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The Markov chain and ordinary differential equation models for chemical reaction systems are com-
pared. It is shown that if the volume of the reaction system is taken into account in an appropriate way
in the formulation of the Markov chain model, then the o.d.e. model is the infinite volume limit of the
Markov chain model. A central limit theorem is also given for the deviation of the Markov chain model

from the o.d.e. model.

I. INTRODUCTION

A number of authors have considered Markov chain
models for chemical reactions (see McQuarrie! for a
survey of work done in this area), and the question
has been raised as to the relationship between these
models and the classical deterministic ordinary differ-
ential equation models. Oppenheim, Shuler, and Weiss?
have shown in certain special cases that the deter-
ministic model is the infinite volume limit of the Markov
chain models and conclude that the same must be the
case for more complex systems of reactions. The present
paper is a restatement of results obtained in Refs. 3-3
in terms of the chemical reaction models and proves
that this conclusion is indeed correct.

II. FORMULATION OF THE MODEL

The only difference between our formulation of the
Markov chain models and earlier formulations is that
we take explicitly into account the volume of the
reaction system. In particular, for a reaction involving
two molecules we assume that the chance of a particular
pair of molecules reacting during a short interval of
time [¢, £+ Af] is inversely proportional to the volume V'
of the reaction system. Similarly, for a reaction involving
! molecules we assume that the chance of I particular
molecules reacting during a short interval of time is
inversely proportional to V. The reason for this
assumption can be seen by considering the probability
of I balls placed at random in # boxes all ending up in
the same box.

The chance of having some ! molecules react in a
short interval of time is then inversely proportional to

V! and proportional to the number of different ways
of selecting the 7 molecules.

For the simple reaction 44 B—C the chance of the
reaction occurring in the time interval [¢, tHAf] is
approximately a(iie/V)At=Va(i/V) (io/V)At, where
71 is the number of molecules of A present, i is the
number of molecules of B, and « is some constant.

In general consider a system of M reactants, Ry,
R,, - -+, Ry, undergoing N reversible reactions
n=1,2,---, N.

M M
> ComBRutS Y, dumBRum, (2.1)
m=1

m=l

The Markov chain model for this system may be
formulated either in terms of the number of molecules
of each of the reactants present at time f, XV ()=
[Xi7(8) Xo¥ (8) -+« XV (¢) ], or in terms of the number
of times each of the reactions has occurred in the
forward direction minus the number of times it has
occurred in the reverse direction,

YY) =LY/ (), Y2¥ (1) -+ - Ya¥ (1) ).

Letting C denote the matrix [ (¢um) ] and D the matrix
[(duwm)], X¥(t) and YV (f) are related by

XV(s)F[YV(t+s) =YV (s) J(D—C)=XV(t+s5). (2.2)
Let
M
Cn= E Cam
and

M
dn= 2 dum.
m=1
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(Of course ¢nm and dy. are nonnegative integers.) The
chance of the nth reaction occurring in the forward

direction during the interval [£, -+ At is approximately

M /im
- ( Vc”—l) ) [H ( )] At
m=1 Com
M 'im
=Va, I:H (Venm)—t ( )] A=V () At (2.3)
m=1 Cnm

and in the reverse direction

M im
Bn ( Vdn_l) ) [H ( )] At
m=1 dnm
M ":m
=VBx [H (Vdnm)=1 ( )] A=VeV ()AL,  (24)
m=1 dnm

where i=X"(¢).
For x= (x;2x° + » ) define

Gnm

fa(X)=0n I;Il
and
M dnm
gn(x) Bn H I )

m=1 dmn
and observe that

fV () =fo (V1) +0(V)

and
g (1) =g (V) +0(V).

If ¢um and d,, are either 0 or 1 for all # and m, then
equality holds without O(V-1).
Finally, define

FY(i) =LAV (i), -+, Fu' (1) ],

where

Fmv(i) = gl (dnm—cnm)[fﬂv(i) _gﬂv(i)]

and
F(x) =[Fi(x)---Fa(x)],
where
Fm(x) = Z (dnm—cnm) [:fn(x> _gn(x) ]'

n=l1
It can be shown that
dE(V-XV (1))

= ~E@[X()])

=E(F[V-XV() D+0(V-Y). (2.3)

(E( ) denotes the expectation of a random variable.)
The system of differential equations X =F(X) is just
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the classical, deterministic model for our reaction
system. Let X (¢, %) denote the solution of the initial
value problem

8X (1, Xo)

S =F(X(,x)),

X(O, X()) = Xo.
If
lim VXV (0) = x,,

Voo

then the theorems of Refs. 3-5 allow us to conclude that

lim P{sup | VXV (s)— X (5, 2) |>e€}=0 (2.6)
Vo 8t
for every ¢ and €>0.

We can obtain estimates on the probabilities in (2.6)
in two different ways. The first is similar to the Cheby-
chev Inequality of elementary probability and the
second is similar to the Central Limit Theorem.

III. AN INEQUALITY
Let

M

P = 3 I3 (ammon) T L) +20(6) ],

n=1 m=1

and
K= {x:inf | x—X (5, %) |<¢};
8t
i.e., K. is the set of points within a distance e of the
trajectorv X (s, %), s<{. Define

= sup I'(x),
M= sup [|F(xi)—F(x)|/|xi—x% ],

x1,x2eK ¢

and
7= sup | F(V7'4)—F¥(i) |

(1{V)ieK ¢
Lemma (1.2) and the inequalities in Sec. 2 of Ref. 5
imply
Plsup | V-1XV(s) — X (s, %) | > ¢} <IT/ (V&)
8t

provided d=eeMi—| VXV (0) —Xo | —t9>0.

It is reasonable to assume that ¥"(0)=0. Under
this assumption define FV(j)=[FV(§)---Fx"(j)],
where

F.V(3) =f/ XV (0)+j(D—C)]
— g [XV(0)+j(D-C)],
=[F1(Y) . 'FN(Y)]

(3.1)

F(y)
where

Fu(y) =fu[x+y(D—C)]—g[x0+y(D—C) ],

and

~ N
I'(y)= Z;‘l { fal 2+ y(D—C) J+ gu[xo+y(D—-C) ]}
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Let Y (¢) denote the solution of
Y (1)/ot=FLY (1)],
Y (0) =0.

Then with f‘, M and # defined in a manner similar to
T, M, and n we have

Psup | V77 (s)~ ¥ (s) |2} <(B/(V8)  (3.2)
8t
provided d=¢ exp(——Mt) —17>0.
Note: If | x,— VXY (0) |=0(V-?) then 4=0(V).
IV. A CENTRAL LIMIT THEOREM

Let

N

Vis(X) = 23 (dni—cni) (dnj—Cnj) [ fo(X) +ga(X) 1.

n=1

Theorem (3.5) of Ref. 5 implies the following: If
lim VY2 V-1XV(0) —%o]=0

Voo
then
lim P{V[V-1XY (£) — X (2, %) ]
Voo

€ (a1, &) X (a2, b2) X =+« X (@ar, bar) }
=P{W(t) € (a1, b1) X (ag, bs) X+ ++ X (an, byr) }

where W (¢) has a multivariate normal distribution with
a characteristic function ¢(¢, 0)=E(exp{i0-W()})
satisfying

(3/009(t, 8) =3 L 0ra X (1, x0) W (1, )
+ 22 0;0:F X (¢, %) 1(8/060)¥ (¢, 0).  (4.1)

[z€ (a1, b1) X (@s, b2) X =+« X (@pr, bayr) means @pm<zm<
bmy, m=1, 2, -+-, M.] Letting
h,’j(X) = 61~F]-(x) EGFj(X) /6xi,

G(x) be the matrix ((v4(x))), H(x) the matrix
((hi(x))) and H*(x) its adjoint, (4.1) implies W(z)
has mean zero and covariance matrix given by

/ “exp ([ EATX 0 %) Jiw) GEX 5, 20

t
Xexp (/ H[ X (u, ) ]du) ds. (4.2)
The corresponding quantities for ¥V are
Yu(y)=0  i#j
=f{Xot+y(D—C) J+g{x+y(D—C) ]

fori=j
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and ~
hii(y) = (8/3y) Fi(y).
It | V-1X¥(0)— %o |=O(V~1) then
Hm P{V2[VIVY () — V() ]€ (a1, b1) X - - - X (an, by) }

Voo

=P{Z(t)€ (a1, b)) X -+ X (an, by) }

where Z(¢) is multivariate normal with mean zero and
covariance matrix given by

[ exe ([ AT 0 ) 60793

Xexp (/jﬁ[Y(u)]du) ds. (4.3)

V. EXAMPLE

Consider a single reaction 4+ B<C. The ¥V model
is clearly the appropriate model to consider. We then
have

J(X) = axixe
g(x) =Buxs,
F(y) =a(af—y) (x0—y) —B(x+),
[(y) = G(y) =alxd—y) (u'—y)+B(ad+y),
and
A (y) =2ay—B—a(n'+x).

Suppose ax;®x?—Bx*=0, that is Xo= (x:®, 2%, x3°) Is
the equilibrium value. Then Y (¢) =0 and the variance
of the normal random variable Z(¢) is

[ expl— =98+ alxs+28)) (et -829)
0

Xexp{— (t—s) [B+a(a+x") )} ds
ax1°x2°

= A falatn) (1—exp{—2[B+a(x+ =z ]}).
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