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Gibbsian equilibrium statistical thermodynamics is the theoretical foundation for isothermal, closed chemical,
and biochemical reaction systems. This theory, however, is not applicable to most biochemical reactions in
living cells, which exhibit a range of interesting phenomena such as free energy transduction, temporal and
spatial complexity, and kinetic proofreading. In this article, a nonequilibrium statistical thermodynamic theory
based on stochastic kinetics is introduced, mainly through a series of examples: single-molecule enzyme
kinetics, nonlinear chemical oscillation, molecular motor, biochemical switch, and specificity amplification.
The case studies illustrate an emerging theory for the isothermal nonequilibrium steady state of open systems.

1. Introduction distinguished characteristics of a nonequilibrium steady-state
(NESS) is that it has nonzero fluxes and nonzero chemical
potential gradients in the system. It converts chemical energy
into heat2~” Chemical reaction systems in NESS can process

To traditional chemists, a biological cell is a chemical reaction
system as complex as one can imagine. Still, no matter how

complex a chemical system is, if it is left alone in a test tube, jnformation and generate spatial patterns; they are the chemical
it gradually approaches a chemical equilibrium. In biology, an pagis of cellular signal transductihand biological morpho-
equilibrium state is dead; in physics, it is the least organized genesigo-12

according to the second law of thermodynanticthere are The focus of this article is to present an introductory theory

many important characteristics of an equilibrium. Here we ot NESS with fluctuations. A more comprehensive review is
highlight a few. First, there can _be no sustained net energy forthcoming?® We believe that the pedagogically most effective
conversion of one form to another; every process in fact has angyposition starts with several simple examples, which we shall
equally probable reverse process. This is known as the principleresent in Section 2. In Section 3, we establish the statistical
of detailed balancéSecond, the fluctuating stationary molecular thermodynamics in terms of the Smoluchowski equation that
system is reversible in time in a statistical sense. This statement o acterizes stochastic dynamics of molecular systems. Ac-
becomes increasingly relevant because single-molecule spectqging to Kramers' theory, the Smoluchowski equation is the
troscopies have become commonplace in physmg! chemistry.theoretical basis of chemical rate equatiéh® In Section 4,
And third, the most celebrated one, the probability for the e review the general theory of chemical reactions in a closed
fluctuating molecular system follows the Gibbs distribution. This system and show several key results that are pertinent to our
last statement, translated to simple chemical terms, means thergjiscssion. In Section 5. a recently developed application of

is a unique equilibrium constant for every chemical reaction in \ggg theory to complex networks of chemical reactions in
a system, irrespective of how complex the system is. terms of their stoichiometry is presented. In particular, we
All the above statements are embodied in the fundamental establish the analogue of Kirchhoff's current and loop laws for
theory of equilibrium statistical thermodynamit$he subject ~ chemical reaction networks. In Section 6, we illustrate three
is introduced to every chemistry undergraduate in a physical key applications of the theory of NESS to current biology: the
chemistry class. But to think about the physical chemistry of a kinetic proofreading mechanism for specificity amplification,
living cell, one realizes that we are dealing with a scenario that pijochemical switches and their energy expenditure, and motor

is completely different from all that was said above. In fact, proteins and their chemomechanics. Section 7 concludes the
the most important thing to a biochemist studying living cells paper with a discussion.

is to maintain a “cell culture®.That is, he or she has to regularly
change the medium in which cells grow. 2. Three Examples

If not complexity, then what is the difference between a set  In this section, we give three simple examples of biochemical
of reactions in a test tube and in a living cell? The answer is reaction systems in NESS with increasing complexity. We
that the former is in a closed system with chemical isolation, provide kinetic as well as thermodynamic analyses. While the
while the latter is open to exchange with its environment, both former is routinely carried out, the latter is not. Through
in chemical energy and in materials. If the exchange with its elementary mathematics, these examples illustrate a novel
surroundings is sustained, then an open system usually ap-nonequilibrium statistical thermodynamic theory and show how
proaches a steady state that is not an equilibrium. The mostit is applied.
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k, Ky ks The equations have conservation of matter, but (ii) implies that
A+E ==AE == BE<==B-+E

K, PR ks the system is open to chemical energy exchange; there is a
(a) K hidden energy source and sink. One of the important tasks of
0 NESS analysis of biochemical reaction systems is to explicitly
k,\k”' k-2/k2 identify sources and sinks, usually hidden in pseudo rate
(b) constants.

Figure 1. Kinetic scheme of a simple reversible enzyme reaction (a) The steady-state probabilities for .states E.’ AE, a’?d B.E are
in which k; and k_; are second-order rate constants. From the €Sy to compute from eq 2 by setting the time derivative to
perspective of a single enzyme molecule, the reaction is unimolecular Z€ro and noting thaPe + Pae + Pge = 1 for the total

and cyclic (b). The pseudo-first-order rate constdats kica andk-s probability. Then, the clockwise steady-state cycle flux in Figure
= k-3Cs Whereca andcg are the concentrations of substrate A and 1b, which is precisely the enzyme turnover rate of-AB in
product B. With sustained concentrations @f and cs, the cyclic i ia1SS — PSY.. _ PSS — DSS|. _ pSS _ pss
reaction has a steady-state nonzero cycle flux if and onkgkifks/ Flgusl;E 1a, E‘J . ZfEskl Pagk-1 = Paghe — Pgek-2 = Pge
(K-1k—2k—3) = 1. — Pgk-a. That is;

2.1. Single Enzyme Kinetics: Cycle Flux and NESSNe I = (kykoks — K KK )/(Kik, + KK 5+ Kok g+ Koks +
first consider the enzyme reaction shown in Figure la,.ln which K oKy + kak_; + kaky + Kk, + kik_,) (3)
the rate constants andk-3 are second order. If there is only
one enzyme molecule, then from the enzyme perspective, the
kinetics are stochastic and cyclic, as shown in Figure 1b, with
pseudo-first-order rate constarks= kica andk_s = k_scg,
whereca andcg are the concentrations of A and B. In chemical
equilibrium, the concentrations of A and B satisfy/ca =

If we substitutek; andk_s with k;ca andk_scs, then we recover
the celebrated Michaeligvienten equation for reversible en-
zyme kinetics%-23

(kikoke)/(K_1k ok _3). That is o VinalaKua ~ ViaLe/Kus @
1+ CulKyyp T ColKr
Kkoks 1 1
kK @ whereV! = kokaf(ke + ks + k2, VP = k_ik_o/(ke + ks

+ k1), Kua = (keks + koik—z + kak-1)/ki/(k2 + ks + k),
This is the “thermodynamic box” in elementary chemistry, also @ndKwg = (keks + k-1k-2 + ksk-1)/k-s/(kz + k-2 + k-1).
known as Wegscheider's relation. [In some literature, this  The NESS of the open system, a single enzyme molecule in
relation itself is also called detailed balance. In the framework this case, is driven by the chemical potential difference between
of chemical rate equations, Wegscheider’s relation and detailedthe A and B
balance, i.e., zero flux, in steady state are mathematically
equivalent. See refs 16, 17.] However, if thg and cg are Attpg = fin — ttg = kgTIn Kikoks )
maintained at constant levels that are not at chemical equilib- Hag = Ha ~ Hp K_k K5
rium, as metabolite concentrations are in living cells, then the
enzyme reaction is in an open system that approaches aHence,Jss= 0 if and only if Auag = 0, i.e., the system is at

NESS?!8 This is the scenario in enzyme kinetis? equilibrium. Otherwise, the nonzery is the chemical driving
The rate equation for the probabilities of the states of the force for the fluxJss a terminology introduced by Onsagér.
single enzyme is a master equafibn Furthermore, their producs x Auag, is the amount of work

one has to do, per unit time, to sustain the NESS by constantly

dPe(t) supplying A and removing B from the open systelfi.x Auag
a (kg + K g)Pe +k \Pag + kiPee  (22) is also the rate of heat dissipation of the chemical reaction into
P, (1) the aqueous solution in NESS.
AEVY _ The inequalityJ®s x Auag = 0, in fact, is a statement of the
dt kiPe = (Koo 1 ko)Pag +K-2Pee (2b) second law of thermodynamics: with only a single temperature
dP.(t) bath T, one can only continuously convert chemical work to
B = K Pe 4 KPar — (K, + ky)P (2¢) heat, but not in reverse. If that were possible, then one would
dt B TEAR 2 VTR have a chemical perpetual motion machine of the secondRind.

In what follows, we shall make these ideas more precise. This
is the core material of what we call isothermal NESS statistical
thermodynamics.

In terms of the dynamic cyclic reaction in Figure 1b, let us
introduce Gibbs free energy and Gibbs entropy for the isother-
mal open system as

Equation 2 differs from the standard rate equation for unimo-
lecular reactions in two important aspects: (i) the (X =

EAEBE) IS a probability, not a concentration, and (ii) the rate
constantk’s do not satisfy the Wegscheider’s relation (eq 1).
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dG(t)
Tat Jeaelae — #e) + Jae—selttee — Uag) +
Jge—gltg — ugg) = —T x epr+ cmf (8)
and
ds(t)
- Jene(Sae = S2) T Jagpe(See — Sap) T

hd
Jpe£(Se — Sep) = €pr— Tr 9

In eqs 8 and 9, we introduced three novel thermodynamic
quantities: theentropy production ratethe chemical motie
force, and theheat dissipation rateThey are time-dependent
entropy, work, and heat:

T x epr= Je_pe(DAug ae(t) + Ing—pe()Auag gelt) +
‘]BEﬁE(t)A:uBE,E(t) (10)
+ ‘]AEHBE(t)Ah,OAE,BE +
Joe () Ahge e (11)
(12)

hdr= Jz_ e () AR A

emf = Jeae(Dta — Jpe-e(Ous
where

ky Pe(t)
K_1Pag(t)’

and similarly for theAuae se, ANRg g Auses andAhge e

The entropy balance eq 9 is the most important equation in
the theory of irreversible thermodynami&s3° In the past, this
equation was introduced usually from an entropy balance point
of view without molecular or kinetic details. The expressions
in egs 10 and 11 provide this abstract thermodynamic equation
with a molecular interpretation. As we can see, the epr is always
positive, whereas the time-dependbdt andcmfcan be either
positive or negative. In NESS St = dG/dt = 0 andJg—ag =
Jae—BE = Jge—E =J% Then

Aug pe(t) = kgTIn ARg je=hg — e (13)

T x epr=hdr=cmf=J*x Au,g = 0 (14)
That is, in the NESS, the amount of energy input maintaining
the system, cmf, is equal to the entropy production rate, which
in turn is the amount of the heat dissipated.
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k, ks
=Y=8B

ky kg
Figure 2. Schematic for a linear reaction system with material
exchange with a source A and sink B. In contrast, the NESS in Figure
1b is sustained by chemical energy input, through the breakdown of
detailed balance, without explicit material exchange. The most signifi-
cant difference between these two systems is that the total number of
molecules in the former fluctuates, analogous to the grand canonical
ensemble in equilibrium statistical mechanics.

k’
A=X
k4

at constant A and B concentrations witixag = 0. The situation
is quite different in the cellular metabolic networks in which
the number of enzyme molecules itself can fluctuate.

Let us consider a sequence of unimolecular chemical trans-
formations in an open system, as shown in Figure 2, in which
the upstream and downstream species A and B are maintained
at their respective constant level. In this case, the open system
is constantly exchanging material with the surroundings through
the source A and the sink B; the number of molecules in the
system in fact fluctuates. This situation is very similar to that
of the grand canonical ensemble in equilibrium statistical
mechanics. The difference is that, in the NESS, there is a
nonzero flux in the system as well as a chemical potential
gradient.

Just as for an equilibrium system in contact with a material
reservoir, there is a NESS theory of the grand canonical
systen®! [If one explicitly identifies the A and B in the enzyme
example above, then that system could be considered as a NESS
version of the semigrand ensemble. See ref 32.] The kinetic
equation for the probabilities of havingX andnY molecules
in the system in Figure B(m, n, t), satisfies the chemical master
equation33-35

w =k, (P(M — 1, 1) — P(m, ) +

k_,(m+ 1)P(m+ 1,n) — mP(m, n)) +
ky((m+ 1)P(m+1,n— 1) — mAm, n)) +
k,(n+ 1)P(m—1,n+ 1) — nP(m, n)) +

Ks((n + 1)P(m, n+ 1) — nP(n, m)) +

K_sng(P(m, n — 1) — P(m, n)) (15)

The right-hand side of eq 15 is organized according to the six
chemical reactions in Figure 84 andng are given numbers of

molecules A and B. The stochastic dynamics exhibits a two-
dimensional random walk on then(n) lattice, representing the

For a closed system, the cmf which represents the exchangenumbers of X and Y in the system as functions of time.

of chemical energy with the surroundings is zero. Then, eq 8
indicates that the free energy of the syste®, is always
decreasing and reaches its steady state with min@nahen
epr = 0 and hdr= 0. It is easy to show that, in this case,
Wegscheider’s relation holds true a@Gds exactly the equilib-
rium Gibbs free energy computed from the partition function.
The equilibrium statistical thermodynamics is, as it should be,
a special case of the nonequilibrium theory.

2.2. Open Linear Chemical System with Number Fluctua-
tions. The enzyme reaction in Figure 1 goes through NESS cycle
kinetics, while it exchanges substrates molecules, A and B, with
the solvent. However, if we identify the single enzyme as the
“open system” and mathematically absorb the concentrations
of A and B into the pseudo-first-order rate constants, we obtain

Equation 15 is simple enough to have some nice analytical
results3! Multiplying m on both sides of eq 15, summing over
mandn from 0 toco, and notingy ;. ., P(m, n) = 1 is the total
probability, ¥ .—o MP(M, N, t) = nx(t) is the mean number of
X at timet in the system, and similarlyy ;.o nP(m, n, t) =
ny(t), we have

dny
e king — (ko + kyny + koony (16a)
dn,
o Kony — (k_, + kyny + k_3ng (16b)

which is exactly the standard chemical rate equation for the

a model of the open system that has the conservation of theconcentration of X and Y in terms of the law of mass action.
number of enzyme molecules. Such an open system does nolNote that, with constant volum¥, the number of molecules

explicitly exchange material with its environment. Rather, it
extracts chemical energy from its surrounding that is maintained

and the concentrations simply differ by a factonbfFurther-
more, the NESS probability distribution can be solved from eq
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15 by setting the time derivative to zero to give

o))
P*(n, m) = e ™|l—e @an

n!

Both the number of X and Y follow the Poisson distribution.
This is a generalization of the equilibrium Poisson distribution

in the grand canonical ensemble.

chemical reaction systems with only chemical energy ex-
change with the surroundings and with explicit material
exchange. Open biochemical reaction systems in living cells
are also highly nonlinear, including bimolecular reac-
tions, dimerizations, and autocatalysis. The nonlinear chem-
ical reactions lead to complex temporal dynamics, includ-
ing sustained chemical oscillatios!! What is the rela-

tion between an oscillatory chemical reaction system and

In the NESS, the auto- and cross-correlations between thea NESS? We shall address this question through the third

number of X and the number of Y &fe

mm(O)Am(t)Dz /1 (A + kg + k) €2 —

(4, + k_; + k) &) (18a)

L+ k) €2 —

(A, + k_, + k;) &%) (18b)
mm(O)An(t)D= kol (ef“t &) (18¢)
mn(O)Am(t)Dz ik (eﬂlt o) (18d)

wherel; and 1, are the two eigenvalues of the kinetic matrix

example.

Studies have shown that one needs to be more precise about
the terminology2® in chemical dynamics literature in terms of
deterministic kinetic models, a “steady state” is when all the
concentrations of species in a system are constant and do
not change with time. A periodic chemical oscillation is a
different kind of dynamic behavior. Even though the concentra-
tions of the species are not constant in time, the temporal
behavior is “stationary” in time. However, the deterministic view
of chemical dynamics is only a limiting case of a molecular
system when the system is large and thermal fluctuations are
negligible. The stochastic, chemical master equation ap-
proaci¥®24is a more realistic view of the chemical dynamics
of both small and large systems. In stochastic terms, a steady
state means a system with stationary temporal behavior with
probability distributions being independent of time; there are
still fluctuations. In stochastic mathematics, a steady state is a
stationary stochastic proces%4°

-k, =k k., We now study a system of nonlinear chemical reacfibns
K, K, — kg (19) k k .
A==X, B—Y, 2X +Y —3X (22)
We see that even though the number of X and Y molecules are ko1

uncorrelated at a given time, they are correlated with a delay.

Furthermore, the fact that the two cross-correlation functions, in which the third reaction is autocatalytic. This chemical
eq 18c and d, are different is a distinct characteristic of a NESS. reaction system has been extensively studied in terms of
If konx = k—zny, i.e, X and Y are in equilibrium, then the two  deterministic dynamic¥ With appropriate parameters and
cross-correlation functions are the same. Their difference is in sustained A and B, it exhibits periodic oscillations in the
fact a measure of irreversibility, i.e., the flux between X and Y concentrations of X and VY.

in NESS®* The deterministic dynamics for the open reaction system (eq

Curiously, we have noticed that the difference in Cross- 55y i terms of the law of mass action follows nonlinear rate
correlation functions given in eq 18 has the same mathemati-

. . . . equations
cal expression as that of a single molecule in a cyclic reac-
tion36 d
Ny )
o K K e kiny, — k_iny + ksnyny (23a)
Z=X=Y=— (20)

k-1 k-2 g-3 dnY 5

where. o kng — ksn“ny (23b)
K_,py whereny, ny, na, andng are the number of X, Y, A, and B,

PxPxy (1) — (€ —&?) (21) respectively. We assume there is a constant voluirend all

the rate constants are scaled accordingly. Equation 23 should
be compared with eq 16. The difference is that eq 23 is

nonlinear, while eq 16 is linear. Parts a and b of Figure 3 show

time 0, and similarlyPyx(t) is the probability of the molecule two kinds of dynamic behavior. In Figure 3a, the dynamics has

in X at time't given it is in Y at time 0. Thel, , are the two a sustained periodic oscillation over a long time, shown by the
nonzero eigenvalues of the kinetic system in eq 20. How generalSolid loop, called the limit cycle of the dynamics. The dashed
this result is is under current investigation. lines are transient dynamics approaching the limit cycle either

The open system nonequi]ibrium thermodynamics in from inside or outside of the CyCle In contrast, in Flgure 3b,
terms of Gibbs entropy and Gibbs free energy can be similarly all the dynamics are spiraling into a point, which corresponds

pY YX H= }“1—

px and py are the steady-state probabilitieByy(t) is the
probability of the molecule in Y at time given it is in X at

worked out as in the previous example. See #éffor more
details.

2.3. Nonlinear Chemical Reaction System with Oscil-

to a constanhy ~ 20 andny ~ 250, called the fixed point of
the dynamics. Even though there is no sustained periodic
oscillation, there is still an oscillatory relaxation to the fixed

lations. In the previous two examples, we studied open linear point.
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' ’ Figure 4. Relation between discrete rate processes and Smoluchowski
number of X number of X equations of a particle in a force field. The latter is a more

400 g comprehensive description for chemical kinetics with an explicit energy
landscape. It has a closer tie to Newtonian mechanics: eq 28 is in fact
> 300 - the Newton’s law assuming an overdamped particle in a force field,
b3 s together with a random collision force.
B 200 B
§ 100 § have discovered th#tincreasing energy input into the open
‘ system supresses the thermal fluctuation while promoting the
0 b= st | P i temporal complexity. In other words, energy can be used to
0 60 120 180 240 300 0 50 100 150 200 250 reduce thermal noise and produce temporal complexity in small
number of X number of X chemical reaction systems, making them like machines, a lesson

Figure 3. Oscillatory nonlinear chemical reaction system given in eq that could have implications in future nanotechnology.

22. In terms of the deterministic dynamic model (eq 23), the system  2.4. Brief Section Summary.The examples in this section
can either oscillate periodically when the parameter 0.08 (a) or show that isothermal open chemical systems can be subjected
approach the fixed concentrations aroumd= 20ny = 250 whena = to rigorous statistical thermodynamic and stochastic kinetic

0.1 (b). In terms of the stochastic model (eq 24), however, the system : . : P e
exhibits a rotational random walk for both= 0.08 (c) anda = 0.1 studies. This theory is a natural generalization of equilibrium

(d). Parametes = (ky/k 1)/kgk ;na. Other parameters used in the statistical thermodynamics, which has played a central role in
. _ e - the development of molecular biology through the studies of
calculation: \/ky/k_;ng = 0.1 and,/ky/k_; = 0.01
' e AR biological macromolecules, i.e., protein and DR4> How-

ever, biochemical reaction systems in cellular biology are open
systems. Therefore, the theory we illustrated in the three
examples and present in the remainder of this article will be
useful theoretical tools in studying living biological systems in

In terms of the chemical master equation, the probability of
havingmX andnY in the open system satisfies

dP(m.n.t) _ Ny (P(m—1,n) — P(m, n)) + terms of physical chemistry. _
dt Since the 1950s, following the discovery of the DNA double
k_(m+ 1)P(m+ 1,n) — mP(m, n)) + helix, applying the principle of equilibrium statistical thermo-
k,ng(P(m, n — 1) — P(m, n)) + dynamics to biological systems has been the central theme of

biophysical chemistr§®=4¢ which has led to the ultimate
k((m—1m—-2)n+ HP(m—1,n+1) - ger1por¥1ic revolution. Tzi) simple examples in this section suggest
m(m — 1)nP(m, n)) (24) that statistical thermodynamics also has a role in studying more
complex living biological systems and processes. In particular,
which should be compared with eq 15. Parts ¢ and d of Figure the relationship between thermodynamics and energy and signall
3 show two dynamic trajectories according to eq 24 with transduction in cells can be subjected to a rigorous physio-
parameters corresponding to that in Figure 3a and b. As is chemical analysis.
expected, the system is oscillatory, but with fluctuations. Both
parts ¢ and d of Figure 3 in fact exhibdtational random walks 3. Brownian Dynamics and Nonequilibrium Statistical
which are the mesoscopic signatures of deterministic chemical Thermodynamics
oscillations. There is a higher probability for the trajectories
moving in a clockwise direction than in a counterclockwise
direction. For more discussions, see ref 38.

Because of the nonlinearity, the mathematical relationship
between the stochastic model in eq 24 and the deterministic
model in eq 23 is no longer as straightforward as in the previous
example, between eqs 15 and 16. Their relationship in physical
chemistry, however, is just as simple: in the limit of large
volumeV and a large number of molecules, eq 24 approaches
eq 23. The stochastic solution to eq 24 approaches the solutio
of eq 23 with negligible fluctuations. This was shown math-
ematically by T. G. KurtZ2 Corresponding to the dynamics in

The kinetic rate equations have long been used to model
molecular fluctuations. It might come as a surprise to some that
these same equations have a hidden statistical thermodynamic
structure. This turns out to not be an accident. From the
pioneering work of Kramers, we know that the rate equations,
i.e., discrete-state Markov jump processes, have a continuous-
coordinates, energy-based representation in terms of the Smolu-
chowski equation and barrier crossing (Figuré4%®4°In this
section, we trace the origin of the statistical thermodynamics,
Mmore precisely the conservation of energy, to the Smoluchowski

equation of Brownian motion of an overdamped particle in a

parts a and b of Figure 3, the rotational random walk in parts force field:

c and d of Figure 3 will have probability distributions peaked 2

over a closed loop and at a single point, respectively. p(x. 0 _ DB p(x. 1) + 12(Mp()(, t)) (25)
The stochastic dynamics in Figure 3c exhibits two kinds of ot x° 17 ox\ dx

temporal fluctuations: one is the temporal complexity, i.e.,

periodic oscillations exhibited in 3a, and the second is the together with the Einstein’s relatiddy = kgT. In eq 25,p(X,
thermal fluctuations around the periodic oscillation. The latter t) is the probability density of the particle atat timet, and
disappears when a system becomes macroscopically large. Wé-(x) = —dU(x)/dx is a force field. This equation is well-known
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and widely used since the work of Chandrasekhar, Ornstein, In @ QeT= g (33)
and Uhlenbeck® What is not widely appreciated, however, is v
that it contains the law of energy conservation. To show this, In B(x — X) e ¥"™T= In p"*{x) (34)

let us consider the steady state of eq 25:

q ¢ du both are valid for any, where the average--[is carried out
X, X i i i ! istributi
b p(x, ) 1 ) D(x t) = —J (26) with all possiblex; that starts with the steady-state distribution.

dx n dx These two equalities are intimately related to Jarzynski's
equality>”=80 While Jarzynski’s equality applies to closed
which can be rewritten, using the Einstein relation, as systems with time-dependent Hamiltonian, eqs 33 and 34 apply
to NESS. The significance of these two equalities is that the
UX) + ksTIn P(X) = — j‘ ” de 27) _Q't” is well-known to be a path-dependent quantity; the heat
p(x) is not a state function in thermodynamics. In fact, dissipation

[Qi”l]increases with time without bound in a NESS. But via

This equation can be interpreted as energy conservation. Wegg Iog-mean—exponentiaﬂ)i" is related to a function of state,

note thatl/p is the particle velocityy(J/p) dxis the amountof 1o entropy. In classic thermodynamics, entropy is defined

heat dissipated for the particle moving through distancia @ through infinite slow quasistationary processes. The Jarzynski

fluid with friction #, and we identifyU(X) + ksT In P(X) = equality-like relation in eq 34 circumvents this difficulty and

g(x) as th_e che_zm_lcal potential. H(_-:-nce, conservation of energy gnaples one to define entropy (and free energy) through

in NESS is built in the mathematics of eq 25. _ processes with finite speed. And more importantly, these results

It is instructive to point out that there is another equivalent ggem generalizable beyond equilibrium to NESS.

formulation for eq 25 in terms of the Langevin equation Equations 2734 furnish the Smoluchowski eq 25 with a
dx, rich thermodynamic structure. While this is a nonorthodox
U B(X) + 2k T Et 28 appr_oach, it foIIo_vvs the true spirit of the statistical mechanics:
dt () kgTin 5(1 (28) relating mechanical energy of molecular systems and prob-

abilities of mesoscopic systems. In a complementary approach,
where X; is a stochastic trajectory of the particlg(t) is the J. M. RuBliand co-workers have shown that one can derive the
Brownian white noise[£(t)0= 0, and [AE(Q)AE(t)T= o(t), stochastic description for open chemical and physical systems
representing the random collisions between the particle and precisely in terms of the Smoluchowski equation based on the
solvent molecules. Equation 28 is really Newton’s equation principles of nonequilibrium thermodynamié’s.
(Md/dtD)X; + (pdld)X; = F(X) + /2kgTyé(t) assuming
overdampingm ~ 0. Therefore, it is not surprising that eq 25 4. Closed Chemical Systems: Detailed Balance, Time
contains energy conservation. What was not known until recent Reversibility, and the Fluctuation—Dissipation Relation

years is that one can further introduce all the important  There is much to be learned about open systems. But to truly
thermodynamic quantities mathematically based on €428 | qerstand open systems and the NESS, one needs to first

thoroughly understand closed systems and the equilibrium state.

dW, = F(X) = dX, (29) In this section, we discuss some of the not-widely-known results
W =—kln t 30 about _closed systems. In terms of master equations and/or
t kg In pO%, 1 (30) Brownian dynamics, two key concepts in connection to closed
_ d systems are Wegscheider's relation and Boltzmann’s law.
I =F(X) - kBT&In P(% ) (1) 4.1. Law of Mass Action and Deterministic Kinetics.Let
o us start our discussion with a simple chemical reaction in terms
dQ” = I o dX (32) of the law of mass action,

These four equations are interpreted as follows.

Equation 29: The work performed by a “particle” in a phase
space, W, equals the force times the displacement. The
multiplication symbol ¢ indicates the stochastic integration If we denote the forward and reverse reaction fluxes.as
is in the Stratonovich sens$éln a closed systenf; = —dU/ ki[A][B] and J- = k_4[C][D], then we have the net flud and

k
A+Bs=C+D (35)
1

dx. Then, &V = — dU. chemical potential\u
Equation 30: The instantaneous entroyy,is the logarithm
of the probability distribution. 3/ is the thermodynamic J=J,-J, Au=kgTIn(3, /) (36)

probability of Boltzmann.

Equation 31: Onsager’s thermodynamic forEg, consists We see that thedi= 0, Au = 0. As we have pointed out earlier,
of a mechanical force and an entropic force. In a closed system,the product] x Au is the amount of entropy produced per unit
Onsager’s force is the gradient of the free enéfgyU — kgT time; it characterizes energy dissipation. Because a closed
In p. Itis zero in the equilibrium steady state. Hengé&] eV, system cannot continuously dissipate energy indefinitihy;

Equation 32: The irreversible heat dissipation of the particle, 0 andAu — 0 in the limit oft — o, That is, a closed system
dQ'", equals the Onsager’s force times the displacement. In acan only approach a chemical equilibrium with zero flux in each
closed system, the equilibrium steady-state H@¥ e 0. reaction.

From these stochastic quantities, nonequilibrium thermody-  Zero flux means that each forward reaction is balanced by
namic egs 8 and 9 can be obtained, not only on average butthe reverse reaction. This is known as detailed balance in
also along stochastic trajectorf@$SFurthermore, two surprising  chemical equilibriun? One then immediately obtains the ratio
equalities in terms of the log-mean-exponential @f in of equilibrium concentrations in terms of the rate constants (i.e.,
NESS can be derivetf: the equilibrium constant):
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[C]°ID]* K, problems desgrve a clos_e investigation with a nonequilibrium
yeamed K. (37) thermodynamic perspective.

[A1°1B] -1 4.3. Diffusion Dynamics and the Fluctuation-Dissipation
Relation. Since the work of Kramer¥' the diffusion dynamic
approach to chemical systems has become a mjor component
of chemical physics. Polymer dynamic the&%glectron transfer

More interestingly, one can introduce Gibbs free energy of the
closed system:

_ theory/® and the energy landscape theory of prot€iree
G =[Alua+ [Blug + [Cluc + [Dlup several successful examples.
[A] [B] [C] There is a dual relationship between the master-equation
= kgT|[A] lnﬁﬁ_ (B] In@+ [C]In @"' models and thé\-dimensional diffusion equation:
[D] 9
p(x, 1)
Plin 5] 38) T = V(D(VR(, ) ~ VOIP(X, D) (40)

where concentrations [A], [B], [C], and [D] are all functions of
time. With the rate equations based on the law of mass action
and aid from detailed balance, one can show that

whereD(x) is a diffusion tensor, an¥(x) is a velocity field,
which is related to a force fielB(x) by a frictional coefficient
matrix, 7(X)V(x) = F(x). On one hand, a discrete transition A
dG — B can be understood as an energy barrier crossing problem
i Jx Au=<0 (39) with sufficient barrier height (Figure 4F(x) = —VU(x), and
Einstein’s relationD(x)n(x) = kgT. In this connection, Weg-
Therefore, a closed isothermal system is necessarily and_scheider’s relation in master equations corresponds to diffL_JSiOI”]
spontaneously decreasing its Gibbs free energy until it reacheg" @1 ENergy Iandscape: anq th_e breakdown of \_Negschel_ders
its equilibrium with minimal Gibbs free energy. It can be shown relatlon corresponds to diffusion in a nonconservatlvg force field,
that, as a function of all the concentratio@sin eq 38 is convex. le, V x F(x) = 0. It can be shown mathematically that

) A N ) . .
Hence, according to the a mathematical theorem due to A. M. 5 é;(g;/t(ixa?l funczoﬁ()&r:.o?/vqnltallz %ﬁgniﬁ;ﬁ%i;ﬂgﬁi;ﬁg’lﬁsvgth
Lyapunové? the equilibrium state is unique and globally POte > (he p ) ' .
attractive. sufficient and necessary condition for the stationary fluctuations

Equation 38 can be generalized to any closed chemical systemto be time reversibl& and the equilibrium probability density

with many species. Then the right-hand side of eq 39 will be pe(x) U .e_.¢(x)' In this respect, the diffusion model Is a more
the sum of—J x A for all the reactions in the system mechanistic, energy-based approach to chemical reactions. The
| I .

With the uniqueness of the equilibrium concentrations, one fluctuation—dissipation relation, of which Einstein’s relation is

can immeditey show Wegscheders relaon among all he & S0 tase, a7 the paentl cociton ae conetian o
rate constants in a reaction loop, as well as Boltzmann’s law y

o) : L system characteristics.
[X]ea O e #x*%eT where X is any species in the closed system. e .
4.2. Equilibrium Fluctuations and Time Reversibility. On the other hand, diffusion equations such as eq 40 are also

With Wegscheider’s relation connecting the rate constants in an approximation of the chemical master eql_Jatipn in the limit
every reaction loop, the stochastic dynamics of a chemical of a large systerfi*>"*The stochastic dynamics in Figure 3c

reaction system, in terms of the chemical master equation, hasand d can be approximately represented by eq 40. In this

several distinct characteristics. The proof of these results can&onnection, the velocity fieldV(x) in eq 40 defines the

be mathematically involve®f, but their physiochemical mean- dfetermlnlstt[c rﬁ%t_tla_;qg?;uon (d)td Tr[\)/(X) accq(rjdln%hto ftlhe tlaw
ings are in fact very clear. First, the equilibrium fluctuations of mass actiort The diffusion termD(x) provides the fluctua-

are time reversible. That is, in the statistical sense, there is not'ons' Keizer has developed an extensive thermodynamic theory

difference between time traces of equilibrium fluctuations based on this approachfor recent work, see refs 74, 75.
recorded forward or backward in time. This equilibrium property
leads to several symmetric relations in the time correlation
functions of equilibrium fluctuation¥

Second, the linear relaxation kinetics near an equilibrium  There is a great demand from biochemistry for a network
cannot have complex eigenvalues. Neither can the time cor-approach to complex, open chemical reaction systems. Electrical
relation function of equilibrium fluctuatior® The linear circuit theory has been a cornerstone of electric networks and
relaxation kinetics is of course intimately related to the time electronic devices. Is there a similar network theory for chemical
correlation function according to Onsager’s theory of linear systems? Katchalsky and his colleagues were among the first
irreversibility and the GreenKubo theorent464.65 to raise the question and studied network thermodynaffics.

Third, the equilibrium probability distribution has a single Extending the NESS theory we discussed above, we were able
maximum that corresponds to the unique deterministic equilib- to develop a network thermodynamics cast in terms of the
rium. In the limit of a large system, i.e., the thermodynamic stoichiometry of a chemical system and the two celebrated
limit, the distribution is Gaussian and Einstein’s fluctuation Kirchhoff laws27.77-79
theory applie$8.67 The network structure of a chemical reaction system is

These closed-system characteristics immediately imply that captured in the stoichiometric matrix. Let there Mespecies
only open systems can produce sustained, interesting behavioandN reactions in the system, then the stoichiometric numbers
(or a transient phenomenon, in which case, there is an ap-can be systematically tabulated inMa x N matrix S.8° In a
proximate open subsystem within the closed system) such aschemical steady state, the fluxes in all the reactions are balanced
sustained chemical oscillation, spontaneous spatial patternto maintain constant concentrations of all species. The funda-
formation, free energy transduction, chemical bistabflignd mental law of conservation of mass leads to steady-state fluxes,
stochastic resonané&to name a few. All these fascinating J = (Jy, Jp, ..., J\)7, satisfying

5. Open Chemical Systems: Network Thermodynamics,
Kirchhoff's Laws, and Stoichiometric Network Theory
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SJ=b (412)
whereb is the vector of input fluxes that transport material in E K
to and out of the system. This is the chemical analogue of ks A 1
Kirchhoff's current law. Any flux vectord satisfying eq 41 k'3 k.

satisfies the flux balance in NESS and is a balanced reaction @‘_ L*4 EL
“loop”. As an example, consider the simple network in Figure k,
la. The stoichiometric matrix is: Q G
A |-1<00 Fi . L _—
igure 5. Protein E and substrate L associate in a NESS. The kinetic
B 0O 0 +1 cycle is driven by the 7= D reaction representing GTP hydrolysis
S=E (-1 0 +1 (42) inside living cells. The L* is the form to be incorporated into
AE|+1 -1 0 biosynthesis, but we assume that the synthesis rate is sufficiently low
BElo +1 -1 to be neglected. Assuming that there are two possible ligands, A and

B, with different affinities to E, one is interested in the ratio [EA*]/
[EB*]. All of the rate constants shown in the figure are first order or
Because species A is transported into the system at ebkate  pseudo-first order. That isky = ki[L], k-3 = k-3[L], k» = k[T], and
and species B is transported out at the katehe mass-balance ~ k-2 = k-2[D]. Because of the presence of T and Kkoks/(k-1K-2k-3)

equationSJ = b can be expressed as > 1
10 0 —b, However, if the proteirsubstrate complexes are not in
o o0 +1|[% +by equilibrium but in a NESS, the ratio of [EA] and [EB] can be
“10 +1/|%]=o 43) significantly greater tharKa/Kg. Biological processes inside
41 -10 ||9 living cells, in fact, use this strategy to amplify specificity and

0 thus improve the accuracy of biochemical processes. For
0 example, protein synthesis on ribosomes according to RNA
templates can incorporate wrong amino acids just by chance.

Now, letu = (ua, us, 4E, uas, use), in a vector form, denote | 3 closed system, this chance is dictated by the specificity of
the chemical potential of all the species. Theh= Au is the the association between a codon and its corresponding tRNA.
chemical potential differences for all the reactions, and However, by operating in a NESS, a living cell can increase

the fidelity of the biochemical processes, as we shall show.
Aud = ub (44) - . .

The kinetic proofreading mechanism can be cast as a model
if Jis a balanced reaction loop. Then eq 44 is the chemical for specificities of two ligands, A and B, binding to an enzyme.
analogue of Kirchhoff's loop law, and it is a statement about We choose this system rather than the traditional protein
energy conservation: the left-hand side of the equation is heatSynthesis to illustrate the general principle.
dissipation, and the right-hand side is the amount of chemical We consider the kinetic scheme in Figure 5, in which the
energy input. For the example in eq 43, this is an alternative of substrate L can be either A or B. The system is open, driven by

0 +1 -1

eq 5: the hydrolysis of GTP to GDP: T D. To simplify the
problem, let us further assume that A and B are structurally
Auy + Auy + Aug = Aupg (45) very similar, hence they have saiek.,, andk_s. The different
_ affinity comes fromk?,/k®; = K5/kS = Ka/Ka < 1.

because, in the NESS;®= ba = bs. _ The steady-state probabilities for Eland E are readily

Finally, in addition to mass and energy conservation, the ¢, eqd:
second law for isothermal NESS can be stateetdsx Au;i > '
0 for each reaction in the network.

Pee koky + Kk g+ Kok g (45)

6. Back to Simple Examples: Biological Applications Pe KKE + KK + KK

We now apply the above theory to several biological
prOblemS. In partiCUlar, we shall focus on the Signiﬂcant role Wherekﬁl and k;, with Superscript X', are dependent on the

of energy input in open biochemical systems and its biological sypstrate type, A or B. To obtain the strongest dependence of
functions. These examples reinforce the notion that many p. . on substrate types, we have:

biochemical systems with important biological functions con-
sume energy, and there is an intimate correlation between the K K . < kk or kk
amount of energy available and the performance of the functions. —17-3 TRz EE 2R3

6.1. Kinetic Proofreading Mechanism for Specificity
Amplification. Kinetic proofreading in biosynthesis is one of ks KC1 > Kok andicky
the most telling examples of how biological systems utilize )
energy to overcome limited specifici#y82 By specificity, we ~ Then kik; > K;k-5 and k; > k-, leading to a necessary
mean the ability of a protein E to select between two substratescondition
A and B of different affinities. Let us assume that the association
constant for EF A = EA isK, and for E+ B=EB isKg, Ka klkzkg
> Kg. Then with equal amounts of total A and B molecules, ~ .
the concentration ratio between EA and EB complexes, in an
equilibrium, is simplyKa/Kg. This is dictated by Boltzmann’s
law. for Pew+/Pe ~ ko(ky + k-3)/(kz K ). That is,

>1 (47)
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Peu _ K KZy (K, l
P K, K AN | ———
P /_\ 08 -
In other words, energy consumption is necessary forPthe Izl
to have increased specificity for substrates with different » 06} -
affinities. \\://l 3
The idea that energy can be used to suppress noise is quite LY 04 1 1
general. Recall the simple example in Section 2.3. One can show m 02 -
that, with increasing amounts of energy “pumped” into the ' )
system, the reaction is driven to exchange stochastic fluctuations

0 L L L L

(noise) with temporal complexity, i.e, deterministic oscillation @) Wl 0 2 4 6 & 10
a
k2

or even chaos. Au/kgT
6.2. Biochemical Switch and Its Energy RequirementA _ : _ _ _
central theme in molecular cell biology is the biochemistry of Figure 6. (&) Signal transduction cascade in cell biology: The

cellular signal transduction. Successive events occur inside a@ctivation of protein A to become A*, via chemical phosphorylation,
leads to its catalysis of the activation, i.e., turning on, of protein B to

"V'“Q Ce”_thrOUQh asequence of enzyme or protein act'vat'c_ms' become B*. Such a cascade is often illustrated by the downward arrow,

The inactive form of a signaling protein usually has no biological indicating that A* activates the reaction. There are two distinct chemical

function, but after activation, its biological activity is “turned  reactions, both reversible, between the A and A*: the phosphorylation

on” and it functions as a trigger for the activation of its “down reaction involving ATP and ADP (convex arcs) and the dephospho-

stream” signaling target(s). Such a signaling cascade is mostrylation reaction involvingz (concave arcs). Kinetic schemes such as

often illustrated by the kinetic scheme shown in Figure 6a, and these are widely studied in biology. (b) The turning on of B to B* can

each one of these activation steps is often called a switch. g? g,léagﬂgfgyb;\}gﬁa%%pltléu?heeogS;Vrlltcchr:r;?ngég i)y’svt\g];’i'sk:.rﬂm?t'on
Let us focus on the switching on and off between the B and (y 1/(k 1k »)). In the best-case scenario, it is simply A@Sanh(\u/

B* state of a protein. This is usually accomplished in a cell by (4kgT)).

the phosphorylation of B to become phosphorylated B*. The A

in Figure 6a in this case will be an enzyme, a protein kinase

that catalyzes the phosphorylation of protein B. keandk—;

be the two second-order rate constants for the phosphorylation

:ggg::gg' rzhfegentlzdrﬁ;]g]neddk toi:F?yur?e gae!sp;hosphorylatlon Hence, eq 51 shows that, based on physical chemistry, the signal
»fep 2 g ) magnitude is limited by the amount of energy dissipated in the

To be a switch, the chemical reactions between B and B* biochemical reactions. If there is no energy dissipation, there
have to satisfy some requirements. In the absence of A*, the. ‘ 9y P '

system has to be essentially in the B form. Herlees k_». is no switch. The ATP hydrolysis cycle coupled to the switch

When there is a sufficient amount of A*, i.e., A is turned on, IS gc;t fl\ljltolllee:cJtlaF;ol\\;lv;g g]n?j tl):'?;:g:;al ?v::ﬁgc'iuction One
the B* should be dominant. HenclyfA*] + k_2) > (K_1[A*] 2 gy :

+ kz). One can easily deduce that the two requirements lead toOf the important functions O.f many biological organisms iS_ to
v = kikol(k_1k_5) > 1. In other words, The cyclic reaction of convert chemical energy into mechanical work with high

B — B* — B has to have chemical energy input. efficiency. Such functions are often carried out by a single

Biochemists usually neglect the; andk_, because they are protein molgcule. This gives rise to the fielld of m'olecular
small. However, by incorporating them into the kinetic scheme motors, which explores the phyS|c§aI, phy3|ochem|ca_l, and
in Figure 6a, one can quantitatively address the issue of energ biological aspects of energy transduction on a mesoscopic scale.

W/ - .
consumption and the quality of the switch. Let us define the For a comprehenswe coverage of t.he squept, see ref 84,

) . Interestingly, a three-state chemical kinetic model, such as
amplitude of the switch, AOS, as

that in Section 2.1 and Section 6.1, can also be used to illustrate
(B B%] the key concepts of the theory of motor proteihg More
AOS= (—) — (—) (49) general treatment can be found in ref 87.

[B] + [B*] Jiag=~ \[B] + [B*] Jia1 =0 A kinetic scheme of a single motor protein is shown in Figure
7a, in which the transitions of the motor between states B and

the AOS is in the best case scenario with the given amount of
energyAu (Figure 6b).
Biochemically, the AOS is the magnitude of the signal.

then we have C is accompanied with ATP hydrolysis: BT == C + D with
pseudo-first-order rate constarkis= ko[T] and k-2 = k—5[D].
Kk, k., The conformational transitions between C and A is accompanied
AOS= k+k. k+k with a step of translocation of the motor protein along its
roor e e periodic track, with spacing, as shown in Figure 7b.
_ y—1 The kinetic rate equation for the motor protein is
(Ky/k_; + 1) (K/k_, + 1)
dP,(n)
- y—1 (50) o kePc(n — 1) — (ko3 + k)Pa(n) + k_,Pg(n) (52a)
Sy +2Vy+1) dPy(n)
_ —— = KPa(n) — (k_y + ky)Pg(n) + k_,Pc(n) (52b)
= Iu =tan _AALL) (51) dt
Wy +1) AT, dP<(n)

a KPg(n) — (k_; + kg)Pc(n) + k_3PA(n+1) (52¢)
where we have introduced the chemical driving force in the
cyclic reactiomAu = kgT In v, and the inequality in eq 50 means  wherePx(n) is the probability of the motor protein in its internal
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Figure 7. Three-state chemical model for a single motor protein. (a)
The cyclic internal conformational transition of the protein. The kinetic
cycle is driven by the hydrolysis of ATP to ADP, + D. (b) The
translocation of the motor protein along its linear, periodic track is
coupled to the conformational transition between C and A. All of the
rate constants are first-order or pseudo-first order= kJ[T], k-» =
K2,[D].

state X, (X= A, B, C), and at the same time at position
along its track.

The steady-state velocity of the motor moving along its track
can be solved from eq 52 with periodic boundary conditions
Pa(n + 1) = Pa(n) andPc(n) = Pc(n — 1). The NESS flux
times the distancd is the steady-state motor velocity = J5S
x d. The flux J®sis already obtained in eq 3. In the biophysical

Figure 8. A schematic illustrating how rate constakts change as a
function of a resistant forc&. The upper panel is the free energy
function, G(x), for F = 0, and the lower panel is fdf > 0, which tilts

the energy function leftward:G(x, F) = G(x, 0) + Fx. The rate
constantsk.s are related to the transition state energy barrier height:
ka(F) = k3 € 261%T and k_3(F) = «x—3 e 2CPksT where AGy(F) =
AGl(O) + FXl, AGz(F) = AGz(O) - FXz, X1+ Xo = d, X1 = 0d, Xo =

(1 — 6)d, andAGy(F) — AGy(F) = — Fd. Thek.s are related to the
K5 in the text: kK = k3 €726 andk® ; = k3 e 20, This leads to eq

measurements of motor proteins, one is often interested in thethat the rate constantg and k_; have to be a function of
time distribution(s) for motor stepping. To address this, instead external resistant forcE, if it is applied. That igi491

of calculating the cycle fluxi® one considers the forward and
backward cycle kinetics in Figure 7a from, £0 An+1 Or Ap—1.
This is accomplished by reformulate the cyclic kinetic problem
into a first-passage problef#s°

kg k, ks ki k, ks
A1 B Tz_ Ch1 f An f B, T;_ Ci— A (83)

We can compute the time to complete a cycle, forward or
backward and respective probabilitigs, and p—. The first-
passage time problem has been extensively stii€&dThe
mean of the cycle time is

F0= (Ko + K4k 5+ KoK 5 Kok + Kk ; + kak ; +
KoKy + K gk + Kk o)/(Kkoks + K ik ok 2) (54)

and the forward and backward probabilities are

— I(1k2k3 (55)
P = kkoks + Kk K
k_ik ok g (56)

P = kkoks + Kk K

Hence we havéss= (p; — p-)/Z[Jand the motor translational
velocity

v="(p. ~p) (57)

With some more elaborate algebra, one can also compute the

variance ofz, 0,4% and then the dispersion in the motor
translational motio#?

d2

D 1-(p, — 21—Uf2 58
=50 P+ —p-) o8 (58)

ka(F) — k(??: e*FdH/kBT, k_3(F) — l€3 eFd(l*@)/kBT (59)
in which @ is a parameter related to the position of the transition
state between C and A (Figure 8), known as the splitting
parameteP? k"i3 are the rate constants in the absence of the
resistant force. Substitutiig.s(F) into eq 57 and recallindup

= kgT In(kikok/k-1k2k° ), one can obtain the motor velocity
V as a function o and Au.8 In particular,V = 0 whenF =
Autpl/d, known as the motor stalling force. Furthermore, we
have the conservation of energy

ki Koks

kg T I ks (60)

= Augp — Fd

The left-hand side is the heat dissipation, and the two terms on
the right-hand side are the chemical energy input and work done
against the external force, respectively. With the balance of
energy, efficiency can be rigorously defin&d.

It is gratifying to see that a simple three-state cycle kinetic
model, with the breakdown of detailed balance, can provide
insights for so many different biochemical processes. This is a
testimony of the importance and relevance of open-system NESS
in modeling living biochemical systems. With the increasing
complexity of realistic biochemical systems, the modeling will
become more involved. But the central ideas seem to be
contained in the simple model.

7. Discussion

There is no doubt that chemistry is the basis of many cellular
phenomena and processes. Cellular and molecular biology are
now moving toward a systems understanding of biochemical
reaction networks in their living environment. One of the current
challenges to theoretical chemistry is to develop a more complete
statistical thermodynamic theory for biochemical systems that
carry out a range of important biological functions such as signal

So far, all the discussions are on chemical kinetics. To make transduction and gene regulation. Such a theory necessarily has
a connection to the mechanics of motor protein, one realizesto address the nature of an open system and its NESS.
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