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The time evolution of species concentrations in biochemical reaction networks is often modeled
using the stochastic simulation algorithm �SSA� �Gillespie, J. Phys. Chem. 81, 2340 �1977��. The
computational cost of the original SSA scaled linearly with the number of reactions in the network.
Gibson and Bruck developed a logarithmic scaling version of the SSA which uses a priority queue
or binary tree for more efficient reaction selection �Gibson and Bruck, J. Phys. Chem. A 104, 1876
�2000��. More generally, this problem is one of dynamic discrete random variate generation which
finds many uses in kinetic Monte Carlo and discrete event simulation. We present here a
constant-time algorithm, whose cost is independent of the number of reactions, enabled by a slightly
more complex underlying data structure. While applicable to kinetic Monte Carlo simulations in
general, we describe the algorithm in the context of biochemical simulations and demonstrate its
competitive performance on small- and medium-size networks, as well as its superior constant-time
performance on very large networks, which are becoming necessary to represent the increasing
complexity of biochemical data for pathways that mediate cell function. © 2008 American Institute
of Physics. �DOI: 10.1063/1.2919546�

I. INTRODUCTION

The metabolic, regulatory, and signaling pathways in
biological cells are often represented by biochemical net-
works involving reactions between proteins, genes, and other
molecular species. The response of such networks to pertur-
bation is a ubiquitous modeling problem in computational
biology. Simulations of the response track the time-
dependent concentrations of individual species. Continuum
versions of the models can be formulated as sets of coupled
ordinary differential equations and integrated by standard
methods. In cases where the concentrations of some species
are small, stochastic effects impact the behavior of the
system.1

In 1976, Gillespie developed the stochastic simulation
algorithm �SSA� to model these networks via Monte Carlo
methods, in a way that correctly samples the dynamic prob-
ability distribution of possible reactions.2,3 Derived from the
chemical master equation, the algorithm evolves the system
one reaction at a time, choosing the specific reaction to per-
form, advancing time by an appropriate interval, and updat-
ing the probability distribution of future reactions to reflect
the outcome of the selected reaction. The method is widely
used to model biochemical networks �the original two papers
have been cited over 1500 times�, and to analyze the effects
of stochasticity within the small reaction volumes of cells.4

With rapid growth in experimental data characterizing
biochemical interactions, researchers simulate ever-larger re-
action networks,1,5–13 where a network represents the inter-
actions between biochemically reactive molecular species in

and around the cell. The nodes of the network are biochemi-
cal species with concentrations; the edges are the relation-
ships implied by the reactions, with edge weights corre-
sponding to reaction rates. Currently, the largest protein
interaction network14 known to the authors contains 18 000
proteins and 44 000 interactions.

Note that each bound state of two or more molecules is
typically counted as a separate “species” in formulations of
these networks, though alternate methodologies have been
proposed as dicussed below.15,16 Thus, if the combinatorial
richness of protein complex formation is included, network
sizes can grow exponentially, since even a relatively small
number of proteins which bind together can exhibit great
variety in complexation and post-translational modification,
with the enumeration of possible states for a single receptor
complex reaching 106 to 108 states.17 Estimates of the aver-
age connectivity in such networks are as high as 38 interac-
tions per protein.18 The kinetic rate constants associated with
biochemical reactions span many orders of magnitude. For
example, fast enzymes operate at �105 /s, while slow en-
zymes operate at 2 /s or slower.19,20 These characteristics de-
fine the size and other properties of the network which pro-
duces a probability distribution of reactions that must be
sampled by the SSA in order to accurately model biochemi-
cal network dynamics.

The computational cost of the original SSA to perform a
single reaction scaled as O�N�, i.e., linearly in N, the number
of reactions in the network. Since the time increment per
reaction also tends to shrink with increasing N, such scaling
limited the size of networks that could be efficiently simu-
lated. Gibson and Bruck21 proposed an alternate implemen-
tation of the SSA which scales as O�log2 N�, enabling much
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larger networks to be modeled. Other optimizations have
also been proposed, including preranking the list of reaction
probabilities from large to small,22 which allows a sequential
search to outperform a logarithmic search for some probabil-
ity distributions and small networks.

A variety of enhancements to the SSA have also been
developed to enable its use for different problems. For ex-
ample, much work has been done23–28 to address the issue of
stiffness of the dynamical systems embodied in biological
networks, and extend the timescale over which the SSA can
be used, while bounding the errors induced by multitimes-
cale approximations. To address the issue of exponential
growth in the number of possible reactions due to protein
complexation, rule-based approaches have been
developed,15,16 which limit the number of reactions by gen-
erating new ones only as needed during a simulation as spe-
cific reactants are produced. Properties of the new reaction
�e.g., its rate constant� are inferred from properties of its
reactants, limiting the amount of information that must be
stored. Depending on how reactions are selected, the compu-
tational cost in these approaches can depend on the number
of molecules currently present in the simulation, rather than
the number of possible reactions.29,30 Computationally, this
can be a win when the number of molecules is smaller than a
very large list of possible reactions.

In this paper, we do not address these enhancements di-
rectly. Rather we note that they are all built on top of some
version of the SSA at their core. Thus improving the scal-
ability of the SSA itself could benefit any of these ap-
proaches.

All of the algorithms discussed thus far solve the gener-
alized problem of random variate generation �RVG� from a
dynamic discrete probability distribution. The generated
variate determines what “event” takes place in the next time
increment. “Dynamic” means the distribution changes each
time an event occurs. For biochemical networks, the event is
a reaction, and the system is dynamic because the occurrence
of a reaction changes the concentration of various species �its
reactants and products� and hence the probabilities for other
reactions to occur at the next iteration. In this more general
context, RVG is a well-studied problem. Devroye31 provides
a classification scheme for RVG and describes a rich com-
pendium of algorithms, including all of the event-selection
algorithms commonly used in SSA implementations. Effi-
cient RVG is also a key kernel in discrete-event and kinetic
Monte Carlo �KMC� simulators which model phenomena as
diverse as factory scheduling �operations research� or grain
growth and chemical vapor deposition �materials science�. It
is worth noting that the classic KMC algorithm for choosing
events and the associated timestep, known as the n-fold way
or BKL algorithm,32 is, in fact equivalent to the SSA, though
it was formulated independently.

In this paper, we adapt a particular RVG algorithm
known as composition and rejection, which has been devel-
oped and enhanced in Refs. 33–35, and apply it to the SSA.
It is well-suited to the simulation of large biochemical net-
works, because its scaling is O�1�, i.e., the computational
cost to perform a reaction is constant, independent of N. This
surprising result requires only two assumptions be met, both

of which we argue in later sections, that are reasonable for
biochemical networks. The first is that the ratio of maximum
to minimum probability for any two reactions is bounded.
The second is that the average number of other reactions
directly coupled to each reaction �products of one are reac-
tants of others� does not grow continuously as large numbers
of new reactions are added to the network.

In the remainder of the paper, we briefly describe the
original SSA, the widely used Gibson/Bruck enhanced algo-
rithm, the new constant-time algorithm, and its implementa-
tion details. We compare the computational cost of the loga-
rithmic and constant-time algorithms on a synthetic test
suite, showing the new algorithm to be competitive even for
small networks, and to perform significantly faster as the
network grows to large numbers of reactions.

II. LINEAR TIME ALGORITHM

Consider a collection of molecules of different chemical
species in a volume V. The initial count of molecules of each
species i is ni, so that molar concentrations are ci

=ni / �NAV�, where NA is Avogadro’s number. The species in-
teract via a set of N chemical reactions. The nth reaction can
be written in familiar form as follows:

�
i=1

rn

Ri
n ——→

kn

�
i=1

pn

Pi
n,

where kn is a reaction rate constant, Ri
n is a reactant molecule

of a particular chemical species, and similarly for product
molecules Pi

n. The number of reactants rn on the left side of
the equation can be limited to 0, 1, or 2 without loss of
generality, while the number of products pn can be 0, 1, or
any number. The N reactions are “coupled” in the sense that
products of each reaction can be reactants of others. The
computational task is to evolve the species concentrations ci

over time, assuming the volume is a well-stirred reaction
chamber, where each molecule is equally likely to encounter
any other molecule.

The continuum formulation of this problem converts re-
actions to ordinary differential equations �ODEs� and inte-
grate the set of coupled ODEs forward in time, where con-
tinuous concentrations are the variables of interest. As an
alternative, Gillespie proposed the SSA, which treats indi-
vidual molecules discretely, and showed it was rigorously
equivalent to simulating the tome evolution of the chemical
master equation formulated for the system of reacting mol-
ecules and, in the limit of large numbers of molecules, to the
continuum formulation as well.2,3

In the SSA, the system evolves one reaction at a time,
changing the counts of reactant and product molecules ap-
propriately, and thus the associated species concentrations.
Which reaction occurs next and the time at which it occurs
are chosen using random numbers and probabilistic rules that
ensure accurate sampling. In the SSA, a “propensity” is com-
puted for each reaction which is proportional to its probabil-
ity of occurrence relative to other reactions. The propensity
is knNAV for a zeroth-order reaction, n1kn for a first-order,
and n1n2kn / �NAV� for a second-order reaction, where n1 and
n2 are the molecular counts of the reacting species, and the
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input kn values have units of M/s, 1 /s, and 1 /M s for zeroth-,
first-, and second-order reactions, respectively.

With these definitions, the “direct” SSA is outlined in
Fig. 1. A “first-reaction” version of the SSA was also dis-
cussed by Gillespie and shown to be exactly equivalent. Its
scaling properties are the same as discussed here. Note that
as presented in Fig. 1 the following values must be precom-
puted before the first iteration: pi=the propensity for each
reaction and ps=the sum of pi for all N reactions.

Two random numbers are used per iteration, each
sampled from a uniform distribution bounded by 0 and 1.
The first is used to compute a time increment in step �2�. The
second is used to pick a reaction in step �3�. Conceptually,
step �3� can be thought of in the following way. Each pro-
pensity represents a short line segment of length equal to pi.
If these segments are concatenated, the resulting long seg-
ment has length ps. If a random point along this long seg-
ment is chosen, step �3� determines which short segment the
point falls inside of. Step �4� updates molecular counts due to
reaction m. Steps �5� and �6� compute new propensities re-
sulting from changed molecular counts, in preparation for the
next iteration.

As originally proposed by Gillespie, step �3� scales as
O�N� with the number of reactions N, using the following
approach. Sum the N propensities in order from 1 to N, add-
ing each in turn, continuing until the the pm term causes the
accumulating sum to exceed r2ps. Step �4� scales as O�1�
since we assume each reaction has a small bounded number
of products. As written, steps �5� and �6� also scale as O�N�.

In the nomenclature of random variate generation, step
�3� “generates” a random variate from a dynamic discrete
probability distribution �the set of propensities�, and steps �5�
and �6� “update” the distribution. Thus the scaling of the
original Gillespie SSA is O�N� �linear� in both its generation
and update times. However, a simple enhancement improves
the scaling of the update to O�1� �constant�. If we assume
that each chemical species occurs as a reactant in a small
bounded number of reactions �a plausible assumption for
biochemical networks�, then the number of propensities that
need to be updated in step �5� is also small and bounded, i.e.,
O�1�. The sum of step �6� can be similarly updated in O�1�
time, yielding an overall update scaling of O�1�.

The idea of only updating propensities for affected reac-
tions was formalized as a “dependency graph” by Gibson
and Bruck,21 though others may have implemented similarly
efficient forms of steps �5� and �6� before this paper. Reac-

tions are nodes of the graph representing the biochemical
network and a directed edge from node i to j exists if a
product of reaction i is a reactant of reaction j. Storing such
a dependency graph enables a straightforward implementa-
tion of an O�1� version of steps �5� and �6�.

Another optimization of the direct method, proposed in
Cao et al.,22 is to preorder the set of propensities so that large
values appear at the beginning of the list. Then the accumu-
lating sum in step �3� is likely to exceed r2ps quickly, yield-
ing a small m. Cao et al. argue that this preordering is fea-
sible for some biochemical networks and can be recomputed
periodically as concentrations change, leading to a faster al-
gorithm.

We note that when N is small the number of required
updates �although fixed� can be close to N. Thus an algo-
rithm whose update scaling is constant is a good choice even
if its generation cost scales linearly. Hence the original SSA
performed satisfactorily in a computational sense until the
size of simulated biochemical networks grew larger. This
motivated the algorithm of the next section.

III. LOGARITHMIC TIME ALGORITHM

The key advance of the Gibson/Bruck version of the
SSA was to convert it from an algorithm with linear genera-
tion time and constant update time to one that is logarithmic
in both generation and update time, thus enabling large net-
works to be simulated more efficiently.21 The paper mainly
focused on enhancements to the first-reaction version of the
SSA yielding a “next-reaction” method, but enhancements to
the direct SSA were also proposed. The resulting scaling is
the same for both algorithms; we discuss the enhanced direct
SSA here, which we refer to as SSA-GB.

The SSA-GB algorithm is outlined in Fig. 2. It has the
same sequence of steps as in Fig. 1. Steps �3� and �6� now
use a binary tree so that random variate generation and the
update of the distribution scale more efficiently. Note that
step �5� is now the O�1� update discussed in the previous
section using a dependency graph, as suggested by Gibson
and Bruck.

A binary tree is used to store the set of N reaction pro-
pensities, assuming N is a power of 2. Each propensity is a
“leaf” in the tree. Pairs of propensities �siblings� are summed
to a parent value, stored at a “branch” location in the tree.
Pairs of parent values are summed iteratively at the next
level �grandparents� until a single “root” value results which
is ps, the sum of all N propensities. The resulting tree has
log2 N levels. Since N−1 partial sums are stored, the entire

FIG. 1. A single iteration of the original SSA, the Gillespie stochastic simu-
lation algorithm, with O�N� scaling in the number of reactions N.

FIG. 2. A single iteration of SSA-GB, the Gibson/Bruck stochastic simula-
tion algorithm, with O�log2 N� scaling in the number of reactions N.
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tree can be stored in 2N memory locations. Generalization to
a tree where N is not a power-of-two is straightforward, e.g.,
by padding the list of leaves with zeros.

Step �3� can now be performed in a logarithmic number
of operations, yielding an algorithm whose generation time
scales as O�log2 N�. Begin at the root of the tree with a
search value s=r2ps. If s is less than the left child value pl,
branch to the left keeping s as the search value, else branch
to the right using a new search value s=s− pl. This operation
is applied successively at each of the log2 N levels of the
tree, until a specific leaf is arrived at. This is the mth leaf of
step �3�.

Similarly, in step �6�, the effect of each changed propen-
sity on the summed ps can be computed in a logarithmic
number of operations. First, the appropriate leaf value is
changed, then its parent value �changed value+sibling value�
is recomputed. Then the grandparent value is recomputed
and so forth until the root value is recomputed. This opera-
tion is performed once for each changed propensity �the
number of which is small and bounded�; thus, the overall
scaling of the update operation is also now logarithmic, i.e.,
O�log2 N�.

The overall logarithmic scaling of the Gibson/Bruck en-
hanced SSA algorithms �both next-reaction and SSA-GB�
results in a large performance improvement over the linear
time method for networks with even a few dozen reactions.
Hence these algorithms are currently widely used in many
biochemical network modeling codes.

IV. CONSTANT-TIME ALGORITHM

All the algorithms of the preceding sections are dis-
cussed �from a RVG perspective� in Devroye’s
compendium.31 Methods linear in generation time and con-
stant in update time �the original Gillespie SSA� are pre-
sented in Chapter 3.2.3 �inversion by sequential search�. The
optimization22 of Cao et al. is described in the same chapter
�inversion by sequential search with reorganization�. Meth-
ods logarithmic in both generation and update time �SSA-
GB� are discussed in Chapter 3.3.2 �inversion by binary
search�. For these methods, Huffman trees are proposed to
further reduce the generation time, but this does not change
the fundamental logarithmic scaling behavior.

For better performance on networks with a very large
number of reactions N, we turn to a class of methods called
composition and rejection �CR� algorithms �Chapter 2.4� that
are constant in both generation and update time, i.e., their
O�1� scaling is independent of the number of reactions.

The rejection idea is illustrated in the left panel of Fig. 3.
Consider a set of N reaction propensities, listed along the
x-axis. The y-axis height of each bar represents the propen-
sity for that reaction. If we draw a rectangle that bounds the
N vertical bars, then a valid algorithm for randomly choosing
a reaction is as follows. Let the height of the bounding rect-
angle be pmax. Pick a uniform random integer i from 1 to N.
Pick a second uniform random number r from 0 to pmax. If
pi�r, then reaction i is selected. If not, the selection is “re-
jected” and the algorithm is repeated. Thus, in the figure,
point A would be rejected, while point B would select reac-

tion 8. Effectively, this algorithm iterates until a point inside
one of the bars is selected, using two random numbers at
each iteration. Note that the cost of selecting a test point is
independent of N. If the set of bars covers a high fraction of
the bounding rectangle’s area, the average rejection count per
selection will also be small.

Now imagine the set of N propensities are first grouped
by their propensity values, as illustrated in the right panel of
Fig. 3. In this case, three groups from pmin to pmax are used.
The first group �reactions 5 and 6� contains propensities
ranging from pmin to 2pmin, the second group �1,3,7, and 9�
from 2pmin to 4pmin, and the third group �2,4, and 8� from
4pmin to pmax. The selection of a reaction can now be done
efficiently via an algorithm composed of two stages �hence
the “composition” aspect of the CR algorithm�. The first
stage selects a group. Let G be the number of groups. If the
total propensity of all reactions in a group is pg and the total
propensity of all reactions is ps=�g=1

G pg, then this requires
one random number and a linear scan or binary search of the
G values, as discussed in the preceding two sections. Once a
group is selected, the reaction within the group is chosen via
the rejection procedure, using a rectangle that bounds only
the reactions in that group, as illustrated for the second group
in the figure. The key point is that by choosing the group
boundaries as cascading factors of 2 �pmin,2� pmin,4� pmin,
etc.�, we have guaranteed that the area covered by the bars of
each group’s reactions is greater than half the area of the
group’s bounding rectangle. Thus, on the average, the selec-
tion of each reaction will require less than two iterations of
the “rejection” portion of the CR algorithm.

The two stages together constitute the generation portion
of the CR algorithm. Its scaling is O�1�, independent of N, if
the number of groups G is also independent of N. We now
argue why this is a valid assumption for biochemical net-
works. Clearly, for a set of reactions, there is a pmin which
can be computed from the propensity formulas for the
zeroth-, first-, and second-order reactions, assuming only one
molecule of each reactant exists in the volume V. Note that
reactions with propensity p=0 need not be included as pos-
sible selections. Similarly, one can bound the maximum
number of reactant molecules of any species by physical
constraints or knowledge of the reaction network. For ex-
ample, only so many molecules of a given species will be
present in a cell. Thus the maximum propensity pmax for the

FIG. 3. Composition and rejection algorithm for random variate generation.
A reaction is selected from a set of reaction propensities �left� by picking
random points �A and B� from a bounding rectangle until a point inside a
vertical bar �B� is found. Grouping the propensities by their magnitude
�right� makes rejected points less likely.
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set of reactions is also computable from the reaction rate
constants ki and the maximum molecular counts. The largest
number of groups possible is then Gmax=log2�pmax / pmin�,
though many fewer will likely be required when the SSA
model executes. In a biochemical sense, adding new reac-
tions to the model does not change G, assuming their rates
are in the same range as those of previous reactions.

G can also be bounded by practical considerations. If
pmax is computed, propensities below a chosen threshold
value of pmin could be discarded, since statistically speaking,
they will not occur frequently enough to impact the network
dynamics. For example, if reactions with propensities 1
�109 times smaller than pmax are discarded, then G is
bounded at 30. Alternatively, pmin can be computed, and
groups added on-the-fly as pmax grows during a simulation. If
G grows too large a larger pmin can be used for future simu-
lations of the same network. In practice, G remains small
�around 10–20� for networks we have modeled. We also note
that even if G grows slowly with increasing N, this only
affects the generation time for the algorithm, which scales as
log2�G� using a binary search of the group propensities. As
shown in the next section, the generation cost is considerably
smaller than the update cost, which is independent of the
number of groups.

Using the CR algorithm for reaction selection leads to a
constant-time algorithm that is exactly equivalent to the
original Gillespie SSA. We refer to this new algorithm as
SSA-CR; it is outlined in Fig. 4. Before the first iteration,
reactions are assigned to groups, the summed propensities
for each group pg are computed, as is the total summed pro-
pensity ps=�g=1

G pg.
Steps �3a� and �3b� are the reaction selection procedure

outlined above. Step �3a� is the same as step �3� in either Fig.
1 or 2, except that now the selection is from G groups instead
of N reactions, thus it scales as O�G� or O�log2 G�. Step �3b�
may require additional random numbers if rejection occurs,
but this will happen less than half the time �on average�,
regardless of the distribution of reaction propensities. For
randomly distributed propensity values, it will occur only
one quarter of the time �75% area coverage by the vertical
bars within a group�. Note that a constant-time implementa-
tion of step �3b� requires that the mth reaction in a group can
be accessed in a one-step operation. This is easily done by
having each group maintain a linear list of its reactions,
which can simply be integer indices from 1 to N.

Once a reaction has been performed in steps �4� and �5�,

the update portion of the SSA-CR algorithm is performed in
step �6�. The new propensity of each dependent reaction is
compared to its old value. If the reaction stays in the same
group, only the group sum pg and total sum ps need updating.
If the group assignment has changed, the reaction is deleted
from the old group and added to the new group, then pg and
ps values for both groups are updated. Adding/deleting a re-
action to/from a group is a constant-time operation. For ad-
dition, a new index is added to the end of the group list and
the group size is incremented. For deletion, the reaction at
the end of the group list replaces the deleted reaction and the
group size is decremented. Thus the update portion of
SSA-CR also scales as O�1�.

There are two requirements implicit in this scaling re-
sult. The first is that a dependent reaction can be located
within its group in a one-step operation. This is easily done
by having each of the N reactions store two integers: its
current group assignment and its location within that group.
The second is the assumption that the average number of
dependencies per reaction does not grow continually larger
as the number of reactions grows. Since extremely large net-
works have not been formulated, this assumption is hard to
test empirically, but we note that any implementation of the
SSA will suffer in performance if this is not the case, since
the update time is necessarily proportional to the average
number of dependencies.

Overall, in addition to propensities, the memory cost of
the SSA-CR is three integers per reaction. This is similar to
the SSA-GB memory cost for its binary tree of one addi-
tional floating point value per reaction.

Nothing in the preceding discussion requires that pro-
pensity boundaries between groups be chosen such that the
ratio of upper and lower bounds for a group is r
= pupper / plower=2. If r�2, the cost of the rejection portion of
the algorithm would decrease �less rejections� while the cost
of the composition portion would increase �more groups�.
The converse would be true for r�2. In either case, both
portions would still be constant-time operations. A practical
reason to use groups with r=2, as illustrated in Fig. 3, is that
calculating which group a newly computed propensity value
p falls into can be done in a single operation by calling a
standard C math library function, namely,
frexp�p / pmax,&gneg�, which returns the negative of the
group ID as the variable gneg.

V. PERFORMANCE AND DISCUSSION

While the CR version of the Gillespie SSA has better
theoretical performance than the Gibson/Bruck version, ac-
tual performance depends on prefactors of the scaling terms
and other implementation details. For SSA-CR, the prefac-
tors also depend on the number of groups G.

To test the algorithms for widely varying numbers of
reactions N, we generated random reaction networks. We
represented the network of reactions as an 1d array of N
doubles representing reaction propensities and a 2d N�M
array of connectivity for each of the propensities represent-
ing the dependency of the reactive species. For each of N
reactions, initial propensities varying by a factor of a 1

FIG. 4. A single iteration of SSA-CR, the composition and rejection sto-
chastic simulation algorithm, with O�1� scaling, independent of the number
of reactions N.
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�106 �1.0�106–1.0� were chosen randomly from an expo-
nential distribution. For SSA-CR this created approximately
20 groups, with roughly equal numbers of reactions per
group. Each reaction affected M other randomly chosen re-
actions where M is a uniformly distributed integer from 1 to
30. Each time one reaction is executed, the propensity of
each of the M affected reactions was altered and the effect of
the change on the overall probability distribution was ac-
counted for, before the next reaction was selected. Specifi-
cally, the new propensity of each of the M reactions was set
to a uniform random value between 95% and 105% of its
current propensity.

We created two versions of our test program. The first,
which we call a high-memory version, stores a precomputed
random dependency graph, where the list of M affected re-
actions is generated in advance and stored for each of the N
reactions. This requires 15 integers per reaction �on average�,
which limits the problem size that can be run for large N. So
we also created a second, low-memory, version which gen-
erates M random dependencies on-the-fly, each time a reac-
tion is selected. As before, M is a uniform random integer
between 1 and 30. This second scheme could not be used for
modeling an actual biochemical network, but allows the scal-
ing of the SSA-GB and SSA-CR algorithms to be tested for
much larger N.

Figure 5 shows timings for the high-memory version of
the test program, which stores a dependency graph. Simula-
tions of networks varying in size from N=100 to N=100
�217�13.1�106 reactions were run with the SSA-GB and
SSA-CR algorithms outlined in Figs. 2 and 4. The CPU time
is in seconds for 1 000 000 iterations of each algorithm, i.e.,
106 reactions are executed. The generation and update times
for both algorithms are shown; the total time is simply the
sum of generation and update for either algorithm. These
timing tests were run on a single processor �core� of a Dell
690 desktop machine with two 2.66 GHz quad-core Xeon
chips and 16 GB of memory. The two algorithms were

implemented in C��, though simple C-style data structures
and coding syntax were used for the key operations.

The generation time for both algorithms is roughly equal
and nearly constant for networks of any size. Both algo-
rithms are dominated by the cost of updating, since there are
many dependencies per reaction. For N�100 000 reactions,
the logarithmic and constant scaling of the update time for
the two algorithms are evident; logarithmic dependence is a
sloped line on a log/linear plot. Around N=100 000, both
algorithms begin to run slower due to cache effects when the
data structure �tree, groups� for storing propensities no
longer fits in second-level cache.

For SSA-GB this is manifested by a logarithmic depen-
dence with a steeper slope. For SSA-CR, the new slope is not
as flat as for smaller problems. As we discuss below, this is
not due to the algorithm, which still has O�1� or constant-
time scaling, but to memory-access issues for very large
problem sizes.

Figure 6 shows timings with the low-memory version of
the test program, where the reaction dependencies are gener-
ated on-the-fly rather than stored. The update times are now
somewhat slower than in Fig. 5 �note the difference in ver-
tical scale� due to the cost of generating dependencies each
time a reaction executes. But we can now run networks up to
size N=100�221�210�106 reactions. The difference be-
tween logarithmic- and constant-time scaling is now more
evident for very large N.

To address the apparent nonconstant scaling of the up-
date time for the SSA-CR algorithm for large N, we ran the
same low-memory tests on a single processor �core� of a
Cray XT3 with dual-core 2.4 GHz Opteron chips, each with
4 GB of memory. The operating system on the XT3 has the
run-time option to configure itself with either small memory
pages �4 kB� or large pages �2 MB�. On most Linux ma-
chines, including the Dell desktop machine of Fig. 5, small
memory pages are the default. Large-memory pages are an

FIG. 5. CPU time in seconds for 1 000 000 iterations of the logarithmic-
time Gibson/Bruck �open symbols� and constant-time composition and re-
jection �filled symbols� versions of the direct-method Gillespie stochastic
simulation algorithm. Squares are generation times; circles are update times;
the total time is the sum of generation and update. This is the high-memory
version of the test program which stores a reaction dependency graph.

FIG. 6. CPU time in seconds for 1 000 000 iterations of the Gibson/Bruck
and composition and rejection versions of the direct-method Gillespie sto-
chastic simulation algorithm. The symbols have the same meaning as in Fig.
5. This is the low-memory version of the test program which does not store
a reaction dependency graph. These runs were performed on a Xcon
processor.
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available option, but typically requires changes in the setup
procedure for the OS and a reboot of the machine.

The results for runs with small and large pages on the
Opteron processor are shown in Fig. 7. The difference is only
significant for the update times of the largest runs; elsewhere
the dotted- and solid-line data overlay almost exactly. The
update timings for small pages �dotted lines� are qualitatively
the same as the Xeon timings in Fig. 6, with a nonconstant
upturn for large N runs of the SSA-CR algorithm. Note that
the vertical scales of Figs. 6 and 7 are different; the last
dotted-line data point for a SSA-GB update �open circles� is
off the plot at 22.3 s.

The large-memory page timings illustrate the constant-
time scaling of the SSA-CR algorithm �solid lines and sym-
bols�, up to N=100�220�105�106 reactions. The large-
memory pages improve the speed of both the SSA-GB and
SSA-CR algorithms. The reason is that memory access to
huge data sets �several gigabytes for the problems with larg-
est N� in Linux is through a translation lookaside buffer
�TLB� which is a list of page addresses. For small pages the
size of the TLB becomes large for a huge data set, so that
access to the TLB itself causes additional cache misses. For
large pages, the TLB still fits in cache and overall memory
access is more efficient.

Two other features of Fig. 7 are interesting to note. First,
the constant-time versus logarithmic scaling of even the less-
costly generate time for the SSA-CR and SSA-GB algo-
rithms is apparent. Second, the slow-down around N
=50 000 due to the size of the data set exceeding second-
level cache happens for smaller problems than in Fig. 6, due
to a smaller cache on the Opteron �1 Mb� versus the Xeon
�4 Mb�.

Our main conclusion is not the fine details of the perfor-
mance plots, since these may depend on specific processor
attributes or optimized implementations of the algorithms.
Rather we focus on the fact that the SSA-CR algorithm is
competitive or faster than the SSA-GB algorithm across a
large range of biochemical network sizes and exhibits the

desired constant-time scaling behavior. We again emphasize
that the CR algorithm is applicable not only to simulations of
biochemical networks, but can be used for efficient event
selection in any large-scale kinetic Monte Carlo model
whose event probabilities and interevent dependencies meet
the same assumptions discussed in this paper.

While biochemical networks with a 1�106 or more re-
actions are not common today, due to limited experimental or
bioinformatic data, this is likely to change in the future. As
this occurs, the use of O�1� reaction-selection algorithms,
such as the composition and rejection scheme described here,
will become increasingly advantageous.
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