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Gibbsian equilibrium statistical thermodynamics is the theoretical foundation for isothermal, closed chemical,
and biochemical reaction systems. This theory, however, is not applicable to most biochemical reactions in
living cells, which exhibit a range of interesting phenomena such as free energy transduction, temporal and
spatial complexity, and kinetic proofreading. In this article, a nonequilibrium statistical thermodynamic theory
based on stochastic kinetics is introduced, mainly through a series of examples: single-molecule enzyme
kinetics, nonlinear chemical oscillation, molecular motor, biochemical switch, and specificity amplification.
The case studies illustrate an emerging theory for the isothermal nonequilibrium steady state of open systems.

1. Introduction

To traditional chemists, a biological cell is a chemical reaction
system as complex as one can imagine. Still, no matter how
complex a chemical system is, if it is left alone in a test tube,
it gradually approaches a chemical equilibrium. In biology, an
equilibrium state is dead; in physics, it is the least organized
according to the second law of thermodynamics.1 There are
many important characteristics of an equilibrium. Here we
highlight a few. First, there can be no sustained net energy
conversion of one form to another; every process in fact has an
equally probable reverse process. This is known as the principle
of detailed balance.2 Second, the fluctuating stationary molecular
system is reversible in time in a statistical sense. This statement
becomes increasingly relevant because single-molecule spec-
troscopies have become commonplace in physical chemistry.
And third, the most celebrated one, the probability for the
fluctuating molecular system follows the Gibbs distribution. This
last statement, translated to simple chemical terms, means there
is a unique equilibrium constant for every chemical reaction in
a system, irrespective of how complex the system is.

All the above statements are embodied in the fundamental
theory of equilibrium statistical thermodynamics.3 The subject
is introduced to every chemistry undergraduate in a physical
chemistry class. But to think about the physical chemistry of a
living cell, one realizes that we are dealing with a scenario that
is completely different from all that was said above. In fact,
the most important thing to a biochemist studying living cells
is to maintain a “cell culture”.4 That is, he or she has to regularly
change the medium in which cells grow.

If not complexity, then what is the difference between a set
of reactions in a test tube and in a living cell? The answer is
that the former is in a closed system with chemical isolation,
while the latter is open to exchange with its environment, both
in chemical energy and in materials. If the exchange with its
surroundings is sustained, then an open system usually ap-
proaches a steady state that is not an equilibrium. The most

distinguished characteristics of a nonequilibrium steady-state
(NESS) is that it has nonzero fluxes and nonzero chemical
potential gradients in the system. It converts chemical energy
into heat.5-7 Chemical reaction systems in NESS can process
information and generate spatial patterns; they are the chemical
basis of cellular signal transduction8,9 and biological morpho-
genesis.10-12

The focus of this article is to present an introductory theory
of NESS with fluctuations. A more comprehensive review is
forthcoming.13 We believe that the pedagogically most effective
exposition starts with several simple examples, which we shall
present in Section 2. In Section 3, we establish the statistical
thermodynamics in terms of the Smoluchowski equation that
characterizes stochastic dynamics of molecular systems. Ac-
cording to Kramers' theory, the Smoluchowski equation is the
theoretical basis of chemical rate equations.14,15 In Section 4,
we review the general theory of chemical reactions in a closed
system and show several key results that are pertinent to our
discussion. In Section 5, a recently developed application of
NESS theory to complex networks of chemical reactions in
terms of their stoichiometry is presented. In particular, we
establish the analogue of Kirchhoff’s current and loop laws for
chemical reaction networks. In Section 6, we illustrate three
key applications of the theory of NESS to current biology: the
kinetic proofreading mechanism for specificity amplification,
biochemical switches and their energy expenditure, and motor
proteins and their chemomechanics. Section 7 concludes the
paper with a discussion.

2. Three Examples

In this section, we give three simple examples of biochemical
reaction systems in NESS with increasing complexity. We
provide kinetic as well as thermodynamic analyses. While the
former is routinely carried out, the latter is not. Through
elementary mathematics, these examples illustrate a novel
nonequilibrium statistical thermodynamic theory and show how
it is applied.
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2.1. Single Enzyme Kinetics: Cycle Flux and NESS.We
first consider the enzyme reaction shown in Figure 1a, in which
the rate constantsk̂1 and k̂-3 are second order. If there is only
one enzyme molecule, then from the enzyme perspective, the
kinetics are stochastic and cyclic, as shown in Figure 1b, with
pseudo-first-order rate constantsk1 ) k̂1cA and k-3 ) k̂-3cB,
wherecA andcB are the concentrations of A and B. In chemical
equilibrium, the concentrations of A and B satisfycB/cA )
(k̂1k2k3)/(k-1k-2k̂-3). That is

This is the “thermodynamic box” in elementary chemistry, also
known as Wegscheider’s relation. [In some literature, this
relation itself is also called detailed balance. In the framework
of chemical rate equations, Wegscheider’s relation and detailed
balance, i.e., zero flux, in steady state are mathematically
equivalent. See refs 16, 17.] However, if thecA and cB are
maintained at constant levels that are not at chemical equilib-
rium, as metabolite concentrations are in living cells, then the
enzyme reaction is in an open system that approaches a
NESS.5,18 This is the scenario in enzyme kinetics.19,20

The rate equation for the probabilities of the states of the
single enzyme is a master equation21

Equation 2 differs from the standard rate equation for unimo-
lecular reactions in two important aspects: (i) thePX (X )
E,AE,BE) is a probability, not a concentration, and (ii) the rate
constantsk’s do not satisfy the Wegscheider’s relation (eq 1).

The equations have conservation of matter, but (ii) implies that
the system is open to chemical energy exchange; there is a
hidden energy source and sink. One of the important tasks of
NESS analysis of biochemical reaction systems is to explicitly
identify sources and sinks, usually hidden in pseudo rate
constants.

The steady-state probabilities for states E, AE, and BE are
easy to compute from eq 2 by setting the time derivative to
zero and noting thatPE + PAE + PBE ) 1 for the total
probability. Then, the clockwise steady-state cycle flux in Figure
1b, which is precisely the enzyme turnover rate of Af B in
Figure 1a, isJss ) PE

ssk1 - PAE
ss k-1 ) PAE

ss k2 - PBE
ss k-2 ) PBE

ss k3

- PE
ssk-3. That is,22

If we substitutek1 andk-3 with k̂1cA andk̂-3cB, then we recover
the celebrated Michaelis-Menten equation for reversible en-
zyme kinetics:20,23

whereV max
f ) k2k3/(k2 + k3 + k-2), V max

b ) k-1k-2/(k2 + k-2

+ k-1), KM,A ) (k2k3 + k-1k-2 + k3k-1)/k̂1/(k2 + k3 + k-2),
andKM,B ) (k2k3 + k-1k-2 + k3k-1)/k̂-3/(k2 + k-2 + k-1).

The NESS of the open system, a single enzyme molecule in
this case, is driven by the chemical potential difference between
the A and B

Hence,Jss ) 0 if and only if ∆µAB ) 0, i.e., the system is at
equilibrium. Otherwise, the nonzero∆µ is the chemical driving
force for the fluxJss, a terminology introduced by Onsager.24

Furthermore, their product,Jss × ∆µAB, is the amount of work
one has to do, per unit time, to sustain the NESS by constantly
supplying A and removing B from the open system.Jss× ∆µAB

is also the rate of heat dissipation of the chemical reaction into
the aqueous solution in NESS.

The inequalityJss× ∆µAB g 0, in fact, is a statement of the
second law of thermodynamics: with only a single temperature
bath T, one can only continuously convert chemical work to
heat, but not in reverse. If that were possible, then one would
have a chemical perpetual motion machine of the second kind.25

In what follows, we shall make these ideas more precise. This
is the core material of what we call isothermal NESS statistical
thermodynamics.

In terms of the dynamic cyclic reaction in Figure 1b, let us
introduce Gibbs free energy and Gibbs entropy for the isother-
mal open system as

whereµX(t) ) µX
o + kBT ln PX(t), µX

o ) hX
o - TsX

o , sX(t) ) sX
o

- kB ln PX(t), and X ) E, AE, BE. µX
o , hX

o , and sX
o are the

standard state free energy, enthalpy, and entropy, respectively,
of species X.TsX(t) is the entropic part ofµX(t). By the chain
rule and eq 2, it is easy to obtain26,27

Figure 1. Kinetic scheme of a simple reversible enzyme reaction (a)
in which k̂1 and k̂-3 are second-order rate constants. From the
perspective of a single enzyme molecule, the reaction is unimolecular
and cyclic (b). The pseudo-first-order rate constantsk1 ) k̂1cA andk-3

) k̂-3cB wherecA and cB are the concentrations of substrate A and
product B. With sustained concentrations ofcA and cB, the cyclic
reaction has a steady-state nonzero cycle flux if and only ifk1k2k3/
(k-1k-2k-3) * 1.

k1k2k3

k-1k-2k-3
) 1 (1)
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dPE(t)

dt
) - (k1 + k-3)PE + k-1PAE + k3PBE (2a)

dPAE(t)

dt
) k1PE - (k-1 + k2)PAE + k-2PBE (2b)

dPBE(t)

dt
) k-3PE + k2PAE - (k-2 + k3)PBE (2c)

Jss) (k1k2k3 - k-1k-2k-3)/(k1k2 + k-1k-3 + k2k-3 + k2k3 +
k-2k-1 + k3k-1 + k3k1 + k-3k-2 + k1k-2) (3)

Jss)
Vmax

f cA/KM,A - Vmax
b cB/KM,B

1 + cA/KM,A + cB/KM,B
(4)

∆µAB ) µA - µB ) kBT ln( k1k2k3

k-1k-2k-3
) (5)

G(t) ) PE(t)µA(t) + PAE(t)µAE(t) + PBE(t)µBE(t) (6)

S(t) ) PE(t)sE(t) + PAE(t)sAE(t) + PBE(t)sBE(t) (7)

15064 J. Phys. Chem. B, Vol. 110, No. 31, 2006



and

In eqs 8 and 9, we introduced three novel thermodynamic
quantities: theentropy production rate, the chemical motiVe
force, and theheat dissipation rate. They are time-dependent
entropy, work, and heat:

where

and similarly for the∆µAE,BE, ∆hAE,BE
o , ∆µBE,E, and∆hBE,E

o .
The entropy balance eq 9 is the most important equation in

the theory of irreversible thermodynamics.28-30 In the past, this
equation was introduced usually from an entropy balance point
of view without molecular or kinetic details. The expressions
in eqs 10 and 11 provide this abstract thermodynamic equation
with a molecular interpretation. As we can see, the epr is always
positive, whereas the time-dependenthdr andcmfcan be either
positive or negative. In NESS, dS/dt ) dG/dt ) 0 andJEfAE )
JAEfBE ) JBEfE )Jss. Then

That is, in the NESS, the amount of energy input maintaining
the system, cmf, is equal to the entropy production rate, which
in turn is the amount of the heat dissipated.

For a closed system, the cmf which represents the exchange
of chemical energy with the surroundings is zero. Then, eq 8
indicates that the free energy of the system,G, is always
decreasing and reaches its steady state with minimalG when
epr ) 0 and hdr) 0. It is easy to show that, in this case,
Wegscheider’s relation holds true andG is exactly the equilib-
rium Gibbs free energy computed from the partition function.
The equilibrium statistical thermodynamics is, as it should be,
a special case of the nonequilibrium theory.

2.2. Open Linear Chemical System with Number Fluctua-
tions.The enzyme reaction in Figure 1 goes through NESS cycle
kinetics, while it exchanges substrates molecules, A and B, with
the solvent. However, if we identify the single enzyme as the
“open system” and mathematically absorb the concentrations
of A and B into the pseudo-first-order rate constants, we obtain
a model of the open system that has the conservation of the
number of enzyme molecules. Such an open system does not
explicitly exchange material with its environment. Rather, it
extracts chemical energy from its surrounding that is maintained

at constant A and B concentrations with∆µAB * 0. The situation
is quite different in the cellular metabolic networks in which
the number of enzyme molecules itself can fluctuate.

Let us consider a sequence of unimolecular chemical trans-
formations in an open system, as shown in Figure 2, in which
the upstream and downstream species A and B are maintained
at their respective constant level. In this case, the open system
is constantly exchanging material with the surroundings through
the source A and the sink B; the number of molecules in the
system in fact fluctuates. This situation is very similar to that
of the grand canonical ensemble in equilibrium statistical
mechanics.3 The difference is that, in the NESS, there is a
nonzero flux in the system as well as a chemical potential
gradient.

Just as for an equilibrium system in contact with a material
reservoir, there is a NESS theory of the grand canonical
system.31 [If one explicitly identifies the A and B in the enzyme
example above, then that system could be considered as a NESS
version of the semigrand ensemble. See ref 32.] The kinetic
equation for the probabilities of havingmX andnY molecules
in the system in Figure 2,P(m, n, t), satisfies the chemical master
equation:33-35

The right-hand side of eq 15 is organized according to the six
chemical reactions in Figure 2.nA andnB are given numbers of
molecules A and B. The stochastic dynamics exhibits a two-
dimensional random walk on the (m, n) lattice, representing the
numbers of X and Y in the system as functions of time.

Equation 15 is simple enough to have some nice analytical
results.31 Multiplying m on both sides of eq 15, summing over
m andn from 0 to∞, and noting∑m,n)0

∞ P(m, n) ) 1 is the total
probability,∑m,n)0

∞ mP(m, n, t) ) nX(t) is the mean number of
X at time t in the system, and similarly,∑m,n)0

∞ nP(m, n, t) )
nY(t), we have

which is exactly the standard chemical rate equation for the
concentration of X and Y in terms of the law of mass action.
Note that, with constant volumeV, the number of molecules
and the concentrations simply differ by a factor ofV. Further-
more, the NESS probability distribution can be solved from eq

dG(t)
dt

) JEfAE(µAE - µE) + JAEfBE(µBE - µAE) +

JBEfE(µE - µBE) ) -T × epr+ cmf (8)

dS(t)
dt

) JEfAE(sAE - sE) + JAEfBE(sBE - sAB) +

JBEfE(sE - sBE) ) epr- hdr
T

(9)

T × epr≡ JEfAE(t)∆µE,AE(t) + JAEfBE(t)∆µAE,BE(t) +
JBEfE(t)∆µBE,E(t) (10)

hdr≡ JEfAE(t)∆hE,AE
o + JAEfBE(t)∆hAE,BE

o +

JBEfE(t)∆hBE,E
o (11)

cmf ≡ JEfAE(t)µA - JBEfE(t)µB (12)

∆µE,AE(t) ) kBT ln
k1PE(t)

k-1PAE(t)
, ∆hE,AE

o ) hE
o - hAE

o (13)

T × epr) hdr ) cmf ) Jss× ∆µAB g 0 (14)

Figure 2. Schematic for a linear reaction system with material
exchange with a source A and sink B. In contrast, the NESS in Figure
1b is sustained by chemical energy input, through the breakdown of
detailed balance, without explicit material exchange. The most signifi-
cant difference between these two systems is that the total number of
molecules in the former fluctuates, analogous to the grand canonical
ensemble in equilibrium statistical mechanics.

dP(m, n, t)
dt

) k1nA(P(m - 1, n) - P(m, n)) +

k-1((m + 1)P(m + 1, n) - mP(m, n)) +
k2((m + 1)P(m + 1, n - 1) - mP(m, n)) +
k-2((n + 1)P(m - 1, n + 1) - nP(m, n)) +

k3((n + 1)P(m, n + 1) - nP(n, m)) +
k-3nB(P(m, n - 1) - P(m, n)) (15)

dnX

dt
) k1nA - (k-1 + k2)nX + k-2nY (16a)

dnY

dt
) k2nX - (k-2 + k3)nY + k-3nB (16b)
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15 by setting the time derivative to zero to give

Both the number of X and Y follow the Poisson distribution.
This is a generalization of the equilibrium Poisson distribution
in the grand canonical ensemble.

In the NESS, the auto- and cross-correlations between the
number of X and the number of Y are31

whereλ1 andλ2 are the two eigenvalues of the kinetic matrix

We see that even though the number of X and Y molecules are
uncorrelated at a given time, they are correlated with a delay.
Furthermore, the fact that the two cross-correlation functions,
eq 18c and d, are different is a distinct characteristic of a NESS.
If k2nX ) k-2nY, i.e, X and Y are in equilibrium, then the two
cross-correlation functions are the same. Their difference is in
fact a measure of irreversibility, i.e., the flux between X and Y
in NESS.36

Curiously, we have noticed that the difference in cross-
correlation functions given in eq 18 has the same mathemati-
cal expression as that of a single molecule in a cyclic reac-
tion36

where,

pX and pY are the steady-state probabilities,PXY(t) is the
probability of the molecule in Y at timet given it is in X at
time 0, and similarly,PYX(t) is the probability of the molecule
in X at time t given it is in Y at time 0. Theλ′1,2 are the two
nonzero eigenvalues of the kinetic system in eq 20. How general
this result is is under current investigation.

The open system nonequilibrium thermodynamics in
terms of Gibbs entropy and Gibbs free energy can be similarly
worked out as in the previous example. See refs.27,31 for more
details.

2.3. Nonlinear Chemical Reaction System with Oscil-
lations. In the previous two examples, we studied open linear

chemical reaction systems with only chemical energy ex-
change with the surroundings and with explicit material
exchange. Open biochemical reaction systems in living cells
are also highly nonlinear, including bimolecular reac-
tions, dimerizations, and autocatalysis. The nonlinear chem-
ical reactions lead to complex temporal dynamics, includ-
ing sustained chemical oscillations.37,11 What is the rela-
tion between an oscillatory chemical reaction system and
a NESS? We shall address this question through the third
example.

Studies have shown that one needs to be more precise about
the terminology:38 in chemical dynamics literature in terms of
deterministic kinetic models, a “steady state” is when all the
concentrations of species in a system are constant and do
not change with time. A periodic chemical oscillation is a
different kind of dynamic behavior. Even though the concentra-
tions of the species are not constant in time, the temporal
behavior is “stationary” in time. However, the deterministic view
of chemical dynamics is only a limiting case of a molecular
system when the system is large and thermal fluctuations are
negligible. The stochastic, chemical master equation ap-
proach33,34 is a more realistic view of the chemical dynamics
of both small and large systems. In stochastic terms, a steady
state means a system with stationary temporal behavior with
probability distributions being independent of time; there are
still fluctuations. In stochastic mathematics, a steady state is a
stationary stochastic process.39,40

We now study a system of nonlinear chemical reactions41

in which the third reaction is autocatalytic. This chemical
reaction system has been extensively studied in terms of
deterministic dynamics.12 With appropriate parameters and
sustained A and B, it exhibits periodic oscillations in the
concentrations of X and Y.

The deterministic dynamics for the open reaction system (eq
22) in terms of the law of mass action follows nonlinear rate
equations

wherenX, nY, nA, andnB are the number of X, Y, A, and B,
respectively. We assume there is a constant volumeV, and all
the rate constants are scaled accordingly. Equation 23 should
be compared with eq 16. The difference is that eq 23 is
nonlinear, while eq 16 is linear. Parts a and b of Figure 3 show
two kinds of dynamic behavior. In Figure 3a, the dynamics has
a sustained periodic oscillation over a long time, shown by the
solid loop, called the limit cycle of the dynamics. The dashed
lines are transient dynamics approaching the limit cycle either
from inside or outside of the cycle. In contrast, in Figure 3b,
all the dynamics are spiraling into a point, which corresponds
to a constantnX ≈ 20 andnY ≈ 250, called the fixed point of
the dynamics. Even though there is no sustained periodic
oscillation, there is still an oscillatory relaxation to the fixed
point.

A y\z
k1

k-1
X, B 98

k2
Y, 2X + Y 98

k3
3X (22)

dnX

dt
) k1nA - k-1nX + k3nX

2nY (23a)

dnY

dt
) k2nB - k3nX

2nY (23b)

Pss(n, m) ) (nX
m

m!
e-nX)(nY

n

n!
e-nY) (17)

〈∆m(0)∆m(t)〉 )
nX

λ1 - λ2
((λ1 + k-1 + k2) eλ2t -

(λ2 + k-1 + k2) eλ1t) (18a)

〈∆n(0)∆n(t)〉 )
nY

λ1 - λ2
((λ1 + k-2 + k3) eλ2t -

(λ2 + k-2 + k3) eλ1t) (18b)

〈∆m(0)∆n(t)〉 )
k2nX

λ1 - λ2
(eλ1t - eλ2t) (18c)

〈∆n(0)∆m(t)〉 )
k-2nY

λ1 - λ2
(eλ1t - eλ2t) (18d)

(-k-1 - k2 k-2

k2 -k-2 - k3
) (19)

Z y\z
q1

k-1
X y\z

k2

k-2
Y y\z

k3

q-3
Z (20)

pXPXY(t) - pYPYX(t) )
k2pX - k-2pY

λ′1 - λ′2
(eλ′1t - eλ′2t) (21)
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In terms of the chemical master equation, the probability of
havingmX and nY in the open system satisfies

which should be compared with eq 15. Parts c and d of Figure
3 show two dynamic trajectories according to eq 24 with
parameters corresponding to that in Figure 3a and b. As is
expected, the system is oscillatory, but with fluctuations. Both
parts c and d of Figure 3 in fact exhibitrotational random walks,
which are the mesoscopic signatures of deterministic chemical
oscillations. There is a higher probability for the trajectories
moving in a clockwise direction than in a counterclockwise
direction. For more discussions, see ref 38.

Because of the nonlinearity, the mathematical relationship
between the stochastic model in eq 24 and the deterministic
model in eq 23 is no longer as straightforward as in the previous
example, between eqs 15 and 16. Their relationship in physical
chemistry, however, is just as simple: in the limit of large
volumeV and a large number of molecules, eq 24 approaches
eq 23. The stochastic solution to eq 24 approaches the solution
of eq 23 with negligible fluctuations. This was shown math-
ematically by T. G. Kurtz.42 Corresponding to the dynamics in
parts a and b of Figure 3, the rotational random walk in parts
c and d of Figure 3 will have probability distributions peaked
over a closed loop and at a single point, respectively.

The stochastic dynamics in Figure 3c exhibits two kinds of
temporal fluctuations: one is the temporal complexity, i.e.,
periodic oscillations exhibited in 3a, and the second is the
thermal fluctuations around the periodic oscillation. The latter
disappears when a system becomes macroscopically large. We

have discovered that38 increasing energy input into the open
system supresses the thermal fluctuation while promoting the
temporal complexity. In other words, energy can be used to
reduce thermal noise and produce temporal complexity in small
chemical reaction systems, making them like machines, a lesson
that could have implications in future nanotechnology.

2.4. Brief Section Summary.The examples in this section
show that isothermal open chemical systems can be subjected
to rigorous statistical thermodynamic and stochastic kinetic
studies. This theory is a natural generalization of equilibrium
statistical thermodynamics, which has played a central role in
the development of molecular biology through the studies of
biological macromolecules, i.e., protein and DNA.43-45 How-
ever, biochemical reaction systems in cellular biology are open
systems. Therefore, the theory we illustrated in the three
examples and present in the remainder of this article will be
useful theoretical tools in studying living biological systems in
terms of physical chemistry.

Since the 1950s, following the discovery of the DNA double
helix, applying the principle of equilibrium statistical thermo-
dynamics to biological systems has been the central theme of
biophysical chemistry,46-48 which has led to the ultimate
genomic revolution. The simple examples in this section suggest
that statistical thermodynamics also has a role in studying more
complex living biological systems and processes. In particular,
the relationship between thermodynamics and energy and signal
transduction in cells can be subjected to a rigorous physio-
chemical analysis.

3. Brownian Dynamics and Nonequilibrium Statistical
Thermodynamics

The kinetic rate equations have long been used to model
molecular fluctuations. It might come as a surprise to some that
these same equations have a hidden statistical thermodynamic
structure. This turns out to not be an accident. From the
pioneering work of Kramers, we know that the rate equations,
i.e., discrete-state Markov jump processes, have a continuous-
coordinates, energy-based representation in terms of the Smolu-
chowski equation and barrier crossing (Figure 4).14,15,49In this
section, we trace the origin of the statistical thermodynamics,
more precisely the conservation of energy, to the Smoluchowski
equation of Brownian motion of an overdamped particle in a
force field:

together with the Einstein’s relationDη ) kBT. In eq 25,p(x,
t) is the probability density of the particle atx at time t, and
F(x) ) -dU(x)/dx is a force field. This equation is well-known

Figure 3. Oscillatory nonlinear chemical reaction system given in eq
22. In terms of the deterministic dynamic model (eq 23), the system
can either oscillate periodically when the parametera ) 0.08 (a) or
approach the fixed concentrations aroundnX ) 20nY ) 250 whena )
0.1 (b). In terms of the stochastic model (eq 24), however, the system
exhibits a rotational random walk for botha ) 0.08 (c) anda ) 0.1
(d). Parametera ) (k1/k-1)xk3/k-1nA. Other parameters used in the
calculation: xk2/k-1nB ) 0.1 andxk3/k-3 ) 0.01.

dP(m, n, t)
dt

) k1nA(P(m - 1, n) - P(m, n)) +

k-1((m + 1)P(m + 1, n) - mP(m, n)) +
k2nB(P(m, n - 1) - P(m, n)) +

k3((m - 1)(m - 2)(n + 1)P(m - 1, n + 1) -
m(m - 1)nP(m, n)) (24)

Figure 4. Relation between discrete rate processes and Smoluchowski
equations of a particle in a force field. The latter is a more
comprehensive description for chemical kinetics with an explicit energy
landscape. It has a closer tie to Newtonian mechanics: eq 28 is in fact
the Newton’s law assuming an overdamped particle in a force field,
together with a random collision force.

∂p(x, t)
∂t

) D
∂

2p(x, t)

∂x2
+ 1

η
∂

∂x(dU(x)
dx

p(x, t)) (25)
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and widely used since the work of Chandrasekhar, Ornstein,
and Uhlenbeck.50 What is not widely appreciated, however, is
that it contains the law of energy conservation. To show this,
let us consider the steady state of eq 25:

which can be rewritten, using the Einstein relation, as

This equation can be interpreted as energy conservation. We
note thatJ/p is the particle velocity,η(J/p) dx is the amount of
heat dissipated for the particle moving through distance dx in a
fluid with friction η, and we identifyU(x) + kBT ln P(x) )
µ(x) as the chemical potential. Hence, conservation of energy
in NESS is built in the mathematics of eq 25.

It is instructive to point out that there is another equivalent
formulation for eq 25 in terms of the Langevin equation51

whereXt is a stochastic trajectory of the particle,ê(t) is the
Brownian white noise,〈ê(t)〉 ) 0, and 〈∆ê(0)∆ê(t)〉 ) δ(t),
representing the random collisions between the particle and
solvent molecules. Equation 28 is really Newton’s equation
(md2/dt2)Xt + (ηd/dt)Xt ) F(Xt) + x2kBTηê(t) assuming
overdampingm ≈ 0. Therefore, it is not surprising that eq 25
contains energy conservation. What was not known until recent
years is that one can further introduce all the important
thermodynamic quantities mathematically based on eq 2852-54

These four equations are interpreted as follows.
Equation 29: The work performed by a “particle” in a phase

space, dW, equals the force times the displacement. The
multiplication symbol “o” indicates the stochastic integration
is in the Stratonovich sense.51 In a closed system,F ) -dU/
dx. Then, dW ) - dU.

Equation 30: The instantaneous entropy,Ψ, is the logarithm
of the probability distribution. 1/p is the thermodynamic
probability of Boltzmann.

Equation 31: Onsager’s thermodynamic force,Π, consists
of a mechanical force and an entropic force. In a closed system,
Onsager’s force is the gradient of the free energy:55 -U - kBT
ln p. It is zero in the equilibrium steady state. Hence,p ∝ e-U/kBT.

Equation 32: The irreversible heat dissipation of the particle,
dQirr, equals the Onsager’s force times the displacement. In a
closed system, the equilibrium steady-state has dQirr ) 0.

From these stochastic quantities, nonequilibrium thermody-
namic eqs 8 and 9 can be obtained, not only on average but
also along stochastic trajectories.53,56Furthermore, two surprising
equalities in terms of the log-mean-exponential ofQt

irr in
NESS can be derived:54

both are valid for anyt, where the average〈‚‚‚〉 is carried out
with all possibleXt that starts with the steady-state distribution.
These two equalities are intimately related to Jarzynski’s
equality.57-60 While Jarzynski’s equality applies to closed
systems with time-dependent Hamiltonian, eqs 33 and 34 apply
to NESS. The significance of these two equalities is that the
Qt

irr is well-known to be a path-dependent quantity; the heat
is not a state function in thermodynamics. In fact, dissipation
〈Qt

irr〉 increases with time without bound in a NESS. But via
the log-mean-exponential,Qt

irr is related to a function of state,
the entropy. In classic thermodynamics, entropy is defined
through infinite slow quasistationary processes. The Jarzynski
equality-like relation in eq 34 circumvents this difficulty and
enables one to define entropy (and free energy) through
processes with finite speed. And more importantly, these results
seem generalizable beyond equilibrium to NESS.

Equations 27-34 furnish the Smoluchowski eq 25 with a
rich thermodynamic structure. While this is a nonorthodox
approach, it follows the true spirit of the statistical mechanics:
relating mechanical energy of molecular systems and prob-
abilities of mesoscopic systems. In a complementary approach,
J. M. Rubı´ and co-workers have shown that one can derive the
stochastic description for open chemical and physical systems
precisely in terms of the Smoluchowski equation based on the
principles of nonequilibrium thermodynamics.61

4. Closed Chemical Systems: Detailed Balance, Time
Reversibility, and the Fluctuation-Dissipation Relation

There is much to be learned about open systems. But to truly
understand open systems and the NESS, one needs to first
thoroughly understand closed systems and the equilibrium state.
In this section, we discuss some of the not-widely-known results
about closed systems. In terms of master equations and/or
Brownian dynamics, two key concepts in connection to closed
systems are Wegscheider’s relation and Boltzmann’s law.

4.1. Law of Mass Action and Deterministic Kinetics.Let
us start our discussion with a simple chemical reaction in terms
of the law of mass action,

If we denote the forward and reverse reaction fluxes asJ+ )
k1[A][B] and J- ) k-1[C][D], then we have the net fluxJ and
chemical potential∆µ

We see that thenJ * 0, ∆µ * 0. As we have pointed out earlier,
the productJ × ∆µ is the amount of entropy produced per unit
time; it characterizes energy dissipation. Because a closed
system cannot continuously dissipate energy indefinitely,J f
0 and∆µ f 0 in the limit of t f ∞. That is, a closed system
can only approach a chemical equilibrium with zero flux in each
reaction.

Zero flux means that each forward reaction is balanced by
the reverse reaction. This is known as detailed balance in
chemical equilibrium.2 One then immediately obtains the ratio
of equilibrium concentrations in terms of the rate constants (i.e.,
the equilibrium constant):

D
dp(x, t)

dx
+ 1

η
dU(x)

dx
p(x, t) ) -J (26)

U(x) + kBT ln P(x) ) - ∫ η J
p(x)

dx (27)

η
dXt

dt
) F(Xt) + x2kBTη ê(t) (28)

dWt ) F(Xt) o dXt (29)

Ψt ) - kB ln p(Xt, t) (30)

Πt ) F(Xt) - kBT
d
dx

ln p(Xt, t) (31)

dQt
irr ) Πt o dXt (32)

ln 〈e-Qirr
t/kBT〉 ) 0 (33)

ln 〈δ(x - Xt) e-Qirr
t/kBT〉 ) ln pness(x) (34)

A + B y\z
k1

k-1
C + D (35)

J ) J+ - J-, ∆µ ) kBT ln(J+/J-) (36)
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More interestingly, one can introduce Gibbs free energy of the
closed system:

where concentrations [A], [B], [C], and [D] are all functions of
time. With the rate equations based on the law of mass action
and aid from detailed balance, one can show that

Therefore, a closed isothermal system is necessarily and
spontaneously decreasing its Gibbs free energy until it reaches
its equilibrium with minimal Gibbs free energy. It can be shown
that, as a function of all the concentrations,G in eq 38 is convex.
Hence, according to the a mathematical theorem due to A. M.
Lyapunov,62 the equilibrium state is unique and globally
attractive.

Equation 38 can be generalized to any closed chemical system
with many species. Then the right-hand side of eq 39 will be
the sum of-Ji × ∆µi for all the reactions in the system.

With the uniqueness of the equilibrium concentrations, one
can immediately show Wegscheider’s relation among all the
rate constants in a reaction loop, as well as Boltzmann’s law
[X] eq ∝ e-µXo/kBT, where X is any species in the closed system.

4.2. Equilibrium Fluctuations and Time Reversibility.
With Wegscheider’s relation connecting the rate constants in
every reaction loop, the stochastic dynamics of a chemical
reaction system, in terms of the chemical master equation, has
several distinct characteristics. The proof of these results can
be mathematically involved,63 but their physiochemical mean-
ings are in fact very clear. First, the equilibrium fluctuations
are time reversible. That is, in the statistical sense, there is no
difference between time traces of equilibrium fluctuations
recorded forward or backward in time. This equilibrium property
leads to several symmetric relations in the time correlation
functions of equilibrium fluctuations.36

Second, the linear relaxation kinetics near an equilibrium
cannot have complex eigenvalues. Neither can the time cor-
relation function of equilibrium fluctuations.22 The linear
relaxation kinetics is of course intimately related to the time
correlation function according to Onsager’s theory of linear
irreversibility and the Green-Kubo theorem.24,64,65

Third, the equilibrium probability distribution has a single
maximum that corresponds to the unique deterministic equilib-
rium. In the limit of a large system, i.e., the thermodynamic
limit, the distribution is Gaussian and Einstein’s fluctuation
theory applies.66,67

These closed-system characteristics immediately imply that
only open systems can produce sustained, interesting behavior
(or a transient phenomenon, in which case, there is an ap-
proximate open subsystem within the closed system) such as
sustained chemical oscillation, spontaneous spatial pattern
formation, free energy transduction, chemical bistability,9 and
stochastic resonance,68 to name a few. All these fascinating

problems deserve a close investigation with a nonequilibrium
thermodynamic perspective.

4.3. Diffusion Dynamics and the Fluctuation-Dissipation
Relation. Since the work of Kramers,14 the diffusion dynamic
approach to chemical systems has become a mjor component
of chemical physics. Polymer dynamic theory,69 electron transfer
theory,70 and the energy landscape theory of proteins71 are
several successful examples.

There is a dual relationship between the master-equation
models and theN-dimensional diffusion equation:

whereD(x) is a diffusion tensor, andV(x) is a velocity field,
which is related to a force fieldF(x) by a frictional coefficient
matrix, η(x)V(x) ) F(x). On one hand, a discrete transition A
f B can be understood as an energy barrier crossing problem
with sufficient barrier height (Figure 4),F(x) ) -∇U(x), and
Einstein’s relationD(x)η(x) ) kBT. In this connection, Weg-
scheider’s relation in master equations corresponds to diffusion
in an energy landscape, and the breakdown of Wegscheider’s
relation corresponds to diffusion in a nonconservative force field,
i.e, ∇ × F(x) * 0. It can be shown mathematically that
D-1(x)V(x) ) -∇ φ(x), i.e., it is a conservative force field with
a potential function (known as “the potential condition”72), is a
sufficient and necessary condition for the stationary fluctuations
to be time reversible,63 and the equilibrium probability density
peq(x) ∝ e-φ(x). In this respect, the diffusion model is a more
mechanistic, energy-based approach to chemical reactions. The
fluctuation-dissipation relation, of which Einstein’s relation is
a special case, and the potential condition, are constraints to
ensure diffusion models are consistent with necessary closed-
system characteristics.

On the other hand, diffusion equations such as eq 40 are also
an approximation of the chemical master equation in the limit
of a large system.6,42,73 The stochastic dynamics in Figure 3c
and d can be approximately represented by eq 40. In this
connection, the velocity fieldV(x) in eq 40 defines the
deterministic rate equation (d/dt)x ) V(x) according to the law
of mass action.42 The diffusion termD(x) provides the fluctua-
tions. Keizer has developed an extensive thermodynamic theory
based on this approach;67 for recent work, see refs 74, 75.

5. Open Chemical Systems: Network Thermodynamics,
Kirchhoff’s Laws, and Stoichiometric Network Theory

There is a great demand from biochemistry for a network
approach to complex, open chemical reaction systems. Electrical
circuit theory has been a cornerstone of electric networks and
electronic devices. Is there a similar network theory for chemical
systems? Katchalsky and his colleagues were among the first
to raise the question and studied network thermodynamics.76

Extending the NESS theory we discussed above, we were able
to develop a network thermodynamics cast in terms of the
stoichiometry of a chemical system and the two celebrated
Kirchhoff laws.27,77-79

The network structure of a chemical reaction system is
captured in the stoichiometric matrix. Let there beM species
andN reactions in the system, then the stoichiometric numbers
can be systematically tabulated in aM × N matrix S.80 In a
chemical steady state, the fluxes in all the reactions are balanced
to maintain constant concentrations of all species. The funda-
mental law of conservation of mass leads to steady-state fluxes,
J ) (J1, J2, ..., JN)T, satisfying

∂p(x, t)
∂t

) ∇·(D(x)∇p(x, t) - V(x)p(x, t)) (40)

[C]eq[D]eq

[A] eq[B]eq
)

k1

k-1
(37)

G ) [A] µA + [B]µB + [C]µC + [D]µD

) kBT([A] ln
[A]

[A] eq
+ [B] ln

[B]

[B]eq
+ [C] ln

[C]

[C]eq
+

[D] ln
[D]

[D]eq) (38)

dG
dt

) - J × ∆µ e 0 (39)
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whereb is the vector of input fluxes that transport material in
to and out of the system. This is the chemical analogue of
Kirchhoff’s current law. Any flux vectorJ satisfying eq 41
satisfies the flux balance in NESS and is a balanced reaction
“loop”. As an example, consider the simple network in Figure
1a. The stoichiometric matrix is:

Because species A is transported into the system at a ratebA

and species B is transported out at the ratebB, the mass-balance
equationSJ ) b can be expressed as

Now, letµ ) (µA, µB, µE, µAB, µBE), in a vector form, denote
the chemical potential of all the species. ThenµS ) ∆µ is the
chemical potential differences for all the reactions, and

if J is a balanced reaction loop. Then eq 44 is the chemical
analogue of Kirchhoff’s loop law, and it is a statement about
energy conservation: the left-hand side of the equation is heat
dissipation, and the right-hand side is the amount of chemical
energy input. For the example in eq 43, this is an alternative of
eq 5:

because, in the NESS,Jss ) bA ) bB.
Finally, in addition to mass and energy conservation, the

second law for isothermal NESS can be stated as-Ji × ∆µi g
0 for each reaction in the network.

6. Back to Simple Examples: Biological Applications

We now apply the above theory to several biological
problems. In particular, we shall focus on the significant role
of energy input in open biochemical systems and its biological
functions. These examples reinforce the notion that many
biochemical systems with important biological functions con-
sume energy, and there is an intimate correlation between the
amount of energy available and the performance of the functions.

6.1. Kinetic Proofreading Mechanism for Specificity
Amplification. Kinetic proofreading in biosynthesis is one of
the most telling examples of how biological systems utilize
energy to overcome limited specificity.81,82 By specificity, we
mean the ability of a protein E to select between two substrates
A and B of different affinities. Let us assume that the association
constant for E+ A h EA is KA and for E+ B h EB is KB, KA

> KB. Then with equal amounts of total A and B molecules,
the concentration ratio between EA and EB complexes, in an
equilibrium, is simplyKA/KB. This is dictated by Boltzmann’s
law.

However, if the protein-substrate complexes are not in
equilibrium but in a NESS, the ratio of [EA] and [EB] can be
significantly greater thanKA/KB. Biological processes inside
living cells, in fact, use this strategy to amplify specificity and
thus improve the accuracy of biochemical processes. For
example, protein synthesis on ribosomes according to RNA
templates can incorporate wrong amino acids just by chance.
In a closed system, this chance is dictated by the specificity of
the association between a codon and its corresponding tRNA.
However, by operating in a NESS, a living cell can increase
the fidelity of the biochemical processes, as we shall show.

The kinetic proofreading mechanism can be cast as a model
for specificities of two ligands, A and B, binding to an enzyme.
We choose this system rather than the traditional protein
synthesis to illustrate the general principle.

We consider the kinetic scheme in Figure 5, in which the
substrate L can be either A or B. The system is open, driven by
the hydrolysis of GTP to GDP: Tf D. To simplify the
problem, let us further assume that A and B are structurally
very similar, hence they have samek̂1, k̂(2, andk̂-3. The different
affinity comes fromk-1

A /k-1
B ) k3

A/k3
B ) KB/KA < 1.

The steady-state probabilities for EL* and E are readily
solved:

wherek-1
x and k3

x, with superscript “x”, are dependent on the
substrate type, A or B. To obtain the strongest dependence of
PEL* on substrate types, we have:

Then k1k2 . k-1
x k-3 and k3

x . k-2, leading to a necessary
condition

for PEL*/PE ≈ k2(k1 + k-3)/(k3
x k-1

x ). That is,

SJ ) b (41)

S )

A
B
E
AE
BE

[-1 <0 0
0 0 +1
-1 0 +1
+1 -1 0
0 +1 -1

] (42)

[-1 0 0
0 0 +1
-1 0 +1
+1 -1 0
0 +1 -1

][J1

J2

J3
] ) [-bA

+bB

0
0
0

] (43)

∆µJ ) µb (44)

∆µ1 + ∆µ2 + ∆µ3 ) ∆µAB (45)

Figure 5. Protein E and substrate L associate in a NESS. The kinetic
cycle is driven by the Tf D reaction representing GTP hydrolysis
inside living cells. The L* is the form to be incorporated into
biosynthesis, but we assume that the synthesis rate is sufficiently low
to be neglected. Assuming that there are two possible ligands, A and
B, with different affinities to E, one is interested in the ratio [EA*]/
[EB*]. All of the rate constants shown in the figure are first order or
pseudo-first order. That is:k1 ) k̂1[L], k-3 ) k̂-3[L], k2 ) k̂2[T], and
k-2 ) k̂-2[D]. Because of the presence of T and D,k1k2k3/(k-1k-2k-3)
. 1.

PEL*

PE
)

k1k2 + k-1
x k-3 + k2k-3

k2k3
x + k-2k-1

x + k3
xk-1

x
(46)

k-1
x k-3 , k1k2 or k2k-3

k3
x k-1

x . k-2k-1
x andk2k3

x

k1k2k3
x

k-1
x k-2k-3

. 1 (47)
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In other words, energy consumption is necessary for thePEL*

to have increased specificity for substrates with different
affinities.

The idea that energy can be used to suppress noise is quite
general. Recall the simple example in Section 2.3. One can show
that, with increasing amounts of energy “pumped” into the
system, the reaction is driven to exchange stochastic fluctuations
(noise) with temporal complexity, i.e, deterministic oscillation
or even chaos.

6.2. Biochemical Switch and Its Energy Requirement.A
central theme in molecular cell biology is the biochemistry of
cellular signal transduction. Successive events occur inside a
living cell through a sequence of enzyme or protein activations.
The inactive form of a signaling protein usually has no biological
function, but after activation, its biological activity is “turned
on” and it functions as a trigger for the activation of its “down
stream” signaling target(s). Such a signaling cascade is most
often illustrated by the kinetic scheme shown in Figure 6a, and
each one of these activation steps is often called a switch.

Let us focus on the switching on and off between the B and
B* state of a protein. This is usually accomplished in a cell by
the phosphorylation of B to become phosphorylated B*. The A
in Figure 6a in this case will be an enzyme, a protein kinase
that catalyzes the phosphorylation of protein B. Letk1 andk-1

be the two second-order rate constants for the phosphorylation
reaction. The B* is returned to B by a dephosphorylation
reaction, represented byk2 andk-2 in Figure 6a.83

To be a switch, the chemical reactions between B and B*
have to satisfy some requirements. In the absence of A*, the
system has to be essentially in the B form. Hence,k2 . k-2.
When there is a sufficient amount of A*, i.e., A is turned on,
the B* should be dominant. Hence (k1[A*] + k-2) . (k-1[A*]
+ k2). One can easily deduce that the two requirements lead to
γ ≡ k1k2/(k-1k-2) . 1. In other words, The cyclic reaction of
B f B* f B has to have chemical energy input.

Biochemists usually neglect thek-1 andk-2 because they are
small. However, by incorporating them into the kinetic scheme
in Figure 6a, one can quantitatively address the issue of energy
consumption and the quality of the switch. Let us define the
amplitude of the switch, AOS, as

then we have

where we have introduced the chemical driving force in the
cyclic reaction∆µ ) kBT ln γ, and the inequality in eq 50 means

the AOS is in the best case scenario with the given amount of
energy∆µ (Figure 6b).

Biochemically, the AOS is the magnitude of the signal.
Hence, eq 51 shows that, based on physical chemistry, the signal
magnitude is limited by the amount of energy dissipated in the
biochemical reactions. If there is no energy dissipation, there
is no switch. The ATP hydrolysis cycle coupled to the switch
is not futile: it powers the biochemical switch.

6.3. Molecular Motor and Free Energy Transduction.One
of the important functions of many biological organisms is to
convert chemical energy into mechanical work with high
efficiency. Such functions are often carried out by a single
protein molecule. This gives rise to the field of molecular
motors, which explores the physical, physiochemical, and
biological aspects of energy transduction on a mesoscopic scale.
For a comprehensive coverage of the subject, see ref 84.

Interestingly, a three-state chemical kinetic model, such as
that in Section 2.1 and Section 6.1, can also be used to illustrate
the key concepts of the theory of motor proteins.85,86 More
general treatment can be found in ref 87.

A kinetic scheme of a single motor protein is shown in Figure
7a, in which the transitions of the motor between states B and
C is accompanied with ATP hydrolysis: B+ T h C + D with
pseudo-first-order rate constantsk2 ) k̂2[T] and k-2 ) k̂-2[D].
The conformational transitions between C and A is accompanied
with a step of translocation of the motor protein along its
periodic track, with spacingd, as shown in Figure 7b.

The kinetic rate equation for the motor protein is

wherePX(n) is the probability of the motor protein in its internal

Figure 6. (a) Signal transduction cascade in cell biology: The
activation of protein A to become A*, via chemical phosphorylation,
leads to its catalysis of the activation, i.e., turning on, of protein B to
become B*. Such a cascade is often illustrated by the downward arrow,
indicating that A* activates the reaction. There are two distinct chemical
reactions, both reversible, between the A and A*: the phosphorylation
reaction involving ATP and ADP (convex arcs) and the dephospho-
rylation reaction involvingπ (concave arcs). Kinetic schemes such as
these are widely studied in biology. (b) The turning on of B to B* can
be quantified by the amplitude of switching (AOS), which is a function
of the energy available to the open chemical system,∆µ ) kBT ln-
(k1k2/(k-1k-2)). In the best-case scenario, it is simply AOS) tanh(∆µ/
(4kBT)).

dPA(n)

dt
) k3PC(n - 1) - (k-3 + k1)PA(n) + k-1PB(n) (52a)

dPB(n)

dt
) k1PA(n) - (k-1 + k2)PB(n) + k-2PC(n) (52b)

dPC(n)

dt
) k2PB(n) - (k-2 + k3)PC(n) + k-3PA(n + 1) (52c)

PEL*
A

PEL*
B

)
k3

B k-1
B

k3
A k-1

A
) (KA

KB
)2

(48)

AOS ) ( [B*]

[B] + [B*] )
[A*] )∞

- ( [B*]

[B] + [B*] )
[A*] )0

(49)

AOS )
k1

k1 + k-1
-

k-2

k2 + k-2

) γ - 1
(k1/k-1 + 1)(k2/k-2 + 1)

e
γ - 1

(γ + 2 xγ + 1)
(50)

)
xγ - 1

(xγ + 1)
) tanh( ∆µ

4kBT) (51)
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state X, (X ) A, B, C), and at the same time at positionn
along its track.

The steady-state velocity of the motor moving along its track
can be solved from eq 52 with periodic boundary conditions
PA(n + 1) ) PA(n) and PC(n) ) PC(n - 1). The NESS flux
times the distanced is the steady-state motor velocity:V ) Jss

× d. The fluxJss is already obtained in eq 3. In the biophysical
measurements of motor proteins, one is often interested in the
time distribution(s) for motor stepping. To address this, instead
of calculating the cycle fluxJss, one considers the forward and
backward cycle kinetics in Figure 7a from An to An+1 or An-1.
This is accomplished by reformulate the cyclic kinetic problem
into a first-passage problem:88,89

We can compute the timeτ to complete a cycle, forward or
backward and respective probabilities,p+ and p-. The first-
passage time problem has been extensively studied.90,89 The
mean of the cycle time is

and the forward and backward probabilities are

Hence we haveJss) (p+ - p-)/〈τ〉, and the motor translational
velocity

With some more elaborate algebra, one can also compute the
variance of τ, στ

2,90 and then the dispersion in the motor
translational motion88

So far, all the discussions are on chemical kinetics. To make
a connection to the mechanics of motor protein, one realizes

that the rate constantsk3 and k-3 have to be a function of
external resistant forceF, if it is applied. That is,14,91

in whichθ is a parameter related to the position of the transition
state between C and A (Figure 8), known as the splitting
parameter,92 k(3

o are the rate constants in the absence of the
resistant force. Substitutingk(3(F) into eq 57 and recalling∆µTD

) kBT ln(k1k2k3
o/k-1k-2k-3

o ), one can obtain the motor velocity
V as a function ofF and∆µ.85 In particular,V ) 0 whenF )
∆µTD/d, known as the motor stalling force. Furthermore, we
have the conservation of energy

The left-hand side is the heat dissipation, and the two terms on
the right-hand side are the chemical energy input and work done
against the external force, respectively. With the balance of
energy, efficiency can be rigorously defined.93

It is gratifying to see that a simple three-state cycle kinetic
model, with the breakdown of detailed balance, can provide
insights for so many different biochemical processes. This is a
testimony of the importance and relevance of open-system NESS
in modeling living biochemical systems. With the increasing
complexity of realistic biochemical systems, the modeling will
become more involved. But the central ideas seem to be
contained in the simple model.

7. Discussion

There is no doubt that chemistry is the basis of many cellular
phenomena and processes. Cellular and molecular biology are
now moving toward a systems understanding of biochemical
reaction networks in their living environment. One of the current
challenges to theoretical chemistry is to develop a more complete
statistical thermodynamic theory for biochemical systems that
carry out a range of important biological functions such as signal
transduction and gene regulation. Such a theory necessarily has
to address the nature of an open system and its NESS.

Figure 7. Three-state chemical model for a single motor protein. (a)
The cyclic internal conformational transition of the protein. The kinetic
cycle is driven by the hydrolysis of ATP to ADP, Tf D. (b) The
translocation of the motor protein along its linear, periodic track is
coupled to the conformational transition between C and A. All of the
rate constants are first-order or pseudo-first order:k2 ) k2

o[T], k-2 )
k-2

o [D].

An-1 79
k-1

Bn-1 y\z
k2

k-2
Cn-1 y\z

k3

k-3
An y\z

k1

k-1
Bn y\z

k2

k-2
Cn 98

k3
An+1 (53)

〈τ〉 ) (k1k2 + k-1k-3 + k2k-3 + k2k3 + k-2k-1 + k3k-1 +
k3k1 + k-3k-2 + k1k-2)/(k1k2k3 + k-1k-2k-3) (54)

p+ )
k1k2k3

k1k2k3 + k-1k-2k-3
(55)

p- )
k-1k-2k-3

k1k2k3 + k-1k-2k-3
(56)

V ) d
〈τ〉

(p+ - p-) (57)

D ) d2

2〈τ〉 (1 - (p+ - p-)2(1 -
στ

2

〈τ〉2)) (58)

Figure 8. A schematic illustrating how rate constantsk(3 change as a
function of a resistant forceF. The upper panel is the free energy
function,G(x), for F ) 0, and the lower panel is forF > 0, which tilts
the energy function leftward:G(x, F) ) G(x, 0) + Fx. The rate
constantsk(3 are related to the transition state energy barrier height:
k3(F) ) κ3 e-∆G1(F)/kBT andk-3(F) ) κ-3 e-∆G2(F)/kBT, where∆G1(F) )
∆G1(0) + Fx1, ∆G2(F) ) ∆G2(0) - Fx2, x1 + x2 ) d, x1 ) θd, x2 )
(1 - θ)d, and∆G2(F) - ∆G1(F) ) - Fd. Theκ(3 are related to the
k(3

o in the text: k3
o ) κ3 e-∆G1(0) andk-3

o ) κ-3 e-∆G2(0). This leads to eq
59.

k3(F) ) k3
o e-Fdθ/kBT, k-3(F) ) k-3

o eFd(1-θ)/kBT (59)

kBT ln
k1k2k3

k-1k-2k-3
) ∆µTD - Fd (60)
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Statistical mechanics is the theoretical foundation for mo-
lecular systems. It is one of the central components of physical
chemistry of equilibrium. The general theoretical framework
for chemical kinetics and dynamics is the law of mass action
for large, macroscopic systems and Kramers' theory for micro-
scopic reaction in aqueous solution (condensed phase). These
two areas are now among the main subjects of theoretical
chemistry. Between them is the chemical master equation
approach to stochastic chemical reactions in open systems. This
is precisely what is needed for biochemical studies of cells. The
theory for stochastic chemical reaction systems was initially
developed in the 1960s,33 and it has been recently popularized
by Gillespie’s work.34,94 While the algorithms for sampling
stochastic processes have improved greatly in their efficiencies
and have been applied widely to interesting biological systems95

in recent years, the physical chemistry of the theory is largely
lost in the mathematics.

For the chemical reaction systems in biology, one of the most
distinct aspects is their open exchange with their environments,
either in chemical energy (semigrand ensemble) or in material
(grand canonical ensemble). As we have shown in this paper,
such a system tends to a fluctuating steady state with constant
energy input and dissipation. Even though it is time invariant,
it is not an equilibrium. Following refs 96, 97, we call this
NESS. The nonlinear chemical oscillations, extensively studied
since the birth of the Oregonator,37 is a limiting behavior of
certain NESSs with rotational random walk when a system is
sufficiently large.

It is well-known that Newton’s dynamics equation contains
an expression for the mechanical energy conservation.98 What
is the relation between the chemical rate equations, be they the
macroscopic ones with the law of mass action, or the mesoscopic
ones in terms of chemical master equations, and the laws of
thermodynamics? This question has led our research to develop
a rate-equation-based statistical thermodynamics. A surprising
result from our study, as illustrated in this paper, is that the
Smoluchowski-Kramers approach to chemical dynamics, to-
gether with Einstein’s relation, encompasses a thermodynamics
theory. By thermodynamic, we mean that, in addition to how
conformations change with time, the theory also gives how
thermodynamic quantities, e.g., entropy, energy, heat dissipation,
and Onsager’s force, change with time. This adds the richness
to the rate theory of conformational dynamics and fluctuations.
The resulting equations, in fact, can be applied to open
biochemical systems in living cells.
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