equation for the
multiple conformer case, eq 30, explains why the conventional
Michaelis-Menten equation, eq 5, is so widely applicable, since
even in the presence of dynamic disorder for each single
molecule, the hyperbolic concentration dependence of 1/〈t〉
almost invariably holds. In the presence of dynamic disorder,
however, the constantsk2 andKM in the ensemble Michaelis-
Menten equation must be reinterpreted. In the slow intercon-
version limit, they are now seen to be weighted averages of the
kinetic parameters characterizing individual conformers. Thus,
the experimental observation of a hyperbolic dependence of the
enzyme velocity on the substrate concentration does not imply
that eq 1 accurately describes the underlying kinetic scheme,
since a more complicated scheme, such as eq 28 can produce
seemingly identical results. Pre-steady-state ensemble-averaged
measurements can, in principle, distinguish the dispersed
kinetics. However, in practice, they often do not have high
enough dynamic range for accurate determination of multiex-
ponential kinetics. We demonstrate that single-molecule mea-
surements off(t) provide a sensitive measure of dynamic
disorder.

4. Semi-Markovian (Memoryless) Approximation to
Multistate Model

The model of single molecule kinetics based on conforma-
tional fluctuations introduced in the previous section provides
detailed microscopic interpretations of ensemble rate expres-
sions. However, these expressions [cf. Appendix B] are quite
complex, so it is worthwhile to consider alternatives that capture
key experimental observations without being algebraically

Figure 4. Probability density of the waiting time,f(t), in the presence
of dynamic disorder for three different concentrations (10, 20, and 100
µM), as calculated from eq 31, withk1 ) 107 M-1 s-1, k-1 ) 50 s-1,
and using the parameter valuesa ) 6, b ) 35 in the gamma distribution
w(k2) ) [1/baΓ(a)]k2

a-1 exp(-k2/b).

f(t) ) ∫0

∞
dk2 w(k2)

k1k2[S]

2A
[exp(A + B)t - exp(B - A)t]

(31)

Figure 5. Substrate concentration dependence of the mean enzymatic
velocity 1/〈t〉, or its equivalentV/[E]T, according to the single-molecule
Michaelis-Menten equation (eq 30), under the condition of the slow
interconversion among conformers of a broad distribution ofk2. The
parameters are the same as described in the caption of Figure 4.
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complex. This section introduces a semi-Markovian approxima-
tion to the multistate model that leads to simpler expressions
for both the ensemble reaction rate and the waiting time
distribution; but the approximation, by its Markovian nature,
does not account for the memory effect. In this approximation,
the distinct conformational states Ei, ESi, and Ei

0 in the multi-
state model are collapsed into a set of effective statesE, ES,
andE0, and the corresponding reaction mechanism can then be
written asE + S T ES f E0 + P. In this reduced description,
the binding stepE + S f ES and the dissociation stepES f
E + S are assumed to be governed by monoexponential
distributions with rate constantsk1[S] and k-1 respectively.
However, the catalytic step of the reaction,ES f E0 + P, is
assumed to be governed not by a single well-defined rate
constantk2 but by a waiting time distributionfTC(t), which can
be specified arbitrarily. We shall refer to this scheme as a semi-
Markovian approximation.41 (In the context of the kinetic
scheme described by eq 28, this semi-Markovian approximation
becomes exact if the interconversion rate constantsâij for the
complexes ESi are much larger than the catalytic rate constants
k2i, and the interconversion rate constantsRij for the enzyme Ei
approach infinity.)

The overall waiting time distributionf(t) in this picture is now
a function offTC(t) and is shown in Appendix C to be given by

The semi-Markov approximation thus provides a quick way to
obtain the waiting time distributionf(t).

The Laplace inverse of eq 32 is not known in closed form
for generalfTC(t), but given an expression forfTC(t), f(t) can be
readily calculated from eq 32 numerically. As an example, if
the distribution fTC(t) were described by a sum of three
exponentials:

with the ai satisfying ∑i)1
3 ai ) 1 to ensure normalization of

fTC(t), the calculatedf(t) as a function of [S], for some suitable
set of parametersk1, k-1, ai, andκi, is easily shown to reproduce
the general trends depicted in Figure 4. In other words,f(t) is
a stretched multiexponential decay at high substrate concentra-
tion and a single-exponential decay at low concentrations, again
in qualitative agreement with experiment.16

The average reaction rate 1/〈t〉 calculated from eq 32 is

where

Heref̂TC(k-1) meansf̂TC(s+ k-1)|s)0. Parallel with the definition
of KM ) (k-1 + k2)/k1, it is readily shown that

As in the microscopic model of dynamic disorder given in
section 3, the semi-Markovian approximation also leads, in this
case directly, without the imposition of additional constraints,
to the Michaelis-Menten equation, with the ensemble param-
etersk2 andKM replaced by quantities (γ2 and∆M, respectively)
related to the waiting time distribution of the catalytic step. The
classic Michaelis-Menten parameters are recovered whenfTC(t)
is described by a single exponential,k2 exp(-k2t).

It is worth noting again that since the above treatment invokes
the semi-Markov approximation, successive enzyme turnover
times are uncorrelated; i.e., they exhibit no memory effects.

5. Randomness Parameter
The probability densityf(t) characterizes the kinetics of single-

molecule enzymatic reactions completely, with thenth moment
in general given by〈tn〉 ≡ ∫0

∞ dt f(t)tn. While the first moment
of f(t) can be described by the single-molecule Michaelis-
Menten equation, higher moments off(t) contain more informa-
tion.23 Often it is convenient to evaluate the second moment of
f(t), which is related to a randomness parameterr, defined as36,37

For a one-step Poisson process,f(t) ) k exp(-kt), 〈t〉 ) 1/k,
〈t2〉 - 〈t〉2 ) 1/k2, therefore,r ) 1. For multistep processes,
assuming an identical rate constantk in n sequential rate-limiting
steps, the variance oft in the numerator of eq 37 isn/k2, while
in the denominator variance isn2/k2. Hencer ) 1/n. The greater
the number of rate-limiting steps, the smaller is the value ofr.

In eq 1, if the reaction steps are all characterized by
exponentially distributed waiting time distributions (implying
no dynamic disorder),r has been shown to be given by36

Figure 6. Randomness parameterr vs [S] under the following
conditions: (i) no dynamic disorder (full line), calculated using eq 38
with k1 ) 107 M-1 s-1, k2 ) 250 s-1, andk-1 ) 50 s-1; (ii) dynamic
disorder present in the catalytic step (dotted line), calculated using eq
31, with k1 ) 107 M-1 s-1, k-1 ) 50 s-1, anda ) 6, b ) 35 in w(k2),
with the mean ofk2 assigned the value 175 s-1; (iii) dynamic disorder
present in the dissociation step (dashed line), calculated using eq 31
according to the method described in the text, withk1 ) 107 M-1 s-1,
k2 ) 175 s-1, anda ) 6, b ) 10 inw(k2), with the mean ofk-1 assigned
the value 50 s-1.

r )
〈t2〉 - 〈t〉2

〈t〉2
(37)

r )
(k1[S] + k2 + k-1)

2 - 2k1k2[S]

(k1[S] + k2 + k-1)
2

(38)

f̂(s) ) f̂TC
(s + k-1)/

(k1[S] + s

k1[S]
-

k-1

k-1 + s
[1 - f̂TC

(s + k-1)]) (32)

fTC
(t) ) ∑

i)1

3

aiκi exp(- κit) (33)

1
〈t〉

)
γ2[S]

[S] + ∆M

(34)

γ2 )
k-1f̂TC

(k-1)

1 - f̂TC
(k-1)

∆M )
k-1

k1[1 - f̂TC
(k-1)]

(35)

∆M )
k-1 + γ2

k1
(36)

Feature Article J. Phys. Chem. B, Vol. 109, No. 41, 200519075



which is drawn as the full line in Figure 6. This curve may be
interpreted as follows. At low substrate concentrations [S],
r is unity because substrate binding is the rate-limiting step. As
[S] increases,r decreases, reflecting the formation of the en-
zyme-substrate complex as an intermediate. At still higher [S],
r returns to unity when the catalytic step becomes rate-limiting.

The [S] dependence ofr can be quite different when dynamic
disorder is present. Assuming that dynamic disorder is mani-
fested in the catalytic step of the reaction through the distribution
w(k2) governing the range of possible values ofk2, the evaluation
of r is carried out by using eq 31 to calculate the first and second
moments off(t). These moments are found to be

The variation of r with [S] as determined by the above
expressions is shown in Figure 6 (dotted line) for the following
parameter values:a ) 6, b ) 35,k1 ) 107 M-1 s-1, andk-1 )
50 s-1, with the mean ofk2 [which is given by (a - 1)b] being
175 s-1. As is evident, r can exceed 1 at high substrate
concentration. This is in agreement with recent experimental
findings.16 We should note that another reason forr being larger
than unity is the existence of a reversible reaction in the catalytic
step, which was previously reported,42 but can only occur for
enzymatic reactions close to equilibrium.

It is conceivable that dynamic disorder could be manifested
in the dissociation step of the reaction, in which case the rate
constantk-1, rather thank2, would have a range of different
values, governed by a distribution functionw(k-1). The evalu-
ation of r under these circumstances can be carried out, as
before, by using eq 31 withw(k-1) replacingw(k2), and the
integration being performed overk-1. If w(k-1) is given by a
gamma distribution, witha ) 6, b ) 10, (such that the mean
of k-1 is 50 s-1) and the other parameters are assigned the values
k1 ) 107 M-1 s-1, and k2 ) 175 s-1, the result of such a
calculation is shown as the dashed line in Figure 6. Thus, when
dynamic disorder is present in the dissociation step of the
reaction only,r cannot exceed unity at high substrate concentra-
tions. This discussion highlights the fact that ifr is observed
experimentally to be greater than 1 for an irreversible enzymatic
reaction, then (i) dynamic disorder must be present, and (ii) it
must be present in the catalytic step, because a constantk2 cannot
give rise tor larger than unity.

6. Conclusions

The classic Michaelis-Menten equation relates the enzymatic
velocity to the substrate concentration. It was derived by solving
the nonlinear differential eqs 2-4 under the steady-state
approximation. Single-molecule enzymatic turnover experiments
provide more dynamic information than the ensemble-averaged
results through a different observable,f(t), the probability density
of the waiting time.

In the absence of dynamic disorder, a single-molecule
Michaelis-Menten equation, eq 10, that explicitly describes the

temporal behavior off(t) at any specified substrate concentration
is easily derived. Thef(t) in eq 10 is exact and does not invoke
the steady-state assumption, but it can be reduced to the steady-
state case, i.e., to a fast rise followed by an exponential decay,
when k2 , k-1. Irrespective of the use of the steady-state
condition, the reciprocal of the first moment off(t) is always
consistent with the ensemble Michaelis-Menten equation (eq
5), which is an important insight.

In the presence of dynamic disorder, the treatment of single-
molecule Michaelis-Menten kinetics becomes considerably
more complex. The existence of distinct conformational states
of the enzyme that interconvert on time scales comparable to
or longer than the time scales of the reaction results in disperse
kinetics. The Michaelis-Menten mechanism of eq 1 is easily
generalized to include these conformational states (eqs 15 and
28). The calculation of the waiting time distributionf(t) and the
mean enzymatic rate 1/〈t〉 for these multistate models of dynamic
disorder can be carried out analytically. It has been found that
1/〈t〉 does not always exhibit the same substrate concentration
dependence as the Michaelis-Menten equation. However, under
many conditions, 1/〈t〉 does follow the single-molecule Michae-
lis-Menten equation. In these limits, the parametersk2 andKM

that appear in the ensemble Michaelis-Menten equation are
replaced by the weighted averages of distributions of the
corresponding kinetic constants of the conformers. Although
the first moment off(t) contains the same information as in the
ensemble measurements,f(t) itself provides new informantion
about dynamic disorder, and it also exhibits multiexponential
long tails under saturating substrate concentrations.

A semi-Markovian approximation to this description of single-
molecule kinetics views the origin of dynamic disorder in terms
of the occurrence of a non-Poisson distribution of reaction times
in the catalytic step of eq 1. In this approximation, the calculated
mean rate, 1/〈t〉, directly recovers the hyperbolic substrate
concentration dependence of the ensemble Michaelis-Menten
equation. As before, the parametersk2 andKM are replaced by
generalized counterparts. At the same time, the waiting time
distribution f(t) is now found to show highly nonexponential
decay at high substrate concentrations, as seen in experiments.

The first and second moments off(t) (when calculated with
the model described by eq 31) can be used to find expressions
for the randomness parameter,r, which provides a convenient
characterization of single-molecule turnover trajectories. In the
absence of dynamic disorder, if the reaction is dominated by
one rate-limiting step,r ) 1, whereas if the reaction has more
than one rate-limiting step,r < 1. In the presence of dynamic
disorder, however,r could be greater than 1.

We hope the results in this paper provide a theoretical
framework for understanding the ever-expanding activities in
single-molecule enzymology, and perhaps enzymology in
general.
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Note Added in Proof. We give in Section 3(i) six limiting
conditions (a-f) under which the single-molecule Michaelis-
Menten equation holds for the two-state model (eq 15). To

〈t2〉 ) 2

k1
2[S]2

+ 2
(a - 1)bk1[S] (1 +

2k-1

k1[S]) +

2

(a - 1)(a - 2)b2(1 +
k-1

k1[S])2

(39a)

〈t〉2 ) 1

k1
2[S]2

+ 2
(a - 1)bk1[S] (1 +

k-1

k1[S]) +

1

(a - 1)2b2(1 +
k-1

k1[S])2

(39b)

19076 J. Phys. Chem. B, Vol. 109, No. 41, 2005 Kou et al.



be more precise, in condition (a) we meanâ/k21 f 0 and
â/k22 f 0, butR/k21 andR/k22 do not approach 0; in condition
(b) we meanâ f 0, but R does not approach 0; in condition
(c) we meanR f 0, butâ does not approach 0. Correspondingly,
the six limiting conditions (a-f) in Section 3(ii) for the single-
molecule Michaelis-Menten equation to hold for the multistate
model (eq 28) should be more precisely stated in a similar way.

Appendix A. Calculation of the Waiting Time
Distribution for the Two-State Model

The total time to form the product P in the two-state kinetic
scheme of eq 15 is a random variableT that is governed by the
waiting time distributionf(t). To calculatef(t), the quantity of
interest, we first seek expressions for the waiting time distribu-
tions that govern the times needed to complete the reaction
starting from E1, E2, ES1, or ES2. These times, which are random
variables, are denotedTE1, TE2, TES1, andTES2, respectively, and
their corresponding waiting time distributions are denoted
fTE1

(t), fTE2
(t), fTES1

(t), and fTES2
(t). Once these distributions are

determined,f(t) can be expressed as a weighted steady-state
average offTE1

(t) and fTE2
(t). To obtain the expressions for

fTE1
(t), fTE2

(t), fTES1
(t), and fTES2

(t), we set up and solve a set of

four linear simultaneous equations as follows.
Imagine that the system is initially in the state E1, so that the

total time to complete the reaction and form the product is the
random variableTE1. From E1 the system can proceed either to
E2 or to ES1, from where the reaction is then completed in the
time TE2 or TES1. The system reaches E2 if the step E1 f E2

occurs before the step E1 f ES1 (or equivalently, if the time
TR to complete the former is less than the timeT11 to complete
the latter), and it reaches ES1 if the step E1 f ES1 occurs before
the step E1 f E2 (or equivalently, ifT11 < TR.) Hence, the
probability thatTE1 is realized within some time intervalt, which
we denoteP(TE1 < t), can be written as

The steps E1 f E2 and E1 f ES1 occur at random through a
Poisson process with average ratesR andk11[S], respectively.
Hence, the timesTR and T11 are drawn from the following
waiting time distributions:

In general, for any random variableX, fX(x) ) dP(X < x)/dx,
so eq A.1 can be differentiated with respect tot to produce

Since the distribution of the sum of two random variables is
the convolution of the distributions of the individual random
variables, eq A.4 can be further written as

From eqs A.2 and A.3, we can show that

Therefore, by taking the Laplace transform of eq A.5, and
making use of eqs A.2 and A.3 and A.6 and A.7, we obtain

where f̂TE1
(s), f̂TE2

(s), and f̂TES1
(s) are Laplace transforms of

fTE1
(t), fTE2

(t), and fTES1
(t), respectively. Equation A.8 is one

equation connecting three of the unknown waiting time distribu-
tions,fTE1

(t), fTE2
(t) andfTES1

(t). An equation for the waiting time

distribution of the random variableTE2, the time to complete
the reaction starting from the state E2, can be obtained
immediately from eq A.8 by an interchange of labels. That is,

We can also derive two more expressions involvingf̂TES1
(s)

and f̂TES2
(s) in a similar way. In outline, the procedure is as

follows. Imagine the system to start in the state ES1, so that
TES1 is the time needed to complete the reaction and form the
product. At ES1, the system can either dissociate and return to
E1 at a rate constantk-11, or it can isomerize to the conformer
ES2 at a rate constantâ, or it can catalyze the substrate to the
product at a rate constantk21. The probability that the reaction
time TES1 occurs within a time intervalt (following the earlier
reasoning) is therefore given by

whereT-11, Tâ, andT21 are the random times required to execute
the steps ES1 f E1, ES1 f ES2, and ES1 f E1

0, respectively.
As before, these steps are Poisson processes, soT-11, Tâ, and
T21 are drawn from the waiting time distributions

After differentiating eq A.10 with respect tot, making use of
eqs A.11-A.13 and taking Laplace transforms, it is readily
shown that

This is a third equation connecting the unknown waiting time

P(TE1
< t) ) P(TE2

+ TR < t)P(TR < T11) +

P(TES1
+ T11 < t)P(T11 < TR) (A.1)

fTR
(t) ) R exp(-Rt) (A.2)

fT11
(t) ) k11[S] exp(-k11[S]t) (A.3)

fTE1
(t) ) fTE2

+TR
(t)P(TR < T11) + fTES1

+T11
(t)P(T11 < TR)

(A.4)

fTE1
(t) ) ∫0

t
dt1 fTE2

(t - t1) fTR
(t1)P(t1 < T11) +

∫0

t
dt1 fTES1

(t - t1) fT11
(t1)P(t1 < TR) (A.5)

P(t1 < T11) ) k11[S]∫t1

∞
dt2 exp(-k11[S]t2) )

exp(-k11[S]t1) (A.6)

P(t1 < TR) ) R∫t1

∞
dt2 exp(-Rt2) ) exp(-Rt1) (A.7)

f̂TE1
(s) )

R f̂TE2
(s)

s + R + k11[S]
+

k11[S] f̂TES1
(s)

s + R + k11[S]
(A.8)

f̂TE2
(s) )

R f̂TE1
(s)

s + R + k12[S]
+

k12[S] f̂TES2
(s)

s + R + k12[S]
(A.9)

P(TES1
< t) )

P(T-11 + TE1
< t)P(T-11 < Tâ)P(T-11 < T21) +

P(Tâ + TES2
< t)P(Tâ < T-11)P(Tâ < T21) +

P(T21 < t)P(T21 < T-11)P(T21 < Tâ) (A.10)

fT-11
(t) ) k-11 exp(-k-11t) (A.11)

fTâ
(t) ) â exp(-ât) (A.12)

fT21
(t) ) k21 exp(-k21t) (A.13)

f̂TES1
(s) )

k-11 f̂TE1
(s)

s + â + k-11 + k21
+

â f̂TES2
(s)

s + â + k-11 + k21
+

k21

s + â + k-11 + k21
(A.14)
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distributions. A fourth and final equation is obtained from eq
A.14 by symmetry:

Equations A.8, A.9, A.14, and A.15 are conveniently represented
in matrix form as

where f̂(s) ) ( f̂TE1
(s), f̂TE2

(s), f̂TES1
(s), f̂TES2

(s))T, r ) (0, 0, k21,
k22)T, and

Equation A.16 can be inverted to yield the following expression
for f̂(s) [cf. eq 18]:

The relation betweenf̂(s) andf(t), the waiting time distribution
that is actually measured in experiments, is now established as
follows. At the end of each catalytic cycle, the enzyme exists
either as the conformer E1

0 or as the conformer E20. E1
0 is

assumed to return to E1 at a rate constantδ1, while E2
0 is

assumed to return to E2 at a rate constantδ2. In single-molecule
enzymatic turnover experiments, the successive reaction times
are obtained over a long time interval so that many turnovers
occur. But over the course of many such turnover cycles, the
fraction of time that the enzyme resides in E1 or E2 attains a
steady-state value. Therefore, during a long time trajectory, the
waiting time distributionf(t) observed in enzymatic turnover
experiments corresponds to the steady-state weighted average
of the two waiting time distributionsfTE1

(t) andfTE2
(t), when the

reaction starts from E1 or E2, respectively. This steady-state
weight for fTE1

(t), which accounts for how often the system

starts from E1 immediately after restarting the cycle, is propor-
tional to the steady-state probabilityPE1

0
0 that the system is in

E1
0 multiplied by the rate constantδ1 of E1

0’s return to the
E1 state. Similarly, the steady-state weight forfTE2

(t) is propor-
tional to the steady-state probabilityPE2

0
0 that the system is in

E2
0 multiplied by the rate constantδ2 of E2

0’s return to the E2
state. In other words

where the denominator in this expression is introduced to ensure
that f(t) is properly normalized to unity.

Equation A.19 can be rewritten in Laplace space in terms of
the vectorf̂(s) obtained earlier:

The calculation of the equilibrium probabilitiesPE1
0

0 andPE2
0

0

is discussed next.
In the kinetic scheme shown in eq 15, the probabilitiesPν(t)

that the enzyme is in one or other of the statesν ) E1, E2, ES1,
ES2, E1

0, or E2
0 satisfy a master equation, i.e., a system of

coupled linear first order differential equations analogous to eqs
6-8 that express the balance of probability into and out ofν.
At long times,t f ∞, when the system reaches equilibrium,
the rates dPν(t)/dt vanish, and the above system of equations
reduces to

whereP is the vector (PE1

0 , PE2

0 , PES1

0 , PES2

0 , PE1
0

0 , PE2
0

0 )T, the
superscript 0 denoting the equilibrium value, and

From the solution to eq A.21 under the constraint

and in the limitδ1, δ2 . 1 (corresponding to fast reset of E1
0

andE2
0 to E1 and E2), it can be shown that

from which the steady-state fractions in eq A.20 can be
calculated. Once we obtain the Laplace transformf̂(s), the mean
waiting time 〈t〉 ) ∫0

∞ dt tf(t) is readily given by〈t〉 ) -d/ds
f̂(s)|s)0. Using eqs A.18 and A.20, we have

which, after lengthy but straightforward algebra, can be re-
arranged to the form in eq 24.

Appendix B. Calculation of the Waiting Time
Distribution for the Multistate Case

The approach introduced in Appendix A can also be applied
to the analysis of the multistate model of dynamic disorder. In
deriving an expression for the waiting time distributionf(t) and
its first moment, it is convenient to introduce some simplified

f̂TES2
(s) )

k-12 f̂TE2
(s)

s + â + k-12 + k22
+

â f̂TES1
(s)

s + â + k-12 + k22
+

k22

s + â + k-12 + k22
(A.15)

sf̂(s) ) Qf̂(s) + r (A.16)

Q )

(-(R + k11[S]) R k11[S] 0

R -(R + k12[S]) 0 k12[S]

k-11 0 -(â + k-11 + k21) â

0 k-12 â -(â + k-12 + k22)
)

(A.17)

f̂(s) ) (sI - Q)-1r (A.18)

f(t) )
δ1PE1

0
0

δ1PE1
0

0 + δ2PE2
0

0
fTE1

(t) +
δ2PE2

0
0

δ1PE1
0

0 + δ2PE2
0

0
fTE2

(t)

(A.19)

f̂(s) ) ( δ1PE1
0

0

δ1PE1
0

0 + δ2PE2
0

0
,

δ2PE2
0

0

δ1PE1
0

0 + δ2PE2
0

0
, 0, 0) f̂(s)

(A.20)

SP) 0 (A.21)

S )

(-(R + k11[S]) R k-11 0 δ1 0

R -(R + k12[S]) 0 k-12 0 δ2

k11[S] 0 -(â + k-11 + k21) â 0 0

0 k12[S] â -(â + k-12 + k22) 0 0

0 0 k21 0 -(γ + δ1) γ

0 0 0 k22 γ -(γ + δ2)

)
(A.22)

PE1

0 + PE2

0 + PES1

0 + PES2

0 + PE1
0

0 + PE2
0

0 ) 1 (A.23)

δ1PE1
0

0

δ2PE2
0

0
)

k21[R(k11k22 + k11k-12) + Râ(k11 + k12) + âk11k12[S]]

k22[R(k12k21 + k12k-11) + Râ(k11 + k12) + âk11k12[S]]
(A.24)

〈t〉 ) ( δ1PE1
0

0

δ1PE1
0

0 + δ2PE2
0

0
,

δ2PE2
0

0

δ1PE1
0

0 + δ2PE2
0

0
, 0, 0)Q-2r

(A.25)
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notation. Let Ai, Bi, and Ci stand for the states Ei, ESi, and Ei
0,

respectively. As diagrammed in eq 28, Ai can convert to Bi or
to any of the Aj, Bi can convert to Ai, Ci, or to any of the Bj,
and Ci can convert to Ai or to any of the Cj. If we introduce the
matrix QAA to denote the transition rates between the Ai’s and
the matrixQAB to denote the transition rates between the Ai’s
and the Bi’s, and likewise introduceQBA, QBB, QCC, andQCA

to denote the transition rates between the corresponding states,
then, following the diagram of eq 28, the transition matrices
areQAA ) [Rij], QBB ) [âij], QCC ) [γij], QAB ) diag(k11[S],
k12[S], ..., k1n[S]), QBA ) diag(k-11, k-12, ..., k-1n), QBC )
diag(k21, k22, ...,k2n), andQCA ) diag(δ1, δ2, ...,δn). The entire
network of interconversions can be described by a matrixQ
given by

Following the method of Appendix A, one can derive the
following relation, in Laplace space, between the distributions
associated with the times needed to complete the reaction
starting from different states of the network:

where f̂TA(s) ) ( f̂TA1
(s), f̂TA2

(s), ..., f̂TAn
(s))T, f̂TB(s) ) ( f̂TB1

(s),

f̂TB2
(s), ..., f̂TBn

(s))T, and 1 ) (1, 1, ..., 1)T. Here f̂TAi
(s) and

f̂TBi
(s) are the Laplace transforms of the waiting time distribu-

tions where the system starts from Ai and Bi, respectively.
Equation B.2 can be solved by matrix inversion:

To calculate the mean waiting time〈t〉, eq B.2 is differentiated
with respect tos, and the result evaluated ats ) 0. Together
with eq B.3, this leads to

where the last equality makes use of the resultsf̂TAi
(0) ) f̂TBi

(0)
) 1. The inverse in eq B.4 is calculated by block matrix inver-
sion, producing

where

It then follows that

As before, since each new reaction cycle can start from any Ai,
the overall waiting time distributionf(t) is the steady-state
weighted average of the distributionsfTAi

(t). The calculation of

these steady-state probabilities is considered next. LetPA i, PBi,
andPCi denote the steady-state probabilities of Ai, Bi, and Ci,
respectively. To calculate them, we proceed as earlier from the
stationary solution of the master equation, which is defined by

wherepA ) (PA1, PA2, ...,PAn)T, pB ) (PB1, PB2, ...,PBn)T, pC )
(PC1, PC2, ..., PCn)T. To solve eq B.11,pA and pB are first
rewritten in terms ofpC, so that an equation solely inpC is
obtained. This equation is then solved by standard matrix
techniques. To implement the first step in this process, the
definition of Q is substituted into eq B.11, producing

Equation B.12 implies that

and

Equation B.13 leads to

Hence,

Q ) (QAA - QAB QAB 0
QBA QBB - (QBA + QBC) QBC

QCA 0 QCC - QCA
)

(B.1)

s(f̂TA
(s)

f̂TB
(s) ) ) (QAA - QAB QAB

QBA QBB - (QBA + QBC) )(f̂TA
(s)

f̂TB
(s) ) +

(0QBC1) (B.2)

(f̂TA
(s)

f̂TB
(s) ) )

[sI - (QAA - QAB QAB

QBA QBB - (QBA + QBC) )]-1(0QBC1) (B.3)

-(f̂ ′TA
(0)

f̂ ′TB
(0) ) )

-(QAA - QAB QAB

QBA QBB - (QBA + QBC) )-1(f̂TA
(0)

f̂TB
(0) )

) -(QAA - QAB QAB

QBA QBB - (QBA + QBC) )-1(11)
(B.4)

(QAA - QAB QAB

QBA QBB - (QBA + QBC) )-1

) (L M
N R ) (B.5)

L ) [QAA - QAB - QAB(QBB - (QBA + QBC))-1QBA]-1

(B.6)

M ) -[QAA - QAB - QAB(QBB -

(QBA + QBC))-1QBA]-1QAB(QBB - (QBA + QBC))-1 (B.7)

N ) -(QBB - (QBA + QBC))-1QBA[QAA - QAB -

QAB(QBB - (QBA + QBC))-1QBA]-1 (B.8)

R ) [QBB - QBA - QBC - QBA(QAA - QAB)-1QAB]-1

(B.9)

(f̂ ′TA
(0)

f̂ ′TB
(0) ) ) ((L + M )1

(N + R)1 ) (B.10)

(pA
T pB

T pC
T)Q ) 0 (B.11)

(pA
T pB

T pC
T )(QAA - QAB QAB 0

QBA QBB - QBA - QBC QBC

QCA 0 QCC - QCA
) ) 0

(B.12)

(pA
T pB

T )(QAA - QAB QAB

QBA QBB - QBA - QBC
) +

pC
T(QCA 0) ) 0 (B.13)

pB
TQBC + pC

T(QCC - QCA) ) 0 (B.14)

(pA
T pB

T) )

-pC
T(QCA 0)(QAA - QAB QAB

QBA QBB - QBA - QBC
)-1

) -pC
T(QCA 0)(L M

N R )
) -(pC

TQCAL pC
TQCAM ) (B.15)

pA
T ) -pC

TQCAL pB
T ) -pC

TQCAM (B.16)
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Substituting eq B.16 into eq B.14, the sought for equation in
pC is obtained as

which can be solved forpC up to a normalizing constant. This
then provides expressions forpA andpB via eq B.16.

Having obtained the steady-state probabilities, the overall
waiting time distributionf(t) (in Laplace space) is calculated
from

Hence, the mean waiting time is calculated as

Introducing a vectorvT defined asvT ) pC
TQCA, eqs B.18 and

B.19 can be written in more compact notation as

Hence, the steady-state waiting time distributionf(t) is the
weighted average of the waiting time distributions associated
with starting the reaction from Ei, with the weights given by
the steady-state probability to be in Ei.

Now from eqs B.6-B.9, it follows that

which leads to

This equation, together with eq B.17, yields

In the limit when theδi are much larger than the other rates (so
that at the end of the reaction, the system returns rapidly to the
state Ei), eq B.23 reduces to

with v satisfying (cf. eq B.17)vTMQBC + vTI ) 0, or
equivalently

Next we note that the mean enzymatic reaction rate, 1/〈t〉,
calculated from eq B.24 will be of the Michaelis-Menten form
(cf. eq 29)

if the equilibrium weightv does not depend on the substrate
concentration. This can be demonstrated by first noting that only
the transition rates associated with Ai f Bi involve [S]. The
matrix,QAB can therefore be writtenQAB ) [S]Q̃AB, whereQ̃AB

) diag(k11, k12, ..., k1n). The use of this definition in eq B.24
followed by rearrangement leads to eq B.26, with bothø2 and
CM independent of [S]. It is now straightforward to show that
each of the conditions (a-f) in section 3 (ii) does indeed
guarantee that the weightsv do not depend on the concentration
[S], and that each condition therefore leads to a Michaelis-
Menten equation, as seen in eq 29.

To calculate the waiting time distributionf(t) in the slow
interconversion limit, we start from eq B.2, which can be written
as

In the given limit,QAA andQBB are small, so eq B.27 effectively
reduces to a set of equations for the individual components,
i.e.,

Solving for f̂TAi
(s), we obtain

which can be inverted to

where Ai and Bi have been defined after eq 26. This expression,
when weighted bywi and summed over the reaction channels
yields eq 30.

Appendix C. Calculation of the Waiting Time
Distribution for the semi-Markovian Approximation

The general method of calculatingf(t) remains the same as
the method described in Appendix A. The reaction is imagined
to start fromE. The total time to complete the reaction starting
from E is a random variableT governed by a waiting time
distributionf(t). After a timeT1, which is drawn from the waiting
time distributionfT1(t), the system moves to ES, from where
the reaction is completed in a total timeT2, which is drawn
from the waiting time distributionfT2(t). Thus, the probability
that, starting from E, the reaction timeT is realized within a
time intervalt is given by

-pC
TQCAMQBC + pC

T(QCC - QCA) ) 0 (B.17)

f̂(s) )
pC

TQCAf̂TA
(s)

pC
TQCA1

(B.18)

〈t〉 )
-pC

TQCAf̂ ′TA
(0)

pC
TQCA1

)
-pC

TQCA(L + M )1

pC
TQCA1

(B.19)

f̂(s) )
vTf̂TA

(s)

vT1
〈t〉 )

-vT(L + M )1

vT1
(B.20)

L ) -M (QBB - QBA - QBC)QAB
-1 (B.21)

L + M ) -M [(QBB - QBA - QBC)QAB
-1 - I ] (B.22)

〈t〉 )
-vT(L + M )1

vT1

) 1

vT1
vTQCA

-1(QCC - QCA)QBC
-1[(QBB - QBA -

QBC)QAB
-1 - I ]1 (B.23)

〈t〉 ) - 1

vT1
vTQBC

-1[(QBB - QBA - QBC)QAB
-1 - I ]1

(B.24)

vT(I + QBC
-1M-1) ) 0 (B.25)

1
〈t〉

)
ø2[S]

[S] + CM

(B.26)

sf̂TA
(s) ) (QAA - QAB)f̂TA

(s) + QAB f̂TB
(s)

sf̂TB
(s) ) QBA f̂TA

(s) + (QBB - QBA - QBC)f̂TB
(s) + QBC1

(B.27)

sf̂TAi
(s) ) -k1i[S] f̂TAi

(s) + k1i[S] f̂TBi
(s)

sf̂TBi
(s) ) -k-1i f̂TAi

(s) - (k-1i + k2i) f̂TBi
(s) + k2i (B.28)

f̂TAi
(s) )

k1i k2i[S]

s2 + s(k1i[S] + k-1i + k2i) + k1i k2i[S]
(B.29)

fTAi
(t) )

k1i k2i[S]

2Ri
[exp(Ai + Bi)t - exp(Bi - A i)t] (B.30)

P(T < t) ) P(T1 + T2 < t) (C.1)
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The distributionfT1(t) is assumed to be exponential, with a time
constant ofk1[S]; hencefT1(t) ) k1[S] exp(-k1[S]t). Differentiat-
ing eq C.1 with respect tot, we obtain

The Laplace transform of eq C.2 yields

Once the enzyme has reachedES, a total time ofT2 will
elapse before the product is formed. In forming the product,
ES can either move to the stateE0 directly in a timeTC drawn
from the unknown waiting time distributionfTC(t), or it can return
to E in a time T-1 drawn from the exponential waiting time
distributionfT-1(t) ) k-1 exp(-k-1t). The first option is selected
if TC < T-1, the second ifT-1 < TC. The probability that, starting
from ES, the reaction timeT2 is realized within a timet is
therefore given by

After differentiating with respect tot, eq C.4 becomes

From the expression forfT-1(t), P(t < T-1) is given by
exp(-k-1t), while P(t1 < TC) is given by 1- ∫0

t1 dt2 fTC(t2).
Hence the Laplace transform of eq C.5 is

Substituting eq C.6 into eq C.3 and rearranging, we find

which is the expression shown in eq 32.

Note Added after ASAP Publication.The Note Added in
Proof was included with this paper on September 22, 2005. The

article was published ASAP on 8/2/05. The appended version
was reposted on 9/23/05.
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f(t) ) k1[S]∫0

t
dt1 exp[-k1[S](t - t1)]fT2

(t1) (C.2)

f̂(s) )
k1[S]

s + k1[S]
f̂T2

(s) (C.3)

P(T2 < t) ) P(TC < t)P(TC < T-1) +
P(T-1 + T < t)P(T-1 < TC) (C.4)

fT2
(t) ) fTC

(t)P(t < T-1) + ∫0

t
dt1 f(t - t1)fT-1

(t1)P(t1 < TC)
(C.5)

f̂T2
(s) ) f̂TC

(s + k-1) +
k-1

s + k-1
f̂(s)[1 - f̂TC

(s + k-1)] (C.6)

f̂(s) ) f̂TC
(s + k-1)/

(k1[S] + s

k1[S]
-

k-1

k-1 + s
[1 - f̂TC

(s + k-1)]) (C.7)
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