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LIMIT THEOREMS FOR SEQUENCES OF JUMP MARKOV PROCESSES
APPROXIMATING ORDINARY DIFFERENTIAL PROCESSES

T. G. KURTZ, University of Wisconsin

1. Introduction

In [3] this author gave conditions under which a sequence of jump Markov
processes X,(t) willconverge to the solution X(#) of a system of first order ordinary
differential equations, in the sense that
1.1 lim P { sup | X,(s) — X(s)| > & } =0

n—=o s<t
for every 6 > 0.

As was indicated in the earlier paper, this result gives the relationship between
the stochastic and deterministic models that have been proposed for many physical,
chemical and biological processes.

The implication is that the deterministic model, which is frequently fairly easy
to analyze, is for all practical purposes as good as the stochastic model provided
that the population or number of particles involved is sufficiently large. The
question then becomes what is “‘sufficiently large”’. In this paper we consider this
question in two ways. In Section 2, we give bounds on the probability in (1.1)
using martingale theory and in Section 3 we prove two ‘‘central limit theorems”’,
which can be used to estimate the above probability. In Section 4 we specialize
the results to what we call density dependent Markov chains, giving examples
from epidemiology and chemistry.

The following notation and assumptions will be used throughout: for each
n, X,(t) is a right continuous, temporally homogeneous, jump Markov process
with state space (E,, B,) where E, is a Borel measurable subset of r-dimensional
Euclidean space (R"), and B, is the o-algebra of Borel measurable subsets of E,;
A(x) and p,(x,I") are the waiting time parameter function and the jump dis-
tribution function for X,(f). That is, if

= =1nf{t: X, (1) # X,(0)},
then
P{t> 1| X,(0) = x} = P,{t > t} = exp{ — A,(x)1}
and
P{X,(t)eT} = u, x,T), for every T'eB,.
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Limit theorems for sequences of jump Markov processes 345

We will assume that A,(x) is bounded on bounded subsets of E,, and that

As(X) fE |z —-Xx |y,,(x,dz) <

for each x€E,.
Define

Fo) = () f @ — ), d2),

and note F,(-): E,—~ R".
The following lemma, a standard result in the theory of ordinary differential
equations, is basic to our considerations.

Lemma (1.2). Let E be an open subset of R” with E,  E and suppose

F(:):E-R'
satisfies
|F(x) = FO)| S L|x - y| x,y€E

for some constant L. Let X(s,x) denote the solution of

%X(s, x) = F(X(s,x)) s < t

X(0,x) = x.
Then

sup

s=<t

X,(5) — X,(0) — f )| <5
0
implies

suipl X, (s) — X(s, x) | < (5 + IX,,(O) - x| +t sulz |F(x) - F,,(x)])e"'.

Consequently, if
lim X, (0)=x

n=>o
and
lim sup |F(x) — F,(x)| =0,
n—o xekE.
in order to show that
(1.3) lim P { sup | X,(s) — X(s,x)| > a’ =0
n-+ow st

for every > 0, it suffices to show that

(1.4) lim P: sup

n—o s=<t

X0 - %,0 - | F(X,w)du| > 6} ~0

for every 6 > 0.
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346 T.G. KURTZ

Since the probabilities in (1.3) depend only upon A,(x) and u,(x,T) for x in
K;={y:inf,c,|y — X(s,x)| £ 8} (a compact subset of R), we may make strong
global assumptions about A,(x) and p,(x,I') without significantly restricting the
applicability of our results.

In particular we will now assume

1.5) sup 4,(x) < o
and
(1.6) sup A,,(x)f lz —x Iu,,(x, dz) < 0.

2. Martingale inequalities

In this section we will obtain bounds for the probabilities in (1.4) in terms of
A(x) and p,(x,T). Since the fact that we are interested in a sequence of processes
is not of particular importance here we will drop the subscript n.

Proposition (2.1). Let X(f) be a jump Markov process with state space
(E,B), E = R, life time parameter function A(x), and jump distribution u(x,I")
satisfying

(2.2) sup A(x) < 0
and
(2.3) sup A(x) f |z — x|p(x, dz) < 0.

Then the process

Z() = X(t) — X(0) — L F(X(s)) ds

is a (vector valued) martingale.

Proof. Since A(x) is bounded, every bounded measurable function is in the
domain of the infinitesimal operator 4 for X(f), and

Af(x) = A(x) f (f(2) — () dz).
Let
fm,x(y)= m /\ lx_yl

A basic theorem of the theory of semigroups (see Dynkin [2], p. 33) gives
Ex(fmx(X(t))) _fm.x(x)

= L ' E(A(X(s)) L (m A|x—z|—m A|x = X())u(X(s), dz)).
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Limit theorems for sequences of jump Markov processes 347

By (2.3)

<
i

sup A(x) j |z — x|u(x,dz) < 0
x E

and noting that
I(m /\Ix—z| —m /\]x—X,,(s)l)[ < |z—X(s)|,
we have

lim B (f,, (X)) = E(| X()) — x[) S M.

m= o

Using the fact that E.(| X(f) — X(0)|) is finite, a similar argument gives
t
E(x() = XO) = £ [ Fox) as)
JO

and the fact that Z(¢) is a martingale follows from the Markov property.
We will now assume r=1. The proofs of the inequalities for a general r-dimen-
sional process are essentially the same as the proofs in the one-dimensional case.
Standard martingale results give

P, {sup | X(s) — X(0) - L F(X() du| > 5]

st

2.95) ¢
< [¢<6)]“Ex(¢(|X(t) ~X(0) - f F(X(u))du|))

for every convex function ¢. The problem is to estimate the expectation on the
right.
In order to do this we consider the Markov process

&) = (X(1), Z(1)).
The following is easy to verify:

Lemma (2.6). Let f(x,z)=f(z) be a bounded continuously differentiable
function of z. Then f is in the domain of the weak infinitesimal operator 4 of &,
and

Af(x,2)

A(x) f (fw = x + 2) = f(@)u(x, dw) — F)f(2)
2.7 £

2(x) fE (fw = x + 2) = £(2) = (w — ) f"(2)u(x, dw).

Lemma (2.6) implies
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348 T.G. KURTZ
28) E(f(Z®)-f0) =

J; E(M(X(s) J; (f(w—X(8)+Z(5)) = f(Z(s)) — (w— X())f (Z(s)))u( X (5),dw))ds.
This result can be extended to more general functions f.

Lemma (2.9). Let f(z) be any non-negative, continuously differentiable
function. If

(2.10)  Hf(x,2) = A(x) fE fw = x + 2) = f(2) = (W = )f"(2))u(x, dw)

is bounded, then

2.11) ELf(Z1) =f(0) + J; E (A f(X(5), Z(5))) ds.

If in addition f’(z) is absolutely continuous, and f"(z)=0 then equality holds
in (2.11).

Proof. Let {f,(z)} be an increasing sequence of non-negative bounded
functions having bounded continuous derivatives satisfying

ful®) =) for |z] < m.
Let

1, =inf{t: | Z()| 2 k}.
The fact that £(f) is a strong Markov process and T, is a stopping time implies

tA T

@12)  E(Z( A) —fO) =E, ( fo AF(X(s), Z(s»ds) :

If s<t, and m =k then

A1, (X(), Z(s) = AX() L[fm(w — X(s) + Z(s)) — f(Z(5)
— (W = X()f (ZE)]uX(s), dw)
< XX() j [f(w — X(s) + Z(5)) — f(Z(s))

= (w = X())f "(Z(sN]u(X(5), aw)
= Af(X(s), Z(5)),

and as m goes to infinity 4f,, increases to &/ f. This gives

Q1) EUEEAW) -0 = :"df(X(sx Z(s)ds) .
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Finally, since E(|Z(t)|) < 00, (2.5) with ¢(z) = |z| implies lim, tA 7, =1,
Applying Fatou’s Lemma to the left hand side of (2.13) and the Dominated
Convergence Theorem to the right, (2.11) follows.

If f'(z) 1s absolutely continuous then

Lf(x, y) = Ax) L [Ow_x fo 7'z + v) do du p(x, dw)

and for appropriately chosen f,,

ey =i [ [ [tz + 0 dvdunce,am).
Je Jo Jo
If f"(z) > 0 we can select f,, so that f7, is absolutely continuous and f,, increases
to f”, and we obtain equality in (2.11).
To obtain bounds on the right hand side of (2.5) we consider two cases.

Case 1. (¢(0)=¢'(0)=0, ¢”" =0 and decreasing, for example ¢(u)=u’
1<ag2)

Setting f@) = ¢(z])
f@+u)—f(2)—-uf'(z) = f: jovf”(z + w)ydwdv
o] v,
<2 J f " F7(w) dw dv
0 0
= 4¢(|u).

Consequently
P, { sup |Z(s)| > & } < [P(0)] ' 4t sup A(x) qus(%] w — x )u(x, dw).
In the mu~1tidimensi0na] case one can obtain the corresponding inequality
P, {sup|2)| > 8} <[40 arsup2) [ 3 03w x Pt )

Case 2. (¢(0)=¢'(0)=0, ¢”" =0 and bounded, for example
u®, u=sl
o0 = | )
ot — (o — 1), u>1
for « = 2. Note, in this example ¢(u) < u”.) Let

$pu—e), uze

¢8(u) =

0. u<e
and
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350 T. G. KURTZ
fk(z) = ¢e(| z I).
Trivially
<
1z + )~ 1)~ ufl(2) < {"“' b ol
%” ¢’ "“ IZI > e

Consequently for e < ¢

P{SL;[? | Z(s)| >5} <[o@-oT ! [t sup l(x)fE¢(| w—x )u(x, dw)P{sgp | Z(s)lgs}

+ 1] ¢ sup 400 L 3w — x|PuCe, dw)P {f‘é‘? |2)| > 8}]
Let
My = supi() [ 9| —x pucx,dw
and

M, = supi(x) f 3w — x[2uCx, dw).
x E

Replacing § by ¢ and ¢ by ¢/2, one obtains

{ sup | Z(s)| > 5} ¢(5 - 8) s 5’_ 5 | ¢" M. )[tM¢,+tH ¢"|M.].

s=<t

2 ¢(e/2

More generally

Lo g M)
{i‘;‘?' Z“””; Py (1 MR ey ¢<s72m))

L (e k
* (0 — &) Ik _, (e /2m) P :i‘;lt’ | Z(s)| > &/2 }

The same inequality holds in the multidimensional case.
Inequalities of the type derived above are explored in more detail in [4].

3. A central limit theorem

We now return to the consideration of a sequence of processes taking values in
R'. We define

Fu(x) = 4 f (z — M), dz),

gh(x) = a2A(x) L (2 = %) (2 — % ita(x, d2),

and
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Limit theorems for sequences of jump Markov processes 351
G, (x) =((g}(x))) (the r x r matrix with elements g/i(x)),
where «, is a sequence of positive numbers going to infinity.

Theorem (3.1) Suppose F,(x) and G,(x) converge uniformly to F(x) and
G(x) where F(x) is bounded and Lipschitz continuous with constant L, and G(x)
is bounded and uniformly continuous. Suppose there is a sequence ¢, decreasing
to zero such that
3.2) lim sup aZ,(x) J |z —x |zu,,(x, dz) = 0.

anlz—x|>e,

n—-+w xeE,

Then

1

W,(t) = a,(X (1) — X,(0) — f F(X () du) = 2,7, (t)

o]

is tight in D, the space of right continuous functions with left limits (see Billingsley
[1]) and if X,(0)—> x, W,(t) converges to the diffusion W(t) with characteristic
function

t
E(exp{i0W(1)}) = ¢(1,0) = exp{ - 13 0,0; f g,.j(X(s,x))ds} .
ij 0
Proof. The tightness of the sequence W,(t) follows from the Markov property
and the inequality

2
(3.3) P { sup | W,(1)| > 5} < tg; sup )-.,,(x)f |z = x|*p,(x, dz)
s<t x En

which holds by the results of the previous section.
Using the results in Section 1 and Section 2 we obtain

P { sup | X,(s) — X(s,x)| > (5 +|X,00)— x| + sup|F(z) - F,,(z)|)e“}

t
é Fj‘ Sl:pln(x) JE,, , z—=X |2:un(x3 dZ)

and hence if lim,_,  X,(0) = x

(3.4) lim P { sup ,X,,(s) — X(s, x)[ > a} =0

n-w st
for every ¢ > 0. Letting

O0x = 2 0,x;if 0,xe R,
j=1

define
éa(t,0) = E(exp {i0W ,(1)}).
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352 T.G. KURTZ

By the natural extension of (2.7) to the r-dimensional case we have
4,00~ 1= [ EQ000) [ [explinr = X,0) + o))
0 En
- exp{ianozn(s)} - i(X"O(W - X,,(s))exp{ioz,,BZ,,(s)}]u,,(X,,(s), dW))

- - f E ( 13 ojokg;fk(xxs»exp{iows>})ds
0 Jsk

+ J; E(exp {i0W,($)}A(X(s)) L (e, 0(w — X ()0 (W — X,(5)))* (X (), dW))ds,

where

Y(u) = (€“— 1 — iu + 3u?) [u*
Noting that (u) is bounded and lim,_, oy/(u) = 0, (3.2) implies the second term
on the right, call it K,(6), goes to zero as n goes to infinity. This leaves

Gu(t,0) — 1= — f B 0,0(X(5)6,(5,0)ds

n E( fo b Z00(gu(X(x) - g;k(xn(s)»exp{iewn(s»ds) LK 6).

The second term on the right, call it J,(6), goes to zero by the uniform convergence
of gj, to gj, the uniform continuity of gy, and (3.4).
Letting

) = sup % Zk Gjekgjk(x)a
x s
we have

l ¢n(t’ 9) - ¢(t’ 0)| =

and the theorem follows.

J(0) + K, (0)| exp {T(0)1},

Theorem (3.5). In addition to the hypotheses of Theorem (3.1), suppose
lim sup a,,IF,,(x) - F(x)l =0

n—oo x
and that F(x) has uniformly continuous first partial derivatives. Then

lim o,(X,(0)—x)=v

implies
Vn(t) = an(Xn(t) - -X(ta x))

converges weakly to the diffusion V(¢) with ¥(0) = v and characteristic function
¥(t,0) satisfying
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(3.6) %P—(t, Hh=-1 X 9j0kgjk(X(t,x))‘P(t,9) + X 0j6ij(X(t,x)) —a—qi(t,O).
t .k ok 00,

Noting that under an appropriate change of variable (3.6) becomes

Y
W o

the proof of Theorem (3.5) is essentially the same as the proof of Theorem (3.1).
4. Density dependent Markov chains

We call a one-parameter family of Markov chains X ,(), 4 > 0, taking values
in Z" (r-vectors with integer components), density dependent if the infinitesimal
parameters for X ,(f) can be represented in the form

Gt = Af(A7 'k, k1eZ".

We will refer to the functions f(x,[) as the parameter functions.

In addition to the prey-preditor model discussed in [3], examples of density
dependent Markov chains include models for chemical reactions and the epidemic
model (appropriately formulated).

Chemical Reaction. Consider the simple reaction B + C — D taking place
in a solution of volume A. The reaction occurs if a molecule of B and a molecule
of C come ‘‘sufficiently close’’ together. It is reasonable to assume that the chance
of this occurring in a small interval of time is proportional to the number of
molecules of B, the number of molecules of C and inversely proportional to the
volume of the container. This leads one to formulate the following Markov chain
model.

Let k, be the number of molecules of B and k, the number of molecules of C.
The only possible transitions are

(ky,kp) > (ky — 1Lk, — 1)
and the corresponding infinitesimal parameters are given by
Akik, 4 ky ky
—"‘A‘—“‘ - /.A A .

In other words, the models form a density dependent family of Markov chains
with
fOx,(=1,=1)) = ixyx,
and
fx, D=0 I#(—1,-1).

Epidemic Model. Let i be the number of infectious individuals and s the
number of susceptible individuals in a total population A. (The remaining
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354 T. G. KURTZ

A — (i + s) individuals are immune.) In order for a susceptible to become infected
during a short interval of time, there must be an infectious individual among the
people he encounters during that interval of time. Therefore it is reasonable to
assume that the chances of one of the susceptibles becoming infected in a short
interval of time is proportional to the number of susceptibles and to the fraction
of the population that is infectious. Assuming that there are only two possible
transitions, the infection of a susceptible and the recovery of an infectious, we
formulate the model with parameters given as follows.

(i,9) = (i + 1,5 — 1) ,15;;_ = Azﬁ_ ;1’_,
(i,5) > (i—1,5) pi = A,u;;_,

The parameter functions are
F(x, (1, = 1)) = Axyx,
f(x’(_ 1,0)) = Uxy.

We also note that a multitype Markov branching process is another example
of a density dependent family. In this case all of the parameter functions are of
the form f(x,0) = Za;(D)x;.

To apply the results of the previous sections to density dependent families we
consider 4 ~'X (f). The waiting time parameter function and jump distribution
are given by

q(x)=4 12 f(x, D)
and

uGe, {x + A1y = L&D

Life D)

The parameter o, used in Section 3 is just \/A. This gives

F(x) = 112 Lf (x, 1)

and

gij(x) = ? liljf(xa D).
Defining
Z(t) = A7 X, (1) — A1X4(0) — f FATX,(9)ds,
0

the inequalities of Section 2 become
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Case 1. (¢p(0)=¢'(0) =0, ¢”" =0 and decreasing.)
@) P |Z,0]> 8 SO 4 sp T T (@A) 1S,

Case 2. (¢(0)=¢'(0) =0, ¢" =0 and bounded.)

. t § (¢ M)
P Z, < M.l1 I R | B
42 o121 8) = g—p{1 + 2 1" ge7om)
1 (”Q””|M21)k+1 ok
T 36— T, 62 P{i‘;‘,’|z‘(”| ”/2}’
where
M, = Asup }i: PATIDf(x,1)
and

M,=Q4)  sup B |11 (x,D).
x !
Using the inequality (4.1) for
o0 = |

u?, u<l

2u—1, uz1
it is easy to see

(4.3) lim P { sup | Z,(s)| > 5} =0
A-© s<t

provided

(4.4) lim sup X |1]|f(x,0)=0.
d-ow x |l|>d

We note that if

lim 471X ,(0) = x,

A— 0
and F(x) is Lipschitz continuous in a neighborhood K of the trajectory
X(s,x0) 0s=<t,
X(0,x9) = 0,

X (5,%0)_

then in (4.4) the supremum may be taken over K and one concludes from (4.3)

that
lim P { sup | 471X ,(s) — X(s,xo) | > 5} =0.

A= © s=t
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356 T. G. KURTZ
Theorem (3.1) is valid for W,(t) = \/AZ,(t) if in addition
4.5) lim sup X |1|*f(x,1)=0.

d-oxe K |l|>d
Then W,(¢) converges weakly to the diffusion process with independent increments
having the characteristic function

E(exp{i0W(9)}) = exp {— 1 Z 0,0; Ot 8:i/(X(s,x)) ds} .

Remark. In some sense this appears to mean that X ,(t) is “‘close” to the
solution of

X(f) = X(0) + A~* f ' (X(s))dB + f " F(X(s)) ds,
0 0

where o(x) is the square root of the r x r matrix G(x) and dB denotes integration
with respect to r-dimensional Brownian motion.
Theorem (3.5) is valid if F(x) has uniformly continuous first partial derivatives.
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