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Binomial leap methods for simulating stochastic chemical kinetics

Tianhai Tian® and Kevin Burrage®
Advanced Computational Modelling Centre, University of Queensland, Brisbane QLD 4072, Australia
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This paper discusses efficient simulation methods for stochastic chemical kinetics. Based on the
7-leap and midpoint-leap methods of GillespiD. T. Gillespie, J. Chem. Phy&15 1716(2001)],

binomial random variables are used in these leap methods rather than Poisson random variables. The
motivation for this approach is to improve the efficiency of the Poisson leap methods by using larger
stepsizes. Unlike Poisson random variables whose range of sample values is from zero to infinity,
binomial random variables have a finite range of sample values. This probabilistic property has been
used to restrict possible reaction numbers and to avoid negative molecular numbers in stochastic
simulations when larger stepsize is used. In this approach a binomial random variable is defined for
a single reaction channel in order to keep the reaction number of this channel below the numbers of
molecules that undergo this reaction channel. A sampling technique is also designed for the total
reaction number of a reactant species that undergoes two or more reaction channels. Samples for the
total reaction number are not greater than the molecular number of this species. In addition,
probability properties of the binomial random variables provide stepsize conditions for restricting
reaction numbers in a chosen time interval. These stepsize conditions are important properties of
robust leap control strategies. Numerical results indicate that the proposed binomial leap methods
can be applied to a wide range of chemical reaction systems with very good accuracy and significant
improvement on efficiency over existing approaches. 2@4 American Institute of Physics.

[DOI: 10.1063/1.1810475

I. INTRODUCTION leap size selection procedure for determining the maximum
leap size for a specified degree of accurfy.

Stochastic modeling of biological systems has become a The second approach is to partition a chemical reaction
very important research field in recent years. Experimentasystem into subsets of slow and fast reactions and then to
and theoretical studies have shown the importance of staapply different simulation methods to each subset. Rao and
chastic processes in genetic regulatory networks and cellularkin demonstrated how to reduce computational time by
processes:” For biological systems involving molecules of applying the quasisteady state assumption to the subset of
small populations, the stochastic simulation algoritt88A)  fast reactions! Haseltine and Rawlings improved the com-
derived by Gillespig is an essentially exact procedure for putational efficiency by approximating fast reactions either
studying noise in chemical kinetic systems. However, thejeterministically or as Langevin equatiotfsThe open prob-
computational load of the SSA is often very high when it isiem in the second approach is how to simulate chemical
applied to simulate large biological systems. Thus it is im-reactions with reactant species of intermediate molecular
perative to design efficient numerical methods for simulatingnumbers and/or with intermediate values of propensity func-
stochastic chemical kinetics. tions. Recently Burraget al** partitioned chemical reaction

There are two significant approaches for reducing thesystems into three subsets of slow, intermediate, and fast
computational time of the SSA. The first approach is basedeactions and used the Poisseteap method to simulate the
on a new approach of Gillespie through the use of leap methsubset of intermediate reactions. The improvement over the
ods with Poisson random variablesn the Poissonr-leap  SSA implementation is substantial rather than dramatic. The
method a number of reactions are allowed to fire in a relativeomplexity of the partitioning process eroded potential effi-
larger time interval rather than a single reaction firing in theciency gains. In addition to the methods mentioned above,
next-reaction time interval, as is the case of the SSA. Folother methods have also been proposed recently, for ex-
lowing the Poissonrleap method, the midpoint-leap  ample, Gibson and Bruck’s method with less required ran-
method? implicit ~leap method,and Poisson Runge—Kutta dom numberd? Gillespie’s continuous mod&l and the
method$ have been designed recently in order to improveprobability-weighted Monte Carlo approach by Resial 16
the accuracy and efficiency of the simulations. However, ro-  |n this paper we will use binomial random variables in
bust leap control strategies should be developed before thesige leap methods instead of Poisson random variables. This
methods can be considered for practical applicatioR&- s not intended just to provide an alternative sampling from a
cently Gillespie and Petzold have presented an improvegoisson distribution but will also address the issues of robust
leap control strategies. It will be seen that the proposed bi-
3Electronic mail: tian@maths.ug.edu.au nomial leap methods are robust and very efficient for simu-
PElectronic mail: kb@maths.ug.edu.au lating chemical reaction systems. The rest of this paper is
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organized as follows. We give a brief review of the SSA and €ay(X) eZaS(x)

Poisson leap methods in Sec. I, and present the Binomial 7= min {— 5 ] (2
leap methods in Sec. lll. In Secs. IV-VI we report the accu- jel1M] |15 o (X)

racy and efficiency of binomial leap methods by simulatingyyhere

three reaction systems, namely, the isomerization reaction in N

Sec. IV, a small system with four reaction channels in Sec. V < 9a(x) o

and the expression and activity of LacY and LacZ&incoli ka(X)_i:1 ax; ik bk=1,..M,

in Sec. VI.

M
Mj(x)=k21 fi(¥ax), j=1,..M,
Il. STOCHASTIC SIMULATION ALGORITHMS -

M
In this paper we will study the evolution of molecular o?(x)= >, f2(x)ax), j=1,...M.
numbers in a well stirred chemical reaction system. This sys- ' =

tem containsN molecular speciegS, ,...,Sy} with number  rhig procedure attempts to ensure that the change in each

X;(t) of the species5 at timet. These species of molecules ,ropensity function during a leap of sizewill be no larger
chemically interact inside some fixed volurfeat a constant 4,2 €ay(X), wheree is a prespecified error control param-

temperature through reaction channf,....Ry}. eter (0<e<1). In addition, it would be better to forego the
For each reaction chann®; (j=1,..M), we define a |05 strategy and instead use the SSA if the determined step-

propensity function a;(x) in a given state X(1)  gjzeris less than a few multiples of d4(x). The SSA will
=[Xy(1),... Xn()]"=x and usea;(x)dt to represent the o seq if the selected leap size satisfies
probability that one reactioR; will occur somewhere inside

Q) in the infinitesimal time intervat,t+dt). In addition a _ k

state change vector; is defined to characterize reaction = ap(x)’

channelR;. The ele!”nentvij of rep_resents the change in wherek can be any number between 1 and’10.
the number of specieS; due to reactiorR; .

. - In the Poissonr-leap method, statg(t) is used to ap-
. The S SAls any statistically exact proqedure fo'r ge.neratbroximate the states of the system in the time inteftdl
ing the time and index of the next occurring reaction in ac-

cordance with the current values of the propensit functions+ 7). In order to improve the accuracy, a predicted state at a
. propensity point in[t,t+ 7) can be used to approximate the states of the
In the so-called direct methddwe draw two independent - S
. T system. Similar to the midpoint Runge—Kutta method for

random numbers,; andr, from the uniform distribution in . . : . . .

- ) . solving ordinary differential equations, a predicted state at
the unit interval, and then take the time of the next reactloqhe midpoint ¢+ 7/2) is defined b
to be the current time plug, where P y

()

M
1
w= ! In 1 X=X+ 572 a;(x)vj|, (4)
ag(x) \ry =1
and the index of the next reaction to be the valug tfat  where|x| is the largest integer ir. In the Poisson midpoint
satisfies rleap method, a sample valu; is generated from the
-1 j Poisson random variablE[ a;(x) 7] for eachj=1,...M and
E ak(x)<r2a0(x)$2 a(x). the system is updated by
k=1 k=1 M
Hereay(x) ==} ,a,(x). Then the system is updated by x(t+ T):X(t)”Lgl viKj. ®)

X(t ) =x(W) +v;. The Poissorr-leap and midpoint-leap methods are spe-

It is assumed in the Poissarleap method that there are cial cases of the followings-stage Poisson Runge-—Kutta
a number of reactions firing in a relatively larger time inter- methods’ defined by
val [t,t+ 7). The reaction number of channg firing in M { s

[t,t_+ 7)is a sample_value generated from a Poi_s_son random vy .—x(t)+ > P > wia (Y) 7|, i=1;-s,
variable[ aj(x) 7] with meana;(x) 7. The probability func- k=1 =1
tion of Pla;(x) 7] is M s (6)
[aj(x)T]K B x(t+ T):X(t)+2 VKP[E ,Bjak(Y]-)r .
Pr{P[aj(x)T]:K}:Te 307 K=0,1,...0. k=1 =1

_ In addition, the Heun an®2 methods have also been pre-
After generating a sample valué§; from P{aj(x)7] for  sented by Burrage and Tidn.
each reaction channel, the system is updated by

M
X(t+7')=X(t)+z VK| . 1) Ill. BINOMIAL LEAP METHODS

=1 When applying the Poissonleap methods to stochastic
The stepsizer should satisfy the leap conditith chemical kinetics, we should be very careful about stepsize
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selection. Negative molecular numbers may be obtained ifhe Poisson random variablBa;(x)7]. In the binomial
certain species have small molecular numbers and the stepdeap method introduced in this paper, the reaction number
size is large. Recently, Gillespie and Petzold have proposedgf channelR; is defined by a sample value of the binomial
procedure(2) for improving the robustness of stochastic random variable3[N; ,a;(x) 7/N;] under the condition

simulationst® Instead of using more cautious stepsize selec-
tion procedures, we will propose another approach in order
to improve the efficiency of the Poissanleap method by

using larger stepsizes. Probabilistic properties of random
variables will be used to restrict the reaction numbers and to
avoid possible negative molecular numbers when a large
stepsize is used.

0= aj(X)Tsl.

N;j

()

In order to keep positive molecular numbers in stochas-

tic simulations, we define functiors; below for the widely

numbers in stochastic simulations. The first way is that the
sample value for the reaction number may be greater than
one of the molecular numbers in that reaction channel. For
example, consider a reaction

SRS ()

with x;=1000,x,=1, andc,;=0.1. The reaction number in
the time intervalt,t+ 7) is a sample value of the Poisson
random variable P(c{x;X,7) =P(100r) in the Poisson
7leap method. If reactiori7) is one of the reactions in a
system with largeay(x), it is possible to generate a sample
value that is greater than 1. An example of this possibility
can be found in Sec. VI.

The second case can arise due to the simultaneous oc-
currence of different reaction channels. For example, if a
system contains reaction channels

C1
$t5—-8;,
C2

Sl—’S4,

(1) The first-order reaction

C1

S]_HS?’, aj(x)=C1X1, Nj:Xl' (9)
(2) The second-order reaction
C2
Sl+82*>84, aj(X):C2X1X2, Nj=min{X1,X2}.
(10
(3) The homodimer formationx;=2)
C3
S1+S,—Ss,  a(X)=3CaXi(x;—1), Nj=[3Xq].
(11

According to Eq.(10), the reaction number of the second-
order reaction is less than or equal to the smaller of the two
molecular numbers. In the case of the homodimer reaction,

the total reaction number of these two reaction channels maywe useN;=|1/2x,] since two molecules are needed for one

be greater than the molecular number of speS8gegven if

reaction. For one single reaction, the defif¢dabove can

the reaction number of each channel is less than the numbensure positive molecular numbers after one time step.

of S;.

Now we return to the example reaction). Using defi-

For tackling the problem of negative numbers, we intro-nition (10), the reaction number now is a sample value of the
duce binomial random variables to restrict the possible readsinomial random variable3(x,,c,x,7) =B(1,100r) under
tion numbers in the next time interval. A binomial random the condition 108<1, which is either 1 or O.

variable B(N,p) denotesN repeated independent Bernoulli
trials and each trial has probability of succgssA sample
value of B(N,p) is a integer between 0 ard. This finite

Next we consider the second issue of obtaining negative

molecular numbers. A sampling technique will be designed
for the total reaction number of a reactant species that under-

range of sample values allows us to properly bound the numgoes two or more reaction channels. This technique is based
bers of reactions and avoid negative populations. In additioren the following two properties of the Poisson and binomial
Poisson and binomial random numbers are simular to eactandom variables.

other. The probability function oB(N,p) is
|

P{B(N,p)=K]=mpK

(1-p)N7K,

K=0,1,...N.

Property 1. IfP;="P(\1) and P,="P(\,) are two inde-

pendent Poisson random variables with meansand \,,
respectively, therP,+ P, is also a PoissorP(\ 1+ \,) with
meank;+\,.

Property 2. IfP;="P(\1) and P,="P(\,) are two inde-

pendent Poisson random variables with meansand \,,

The mean ofB(N,p) is Np that equals to the mean of respectively, then the conditional probabiliBr(?;=K,|P;
P(Np). If N is large andp is small, a binomial random +7P,=K) equals to the probabilitPr(B=K,) of a Binomial
variable B(N,p) can be approximated by a Poisson randomrandom variableB=B(K,A,/(A1+\5)) for K;=0,1,...K.

variable P(Np).

Property 1 can be found in a textbook of probability

In the Poissonrleap method, the reaction number of theory. ForK,=0,1,...K, property 2 can be derived as fol-
channelR; in the time intervalt,t+ 7) is a sample value of lows:
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Pr(Py=K4|P1+P,=K)
_ Pr(P1=K1)Pr(P,=K—-Kj,)

Pr(P;+P,=K)
= e_)\l)\Kl 2 K
Kl! 1(K_Kl)' 2
e MA2
K (A +Ap)"
- K! A (K - A (K
K H(K=K)! N+, A+

=K1]

_pf Bl K,
B "N+,

Binomial leap methods for kinetics 10359
(1) Generate a sample valug for the total reaction
number ofR; and R, from the binomial random variable
(14);
(2) generate a sample vallig for the reaction number
of R; from

a;(x)
a;(x) +ay(x)

B[Kjk,

(3) and the reaction number of chanri®] is Ky =Ky
—-K;.
J'I'hen we can define the Binomialeap method which is
given below.

Method 1.For a given error control parameteg, choose
a stepsizer from the r~selection process (2), that satisfies
stepsize conditions (8) for each reaction channel. Then gen-
erate a sample value jKfrom the binomial random variable

Now we consider a sampling technique for generatings[N;,a;(x)7/N;] for j=1,...M. If there are reactant species

reaction numbers of two reaction channBisand R, which

undergoing two or more reaction channels, apply the simul-

speciesS; undergoes. Similar consideration can be given totaneous reaction stepsize condition (15) and sampling tech-
three or more simultaneous reaction channels. Let the prarique for these reaction channels. Finally update the system

pensity functions oR; andR, be written as

a; (X
aj(X):lej\ILj),

ay(x)
ay(X) =Ny N,

where N; and Ny, defined by Eqs(9), (10), or (11), are
functions of the population; of speciesS;. Note thatN; is
either given byN;=x; or N;=|x;/2|. Here we use the Pois-
sonr-leap method as the starting point. In the Poissdeap
method, reaction numbers d&®; and Ry in [t,t+7) are
sample values from the Poisson random variabfgs
="Plaj(x) 7] andP=Pla.(x) 7], respectively. According to
property 1, the total reaction number of chanri@{sand Ry

is a sample valu&, from the Poisson random variable
Pj+Pk=P{[aj(X)+ak(X)]T}. (12)

Then by using property 2, the probability #f=K;, given
that the sample value &%+ Py is Ky, is given by

a;j(x)
(13

PI’('szKj|'Pj+'Pk= Kjk)=PV{B( Kik,m

In order to keep positive molecular numbers, the total

by
M
X(t+ 1) =x(t)+ 2, vK;.
=1

Similarly we can consider the binomial midpoireap
method. It should be noticed that the predicted statethe
Poisson midpoint-leap method is used to provide more ac-
curate propensity functions, and the update is based on
sample values from the Poisson random variables
P(a; (x) 7). When using binomial random variables, we have
the following two schemes after the midpoint predictidi

Scheme 1 Use the predicted statéo defineN;, and
then generate a sample value from the binomial random vari-
able B[N;,a;(x) 7/N;].

Scheme 2 Use the stateatt to defineN; and calculate
the propensity functiom;(x). Then generate a sample value
from the binomial random variablB[ N; ,a;(x) 7/N;] under
the midpoint prediction conditions

a;(x)
In fact N;# 0 is a condition for both schemes above. If

r<1.

(16)

reaction number oR; andRy is not generated from the Pois- N;=0, it is difficult to make the midpoint prediction. By

sion random variabl€12) but from a binomial random vari-

using scheme 1, any movement from the number zero to a

able. Similar to the consideration for a single reaction channonzeroN; will lead to either possibly unreasonable sample

nel, the Poission random variab{&¢2) is replaced by the
following binomial random variable:

a;j(X) +ak(x)

i N T (14)

under the conditiomN; = min{N; ,N,}#0 and

Og%ék(x)rgl. (15

values (\;>0) or a meaningless binomial random variable
(N;<0). If Nj#0, numerical simulations in Sec. V suggest
that it would be better to use scheme 2 although additional
time is needed for checking the midpoint prediction condi-
tions (16). Then we have the following binomial midpoint
7-leap method.

Method 2. Select the leaping timer by using the
7-selection process (2) and stepsize conditions (8) with a
given error control parametee. Then compute the expected
statex (4) at t+ 7/2, use the state at t to define N(N;

Based on the discussion above we have the following#0), and generate a sample valug Kf the binomial ran-

sampling technique for reaction numbers of chankgland
Ry

dom variableB[N;,a;(x)7/N;] for j=1,...M. If there are
reactant species undergoing two or more reaction channels,
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apply the simultaneous reaction stepsize condition (15) and 0% : p—y 0.14 Y

sampling technique for these reaction channels. Finally up- 0.2 o o 012 A\ s
-

date the system by 04 g ’ 01 3 g

0.0!
0.0/

®

Pr(k)

>

M
X(t+7)=x(0)+ >, vK;.
=1 004 / " 004 /

Random number generation is an important issue for the o / N 0wy |/ .
efficiency of stochastic simulations. Computer programs for = 0 h
generating Poisson and binomial random numbers can be ° ° P ° ° P
found in Presset all’ and Netlib (www.netlib.org/random/
random.f9Q in FORTRAN. The latter is a random number gen- o1 01

(d) =04

eration library ofFORTRAN routines including generators for idpont

14 random variables such as the normal, gamma, Poisson

and binomial random variablé&!® Here we recommend to o

use the generatamndomPoissonin Presset all” for Pois- 3

son samples and the functioandombinomial for binomial

samples that is based on the algorithm BTPE. 002
Functionspoissrndandbinorndin Matlab are also avail-

able for generating sample values of the Poisson and bino- "o

mial random variables, respectively. Computing tigfleps

in Matlab) for generating Poisson samples is a linear func-IG. 1. Probability density functions for the numbeof isomerizations in

tion of the sample value, but for binomial samples, it is asystem 1 occurring in a given timefor c=1 andx=100.[(a) and (b)]

; ; ; ; ; Distributions of ther-leap methods with Poisson and binomial random vari-
function of the number of trialsl. Computing time in Matlab ables, respectively(c) and(d)] Distributions of the midpoint-leap meth-

nprmally is large but these two fL_mCt'onS can be Useq Qs with Poisson and binomial random variables, respectiv@hlid line:
simulate small systems for measuring the accuracy of differsolution of CMR; dash-line: a Poisson leap method; dot-line: a binomial
ent methods. leap metho

0.08

0.06

Pr(k)

0.04

0.02

0 4
80 10 20 30 40 50 60

IV. SYSTEM 1: THE ISOMERIZATION REACTION — . . —
B(x,ctx/x) (x#0) with a predicted stat&=x—|cx7x/2].

In this section the isomerization reaction The stepsize condition isOc7x/x<1 and the density func-
tion of B(x,c7x/X) is
) k

K c7X) X! cT
KT T Rk | T X

C

X—=Y 17

is used to test the accuracy of different simulation methods.
The propensity function of this reactionagx) =cx and the

CXT

i 2

—k
state change vector is=—1. The solution to the chemical w|1—crt CT|CXT "
. : 7 T : (20)
master reaction equatiqQitMR) is Xl 2
x! K ek for k=0,...x. If [c7x/2]=cmx/2, the density functior{20)
PriX—k,t+7)x,t)= (X—K)! [1—e "] e ™" can be regarded as a second-order approximation to solution

(18), namely,

O0<k=x;7=0), 18
( 7=0) (18) e "=1-cr+ 22+ 0(c3F).

which is the probability that, given the populationat t, . S
there arek isomerization reactions in the time interdlt When lCTX/Z_J#C.TX/Z' funct!on (20) can siill give very
+1). good approximation to solutiofll8) because the difference

betweencr/x|c7x/2] andc?y?/2 is small.
Compared with the density function of the Poisson
rleap method

By using the binomiat~leap method, the number ¥fat
t+ 7 is x(t+ 7)=x(t) —k. Herek is a sample value of the
binomial random variablé(x,cr) under the stepsize condi-

tion O=cr=<1. The density function o5(x,c7) is (xcr)k
| Ppo(k;cxr)= Te*“’, k=0,...e0 (21)
X! :
Pa(k;x,c7)=———(c7)X1—cr)* K k=0,..x, _ o
skix,c7) k! (x—k)! (er)(1=c) " and that of the Poisson midpoimileap method
(19 —
. . N . —  (xem)t o
which can be regarded as a linear approximation to solution Pp(k;cx7)= K e X", k=0,... (22
(18) since '

Cer with x=x—|c7x/2], the density function$19) and (20) of
e =1-crtO(c’). the binomial leap methods give better approximations to the
For the binomial midpoint-leap method, the molecular solution of the CMR(18).
number att+ 7 is also x(t+ 7)=x(t)—k but the sample Figure 1 gives probability density functior{48), (19),
value k is from the binomial random variable (20), (21), and(22) for c=1, x=100, and different stepsizes
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7. When 7=0.1, both the Poisson and binomial midpoint 10000

7-leap methods give very good approximations to the solu- — X
tion of the CMR[Fig. 1(c)] while the Poisson and binomial ,» 8000 “_"ig
7-leap methods only give acceptable reslifgy. 1(a)]. In E

addition, there is not any significant difference between the E 5000

distributions of the binomial leap methods and the corre- g

sponding Poisson leap methods. However, for a larger step- g

size 7=0.4 [Figs. 1b) and (d)], the binomial leap methods 2 4000

give better approximations to the variance of the distribu- E

tions than the corresponding Poisson leap methods, although 2000

the Poisson and binomial leap methods have the same shift _

in the first moment of distributions. For both stepsizes the 0

binomial midpointleap method gives a better approxima-
tion than the binomial-leap method. Similar phenomena
can be observed for the Poisson leap methods. FIG. 2. A simulation of system 2 by the SSA.
Note that the stepsize in any practical computation is
quite small. Stepsize for simulating reaction(17) with ¢
=1 andx=100 is mir{¢,100¢?} if the selection proces)
is applied. For the systems in _Secs. V and VI_, values of (2) For reaction channeR; andR,, generate a sample
e=0..05, _0.03, or 0.01 are used in order to attain good apy4|ue K, from the binomial random variable
proximations. B{|X1/2],[ C1X1+Cox1 (X, —1)/2]7/|1/2¢;]} and a sample
value K, from B{K;,,c1/[cq+Cy(x;—1)/2]} for the reac-
tion number ofR;. The reaction number dR, is K,=K»
V. SYSTEM 2: A SYSTEM WITH FOUR REACTION —Kj.
CHANNELS (3) For R3 andR,, generate a sample vallg;, from
i the binomial random variablB[ x,,(c3+c4) 7] and a sample
The secon_d test system antalns three reactant SPECIGSIue K 5 from B[ Kas,Cs/(C5+C4)] for the reaction number
and four reaction channels, defined by of Rs. The reaction number dRy is K,=Ks4— K.

¢ (4) Update the system by(t+7)=x(t) + ={_, »K; .
Ri: S—0), This system was simulated by the SSA, the Poisson and
¢ binomial ~leap methods, and the binomial midpointeap
Ry S$,4S,-S,, method. We use the improvedselection proces$2) to

23) choose the stepsize with one of the three error control pa-

‘s rameters:e=0.05, 0.03, and 0.01. For these three error con-

Ryt $—$+5, trol parameters, all of the stepsizes satisfy(xX)=5 and it
cq is not necessary to use the SSA in the leap methods. This is
R, S,—Ss. a very good test system to test the accuracy and efficiency of

the three leap methods. Programs were writteRGRTRAN
and computations were carried out in a Sun workstation with
a 500 MHz CPU.

Detailed simulations of this system in the time intef\aB0]
can be found in Gillespieand Burrage and Tidrbased on

initi it — T
the initial conditionx(0)=(10°,0,0)" and rate constants Regarding the SSA as giving exact results, we calculated

=(1,0.002,0.5,0.04) the means and variances of molecular numbers at integer

th System(23) |Zusf(fa_d_here a? g_ftfest g{:oblem f(t)rz n;eawrlng[ime points based on 20000 simulations. For each method,
€ accuracy and efliciency ot differemieap methods. We o g the absolute errors of the three molecular species in

simulate the evolution of this system in the time interval . R
R " . the mean and variance, that are presented in Fig. 3. The
—_— T L
[0{40] thg 1'”;'&;20 c(;néj l(t)l%%X(FQ)_ (154 ’Q’O) an_d rfat?t'on ¢ Poissonr-leap method has slightly better accuracy in the first
ratesc=(0.1,0.002,0.5,0.04) Figure 2 gives a simulation o moment than the binomiat-leap method. However, the ac-

this systgm oibtamed. by the SSA . curacy in variance of the binomiatleap method is better
We first give a brief description of the numerical process

f the bi Al thod. Simil ical d than the Poissom-leap method. For a small error control

0 E |n§{r1!a7;eicap trr?e b(') i _|rr|1|a_rdnur_nm:r|ca prot?]e dure parametere=0.01, these twor-leap methods have similar
can be obtained for the binomial midpoimieap method. accuracy in the mean and variance. These results are consis-
After choosing a stepsizeby using the improved-selection

2) the followi - dt e bi tent with those presented in Fig. 1. The midpointeap
pro cess(2), the following process is used to generate N0 nethod can always achieve better accuracy of the first mo-
mial samples at each step.

(1) Check the Binomial stepsize conditions ment than the Poisson or binomialeap method. An unex-
pected result is that the binomialleap method has better
1 accuracy in variance than the binomial midpoirleap
5% <1 method.
Based on the computing time of the SSA, that is, 4188 s
R; andR,, (cztcy7<1. for 20 000 simulations, the speedup, defined by

1
Rl and R2, C]_X1+ ECZXI(Xl_l)
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20 40 - TABLE II. A full list of reaction channels and deterministic reaction rates
(a) Mean, £=0.05 % (b} Variance, £=0.05 for system 3.
15 P £ AN
10 = 2 | e Reaction channel Reaction rate
7 i e
5t 10 R, PLact RNAP — PLacRNAP 0.17
A TR R> PLacRNAP— PLactRNAP 10
O 2 @ 0 R;  PLacRNAP— TrLacZl 1
R, TrLacZ1l — RbsLaczt+PLact+TrLacZ2 1
Rs TrLacZ2 — TrLacY1 0.015
Re TrLacY1l — RbsLacY+TrLacY2 1
R TrLacY2 — RNAP 0.36
Rg Ribosome-RbsLacZ— RbsRibosomeLacZ 0.17
Rg Ribosome-RbsLacY — RbsRibosomelLacY 0.17
Rig RbsRibosomeLacZz- Ribosome-RbsLacZ 0.45
Ri1 RbsRibosomeLacY~ Ribosome-RbsLacY 0.45
Ry RbsRibosomeLacZz- TrRbsLacZ+RbsLacZ 0.4
Ri3 RbsRibosomeLacY~ TrRbsLacY+RbsLacY 0.4
R4 TrRbsLacZ— LacZ 0.015
Ris TrRbsLacY— LacY 0.036
Rig LacZ — dgrLaczZ 6.42E-5
Ri7 LacY — dgrLacY 6.42E-5
Rig RbsLacZ— dgrRbsLacZ 0.3
Rig RbsLacY— dgrRbsLacY 0.3
Roo LacZ+lactose— LacZlactose 9.52E5
FIG. 3. Simulation results of the Poissefleap method, Binomiat-leap ~ R.;  LacZlactose— producttLacZ 431
method and Binomial mid-point-leap method for system 2(a), (b) and Ro, LacY — lactoserLacY 14
(c)] Sum of absolute errors of the means of simulated molecular numbers cf
these three method with=0.05,e=0.03, ande=0.01, respectively.(d), (e),
and (f)] Sum of absolute errors of the variances of simulated molecular
numbers of these three method witk0.05, e=0.03, ande=0.01, respec- . . .
tively. (Dash-line: the Poissortleap method, solid line: the binomialleap Simulations of this system suggest that random number
method, dot-line: the binomial midpointleap methoyl generator is one of the key issues for the efficiency of the

7-leap methods. It is worthwhile to have a detailed study of
the accuracy and efficiency of different random number gen-
erators for Poisson and binomial random variables. This is-

(24) sue is beyond the scope of this paper and will not be dis-
cussed here.

computing time of the SSA
computing time of ar-leap method

speedup

is used to measure the improvement on efficiency sleap

method over the SSA. Table | gives the averaged nUmbers Qf, o\ crey) 3. ExPRESSION AND ACTIVITY OF LacZ

time steps of one simulation, computing time for 20 OOOAND Lacy

simulations (in seconds and the speedup over the SSA.

Based on the same error control parameter, these tHesp The third system describes the expression of LacZ and
methods have similar computational efficiency in terms ofLacY genes and activity of LacZ and LacY proteins En

the averaged number of time steps. The computational timeoli. A detailed description of this system can be found in
of the Poisson~leap method is larger than that of the bino- Kierzek?® Here we just give a full list of reaction channels
mial ~leap method due to different computational time forand deterministic reaction rates of the chemical kinetics in
generating the random numbers. If the same time was usélable Il. As indicated by Kierzef reaction rates of the
for generating Poisson and binomial random variables, theecond-order reactions are dependent on the volume of cell.
binomial ~leap method would have slightly larger comput- This system was simulated by the software package
ing time than the Poissom-leap method. The computing sTocksusing the SSA° Populations of the reactant species
time of the binomial midpoint~leap method is slightly range from O or 1 for PLac to 30 000 for LacZ, and values of
larger than that of the binomiatleap method, since addi- propensity functions range from 0.15 for reaction channel 5
tional time is needed for midpoint prediction. (Rs), 24.0 forR;5, to 500 000 forR,g. In addition, there is

TABLE |. Averaged numbers of time steps of one simulation, computing time for 20 000 simuldtions
seconds and the speedup over the SSA of the binomial midpeilgap method, and binomial and Poisson
7-leap methods for simulating system 2.

€=0.05 €=0.03 €=0.01

Steps Time Speedup Steps Time Speedup Steps Time Speedup

Poissonr-leap 211 122 34.33 417 235 17.82 2902 1169 3.58
Binomial rleap 202 68 61.59 415 132 31.73 2902 793 5.28
Binomial midpoint 209 72 58.17 420 138 30.35 2904 827 5.06
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TABLE Ill. Averaged computing timgin seconds of one simulation of
system 3 by using the SSA and binomialeap method with different error
control parametee in the improvedrselection process.

(b) TrLacZ2

0
{a) RbsLacY é
. . 2
05 M § 16
3
Q
2
]
E

15
Binomial ~leap (e=0.01) 952.28 16.70 \WW
SSA 15902 1 .

Method Computing time Speedup

Binomial 7-leap (e=0.05 225.46 70.53
Binomial r-leap (e=0.03 281.44 56.50

molecular numbers

N

-0.5 13
300 310 320 330 300 310 320 330

T T

1020

not any significant gap between the populations of different
reactant species or between the values of propensity func
tions of different reaction channels. By using a multiscale
method the improvement on efficiency is substantial but not
significant®* Much time was used for carefully classifying
reaction channels into three subsets of fast, intermediate, an
slow reactions at each time step.

Now we discuss numerical implementation of the bino- 4
mial ~leap method for system 3. At each time step the num- i s T 320 » i n T 320 »
bers of RNAP and Ribosome are drawn from random pools o o
that are disributed normallp(35,3.%) and N(350.36), IS, Moet Std e seusrs ot o holecur shecies
respectively. In addition, the mean values of these poolgongition. (Solid line: the SSA, dot-line: the-leap method
grow, together with the volume of cell so that the concentra-
tions of these molecules remain constant. For reaction chan-
nelsR;, Rg, andRy, the numbers of trials of the binomial
random variables are the populations of PLac, RbsLacZ, an
RbsLacY, respectively.

For reaction channeR,y, the number of trials of the
binomial random variable is the smaller of the populations o
LacZ and Lactose. Denote the number of molecBlas
N(P), then the binomial random variable f8 is defined

by

(d) TrRbsLacZ

(c) TrRbsLacY 1000

S

n

>
8
p=3

8
S

400

lecular numbers

©
=
(=3

molecular numbers

£ 380

[]o,zloq. Instead we considered the accuracy of the binomial
7-leap method in a short time interval. As the SSA was fre-
quently used at the initial stage of each simulation, we simu-
Hated this system in the time inten@800,330 and used the
SSA to get a state of the systemtat300 that was used as
the initial value of our simulations. We calculated the means
and standard deviations of simulated molecular numbers
over 10000 simulations obtained by the SSA and binomial
B(min{N(LacZ),N(Lactose}, rc,ymaxXN(Lacz), 7leap method with error control parameter0.03. As an
N(Lactose}) example, we give the means and standard deviations of Rb-
’ sLacY, TrLacz2, TrRbsLacY, and TrRbsLacZ in Fig. 4.
In addition, there are seven reactant species that undergo tv&mulation results suggest that the binomideap method
reaction channels. These reactant species are PLacRNARN give very good approximations to the evolution of this
(channelR, andR3), RbsLacZ Rg andR;g), RbsLacY Rg biochemical reaction system.
and Rig), RbsRibosomelLacZ R;; and R;,), RbsRibo- We note that it is very difficult to apply the Poisson
somelLacY R;; andRy3), LacZ (R and Ryg), and LacY  rleap method to simulate this system. We simulated system
(Ry7 and Ry). The simultaneous reaction sampling tech-3 by using the Poissomleap method withk=3 and 10 in
nique is applied to these pairs of reaction channels. the method selection criteria3), respectively, and the SSA
This system was simulated by the SSA and binomialwas used irk steps if rag(x) <k. All 100 simulations were
7-leap method with the improved-selection process2). aborted for eack due to negative molecular numbers. As the
Table Il gives the computational time for one simulation by SSA was used frequently at the initial stage of each simula-
using the SSA, which is averaged over 20 simulations, andion, a largerk just delayed the time for using the Poisson
by using the binomiat-leap method with different error con- 7leap method and the time of abortion. Negative molecular
trol parametere, which is averaged over 50 simulations. It number in most simulations was obtained from reaction
took about 4.5 h for one simulation by using the SSA butchannelRg or Rg when the reaction number was 2 but the
much less time by using the binomialleap method. The number of RbsLacZ or RbsLacY was just 1. The difficulty is
binomial ~leap method withe=0.03 results in a nearly 60- that we may get negative number from chanRglor Rq at
fold reduction in computational time over the SSA. We canany time point of a simulation. The numbers of RBsLacZ
still get a 16-fold improvement in computing time when a and RbsLacY are 0 or 1 at most steps whent82100 but
smallere=0.01 was used. The improvement in efficiency isthe number of Ribosome is a sample froN[350(1
significant. +1/2100),35]. On the other hand, the sum of the expected
Due to the huge computing time of the SSA, it is diffi- reaction numbers of channel,,, R,;, and Ry, began to
cult to test the accuracy of the binomialeap method based increase and exceed&dvhent was large.
on a large number of simulations over the time interval It is also difficult to apply the binomial midpointleap
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method to simulate this system. The problem now is the 1
midpoint prediction because the populations of a few reac- R;: $+5,—2S,,

tant species are zero in the simulations. There are a number ¢

of reactant species, for example, PLac, PLacRNAP, Tr- Ry: S,+S;—2S;, (25)
LacZl, and RbsLacZ, whose population is just 0, 1, or 2. If
the molecular number is zero, any change made to it may ‘s

cause unreasonable sample values for the reaction numbers. Ry $3—3S,,

it is not appropriate to generate sample values for the total
VII. CONCLUSIONS reaction numbers o8, in channelsR; andR, andS; in R,

In this paper we have derived efficient numerical meth-2nd Rs at the same time. But the stepsize conditionsSef
ods with robust leap control strategies for simulating chemi@"d S3 can be used as additional conditions to choose the
cal reaction systems. The motivation of this approach is t¢€@Ping size. This consideration for a simple system can be
improve the efficiency of the Poissarleap methods by us- @PPlied to more complex chemical reaction systems.
ing larger stepsizes and avoiding possible negative molecular
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